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Abstract 
 
 
Java has, in recent years, become fairly popular as 

a platform for commercial servers.  However, the 
behavior of Java server applications has not been 
studied extensively.   

We characterize two multithreaded Java server 
benchmarks, SPECjbb2000 and VolanoMark 2.1.2, on 
two IBM PowerPC architectures, the RS64-III and the 
POWER3-II, and compare them to more traditional 
workloads as represented by selected benchmarks from 
SPECint2000.  We find that our Java server 
benchmarks have generally the same characteristics on 
both platforms: in particular, high instruction cache, 
ITLB, and BTAC (Branch Target Address Cache) miss 
rates.  These benchmarks also exhibit high L2 miss 
rates due mostly to data loads.  As one would expect, 
instruction cache and L2 misses are primary 
contributors to CPI.  Also, the proportion of zero 
dispatch cycles is high, indicating the difficulty in 
exploiting ILP for these workloads. 
 
 
1. Introduction 
 

Java, originally used extensively for web client 
software, is an emerging paradigm for server 
applications because of its portability and enhanced 
security features.  However, while Java server 
applications are coming into wide use, their behavior is 
not yet well understood.  Java client applications have 
been studied, but Java server applications differ 
significantly from client workloads, particularly in 
their need to maintain many concurrent client 
connections.  Since in the current version of Java, I/O 
multiplexing, polling, and signals are not available, the  

 
only method available to Java programmers to 
maintain a large number of client connections is 
threads.  One or more separate threads are created to 
handle each client connection [12].  Therefore 
performance in the presence of a large number of 
concurrent threads is vital to a Java server application.  
This distinct characteristic of Java server applications 
could lead to differences with Java client workloads in 
terms of branch behavior, cache behavior, and other 
metrics that contribute to overall performance. 

The aim of this study is to characterize the impact 
of multithreaded Java server applications on modern 
processor microarchitectures.  To this end, we compare 
multithreaded Java server benchmarks with selected 
benchmarks from SPECint2000, a suite of more 
“traditional” workloads, on two IBM PowerPC 
microarchitectures, the RS64-III and the POWER3-II, 
to determine the performance characteristics of 
multithreaded Java server applications.   
 
2. Related Work 
 

Commercial workloads have been increasing in 
importance, and efforts have been made to understand 
their behavior [2,11,8,7,16,1].  Most of these studies 
have been focused on applications written in C or C++, 
in particular OLTP, DSS, and web server applications. 

Java has also been a popular subject of research.  
The majority of Java studies use SPECjvm98 
[17,9,15], which is a client benchmark suite.  
SPECjvm98 has been observed to have as much as 
31% kernel activity due for the most part to a TLB 
service routine, which indicates a high TLB miss rate.  
SPECjvm has also been observed to have poor ILP and 
insensitivity to wider issue width [9].  However, it has 



better instruction cache performance than C/C++ 
applications [15].   

Commercial Java servers are emerging workloads 
and thus research has just begun on their behavior.  
Most of the research in this area has been on the effect 
of multithreading.  Cain and Rajwar [6] studied branch 
prediction and cache behavior in SPECjbb2000 and 
TPC-W with the full-system simulation of a coarse-
grained multithreaded processor.  They found 
destructive interference between threads that degraded 
performance.  Luo and John [10] studied the impact of 
multithreading in Java server benchmarks on a Pentium 
Pro machine. They did see constructive interference in 
the instruction stream and branch prediction behavior, 
but these benefits were eventually overcome by 
increasing resource stalls as the number of threads 
grew large.    

This paper focuses not so much on the effect of 
multithreading for these Java server benchmarks, but 
on the differences between Java server applications and 
more “traditional” workloads (represented by 
SPECint2000).  We use two popular IBM PowerPC 
platforms that represent the state of the art in 
microprocessor design.  Several performance metrics, 
such as cache behavior, branch behavior, dispatch 
behavior, CPI components, etc., are studied. 
 
3. Methodology 
 

This section describes the hardware platforms and 
benchmarks used in this study as well as the methods 
used to collect performance monitor data. 
 
3.1. Platforms 
 

We use two IBM PowerPC microarchitectures for 
our study: the RS64-III and the POWER3-II.  Both are 
current microprocessor architectures, but they differ in 
many significant ways.   

The RS64-III [4,5] is a 64-bit, superscalar, in order, 
speculative execution machine and is targeted 
specifically for commercial applications.  It has one 
single cycle integer unit, one multiple cycle integer 
unit, one four stage pipelined floating point unit, one 
branch unit, and one load/store unit.  The RS64-III can 
fetch, dispatch, and retire up to four instructions per 
cycle and has a five stage pipeline.  It does not predict 
branches dynamically like the POWER3-II, but rather 
prefetches up to eight instructions from the branch 
target into a branch target buffer during normal 
execution, predicts the branch not taken, continues to 

fetch from the instruction stream and then, once the 
branch is resolved in the dispatch stage, either 
continues fetching from the current instruction stream 
with no penalty or flushes the instructions after the 
branch and begins fetching from the branch target 
buffer, with a penalty of at most one and often zero 
cycles.  The RS64-III has a 128KB, two way set 
associative L1 instruction cache, a 128KB, two way set 
associative data cache, and a 4MB, four way set 
associative unified L2.  It also has a 512 entry four way 
set associative unified TLB and a 64 entry instruction 
effective to real address translation buffer (IERAT) 
that allows fast address translation without the use of 
the TLB.  The processor clock is 500Mhz. 

The POWER3-II [13,14] is a 64-bit, superscalar, out 
of order, speculative execution machine.  It has two 
single cycle integer units, one multiple cycle integer 
unit, one branch/condition register unit, two load/store 
units, and two three stage pipelined floating point 
units.  It can fetch, dispatch, and retire up to four 
instructions in the same cycle.  It has a 256 entry 
branch target address cache (BTAC), which works like  
a branch target buffer, and a 2048 entry, 2 bits per 
entry branch history table for dynamic branch 
prediction.  The POWER3-II has a 64KB, 128 way set 
associative, four way interleaved L1 instruction cache, 
a 64KB, 128 way set associative, four way interleaved 
L1 data cache, and a 8MB, four way set associative 
unified off-chip L2.  It also has a 256 entry two way set 
associative instruction TLB and two 256 entry two way 
set associative data TLBs.  The POWER3-II is 
designed with separate buses to memory and L2 for 
greater memory bandwidth.  The POWER3-II also 
employs a data prefetching mechanism that detects 
sequential data access patterns and prefetches cache 
lines to match these patterns.  The processor clock is 
450 MHz. 

Both of these processors are deployed in IBM 
RS/6000 systems.  The RS64-III system we use in the 
experiment is the M80 and the POWER3-II system we 
use is the 44p-170, both of which are configured as 
uniprocessor systems.  Both systems have 2 GB of 
main memory and run AIX 4.3.3 and the IBM JDK 
version 1.18. 

 
3.2. Benchmarks 
 

In this study, we characterize VolanoMark 2.1.2 and 
SPECjbb2000, both of which are Java server 
benchmarks. 

VolanoMark 2.1.2 [19] is a Java server benchmark 
that simulates a chat server environment, as illustrated 



in Table 1.  The VolanoMark server accepts 
connections from the chat client, which simulates a 
specifiable number of chat users by creating a number 
of chat rooms.  Each chat room contains a number of 
users that continuously send messages to the server and 
wait for the server to send the messages to other users 
in the room.  The VolanoChat server creates two 
threads for each client connection. 

 

Figure 1. VolanoMark 

 
SPECjbb2000 [18] is another Java server 

benchmark. As illustrated in Figure 2, it emulates a 
three-tier client/server system with emphasis on the 
middle tier, the business logic engine.  The other tiers 
are emulated, and thus user emulation and a database 
are not required.  SPECjbb is patterned after TPC-C in  

Figure 2. SPECjbb2000 

 
that it models a wholesale company with warehouses 
that serve a number of districts.  The transactions 
generated in this system include new orders and order 
status requests (both customer-generated transactions), 
as well as processing orders, entering customer 
payments, and checking stock levels (company-
generated transactions).  Each warehouse, which is 
represented by 25MB of data stored in binary trees, is 

assigned one active customer.  One thread is created 
for each warehouse. SPECjbb is a memory resident 
benchmark. 

In addition to these two Java server benchmarks, we 
run five SPECint2000 benchmarks [18] on the two 
platforms.  This allows us to compare the 
multithreaded Java server applications to more 
traditional workloads.  We use 255.vortex, 300.twolf, 
176.gcc, 252.eon, and 186.crafty, which cover a wide 
range of application sizes and also contain the only 
SPECint2000 benchmark written in C++.   
 
3.3. Measurements 

 
We use the hardware performance monitors built 

into each microprocessor to make performance 
measurements.  Each performance monitor has eight 
counters that can be programmed to count a variety of 
processor events.  The list of countable events differs 
between the two machines, but many important events 
can be counted on both.  We interface with the 
performance monitor using the IBM-supplied 
performance monitor API and pmcount (a utility that 
allows the user to interface with the performance 
monitor), both of which are AIX kernel extensions.  
Since we only want to collect performance monitor 
counts for VolanoMark while client connections are 
being made and not during server startup or shutdown, 
we send signals to a wrapper that makes API calls to 
start counting after server startup and stop counting 
before server shutdown.  Similarly, since we only want 
to do performance monitoring on SPECjbb during the 
two-minute “measurement period,” we instrument the 
code for SPECjbb (modifying only Company.java) to 
send signals to a wrapper that makes API calls to start 
counting at the beginning of the measurement period 
and stop counting at the end of the period.  While 
pmcount is simpler to use, requiring only a list of 
events and the executable to count for as arguments, it 
does not allow this kind of selective counting.  
However, we do use pmcount for the SPECint 
benchmarks, since we count for the entire workload in 
those cases. 

For VolanoMark, we run the client on a separate 
machine.  Each chat room has 20 users, while the 
number of chat rooms is varied from 1 to 40, resulting 
in a number of connections ranging from 20 to 800.  
Since VolanoMark creates two threads for every 
connection, this results in a number of connection 
threads ranging from 40 to 1600.  For SPECjbb, we 
vary the number of warehouses from 1 to 25.  One 
thread is created for each warehouse. 

Business logic engine 
(primary focus of 

measurement) 

client 
threads 

object 
trees 

 

 

server 

client 

user user user user user user 



 
4. Results 
 

Table 1 and Table 2 compare the Java server 
benchmarks to the SPECint benchmarks on the RS64-
III and POWER3-II, respectively.  VolanoMark is run 
with 1,10, and 30 chat rooms (indicated as vol01, 
vol10, and vol30)), and SPECjbb is run with 1, 10, and 
25 warehouses (indicated as jbb1, jbb10, and jbb25).  
The metrics collected are similar to those collected by 
Bhandarkar et. al. [3]. 

 

Table 1. Java servers vs. SPECint2000 (RS64-III) 

 
 

As the tables indicate, VolanoMark spends a high 
proportion of its execution cycles in kernel mode (os 
cyc %).  This phenomenon is likely due both to the fact 
that it spends a great deal of time sending and 

 

Table 2. Java servers vs. SPECint2000 (POWER3-
II). 

 
receiving messages over the network and to the fact 
that the number of threads in VolanoMark is very 
large, requiring the OS to spend a significant amount 
of time in thread scheduling routines.  The user code is 
concerned mainly with distributing messages, which is 

a relatively simple task.  We can also see that 
VolanoMark exhibits a higher CPI than the SPECint  
benchmarks, which is understandable since OS code is 
known to have a higher CPI than user code [8].  Since 
SPECjbb2000 contains no network component, has far 
fewer threads than VolanoMark, and is memory 
resident and therefore does not generate many page 
faults, it has a very small proportion of cycles spent in 
kernel mode.  The same is true for the SPECint 
benchmarks.   

Also, Table 1 and Table 2 show the data references 
per instruction and the memory transactions per 1000 
instructions for the Java server and SPECint 
workloads.  On the average, the Java server workloads 
generate less data references per instruction than the 
SPECint workloads, with some of the SPECint 
workloads far exceeding them, but the Java server 
workloads still generate considerably more memory 
transactions per instruction, by a factor of between one 
and three.  This is an interesting observation that will 
be discussed later. 
 
4.1. Dispatch Behavior 
 

Both the RS64-III and the POWER3-II can dispatch 
up to four instructions per cycle (dispatch for these 
machines meaning the stage in which the instruction is 
sent to the execution unit reservation station).  From 
Figure 3 it is clear that our machines have more 
difficulty exploiting ILP in the Java server benchmarks 
than in the SPECint benchmarks.  For almost all of the 
Java server benchmarks on the RS64-III, zero 
instructions are dispatched for over 50% of the 
execution cycles (the lone exception being sjbb1).  
Only one SPECint benchmark, twolf, has zero 
instructions dispatched for over 50% of the execution   

(a) Dispatch profile, RS64-III 

os cyc % CPI data refs/instr mem trans/1000 instr
vol30 47.06 1.76 0.34 5.68
vol10 64.47 2.17 0.37 8.31
vol01 84.68 3.68 0.35 22.93
jbb25 0.37 1.52 0.33 4.95
jbb10 0.41 1.45 0.34 3.84
jbb01 0.29 1.26 0.34 1.73
gcc 0.78 1.09 0.39 0.41
crafty 0.15 0.89 0.34 0.01
eon 0.15 1.36 0.62 0.00
twolf 0.14 1.43 0.38 0.14
vortex 0.26 1.07 0.41 0.51
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Figure 3. Dispatch/completion behavior 

cycles.  On the POWER3-II, the dispatch profile is 
similar (we show only the percentage of cycles with 
zero instructions dispatched because the other counts 
were not available on this machine).  All of the Java 
server benchmarks on the POWER3-II have zero 
instructions dispatched for more than 60% of the 
execution cycles, while only twolf crosses this 
threshold among the SPECint workloads.  The profile 
is almost identical for the percentage of zero-
instructions-retired cycles on the POWER3-II, which is 
reasonable given that pipeline delays are being created 
in the dispatch stage.  Although the dispatch stage in 
these machines is not the stage in which operands are 
read, and thus delays in dispatch are not directly due to 
dependencies between instructions that limit exploited 

ILP, nevertheless dispatch is stalled if, in later pipeline 
stages, dependencies are found that cause the execution 
unit reservation stations to fill.  Therefore instruction 
dependencies do affect dispatch, and the above 
dispatch numbers are reflective of exploited ILP.  
These numbers seem to indicate that the processors 
cannot exploit as much ILP in the Java server 
workloads as they can in the SPECint workloads.   
 
4.2. Cache and TLB Performance 
 

As mentioned earlier, the Java server workloads 
generate significantly more memory accesses per 
instruction than the SPECint workloads.  And, as one 
might expect from a higher number of memory 
accesses per instruction, Figure 4a and Figure 4c show 
 

(b) Percentage of  zero instructions 
dispatched cycles, POWER3-II 

(c)  Percentage of zero instructions 
retired cycles, POWER3-II 

(a) Cache misses per 1000 instructions, 
RS64-III 

(b) L2 miss components per 
1000 instructions, RS64-III 
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Figure 4. Cache behavior 

that the Java server workloads exhibit poorer cache 
performance than the SPECint workloads on both 
machines, particularly in the instruction cache and L2.   

High instruction cache miss rates have also been  
known to occur in server applications written in C or 
C++ [1,2].  Dynamically compiled code for 
consecutively called methods may not lie in contiguous 
address spaces, and thus the spatial locality can be 
expected to be poor for  these Java server benchmarks, 
causing poor instruction cache miss rates.  Also, not 
surprisingly, the instruction cache miss rates are higher 
on the POWER3-II for most of the workloads (since its 
instruction cache is 64KB as opposed to 128KB for the 
RS64- III), but for vortex and crafty the instruction 
cache miss rates are higher on the RS64-III.  This 
indicates that, for the Java server workloads and the 
other SPECint benchmarks, size is more important than 
associativity for instruction cache performance, while 
for vortex and crafty associativity (2 for the RS64-III 
and 128 for the POWER3-II) is more important than 
size for performance.  Figure 5 shows that the Java 
server benchmarks cause more instruction TLB misses 
than the SPECint benchmarks on the RS64-III, and a 
similar pattern is observed for TLB misses on the 
POWER3-II (ITLB miss count not available on 
POWER3-II).  This TLB performance data is further 
evidence that Java server benchmarks have a scattered 
instruction footprint. 

Figure 4b shows the components (load misses, 
store misses, and instruction misses) of L2 misses for 
the RS64-III.  (These counts were not available on the 
POWER3-II.)  It is clear from this figure that most of 
the L2 misses for the Java server workloads are 

generated by load references.  This is interesting 
because there is not nearly as large a disparity between 
the Java server and SPECint workloads in data cache 
performance as there is in L2 cache performance,  

Figure 5. TLB behavior 

specifically L2 load misses.  Figure 6, which shows the 
L2 miss ratios (as opposed to misses per 1000 
instructions) on each machine, confirms that indeed the 
Java server benchmarks are putting more pressure on 
the L2 than the SPECint benchmarks.  We cannot 
explain this behavior with certainty, but a reasonable 
explanation could be that the Java server benchmarks 
have a larger data footprint than the SPECint 
workloads (though we cannot obtain the data set size 
for VolanoMark, we know that each warehouse in 
SPECjbb uses 25MB of data) and therefore generate 
more compulsory L2 misses. 
 

 

(c)  Cache misses per 1000 instructions, 
POWER3-II 

(a) ITLB misses per 1000 instructions, 
RS64-III 

(b) TLB misses per 1000 
instructions, POWER3-II 
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Figure 6. L2 miss ratio 

 
4.3. Branch Behavior 
 
Figure 7a indicates that the POWER3-II’s branch 
prediction mechanism works as well for the Java server 
programs as for the SPECint benchmarks (branch 
prediction numbers for RS64-III not shown because it 
does not employ dynamic branch prediction).  Figure 
7b and Figure 7c show that the speculative factors 
(instructions dispatched/instructions executed) of the 
Java server benchmarks are within the range of 
SPECint2000, indicating that the two sets of 
benchmarks have much the same effect on speculative 
execution.  However, the Java server benchmarks (with 
the exception of vol30) exhibit, on the average, worse 
BTAC (Branch Target Address Cache) performance 
than gcc, twolf, and vortex.  This could indicate that 
the BTAC of the POWER3-II, which caches branch 
target addresses and does not store any target 
instructions, does not work very well for Java server 
code.  Further, eon, which shows BTAC performance 

similar to the Java server benchmarks, is written in 
C++ and makes heavy use of virtual functions, which  

Figure 7. Branch behavior 
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are also widely used in Java.  Java programs are known 
to have poor branch target predictability due to indirect 
branches resulting from virtual function calls and code 
interpretation [15].   
 
4.4. CPI Components  
 

Figure 8 compares the Java server benchmarks to 
the SPECint benchmarks on the RS64-III fromanother 
perspective: CPI components per instruction.  (These 
events are not countable on the POWER3-II.) The 
stalls in the above figure do not comprise a 
comprehensive list, but they are the significant storage 
related stalls on the machine.   

Figure 8. CPI components, RS64-III 

 
“Ideal CPI” refers to (total execution cycles – 

storage latency)/instructions executed.  “Storage 
latency” is a single countable event on the RS64- III 
performance monitor that indicates the (non-
overlapped) total amount of storage related stalls (i.e. 
multiple storage related stalls in one cycle are counted 
as one stall).  Thus “Ideal CPI” is an approximation of 
CPI in the absence of all storage related stalls. “Isync” 
and “Other sync” stalls are caused by various 
synchronizing PowerPC instructions.  It is clear that, as 
could be predicted from the earlier discussion of cache 
misses, that the Java server benchmarks incur 
significantly more instruction cache stalls and L2 cache 
stalls than the SPECint benchmarks, and further, that 
these along with ideal CPI (which is determined by 
internal resource conflicts that we cannot count for) are 
responsible for most of the total CPI.  For SPECjbb, 
data cache miss stalls also play a large role in the CPI.  
In contrast, the SPECint benchmarks suffer from very 
little, if any, of the storage related stalls included in the 
figure.  However, despite the large number of storage 
stall cycles for the Java server benchmarks, shows that 

the CPIs of the benchmarks are lower than the sum 
total of the CPI components, which indicates the 
effectiveness of the RS64-III’s superscalar pipelined 
architecture in hiding some of the storage latency.    
 
5. Conclusion 

 
We performed a comparison of two multithreaded 

Java server benchmarks, SPECjbb2000 and 
VolanoMark2.1.2, with selected benchmarks from 
SPECint2000 on two IBM PowerPC architectures, the 
RS64-III and the POWER3-II.  We find that our Java 
server applications differ from SPECint in several 
ways: 
 
� Clearly, instruction stream behavior is particularly 

poor for these Java server workloads.  High 
instruction cache, ITLB, and BTAC miss rates are 
observed.  These point toward a scattered 
instruction footprint.  Instruction cache stalls make 
up a substantial component of the CPIs of these 
workloads, while they are near negligible in the 
SPECint workloads.   

� We also see that poor L2 performance is a major 
factor in overall performance for the Java server 
workloads.  L2 misses per instruction and per L2 
reference are significantly higher than those for 
SPECint2000.  L2 load misses make up the vast 
majority of the Java server benchmarks’ L2 
misses, due possibly to a scattered data footprint 
that causes a higher proportion of L2 compulsory 
misses.  Clearly, if one is to study the impact of 
Java server applications on modern processor 
architectures, L2 performance must not be 
neglected.   

� In addition, these Java server workloads have a 
high proportion of zero dispatch cycles, suggesting 
that ILP is not very easily exploited in these 
workloads. 

 
Given that our two PowerPC architectures are 

significantly different, the RS64-II being an in-order 
execution machine with static branch prediction and 
the POWER3-II being a highly aggressive out-of-order 
execution machine, the fact that the above 
characteristics were found on both platforms suggests 
that they are real properties of the workload and not 
machine-dependent.  Obviously, then, there lies room 
for performance improvements and optimizations, 
especially in instruction cache and L2 performance. 
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