
Workload Characterization of Multithreaded Java Servers on Two PowerPC
Processors

Pattabi Seshadri
Dept. of Elec. And Comp. Engr.

The University of Texas at Austin
seshadri@ece.utexas.edu

Alex Mericas
IBM Corporation

mericas@us.ibm.com

Abstract

Java has, in recent years, become fairly popular as

a platform for commercial servers. However, the
behavior of Java server applications has not been
studied extensively.

We characterize two multithreaded Java server
benchmarks, SPECjbb2000 and VolanoMark 2.1.2, on
two IBM PowerPC architectures, the RS64-III and the
POWER3-II, and compare them to more traditional
workloads as represented by selected benchmarks from
SPECint2000. We find that our Java server
benchmarks have generally the same characteristics on
both platforms: in particular, high instruction cache,
ITLB, and BTAC (Branch Target Address Cache) miss
rates. These benchmarks also exhibit high L2 miss
rates due mostly to data loads. As one would expect,
instruction cache and L2 misses are primary
contributors to CPI. Also, the proportion of zero
dispatch cycles is high, indicating the difficulty in
exploiting ILP for these workloads.

1. Introduction

Java, originally used extensively for web client
software, is an emerging paradigm for server
applications because of its portability and enhanced
security features. However, while Java server
applications are coming into wide use, their behavior is
not yet well understood. Java client applications have
been studied, but Java server applications differ
significantly from client workloads, particularly in
their need to maintain many concurrent client
connections. Since in the current version of Java, I/O
multiplexing, polling, and signals are not available, the

only method available to Java programmers to
maintain a large number of client connections is
threads. One or more separate threads are created to
handle each client connection [12]. Therefore
performance in the presence of a large number of
concurrent threads is vital to a Java server application.
This distinct characteristic of Java server applications
could lead to differences with Java client workloads in
terms of branch behavior, cache behavior, and other
metrics that contribute to overall performance.

The aim of this study is to characterize the impact
of multithreaded Java server applications on modern
processor microarchitectures. To this end, we compare
multithreaded Java server benchmarks with selected
benchmarks from SPECint2000, a suite of more
“traditional” workloads, on two IBM PowerPC
microarchitectures, the RS64-III and the POWER3-II,
to determine the performance characteristics of
multithreaded Java server applications.

2. Related Work

Commercial workloads have been increasing in
importance, and efforts have been made to understand
their behavior [2,11,8,7,16,1]. Most of these studies
have been focused on applications written in C or C++,
in particular OLTP, DSS, and web server applications.

Java has also been a popular subject of research.
The majority of Java studies use SPECjvm98
[17,9,15], which is a client benchmark suite.
SPECjvm98 has been observed to have as much as
31% kernel activity due for the most part to a TLB
service routine, which indicates a high TLB miss rate.
SPECjvm has also been observed to have poor ILP and
insensitivity to wider issue width [9]. However, it has

better instruction cache performance than C/C++
applications [15].

Commercial Java servers are emerging workloads
and thus research has just begun on their behavior.
Most of the research in this area has been on the effect
of multithreading. Cain and Rajwar [6] studied branch
prediction and cache behavior in SPECjbb2000 and
TPC-W with the full-system simulation of a coarse-
grained multithreaded processor. They found
destructive interference between threads that degraded
performance. Luo and John [10] studied the impact of
multithreading in Java server benchmarks on a Pentium
Pro machine. They did see constructive interference in
the instruction stream and branch prediction behavior,
but these benefits were eventually overcome by
increasing resource stalls as the number of threads
grew large.

This paper focuses not so much on the effect of
multithreading for these Java server benchmarks, but
on the differences between Java server applications and
more “traditional” workloads (represented by
SPECint2000). We use two popular IBM PowerPC
platforms that represent the state of the art in
microprocessor design. Several performance metrics,
such as cache behavior, branch behavior, dispatch
behavior, CPI components, etc., are studied.

3. Methodology

This section describes the hardware platforms and
benchmarks used in this study as well as the methods
used to collect performance monitor data.

3.1. Platforms

We use two IBM PowerPC microarchitectures for
our study: the RS64-III and the POWER3-II. Both are
current microprocessor architectures, but they differ in
many significant ways.

The RS64-III [4,5] is a 64-bit, superscalar, in order,
speculative execution machine and is targeted
specifically for commercial applications. It has one
single cycle integer unit, one multiple cycle integer
unit, one four stage pipelined floating point unit, one
branch unit, and one load/store unit. The RS64-III can
fetch, dispatch, and retire up to four instructions per
cycle and has a five stage pipeline. It does not predict
branches dynamically like the POWER3-II, but rather
prefetches up to eight instructions from the branch
target into a branch target buffer during normal
execution, predicts the branch not taken, continues to

fetch from the instruction stream and then, once the
branch is resolved in the dispatch stage, either
continues fetching from the current instruction stream
with no penalty or flushes the instructions after the
branch and begins fetching from the branch target
buffer, with a penalty of at most one and often zero
cycles. The RS64-III has a 128KB, two way set
associative L1 instruction cache, a 128KB, two way set
associative data cache, and a 4MB, four way set
associative unified L2. It also has a 512 entry four way
set associative unified TLB and a 64 entry instruction
effective to real address translation buffer (IERAT)
that allows fast address translation without the use of
the TLB. The processor clock is 500Mhz.

The POWER3-II [13,14] is a 64-bit, superscalar, out
of order, speculative execution machine. It has two
single cycle integer units, one multiple cycle integer
unit, one branch/condition register unit, two load/store
units, and two three stage pipelined floating point
units. It can fetch, dispatch, and retire up to four
instructions in the same cycle. It has a 256 entry
branch target address cache (BTAC), which works like
a branch target buffer, and a 2048 entry, 2 bits per
entry branch history table for dynamic branch
prediction. The POWER3-II has a 64KB, 128 way set
associative, four way interleaved L1 instruction cache,
a 64KB, 128 way set associative, four way interleaved
L1 data cache, and a 8MB, four way set associative
unified off-chip L2. It also has a 256 entry two way set
associative instruction TLB and two 256 entry two way
set associative data TLBs. The POWER3-II is
designed with separate buses to memory and L2 for
greater memory bandwidth. The POWER3-II also
employs a data prefetching mechanism that detects
sequential data access patterns and prefetches cache
lines to match these patterns. The processor clock is
450 MHz.

Both of these processors are deployed in IBM
RS/6000 systems. The RS64-III system we use in the
experiment is the M80 and the POWER3-II system we
use is the 44p-170, both of which are configured as
uniprocessor systems. Both systems have 2 GB of
main memory and run AIX 4.3.3 and the IBM JDK
version 1.18.

3.2. Benchmarks

In this study, we characterize VolanoMark 2.1.2 and
SPECjbb2000, both of which are Java server
benchmarks.

VolanoMark 2.1.2 [19] is a Java server benchmark
that simulates a chat server environment, as illustrated

in Table 1. The VolanoMark server accepts
connections from the chat client, which simulates a
specifiable number of chat users by creating a number
of chat rooms. Each chat room contains a number of
users that continuously send messages to the server and
wait for the server to send the messages to other users
in the room. The VolanoChat server creates two
threads for each client connection.

Figure 1. VolanoMark

SPECjbb2000 [18] is another Java server

benchmark. As illustrated in Figure 2, it emulates a
three-tier client/server system with emphasis on the
middle tier, the business logic engine. The other tiers
are emulated, and thus user emulation and a database
are not required. SPECjbb is patterned after TPC-C in

Figure 2. SPECjbb2000

that it models a wholesale company with warehouses
that serve a number of districts. The transactions
generated in this system include new orders and order
status requests (both customer-generated transactions),
as well as processing orders, entering customer
payments, and checking stock levels (company-
generated transactions). Each warehouse, which is
represented by 25MB of data stored in binary trees, is

assigned one active customer. One thread is created
for each warehouse. SPECjbb is a memory resident
benchmark.

In addition to these two Java server benchmarks, we
run five SPECint2000 benchmarks [18] on the two
platforms. This allows us to compare the
multithreaded Java server applications to more
traditional workloads. We use 255.vortex, 300.twolf,
176.gcc, 252.eon, and 186.crafty, which cover a wide
range of application sizes and also contain the only
SPECint2000 benchmark written in C++.

3.3. Measurements

We use the hardware performance monitors built

into each microprocessor to make performance
measurements. Each performance monitor has eight
counters that can be programmed to count a variety of
processor events. The list of countable events differs
between the two machines, but many important events
can be counted on both. We interface with the
performance monitor using the IBM-supplied
performance monitor API and pmcount (a utility that
allows the user to interface with the performance
monitor), both of which are AIX kernel extensions.
Since we only want to collect performance monitor
counts for VolanoMark while client connections are
being made and not during server startup or shutdown,
we send signals to a wrapper that makes API calls to
start counting after server startup and stop counting
before server shutdown. Similarly, since we only want
to do performance monitoring on SPECjbb during the
two-minute “measurement period,” we instrument the
code for SPECjbb (modifying only Company.java) to
send signals to a wrapper that makes API calls to start
counting at the beginning of the measurement period
and stop counting at the end of the period. While
pmcount is simpler to use, requiring only a list of
events and the executable to count for as arguments, it
does not allow this kind of selective counting.
However, we do use pmcount for the SPECint
benchmarks, since we count for the entire workload in
those cases.

For VolanoMark, we run the client on a separate
machine. Each chat room has 20 users, while the
number of chat rooms is varied from 1 to 40, resulting
in a number of connections ranging from 20 to 800.
Since VolanoMark creates two threads for every
connection, this results in a number of connection
threads ranging from 40 to 1600. For SPECjbb, we
vary the number of warehouses from 1 to 25. One
thread is created for each warehouse.

Business logic engine
(primary focus of

measurement)

client
threads

object
trees

server

client

user user user user user user

4. Results

Table 1 and Table 2 compare the Java server
benchmarks to the SPECint benchmarks on the RS64-
III and POWER3-II, respectively. VolanoMark is run
with 1,10, and 30 chat rooms (indicated as vol01,
vol10, and vol30)), and SPECjbb is run with 1, 10, and
25 warehouses (indicated as jbb1, jbb10, and jbb25).
The metrics collected are similar to those collected by
Bhandarkar et. al. [3].

Table 1. Java servers vs. SPECint2000 (RS64-III)

As the tables indicate, VolanoMark spends a high
proportion of its execution cycles in kernel mode (os
cyc %). This phenomenon is likely due both to the fact
that it spends a great deal of time sending and

Table 2. Java servers vs. SPECint2000 (POWER3-
II).

receiving messages over the network and to the fact
that the number of threads in VolanoMark is very
large, requiring the OS to spend a significant amount
of time in thread scheduling routines. The user code is
concerned mainly with distributing messages, which is

a relatively simple task. We can also see that
VolanoMark exhibits a higher CPI than the SPECint
benchmarks, which is understandable since OS code is
known to have a higher CPI than user code [8]. Since
SPECjbb2000 contains no network component, has far
fewer threads than VolanoMark, and is memory
resident and therefore does not generate many page
faults, it has a very small proportion of cycles spent in
kernel mode. The same is true for the SPECint
benchmarks.

Also, Table 1 and Table 2 show the data references
per instruction and the memory transactions per 1000
instructions for the Java server and SPECint
workloads. On the average, the Java server workloads
generate less data references per instruction than the
SPECint workloads, with some of the SPECint
workloads far exceeding them, but the Java server
workloads still generate considerably more memory
transactions per instruction, by a factor of between one
and three. This is an interesting observation that will
be discussed later.

4.1. Dispatch Behavior

Both the RS64-III and the POWER3-II can dispatch
up to four instructions per cycle (dispatch for these
machines meaning the stage in which the instruction is
sent to the execution unit reservation station). From
Figure 3 it is clear that our machines have more
difficulty exploiting ILP in the Java server benchmarks
than in the SPECint benchmarks. For almost all of the
Java server benchmarks on the RS64-III, zero
instructions are dispatched for over 50% of the
execution cycles (the lone exception being sjbb1).
Only one SPECint benchmark, twolf, has zero
instructions dispatched for over 50% of the execution

(a) Dispatch profile, RS64-III

os cyc % CPI data refs/instr mem trans/1000 instr
vol30 47.06 1.76 0.34 5.68
vol10 64.47 2.17 0.37 8.31
vol01 84.68 3.68 0.35 22.93
jbb25 0.37 1.52 0.33 4.95
jbb10 0.41 1.45 0.34 3.84
jbb01 0.29 1.26 0.34 1.73
gcc 0.78 1.09 0.39 0.41
crafty 0.15 0.89 0.34 0.01
eon 0.15 1.36 0.62 0.00
twolf 0.14 1.43 0.38 0.14
vortex 0.26 1.07 0.41 0.51

bmark

Ja
va

 s
er

ve
r

SP
E

C
in

t2
00

0

os cyc % CPI data refs/instr mem trans/1000 instr
vol30 54.11 1.44 0.34 6.00
vol10 59.83 1.59 0.38 4.43
vol01 62.78 1.78 0.39 6.59
jbb25 0.33 1.27 0.33 5.30
jbb10 0.39 1.25 0.33 3.90
jbb01 0.40 1.17 0.34 1.73
gcc 0.92 0.84 0.44 0.30
crafty 0.14 0.74 0.40 0.00
eon 0.13 0.90 0.69 0.00
twolf 0.14 1.21 0.39 0.01
vortex 0.28 0.78 0.54 0.48

bmark

Ja
va

 s
er

ve
r

S
P

E
C

in
t2

00
0

0% 20% 40% 60% 80% 100%

crafty

eon

gcc

twolf

vortex

sjbb1

sjbb10

sjbb25

vol1

vol10

vol30

0 instr disp 1 instr disp 2 instr disp 3 instr disp 4 instr disp

Figure 3. Dispatch/completion behavior

cycles. On the POWER3-II, the dispatch profile is
similar (we show only the percentage of cycles with
zero instructions dispatched because the other counts
were not available on this machine). All of the Java
server benchmarks on the POWER3-II have zero
instructions dispatched for more than 60% of the
execution cycles, while only twolf crosses this
threshold among the SPECint workloads. The profile
is almost identical for the percentage of zero-
instructions-retired cycles on the POWER3-II, which is
reasonable given that pipeline delays are being created
in the dispatch stage. Although the dispatch stage in
these machines is not the stage in which operands are
read, and thus delays in dispatch are not directly due to
dependencies between instructions that limit exploited

ILP, nevertheless dispatch is stalled if, in later pipeline
stages, dependencies are found that cause the execution
unit reservation stations to fill. Therefore instruction
dependencies do affect dispatch, and the above
dispatch numbers are reflective of exploited ILP.
These numbers seem to indicate that the processors
cannot exploit as much ILP in the Java server
workloads as they can in the SPECint workloads.

4.2. Cache and TLB Performance

As mentioned earlier, the Java server workloads
generate significantly more memory accesses per
instruction than the SPECint workloads. And, as one
might expect from a higher number of memory
accesses per instruction, Figure 4a and Figure 4c show

(b) Percentage of zero instructions
dispatched cycles, POWER3-II

(c) Percentage of zero instructions
retired cycles, POWER3-II

(a) Cache misses per 1000 instructions,
RS64-III

(b) L2 miss components per
1000 instructions, RS64-III

0% 20% 40% 60% 80% 100%

crafty

eon

gcc

twolf

vortex

sjbb1

sjbb10

sjbb25

vol1

vol10

vol30

0% 20% 40% 60% 80% 100%

crafty

eon

gcc

twolf

vortex

sjbb1

sjbb10

sjbb25

vol1

vol10

vol30

0 5 10 15 20 25

crafty

eon

gcc

twolf

vortex

sjbb1

sjbb10

sjbb25

vol1

vol10

vol30

L2

L1 instruction

L1 data

0 5 10 15 20

crafty

eon

gcc

twolf

vortex

sjbb1

sjbb10

sjbb25

vol1

vol10

vol30

l2 ld miss

l2 st miss

l2 instr miss

Figure 4. Cache behavior

that the Java server workloads exhibit poorer cache
performance than the SPECint workloads on both
machines, particularly in the instruction cache and L2.

High instruction cache miss rates have also been
known to occur in server applications written in C or
C++ [1,2]. Dynamically compiled code for
consecutively called methods may not lie in contiguous
address spaces, and thus the spatial locality can be
expected to be poor for these Java server benchmarks,
causing poor instruction cache miss rates. Also, not
surprisingly, the instruction cache miss rates are higher
on the POWER3-II for most of the workloads (since its
instruction cache is 64KB as opposed to 128KB for the
RS64- III), but for vortex and crafty the instruction
cache miss rates are higher on the RS64-III. This
indicates that, for the Java server workloads and the
other SPECint benchmarks, size is more important than
associativity for instruction cache performance, while
for vortex and crafty associativity (2 for the RS64-III
and 128 for the POWER3-II) is more important than
size for performance. Figure 5 shows that the Java
server benchmarks cause more instruction TLB misses
than the SPECint benchmarks on the RS64-III, and a
similar pattern is observed for TLB misses on the
POWER3-II (ITLB miss count not available on
POWER3-II). This TLB performance data is further
evidence that Java server benchmarks have a scattered
instruction footprint.

Figure 4b shows the components (load misses,
store misses, and instruction misses) of L2 misses for
the RS64-III. (These counts were not available on the
POWER3-II.) It is clear from this figure that most of
the L2 misses for the Java server workloads are

generated by load references. This is interesting
because there is not nearly as large a disparity between
the Java server and SPECint workloads in data cache
performance as there is in L2 cache performance,

Figure 5. TLB behavior

specifically L2 load misses. Figure 6, which shows the
L2 miss ratios (as opposed to misses per 1000
instructions) on each machine, confirms that indeed the
Java server benchmarks are putting more pressure on
the L2 than the SPECint benchmarks. We cannot
explain this behavior with certainty, but a reasonable
explanation could be that the Java server benchmarks
have a larger data footprint than the SPECint
workloads (though we cannot obtain the data set size
for VolanoMark, we know that each warehouse in
SPECjbb uses 25MB of data) and therefore generate
more compulsory L2 misses.

(c) Cache misses per 1000 instructions,
POWER3-II

(a) ITLB misses per 1000 instructions,
RS64-III

(b) TLB misses per 1000
instructions, POWER3-II

0 5 10 15 20 25 30

crafty

eon

gcc

twolf

vortex

sjbb1

sjbb10

sjbb25

vol1

vol10

vol30

L2

L1 instruction

L1 data

0.0 0.1 0.2 0.3 0.4 0.5

crafty

eon

gcc

twolf

vortex

sjbb1

sjbb10

sjbb25

vol1

vol10

vol30

0 1 2 3 4 5

crafty

eon

gcc

twolf

vortex

sjbb1

sjbb10

sjbb25

vol1

vol10

vol30

Figure 6. L2 miss ratio

4.3. Branch Behavior

Figure 7a indicates that the POWER3-II’s branch
prediction mechanism works as well for the Java server
programs as for the SPECint benchmarks (branch
prediction numbers for RS64-III not shown because it
does not employ dynamic branch prediction). Figure
7b and Figure 7c show that the speculative factors
(instructions dispatched/instructions executed) of the
Java server benchmarks are within the range of
SPECint2000, indicating that the two sets of
benchmarks have much the same effect on speculative
execution. However, the Java server benchmarks (with
the exception of vol30) exhibit, on the average, worse
BTAC (Branch Target Address Cache) performance
than gcc, twolf, and vortex. This could indicate that
the BTAC of the POWER3-II, which caches branch
target addresses and does not store any target
instructions, does not work very well for Java server
code. Further, eon, which shows BTAC performance

similar to the Java server benchmarks, is written in
C++ and makes heavy use of virtual functions, which

Figure 7. Branch behavior

(a) RS64-III

(b) POWER3-II

(a) Branch prediction behavior,
POWER3-II

(b) Speculation factor, POWER3-II

(c) Speculation factor, RS64-III

0.00 0.10 0.20 0.30 0.40 0.50 0.60

crafty

eon

gcc

twolf

vortex

sjbb1

sjbb10

sjbb25

vol1

vol10

vol30

0 0.05 0.1 0.15 0.2 0.25

c rafty

eon

gc c

twolf

vortex

s jbb1

s jbb10

s jbb25

vol1

vol10

vol30
0 0.1 0.2 0.3 0.4 0.5

crafty

eon

gcc

twolf

vortex

sjbb1

sjbb10

sjbb25

vol1

vol10

vol30

btac miss ratio

br mispred ratio

br freq

0 0.25 0.5 0.75 1 1.25

c rafty

eon

gc c

tw olf

vo rtex

s jbb1

s jbb10

s jbb25

vo l1

vo l10

vo l30

0 .00 0 .25 0 .50 0 .75 1 .00 1 .25 1 .50

c ra fty

eon

gcc

tw o lf

vo rtex

s jbb1

s jbb10

s jbb25

vo l1

vo l10

vo l30

are also widely used in Java. Java programs are known
to have poor branch target predictability due to indirect
branches resulting from virtual function calls and code
interpretation [15].

4.4. CPI Components

Figure 8 compares the Java server benchmarks to
the SPECint benchmarks on the RS64-III fromanother
perspective: CPI components per instruction. (These
events are not countable on the POWER3-II.) The
stalls in the above figure do not comprise a
comprehensive list, but they are the significant storage
related stalls on the machine.

Figure 8. CPI components, RS64-III

“Ideal CPI” refers to (total execution cycles –

storage latency)/instructions executed. “Storage
latency” is a single countable event on the RS64- III
performance monitor that indicates the (non-
overlapped) total amount of storage related stalls (i.e.
multiple storage related stalls in one cycle are counted
as one stall). Thus “Ideal CPI” is an approximation of
CPI in the absence of all storage related stalls. “Isync”
and “Other sync” stalls are caused by various
synchronizing PowerPC instructions. It is clear that, as
could be predicted from the earlier discussion of cache
misses, that the Java server benchmarks incur
significantly more instruction cache stalls and L2 cache
stalls than the SPECint benchmarks, and further, that
these along with ideal CPI (which is determined by
internal resource conflicts that we cannot count for) are
responsible for most of the total CPI. For SPECjbb,
data cache miss stalls also play a large role in the CPI.
In contrast, the SPECint benchmarks suffer from very
little, if any, of the storage related stalls included in the
figure. However, despite the large number of storage
stall cycles for the Java server benchmarks, shows that

the CPIs of the benchmarks are lower than the sum
total of the CPI components, which indicates the
effectiveness of the RS64-III’s superscalar pipelined
architecture in hiding some of the storage latency.

5. Conclusion

We performed a comparison of two multithreaded

Java server benchmarks, SPECjbb2000 and
VolanoMark2.1.2, with selected benchmarks from
SPECint2000 on two IBM PowerPC architectures, the
RS64-III and the POWER3-II. We find that our Java
server applications differ from SPECint in several
ways:

� Clearly, instruction stream behavior is particularly

poor for these Java server workloads. High
instruction cache, ITLB, and BTAC miss rates are
observed. These point toward a scattered
instruction footprint. Instruction cache stalls make
up a substantial component of the CPIs of these
workloads, while they are near negligible in the
SPECint workloads.

� We also see that poor L2 performance is a major
factor in overall performance for the Java server
workloads. L2 misses per instruction and per L2
reference are significantly higher than those for
SPECint2000. L2 load misses make up the vast
majority of the Java server benchmarks’ L2
misses, due possibly to a scattered data footprint
that causes a higher proportion of L2 compulsory
misses. Clearly, if one is to study the impact of
Java server applications on modern processor
architectures, L2 performance must not be
neglected.

� In addition, these Java server workloads have a
high proportion of zero dispatch cycles, suggesting
that ILP is not very easily exploited in these
workloads.

Given that our two PowerPC architectures are

significantly different, the RS64-II being an in-order
execution machine with static branch prediction and
the POWER3-II being a highly aggressive out-of-order
execution machine, the fact that the above
characteristics were found on both platforms suggests
that they are real properties of the workload and not
machine-dependent. Obviously, then, there lies room
for performance improvements and optimizations,
especially in instruction cache and L2 performance.

0 2 4 6 8 10

c rafty

eon

gc c

twolf

vortex

s jbb1

s jbb10

s jbb25

vol1

vol10

vol30

ideal c pi

l2 m is s

dc m is s

ic m is s

ierat m is s

itlb m is s

dtlb m is s

is y nc

other s y nc

6. Acknowledgments

We would like to thank Steve Stevens of the IBM
Austin PowerPC Performance group for his
encouragement and support, Rick Eickemeyer of IBM
Rochester for his assistance in calculating CPI
components and advice on performance metrics, and
Steve Kunkel and Frank O’Connell of IBM for their
help in understanding the RS64-III and POWER3-II
architectures. Thanks also go to Yue Luo of the
Laboratory for Computer Architecture at the
University of Texas at Austin Department of Electrical
and Computer Engineering for his helpful comments
and suggestions.

7. References

[1] A. Alimaki, D. J. DeWitt, M. D. Hill and D. A.

Wood. DBMSs on a Modern Processor: Where
Does Time Go? In Proceedings of the 25th VLDB
Conference, Edinburgh, Scotland, 1999.

[2] L.A. Barroso, K. Gharachorloo and E. Bugnion.
Memory System Characterization of Commercial
Workloads. In Proceedings of the 25th
International Symposium on Computer
Architecture, 1998.

[3] D. Bhandarkar and J. Ding. Performance
Characterization of the Pentium Pro Processor. In
Proceedings of the Third International Symposium
on High-Performance Computer Architecture,
1997.

[4] J.M. Borkenhagen, R. J. Eickemeyer, R. N. Kalla,
and S.R. Kunkel. A Multithreaded PowerPC
Processor for Commercial Servers. IBM Journal of
Research and Development, Vol. 44, No. 6, 2000,
pp. 885-894.

[5] J. Borkenhagen and S. Storino. Fourth Generation
64-Bit PowerPC-Compatible Commercial
Processor Design. White Paper, IBM Corporation,
http://www.rs6000.ibm.com/resource/technology/n
star.html, January 1999.

[6] H.W. Cain, R. Rajwar, M. Marden, and M.H.
Lipasti. An architectural Evaluation of Java TPC-
W. In Proceedings of the Seventh International
Symposium on High-Performance Computer
Architecture, 2001.

[7] Q. Cao, P. Trancoso, J.-L. Larriba-Pey, J.
Torrellas, R. Knighten, Y. Won. Detailed
characterization of a Quad Pentium Pro Server
Running TPC-D. In Proceedings of International
Conference on Computer Design, 1999.

[8] K. Keeton, D. A. Patterson, Y. Q. He, R. C.
Raphael, and W. E. Baker. Performance
Characterization of a Quad Pentium Pro SMP
Using OLTP Workloads. In Proceedings of the

25th International Symposium on Computer
Architecture, Barcelona, Spain, June 1998.

[9] T. Li, L.K. John, N. Vijaykrishnan, A.
Sivasubramaniam, A. Murthy, and J. Sabarinathan,
Using Complete System Simulation to Characterize
SPECjvm98 Benchmarks. In Proceedings of
International Conference on Supercomputing,
2000.

[10] Y. Luo and L.K. John. Workload Characterization
of Multithreaded Java Servers. Technical Report
TR-010815-01, Department of Electrical and
Computer Engineering, University of Texas at
Austin, June 2001,
http://www.ece.utexas.edu/projects/ece/lca.

[11] A.M.G. Maynard, C.M. Donnelly and B.R.
Olszewski. Contrasting characteristics and cache
performance of technical and multi-user
commercial workloads. In Proceedings of the 6th
International Conference on Architectural Support
for Programming Languages and Operating
Systems. San Jose, October 1994.

[12] S. Oaks and H. Wong. Java Threads, 2nd Edition,
O’Reilly and Associates, January 1999.

[13] F.P. O’Connell and S.W. White. POWER3: the
Next Generation of PowerPC Processors. IBM
Journal of Research and Development, Vol. 44,
No. 6, 2000, pp. 873-884.

[14] M. Papermaster, R. Dinkjian, M. Mayfield, P.
Lenk, B. Ciarfella, F. O’Connell, and R. DuPont.
POWER3: Next Generation 64-bit PowerPC
Processor Design. White Paper, IBM Corporation,
1998.

[15] R. Radhakrishnan, N. Vijaykrishnan, L.K. John,
and A. Sivasubramaniam, Architectural Issues in
Java Runtime Systems. In Proceedings of the Sixth
International Conference on High Performance
Computer Architecture, January 2000.

[16] P. Ranganathan, K. Gharachorloo, S.V. Adve and
L.A. Barroso. Performance of Database
Workloads on Shared-Memory Systems with Out-
of-Order Processors. In Proceedings of the 8th
International Conference on Architectural Support
for Programming Languages and Operating
Systems, October 1998.

[17] B. Rychik and J.P. Shen. Characterization of
Value Locality in Java Programs, Workshop on
Workload Characterization, ICCD, September
2000.

[18] SPEC Benchmarks, http://www.spec.org
[19] Volano LLC. VolanoMark benchmark.

http://www.volano.com/benchmarks.html

