
A Study of Core Utilization and Residency in Heterogeneous
Smart Phone Architectures

Joseph Whitehouse
whitehouse@utexas.edu

University of Texas at Austin
Austin, Texas

Qinzhe Wu
qw2699@utexas.edu

University of Texas at Austin
Austin, Texas

Shuang Song
songshuang1990@utexas.edu
University of Texas at Austin

Austin, Texas

Eugene John
eugene.john@utsa.edu

University of Texas at San Antonio
San Antonio, Texas

Andreas Gerstlauer
gerstl@ece.utexas.edu

University of Texas at Austin
Austin, Texas

Lizy K. John
ljohn@ece.utexas.edu

University of Texas at Austin
Austin, Texas

ABSTRACT
In recent years, the smart phone platform has seen a rise in the
number of cores and the use of heterogeneous clusters as in the
Qualcomm Snapdragon, Apple A10 and the Samsung Exynos pro-
cessors. This paper attempts to understand characteristics of mobile
workloads, with measurements on heterogeneous multicore phone
platforms with big and little cores. It answers questions such as
the following: (i) Do smart phones need multiple cores of different
types (eg: big or little)? (ii) Is it energy-efficient to operate with
more cores (with less time) or fewer cores even if it might take
longer? (iii) What are the best frequencies to operate the cores
considering energy efficiency? (iv) Do mobile applications need
out-of-order speculative execution cores with complex branch pre-
diction? (v) Is IPC a good performance indicator for early design
tradeoff evaluation while working on mobile processor design?

Using Geekbench and more than 3 dozen Android applications,
and the Workload Automation tool from ARM, we measure core
utilization, frequency residencies, and energy efficiency character-
istics on two leading edge smart phones. Many characteristics of
smartphone platforms are presented, and architectural implications
of the observations as well as design considerations for future mo-
bile processors are discussed. A key insight is that multiple big and
complex cores are beneficial both from a performance as well as an
energy point of view in certain scenarios. It is seen that 4 big cores
are utilized during application launch and update phases of applica-
tions. Similarly, reboot using all 4 cores at maximum performance
provides latency advantages. However, it consumes higher power
and energy, and reboot with 2 cores was seen to be more energy
efficient than reboot with 1 or 4 cores. Furthermore, inaccurate
branch prediction is seen to result in up to 40% mis-speculated
instructions in many applications, suggesting that it is important
to improve the accuracy of branch predictors in mobile processors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPE ’19, April 7–11, 2019, Mumbai, India
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6239-9/19/04. . . $15.00
https://doi.org/10.1145/3297663.3310304

While absolute IPCs are observed to be a poor predictor of bench-
mark scores, relative IPCs are useful for estimating the impact of
microarchitectural changes on benchmark scores.

CCS CONCEPTS
• Computer systems organization → Multicore architectures;
Heterogeneous (hybrid) systems; Cellular architectures.

KEYWORDS
Measurement, Multicore Utilization, Frequency Residency, Energy
Efficiency, Smart Phone CPUs, Workload Characterization.

ACM Reference Format:
Joseph Whitehouse, Qinzhe Wu, Shuang Song, Eugene John, Andreas Ger-
stlauer, and Lizy K. John. 2019. A Study of Core Utilization and Residency
in Heterogeneous Smart Phone Architectures. In Tenth ACM/SPEC Interna-
tional Conference on Performance Engineering (ICPE ’19), April 7–11, 2019,
Mumbai, India. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3297663.3310304

1 INTRODUCTION
Smart phones are becoming an increasingly central part of every-
day life. Smart phones connect people to social media, business,
banking, and more. This dependence on smart phones all-day long
has created the desire for a handheld powerful supercomputer with
a battery that lasts for days. While this may be an exaggeration,
there is pressure to develop more powerful phones with energy-
efficient operation. This challenge has been addressed differently
throughout the industry. In recent years, the mobile platform has
seen a rise in the number of cores and the use of heterogeneous
clusters. The idea is to take advantage of different architectures,
switching between efficiency and performance. This brings to light
many questions involving the number and nature of cores (big,
little, tiny, etc.) and useful core configurations.

It is challenging to design energy-efficient processors for emerg-
ing smart phones due to the variety of applications and their dis-
parate features and execution characteristics. This paper attempts
to understand characteristics of mobile workloads, especially in
the context of heterogeneous multicores. In the process, we aim
to answer several questions related to state-of-the-art mobile CPU
design.

Many present-day phones use heterogeneous multicore proces-
sors in them, for instance, the Qualcomm Snapdragon 810, and

Session 3: High Performance Computing ICPE ’19, April 7–11, 2019, Mumbai, India

67

https://doi.org/10.1145/3297663.3310304
https://doi.org/10.1145/3297663.3310304
https://doi.org/10.1145/3297663.3310304

the Samsung ExynosSoCs have 4 big and 4 little ARM cores. The
Apple A10 Fusion core has 2 high performance cores and 2 energy-
efficient cores. A recent ISCA Keynote Speech [18] alluded to the
low utilization of many multicore processors.

Past research from Gao et al. [13] and Seo et al. [19] argued for
fewer cores or tinier cores based on the thread-level parallelism
(TLP) inherent to popular applications and the power consumption
of different applications. We present CPU usage analysis for several
popular applications on the two leading edge smart phones and
explore optimal core counts and core types. We specifically study
whether big cores yield significant performance improvements
compared to littles ones, how much more computation capabilities
big cores have, and what applications give the best and what ap-
plications the least differential over the little cores. Furthermore,
do smart phone applications need multiple cores? Do they need
multiple big and little cores? And what are their best operating
frequencies from the energy efficiency point of view? Low-power
operation will result in longer run times. What are the tradeoffs
from the perspective of minimizing energy, energy-delay (ED) or
energy-delay2(ED2)?

In the server world, it is frequently told that, for energy-efficient
operation, the best policy is to “race to idle”, i.e. run at the highest
frequency (and highest performance/power) to finish the task as
soon as possible and then switch to inactive modes. In the mobile
multicore context, is it more energy-efficient to use as many big
cores simultaneously and race to finish or is it better to use fewer
or little cores and reduce power? We explore whether the race-to-
idle policy is applicable for mobile workloads on multicore smart
phones.

Within this context, an interesting question is how complex the
big or how simple the little cores should be. More specifically, do
mobile applications need an out-of-order speculative execution core
with a sophisticated branch predictor? Many mobile applications
are known to be more loop-intensive than benchmarks such as
SPEC CPU-INT and it is generally thought that loop branches are
easy to predict. Are there lots of branch mispredictions in mobile
workloads? How does branch misprediction affect a mobile plat-
form? In many desktop/server workloads, 25-30% instructions are
in the mis-speculated paths [9]. What percent of instructions are
executed in mis-speculated paths in mobile workloads?

To optimize processor micro-architecture characteristics, such
as branch prediction, especially in early design tradeoff evaluations,
architects often use instructions per cycle (IPC) as an indication of
performance. But what is the effect of IPC on final mobile applica-
tion performance? If IPC is improved, does it improve the actual
application performance? In other words, is IPC even a good met-
ric for pre-silicon performance studies of mobile processor micro-
architectures?

Using Geekbench, and several Android applications, we study
core utilization, frequency residencies, energy efficiency character-
istics, and discuss architectural implications of the observations.
Utilizing tools such as workload automation, Linux performance
monitoring utilities, and hardware performance monitoring coun-
ters, we derive insight into the working of a smart phone. Our
experiments unveil insights on the complex interactions between
operating systems, dynamic voltage and frequency scaling (DVFS),

performance requirements of various types of every day applica-
tions, resource sharing and resource contention, etc. in the context
of actual applications running on an actual phone.

Based on our workload characterization, we argue for the inclu-
sion of big, complex cores for the computation demand in mobile en-
vironments. It appears from our experiments that all 4 big cores are
fully utilized during application launch and also during updating of
applications. Big cores are needed to provide the computing power
needed during such phases and possibly during multi-tasking. One
may think of application updates as a non-critical operation that
can be accomplished when phones are charging. However, in many
scenarios, an application may deny you access until the update is
finished and it ends up being a critical operation when a user needs
to immediately access the application.

A consequence is that even in the mobile world, under many
conditions, the race-to-idle philosophy is useful. In our experiments,
for application update scenarios, we observe that it is beneficial to
simultaneously use all 4 big cores from performance and energy
standpoints. As long as big cores are turned off in the phases they
are not required, where appropriate design of frequency governors
and schedulers become extremely important, availability of multiple
big and complex cores in mobile platforms is of benefit.

We also observe that branch mispredictions result in up to 40%
wasted (aborted) instructions in 5 of the Geekbench applications.
Essentially for every 100 instructions that are retired by the proces-
sor up to 140 instructions have to be fetched and decoded. Similar
observations have been noted in the past for desktop and server
processors [9], but we confirm that they occur in mobile platforms
as well. The extra fetches and decodes cost extra power/energy,
however do not end up being useful to the overall execution. Based
on this we argue for an accurate branch predictor even in mobile
applications (which are thought to be loop-intensive).

In the quest for meaningful metrics for such micro-architecture
studies, we observe that there is no linear correlation between IPC
and Geekbench score. However, when we compute the difference in
IPC between the big core and the little core, we noticed that the IPC
delta between the 2 types of cores and the Geekbench score delta
between the 2 cores have a linear correlation. This indicates that
IPC can serve as a useful metric for relative (but not necessarily
absolute) comparisons between different micro-architectures in a
mobile context.

2 RELATEDWORK
Several groups have performed workload characterization of mo-
bile platforms. Gutierrez et al. [15] investigated mobile benchmarks
and attempted to implement their own suite. They developed an al-
ternative benchmark, Bbench, claiming that SPEC benchmarks are
not representative. Bbench is a benchmark suite that measures the
performance of web browsing based on page rendering speed [15].
The characterization presented in this paper includes only microar-
chitectural metrics, but our work includes utilization and frequency
residencies on an actual phone platform under dynamic voltage and
frequency scaling. Pandiyan [17] expands on Bbench, by adding
more realistic web browsing scenarios and including photo and
video applications. Gomez [14] presents a tool, RERAN, that allows
actions on a phone to be recorded and replayed. Using everyday

Session 3: High Performance Computing ICPE ’19, April 7–11, 2019, Mumbai, India

68

Table 1: Workloads used in our experiments.

Category Workloads

General Clock, Calendar, Email, Messages, Application Download, Application Update, Skype, Google Hangout

Camera Take photos, Edit Photos, Browse Photos, Filters/Effects, Panoraic Photo, Record and Playback video,
Burst Photos, Animated Photos

Web Browsing ESPN, News Sites, Wikipedia, Google Images, Facebook

Games Crossy Road, Clash Royale, Pokemon go, Real boxing, Asphalt8, NOVA 3, Mortal Komat X, Angry Birds,
Temple Run

Virtual Reality Archer E Bowman, Caldera Defense, Cosmos Warfare, Epic Dragon VR, Gunjack, InCell VR, Snake VR,
Temple Run VR, Colosse, DreamWorks VR, Next VR

Multiscreen Skype + Web Browsing, Skype + YouTube, Skype + Gallery, Skype + Facebook,
FaceBook + YouTube, Facebook + Gallery

Benchmarks Geekbench, SysBench (See Table 2 for more details on Geekbench)

Table 2: Geekbench 3 workloads.

Category Benchmarks

Integer

AES, Twofish, SHA1, SHA2, Bzip2
Compress, Bzip2 Decompress, JPEG
Compress, JPEG Decompress, PNG
Compress, PNG Decompress,
Sobel, Lua, Dijstra

Floating Point

Black-Scholes, Mandelbrot, Sharpen
Filter, Blur Filter, SGEMM,
DGEMM, SFFT, DFFT, N-Body,
RayTrace

Memory Stream Copy, Stream Scale,
Stream Add, Stream Triad

situations is appealing because they are actual end user behavior.
Using RERAN allows these situations to be recorded and replayed,
which brings repeatability to the day-of-use scenarios. We used
RERAN in some of our early experiments, but once the Workload
Automation tool [6] became available from ARM, it provided vari-
ous capabilities needed in our experiments, and we used it for most
of our experiments.

A few groups have investigated issues surrounding the use of
many cores for embedded and mobile applications [1, 2, 4, 7, 8, 10,
11, 13, 19–21]. Gao et al. [13] used RERAN to simulate different
popular applications. Using these scenarios, Gao investigated the
amount of thread level parallelism (TLP) available, concluding that
with the TLP inherent to popular applications, only 2 cores were
necessary. Seo et al. [19] investigated the available TLP and the
impact of core asymmetry on applications in a Samsung Galaxy S5.
They also measured power while evaluating different applications
and SPEC2006 benchmarks, proposing the need for a tiny core and
concluding that a 2 big, 1 little systemwas equivalent to an octa-core
system. Several researchers [7, 8] investigated energy-performance
tradeoffs with unique perspectives, introducing inefficiency met-
rics, optimizing the amount of extra energy that can be allowed
for performance, or considering user experience. Zhu et al. [21]

Figure 1: Measurement Methodology

investigated how the link between the network and CPU affects
energy efficiency in mobile web browsing, showing that the CPU
only matters when there is low latency in the network. The utiliza-
tion of multicore smartphone processors and their thermal issues
were presented in [1, 2, 4].

3 METHODOLOGY
We analyze the performance-energy tradeoffs in heterogeneous
multicore platforms using an Odroid board [5], and two leading-
edge smart phone target platforms. The first phone is a circa 2015
phone and we refer to it as Platform 1 in the rest of the paper. The
other phone is a circa 2016 phone and we refer to it as Platform
2 in the rest of the paper. All the platforms have heterogeneous
processor clusters popularly known as the big.Little platforms, with
4 big cores and 4 little cores. Both the smart phone platforms that
we experimented with use quad-core clusters with the ARM ISA
and a GPU.

Several benchmarks and applications of everyday use scenarios
were investigated. We use everyday applications constituting what
are referred to as common daily scenarios. These common daily
scenarios are made of tasks that aim to emulate how people would
actually use their phone, including email, calendar, messaging, etc.

Session 3: High Performance Computing ICPE ’19, April 7–11, 2019, Mumbai, India

69

0
0.5

1
1.5

2
2.5

AE
S

Tw
of

is
h

SH
A1

SH
A2

Bz
ip

2
Co

m
pr

es
s

Bz
ip

2
D

ec
om

pr
es

s
JP

EG
 C

om
pr

es
s

JP
EG

 D
ec

om
pr

es
s

PN
G

 C
om

pr
es

s
PN

G
 D

ec
om

pr
es

s
So

be
l

Lu
a

D
ijk

st
ra

Bl
ac

kS
ch

ol
es

M
an

de
lb

ro
t

Sh
ar

pe
n

Fi
lte

r
Bl

ur
 F

ilt
er

SG
EM

M
D

G
EM

M
SF

FT
D

FF
T

N
-B

od
y

Ra
yT

ra
ce

St
re

am
 C

op
y

St
re

am
 S

ca
le

St
re

am
 A

dd
St

re
am

 T
ria

d

Integer Floating Point Memory

Big Little

Figure 2: IPC of big core and little core for various Geekbench applications.

(a) Big Core Utilization of Gallery
(b) Little Core Utilization of Gallery

(c) Big Core Utilization of MP3 (d) Little Core Utilization of MP3

(e) Big Core Utilization of YouTube Video (f) Little Core Utilization of YouTube Video

Figure 3: Core utilization for example workloads in 4-Big, 4-Little configuration. The yellow line shows average per core
utilization and the blue line shows sum of the utilization.

Table 1 lists the various scenarios used in our study. In addition to
various common daily scenarios, Geekbench [3], a popular bench-
mark suite and SysBench [16], another benchmark suite were also
used. The individual Geekbench 3 workloads are shown in Table 2.
By observing benchmarks and common daily scenarios in addi-
tion to other created everyday use scenarios such as application

launches and updates, a comprehensive picture of the mobile plat-
form is obtained. Several performance counters were chosen to
quantitatively evaluate different benchmarks on different cores.

The “Workload Automation” tool [6] was used to evaluate the
possibility of automating common daily scenarios. The phone is
rooted, and changes are made to the Linux kernel to facilitate the
measurements. We utilize the methodology illustrated in Figure 1,
which is similar to experimental methodology in prior work [12].

Session 3: High Performance Computing ICPE ’19, April 7–11, 2019, Mumbai, India

70

The steps for obtaining performance and power measurements
consist of the following:

(i) Start Power measurement on PC1
(ii) Start local data collection script on the phone through An-

droid Debug Bridge (ADB) terminal on PC2
(iii) Interact with the phone according to the scenario
(iv) Kill phone script
(v) End power measurement on PC1.
The workload automation tool runs on PC2. The instrumentation

for the measurements was done with the help of the phone vendor.
Non-disclosure agreements with the vendor prevent us from men-
tioning specific information on the phones or specific raw power
numbers. Some of the studies such as measurement of IPC and
speculative instruction count were based on hardware performance
counters. The Sysbench study was done on an Odroid development
board [5], whereas all other studies were done on actual phones.

The big.LITTLE architecture requires one little core to be online
to take care of operating system and background tasks. Therefore,
one or more cores of interest plus one little core are left on while all
other are turned off. In some of the experiments, dynamic voltage
and frequency scaling (DVFS) is on and we measure utilizations and
frequency residencies. In other experiments such as performance
counter based experiments, DVFS is disabled and the cores are
set to 1.2 GHz to create a more controlled and direct comparison.
Additionally all power gating and clock gating states are disabled in
experiments with performance counters to prevent counters from
not being read. Tasks are affinitized to the core of interest and the
single core version of Geekbench 3 workloads are used.

4 OBSERVATION
In this section, we present answers to various questions that were
previously outlined based on the explorations we conducted on the
smart phones.

4.1 Big versus Little Cores
In an experiment using performance counters on a smart phone
(Platform 1), we explored the IPC differential between the big and
little cores for the programs in the Geekbench 3 suite. Figure 2
presents the IPCs. SGEMM and DGEMM provide approximately 3×
performance on the big core while AES, Stream Add, and Stream
Triad achieve more than 2× speedup. Most of the Geekbench pro-
grams show at least 75% performance improvement while running
on the big core instead of the little one. The lowest improvement is
seen in Blur Filter, a 20% improvement, which is still fairly signifi-
cant in the CPU design world. The big core supports out-of-order
execution and seems to get significant improvement in many appli-
cations.

Key Insight: The big core can provide 1.2× to 3× performance
compared to the little core. This performance advantage may
be important for delivering required performance in latency
sensitive applications.

4.2 Core Count and Utilization
Different companies have their own answers for how many cores
are required in a smart phone: 2, 4, 8, or even 10 cores. With more

knowledge of actual user behavior, the optimal core configuration
can be explored. This includes the number of cores and the type of
cores.

The majority of the scenarios investigated did not significantly
stress the big cores. Games and virtual reality applications need
compute capability, but are mostly mapped to the GPU. Most com-
mon everyday scenarios produced a profile similar to Figure 3. The
big cores are typically used in the initial phases (mainly applaunch
- not shown in these figures due to the coarse sampling period)
and then switched to very low activity mode. The little cores have
periods of low activity and high activity, but rarely does the CPU
reach full utilization (400% considering the 4 cores).

Figure 4 shows core frequencies and utilizations over time under
for a multiplayer game application that was investigated (Clash
Royal). For each core type, utilization is plotted as the raw sum
or the sum weighted by core frequency over all 4 cores, averaged
over each sample period. No heavy utilization of the phone CPUs
is seen. Frequency is low throughout the whole duration of game
play with most of the computations happening in the cloud (or in
the GPU), not on the mobile platform itself.

The DVFS governors switch the cores between the various fre-
quencies depending on the utilization. We studied the frequency
residencies of the little and big cores in several applications. The
typical profile resembles Figure 5. The lowest frequency is labeled
F0, and the next higher operating points are labeled F1, F2, F3, etc.
It may be observed that the big core is in the lowest operating
frequency almost half of the time. It is in the highest operating fre-
quency for only about 10-20% of the time. The little core is utilized
more than the big core, however, the utilization is far from heavy.
The highest frequency is used a quarter of the time, but 1 GHz or
more is used more than 50% of the time.

However, as will be shown in more detail later (Figure 6, Figure 8
and Figures 9 through 11), several activities put a high load on the
cores for just a small amount of time. These burst workload require
all 4 of the big cores running at max frequency but quickly put the
big cores back to sleep after the initial burst. After experimenting
with the more than 3 dozen applications and scenarios, the applica-
tions that demand high utilization and high frequency are identified
to be the following:

(1) Application launches: in the applaunch phase, the big cores
do go close to the 400% utilization.

(2) Application updates: The particular update scenario that
we experimented with updates 6 applications with antivirus
enabled (see Figure 8 and Figures 9 through 11). The 6 ap-
plications were Chrome, Gmail, Google Drive, Google Play
Music, Maps, and Youtube.

(3) Image processing: Rotating an image, burst shot, lapse it
application

Key Insight: Individual applications rarely utilize all 4 big cores
for large durations of execution, but all 4 big cores are utilized
during scenarios such as application launch and also during
update of applications. Utilization of big cores and power con-
sumption are high during such phases to provide a satisfactory
user experience.

Session 3: High Performance Computing ICPE ’19, April 7–11, 2019, Mumbai, India

71

Figure 4: Utilization during Clash Royale multiplayer game, with DVFS on. 400% indicates full utilization on four cores.

Figure 5: Frequency residencies of big and little cores in ex-
ample workload (web browsing in 4 Big, 4 Little configura-
tion). F0 is the lowest frequency.

The high activity in application launches and updates can also be
seen in any sort of transition. Transitions include any switch from
one activity to another: next to application launches, for example,
also in loading webpages, returning to the homepage, switching
applications, etc. Transitions cause spikes in power due to the quick
change to max frequency with a high load as shown in Figure 6,
which plots power in the game CrossyRoads. During game play the
player is shown various advertisements to earn playing currencies.
Anytime the activity switches from gameplay to the advertisement,
there is increased power. Each advertisement is likely bringing in a
new context and creating increased cache and memory accesses.

Key Insight: App lauches, app updates, image manipulations
and advertisements that show up during applications result in
high frequencies, high utilizations and increased power usage.

4.3 Ideal Operating Frequencies
The ideal operating frequency for the big and little processors de-
pends on the objective metric. Of course, the lowest frequency is
ideal for achieving the lowest power. However, if energy is the objec-
tive, low frequencies tend to result in long execution times, which
in turn will make the energy consumption higher. We conducted
an experiment with SysBench CPU benchmarks to determine the
operating frequencies if energy, energy-delay or energy-delayˆ2
(ED2) is chosen as the objective.

Figure 7a shows the relative benefit of using the little core versus
the big core, or vice versa, from an energy perspective for the
SysBench [16] workloads. The energy ratio indicates ratio of big
core energy to the energy consumed by the little core. If both cores
are operating at 1.4GHz, the big core takes 1.88× the energy of the
little core. If the little core is operating at a frequency of 500 MHz
and the big core is operating at 2GHz, the big core takes 7.4× the
energy than the little one. Similarly, if the big core is operating at
800MHz and the little core is operating at 1400 MHz, the big core
consumes 1.45× the energy of the little core.

As you scan the little core (A7) frequencies from left to right,
you can see the values increase and then decrease. The highest
value (highlighted in green) indicates where the little core is the
most energy efficient in comparison to the big core. As you scan
the big core (A15) frequencies from left to right, the values decrease
and then increase. The lowest value (marked in red) indicates the
frequency at which the big core is most efficient. The lines high-
lighted in green and red are the optimal frequencies for each core.
However, one should note that all the numbers in the figure are
higher than one, indicating that the big core is never more energy-
efficient than the little one, if low energy is the objective. In order to
get energy benefits, the big core has to be redesigned to be more

Session 3: High Performance Computing ICPE ’19, April 7–11, 2019, Mumbai, India

72

Figure 6: Power consumption over the course of Crossy Road gameplay. Power is high during applaunch and periodic adver-
tisements (this experiment was done on Platform 2).

power-efficient. A design challenge would be to design a big core
that can give ratios in this table that are smaller than 1. The core
can spend higher power, but its performance has to be so much
higher that the overall energy is less.

In some scenarios, quality of service (QoS) demands may be
higher and energy may not be the objective metric. Energy Delay
Product (ED) may be the metric of interest. Figures 7b and 7c illus-
trate the data from the EDP and ED2P perspectives. If energy delay
product is the objective metric, the optimal frequency of operation
of the little core is 1.3GHz and the optimal frequency of operation
of the big core is 1.5 GHz. If (ED2) is the metric of interest, the little
core should operate at 1.4 GHz (its highest frequency) and the big
core should operate at 1.8GHz. The interesting observation from
Figure 7c is that there are several numbers in this table with values
less than 1, i.e. if energy-delay2 (ED2) is the metric of interest, the
big core is more efficient than the little core at several operating
frequencies.

Key Insight: If energy is the objective metric, ideal operating
frequencies are very low (eg: 500MHz and 800MHz are themost
efficient for the little and big core respectively). The big core is
never more energy efficient than the little core if energy is the
metric of interest. However, if (ED) or (ED2) are the metrics
of interest, the big core is more efficient than the little core at
various operating frequencies. The ideal operating frequency
for the big core increases from 800 MHz to 1.5 GHz and 1.8 GHz
if (ED) or (ED2) are the metrics of interest. In the phases the
big cores are not required, they should be gated to be off.

4.4 Race-to-Idle using More Cores for Energy
Efficiency

As obviously understood, fewer cores will save power compared
to more cores, but the execution time is likely to go up, at least
in compute-intensive applications. The increased execution time
will result in energy being consumed for longer time, leading to
interesting tradeoffs in energy versus performance. In prior sections,
we showed that a larger number of big cores can be beneficial for
performance. To explore whether computing with fewer number
of cores is efficient from the energy-perspective, update and reboot
scenarios were studied in the reduced core context.

The update scenario updates Chrome, Gmail, Google Drive Google
Play Music, Maps, and You tube with antivirus enabled. The up-
date scenario was chosen because it is computationally heavy. The
number of cores was varied from 1 to 2 to 4 cores for the update
scenario. Figure 8 presents the power and energy of the 2 core
and 1 core case in comparison to the 4 core scenario. In the 2 core
versus 4 core experiment, it was seen that 4 cores take more power
but less energy, with the 2 cores consuming 30% more time and
17% more energy. In the experiment with 1 core versus 4 cores, 1
core takes 118% more time and 46% more energy than if 4 cores
were employed. Hence we conclude that it is beneficial to have
large amounts of computing capability on the phone since there
are scenarios with larger computing needs, where the increased
computing ability not just results in better performance but also in
energy-efficient operation.

Key Insight: Application updates with more cores yields per-
formance and energy savings although power is higher.

Compared to other applications, the utilization is seen to be
heavy in the update scenario. In the 4-core case, all 4 cores are

Session 3: High Performance Computing ICPE ’19, April 7–11, 2019, Mumbai, India

73

 200
 400

 600
 800

 1000
 1200

 1400
 1600

 1800
 2000 Cortex A15 Freq. (M

Hz)

 200
 400

 600
 800

 1000
 1200

 1400

Cortex A7 Freq. (MHz)

 0
 1
 2
 3
 4
 5
 6
 7
 8

E
n

e
rg

y
 R

a
ti

o

(a) Energy comparison between Cortex A15 and Cortex A7

 200
 400

 600
 800

 1000
 1200

 1400
 1600

 1800
 2000 Cortex A15 Freq. (M

Hz)

 200
 400

 600
 800

 1000
 1200

 1400

Cortex A7 Freq. (MHz)

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

E
D

P
 R

a
ti

o

(b) EDP comparison between Cortex A15 and Cortex A7

 200
 400

 600
 800

 1000
 1200

 1400
 1600

 1800
 2000 Cortex A15 Freq. (M

Hz)

 200
 400

 600
 800

 1000
 1200

 1400

Cortex A7 Freq. (MHz)

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

E
D

2
P

 R
a

ti
o

(c) ED2P comparison between Cortex A15 and Cortex A7

Figure 7: Relative energy efficiency of big versus little core.

utilized for extended periods of time. The scenario gets thermally
limited as illustrated in Figure 9 and Figure 10. Thermal throt-
tling is triggered when the temperature reaches a preset control
temperature. One can observe that thermal throttling happens in
both 4-core and 2-core runs of the update scenario. Once temper-
ature reaches the control temperature, frequency goes down due
to thermal throttling, and utilization goes up. Throttling leads to
lower temperatures and frequency increases again. This phenome-
non periodically repeats. In the 1-core run illustrated in Figure 11,
temperature never exceeds the control temperature. However, the
performance is heavily degraded.

While updates may happen in the night when the phone is
charging and hence this may not appear to be a serious concern,

Figure 8: Comparison of 2-core and 1-core configurations to
4-core. More cores are a win for both performance and en-
ergy in the update scenario (data from Platform 2).

this finding applies to any workload scenario with heavy utilization.
While many of the workloads studied earlier showed low utilization,
under multitasking and future applications, it is possible that such
a scenario will exist under normal operation.

Another common question is whether significant savings in
power can be obtained if slow reboots can be tolerated. Reboot
was done utilizing all 4 cores, with 2 cores and with only 1 core
(Table 3). The booting average power reduces more than 50% if
the user is willing to tolerate a boot using only 2 big cores taking
38% more time. The booting average power further reduces to 37%
of the original power if the user is willing to tolerate a boot that
takes 2.4× the original boot time. The energy consumed for boot
in the 2-core case is only 62% of the default boot energy if the 38%
additional boot time can be tolerated. The boot with the single core
consumes 90% of the default boot energy making the 2-core boot
the most energy-efficient.

Key Insight: Rebooting with more cores yields the best per-
formance, however energy efficiency is better with fewer cores.
Note that the performance/energy tradeoffs in rebooting are
different from the update scenario, where more cores are better
for performance and energy.

4.5 Importance of Branch Prediction for
Mobile Workloads

Another interesting question is whether mobile applications need
a sophisticated branch predictor. Many mobile apps include loops
that do repeated processing of streams of data. Considering that
loop branches are easy to predict, is sophisticated branch prediction
necessary for a mobile processor? Investigating Geekbench bench-
marks using hardware performance counters, we see that several

Table 3: Reboot power/latency tradeoffs (Platform 2).

Boot Scenario Average Power (W) Boot Time (s)
4 core P T
2 core 0.45P 1.38T
1 core 0.37P 2.46T

Session 3: High Performance Computing ICPE ’19, April 7–11, 2019, Mumbai, India

74

(a) Utilization

(b) Thermal
Figure 9: Utilization and thermal behavior of update scenario (4 core, Platform 2)

(a) Utilization

(b) Thermal
Figure 10: Utilization and thermal behavior of update scenario (2 core, Platform 2).

Session 3: High Performance Computing ICPE ’19, April 7–11, 2019, Mumbai, India

75

(a) Utilization

(b) Thermal

Figure 11: Utilization and thermal behavior of update scenario (1 core, Platform 2).

workloads result in a large percentage of branch mispredictions.
The impact of the mispredicted branches can be understood if one
analyzes the number of wastefully fetched/decoded/processed in-
structions. Figure 12 shows the number of speculatively executed
instructions over the instructions retired in Platform 1. This graph
highlights several workloads that are doing excessive work which
get discarded later, indicating significant mis-speculation.

BZip compress, PNG compress, Lua, Dijkstra, and N-Body all
execute at least an extra 34% instructions. BZip2 Decompress, JPEG
Compress and PNG Decompress execute at least 20% extra instruc-
tions. The extra work in fetching, decoding and executing these
extra instructions translates into wasted energy and battery life.

Going further, Figure 13 shows the correlation between branch
misprediction and the speculative instruction ratio (for Platform 1).
As expected, there is a strong correlation, but one surprising trend
is the amount of instructions generated by such a small amount
of mispredictions. Following the trend line, 10 mispredictions per
thousand instructions generates roughly 25% more speculative in-
structions. Increasing the mispredicts by 8 per thousand instruc-
tions leads to almost 50% more instructions. This seems to indicate
that there is a large penalty for branch mispredictions with many
instructions flushed.
Key Insight: Speculative instruction and energy overhead of
mis-predicted branches can be severe for mobile workloads
despite them being perceived as loop-intensive. This suggests
that some mobile applications can benefit from a sophisticated
branch predictor and/or mechanisms to reduce the penalty of
branch mis-predictions.

4.6 IPC as Performance Metric
Geekbench scores are popular for expressing smart phone perfor-
mance. While working on processor characteristics, especially in
early design tradeoff evaluation, architects often use IPC as an indi-
cation of performance. But what is the effect of IPC on Geekbench
scores? Does Geekbench score increase if IPC is improved?

Utilizing performance counters on benchmarks provides an op-
portunity to search for correlation between hardware events and
benchmark score, i.e. to evaluate basic micro-architecture measure-
ments, such as IPC, as general performance metrics. As shown in
Figure 14, there is a very high correlation between the percent
difference in the Geekbench 3 score and the percent difference in
the IPC of each benchmark between a big and little core. Each point
is a different workload in the figure. This trend is encouraging, as it
indicates that IPC may be used to derive insights during processor
design. Originally, the raw IPC delta was used, which yielded a
very poor correlation, but once the percent difference in IPC with
respect to the base IPC was used, a good correlation was observed.

Figure 2 earlier showed the change of IPC in each Geekbench 3
workload between a big and a little core. Since IPC is correlated to
the Geekbench 3 score this graph shows that focusing on microar-
chitectural changes to a workload such as Blur Filter will yield little
improvement.
Key Insight: While absolute IPC changes are a poor predictor
of performance effects on benchmark scores, relative IPC can
serve as a performance metric for studying micro-architecture
impact on mobile applications.

Session 3: High Performance Computing ICPE ’19, April 7–11, 2019, Mumbai, India

76

Figure 4. Speculative instruction ratio across Geekbench 3 workloads

BZip compress and decompress, JPEG compress, PNG
compress, Lua, Dijkstra, and N-Body all execute at least an
extra 20% instructions. This extra work just translates into
wasted battery life. Going further Figure 5 shows the
correlation between branch misprediction and the
speculative instruction ratio. As expected there is a strong
correlation, but one surprising thing is the amount of
instructions generated by such a small amount of
mispredictions. Following the trend line, 10 mispredictions
per thousand instructions generates roughly 25% more
speculative instructions. Increasing the mispredicts by 8 per
thousand instructions leads to almost 50% more
instructions. This seems to indicate there is a large penalty
for branch mispredictions with many instructions flushed.

Figure 5. Speculative instruction ratio vs branch mispredictions per kilo-
instruction across Geekbench 3 workloads

The run queue of workloads was also investigated. Run
queue is a measure of the number of threads on a core and is
similar to the average load of the core. Figure 6 shows the
run queue for SHA2 workload. The workloads all have their
own run queue behavior, but for the most do not exceed 2
threads on a single core and maintain some load. The hope
with this information is that this analysis can be applied to
DOU scenarios. If DOU scenarios show more sporadic
behavior it may be possible to use the run queue to decide
the number of active cores and the P state of the active
cores.

Figure 6. Run queue for SHA2 workload

0.90

1.00

1.10

1.20

1.30

1.40

1.50

A
ES

Tw
o
fi
sh

SH
A
1

SH
A
2

B
Zi
p
2
 C
o
m
p
re
ss

B
Zi
p
2
 D
ec
o
m
p
re
ss

JP
EG

 C
o
m
p
re
ss

JP
EG

 D
ec
o
m
p
re
ss

P
N
G
 C
o
m
p
re
ss

P
N
G
 D
ec
o
m
p
re
ss

So
b
e
l

Lu
a

D
ijk
st
ra

B
la
ck
Sc
h
o
le
s

M
an
d
el
b
ro
t

Sh
ar
p
e
n
 F
ilt
er

B
lu
r
Fi
lt
er

SG
EM

M

D
G
EM

M

SF
FT

D
FF
T

N
B
o
d
y

R
ay
Tr
ac
e

St
ea
m
 C
o
p
y

St
ea
m
 S
ca
le

St
ea
m
 A
d
d

St
ea
m
 T
ri
adSp

ec
u
la
ti
ve
 I
n
st
ru
ct
io
n
s
/
R
et
ir
ed

In
st
ru
ct
io
n
s

R² = 0.9297

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

0.00 5.00 10.00 15.00 20.00Sp
ec
u
la
ti
ve
 I
n
st
ru
ct
io
n
s
/
R
et
ir
ed

In
st
ru
ct
io
n
s

Branch Mispredictions Per KiloInstruction

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

CPU4 CPU5 CPU6 CPU7

1.46
/

/
1.24

1.24
/

1.37
/

1.21
/

1.34\

1.39
/ 1.37

/

A
E

S

T
w

ofi
sh

S
H

A
1

S
H

A
2

B
zip

2
C

om
p
ress

B
zip

2
D

ecom
p
ress

J
P

E
G

C
om

p
ress

J
P

E
G

D
eco

m
p
ress

P
N

G
C

om
p
ress

P
N

G
D

ecom
p
ress

S
ob

el

L
u
a

D
ijk

stra

B
lack

S
ch

oles

M
an

d
elb

rot

S
h
arp

en
F

ilter

B
lu

r
F

ilter

S
G

E
M

M

D
G

E
M

M

S
F

F
T

D
F

F
T

N
-B

o
d
y

R
ay

T
ra

ce

S
trea

m
C

o
p
y

S
trea

m
S
cale

S
trea

m
A

d
d

S
tream

T
ria

d

2

Figure 12: Speculative instruction ratio across Geekbench 3 workloads (Platform 1).

S
pe

cu
la

tio
n

R
at

io

Branch Misprediction Per Kilo-Instructions

R = 0.92972

Figure 13: Speculative instruction ratio vs. branch mispredictions per kilo-instruction across Geekbench 3 workloads.

5 CONCLUSION
In this paper, we presented execution characteristics of current
generation smart phone platforms in order to draw insights for
next generation smart phone CPU designs. Using more than 3
dozen popular Android applications and two benchmark suites,

we examine the performance and power/energy characteristics
of multicore smart phone processors with 4 big and 4 little cores.
Very few applications can utilize all the 4 big cores simultaneously,
however, there are application phases in which all 4 big cores are
essential to providing the required performance. We also find that

Session 3: High Performance Computing ICPE ’19, April 7–11, 2019, Mumbai, India

77

• % Difference
Between Big
and Little Cores

• Single version
of Geekbench 3
workloads

• No DVFS @
1.2GHz with no
Idle states

IP
C

 P
er

ce
nt

 C
ha

ng
e

Score Percent Difference

Figure 14: Percent difference of IPC between the big and little cores vs. percent difference of Geekbench 3 score between the
big and little cores.

at least in some applications, it is more energy-efficient to use
all cores and finish the task quickly. Application launching and
update operations are two scenarios that can obtain higher energy
efficiency and performance if all 4 cores are used. Aggressively
using all 4 cores can lead to high power consumption and even
thermal throttling. Transitioning between applications and even
advertisements during applications also introduce bursts with an
increase in power consumption.

In light of these observations, we argue that the big cores are
very useful for a smart phone platform, but what is essential is an
operating system/run time that can decide to use them selectively
in the required phases, while reducing their frequencies or turning
them off when not needed. Furthermore, architectures should have
support for bursty operations and transitions if those are going to
be important in the smart phone domain. The insights from this
study are expected to be useful in designing next generation smart
phone systems.

REFERENCES
[1] 2019. Determining the TDP of Exynos 5 Dual. http://www.anandtech.com/show/

6536/arm-vs-x86-the-real-showdown/13.
[2] 2019. Exynos. http://www.anandtech.com/show/9330/exynos-7420-deep-dive/2.
[3] 2019. GeekBench Suite. https://geekbench.com.
[4] 2019. In-depth with the Snapdragon 810’s heat problems. https://arstechnica.

com/gadgets/2015/04/in-depth-with-the-snapdragon-810s-heat-problems/.
[5] 2019. Odroid-XU3 Board. http://www.hardkernel.com.
[6] 2019. Workload Automation Tool Suite. https://github.com/ARM-software/

workload-automation.
[7] Rizwana Begum, David Werner, Mark Hempstead, Guru Prasad, and Geoffrey

Challen. 2015. Energy-Performance Trade-offs on Energy-Constrained Devices
with Multi-component DVFS. In IEEE Int. Symp. on Workload Characterization
(IISWC).

[8] Carole-JeanWu Benjamin Gaudette and Sarma Vrudhula. 2016. Improving Smart-
phone User Experience by Balancing Performance and Energy with Probabilistic
QoS Guarantee. In International Symposium on High Performance Computer Ar-
chitecture (HPCA).

[9] Dileep Bhandarkar and Jason Ding. 1997. Performance characterization of the
Pentium Pro processor. In Intl. Symp. on High-Performance Computer Architecture
(HPCA).

[10] Guilin Chen, OzcanOzturk, Guangyu Chen, andMahmut Kandemir. 2006. Energy-
aware code replication for improving reliability in embedded chip multiproces-
sors. In International SOC Conference.

[11] G Chen, Liping Xue, Jungsub Kim, Kanwaldeep Sobti, Lanping Deng, Xiaobai Sun,
Nikos Pitsianis, Chaitali Chakrabarti, M Kandemir, and Narayanan Vijaykrishnan.
2006. Geometric tiling for reducing power consumption in structured matrix
operations. In International SOC Conference.

[12] Hari Cherupalli, Henry Duwe, Weidong Ye, Rakesh Kumar, and John Sartori.
2017. Determining Application-specific Peak Power and Energy Requirements for
Ultra-low Power Processors. In International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS).

[13] Cao Gao, Anthony Gutierrez, Madhav Rajan, Ronald G. Dreslinski, Trevor Mudge,
and Carole-Jean Wu. 2015. A Study of Mobile Device Utilization. In Intl. Symp.
Performance Analysis of Systems and Software (ISPASS).

[14] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and ToddMillstein. 2013. RERAN:
Timing- and Touch-sensitive Record and Replay for Android. In Proc. of Interna-
tional Conference on Software Engineering (ICSE).

[15] A. Gutierrez, R.G. Dreslinski, T.F. Wenisch, T. Mudge, A. Saidi, C. Emmons, and N.
Paver. 2011. Full-SystemAnalysis and Characterization of Interactive Smartphone
Applications. In IEEE Int. Symp. on Workload Characterization (IISWC).

[16] Alexey Kopytov. 2019. Sysbench CPU Benchmark Suite. https://launchpad.net/
sysbench.

[17] Dhinakaran Pandiyan, Shin-Ying Lee, and Carole-Jean Wu. 2013. Performance,
energy characterizations and architectural implications of an emerging mobile
platform benchmark suite - MobileBench.. In IEEE Int. Symp. on Workload Char-
acterization (IISWC).

[18] Partha Ranganathan. 2017. ISCA 2017 Keynote Speech, Video shown during the
keynote speech, Toronto, Canada, June 25 2017. ACM ISCA (2017).

[19] Wonik Seo, Daegil Im, Jeongim Choi, and Jaehyuk Huh. 2015. Big or Little: A
Study of Mobile Interactive Applications on an Asymmetric Multi-core Platform.
In IEEE Intl. Symp. on Workload Characterization (IISWC).

[20] Karthik Swaminathan, Emre Kultursay, Vinay Saripalli, VijaykrishnanNarayanan,
Mahmut Kandemir, and Suman Datta. 2011. Improving energy efficiency of
multi-threaded applications using heterogeneous CMOS-TFET multicores. In
International Symposium on Low Power Electronics and Design (ISLPED).

[21] Yuhao Zhu, Matthew Halpern, and Vijay Janapa Reddi. 2015. The Role of the
CPU in Energy-Efficient Mobile Web Browsing. IEEE Micro 35, 1 (2015), 26–33.

Session 3: High Performance Computing ICPE ’19, April 7–11, 2019, Mumbai, India

78

http://www.anandtech.com/show/6536/arm-vs-x86-the-real-showdown/13
http://www.anandtech.com/show/6536/arm-vs-x86-the-real-showdown/13
http://www.anandtech.com/show/9330/exynos-7420-deep-dive/2
https://geekbench.com
https://arstechnica.com/gadgets/2015/04/in-depth-with-the-snapdragon-810s-heat-problems/
https://arstechnica.com/gadgets/2015/04/in-depth-with-the-snapdragon-810s-heat-problems/
http://www.hardkernel.com
https://github.com/ARM-software/workload-automation
https://github.com/ARM-software/workload-automation
https://launchpad.net/sysbench
https://launchpad.net/sysbench

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	4 Observation
	4.1 Big versus Little Cores
	4.2 Core Count and Utilization
	4.3 Ideal Operating Frequencies
	4.4 Race-to-Idle using More Cores for Energy Efficiency
	4.5 Importance of Branch Prediction for Mobile Workloads
	4.6 IPC as Performance Metric

	5 Conclusion
	References

