Program Balance and its Impact on High Performance RISC Architectures*

Liuzy Kurian John and Vinod Reddy
Computer Science and Engineering
University of South Florida
Tampa, FL 33620

Abstract

Information on the behavior of programs is essential for
deciding the number and nature of functional units in high
performance architectures. In this paper, we present stud-
ies on the balance of access and computation tasks on a
typical RISC architecture, the MIPS. The MIPS programs
are analyzed to find the demands they place on the mem-
ory system and the floating point or integer computation
units. A balance metric that indicates the match of ac-
cessing power to computation power is calculated. Tt is
observed that many of the SPEC floating point programs
and kernels from supercomputing applications typically
considered as computation intensive programs, place ex-
tensive demands on the memory system in terms of mem-
ory bandwidth. Access related instructions are seen to
dominate most instruction streams. We discuss how these
instruction stream characteristics can limit the instruc-
tion issue in superscalar processors. The properties of the
dynamic instruction mix are used to alert computer ar-
chitects to the importance of memory bandwidth. Single
instruction stream parallelism will not be much greater
than two if memory bandwidth is only one. A decou-
pled access/execute architecture with multiple load/store
units and queues which alleviate the balance problem is
presented.

Keywords: Access/Execute Balance, Memory Band-
width, Pipeline Balance, Program Behavior.

1 Introduction

Increasingly sophisticated circuit design and well-thought-
out architectures have lifted microprocessors to new pin-
nacles of performance. In all high-performance architec-
tures, there should be a close match between the number
and nature of functional units in the system and the dy-
namic instruction mix of the applications running on the
system. The functional units on a machine must reflect
the instruction frequency if we are to achieve efficient uti-
lization of functional units. In this paper we study MIPS
programs from DECStation 5000 to obtain a picture of
the balance of accessing and computation, while execut-
ing typical floating point programs.

A computer is said to be balanced when it can operate
in a steady state manner with both memory accesses and
floating point operations being performed at peak speed
[3]. Callahan, Cocke and Kennedy [3] defined two met-
rics called ‘machine balance’ and ‘loop balance’ which to-
gether indicate how efficiently a loop can be executed on a
particular pipelined processor. They defined machine bal-
ance (,, as the rate at which floating point operands can
be fetched from memory compared to the rate at which
floating point operations can be performed. They also
defined a metric called loop balance 31, which is natu-
rally associated with each program loop. Loop balance
is defined as the ratio of the number of words accessed

*This work was supported in part by the National Science Foun-
dation under grant number MIP-8912455.

Paul T. Hulina and Lee D. Coraor

Computer Science and Engineering

The Pennsylvania State University
University Park, PA 16802

to the number of flops performed. As evident from the
definitions, when machine balance is less than loop bal-
ance, the loop needs more data than what the fetch unit
can provide and such programs are traditionally called
memory-bound programs. If loop balance is less than ma-
chine balance, the loop is compute-bound and if the two
metrics are equal, the loop is said to be balanced. They
further noticed that in pipelined architectures, the equa-
tion for loop balance has to be adjusted for idle cycles due
to pipeline interlock. To perform an experimental evalu-
ation of the balance of typical floating point programs on
a typical RISC architecture is one of the objectives of this
study.

Many architectures perform accessing and address
arithmetic concurrently with floating point operations to
construct a fast processor [3]. A typical example is the de-
coupled access/execute (DAE) architecture [22] [26] [11]
[12]. To investigate the balance of conventional DAE ar-
chitectures and design a balanced DAFE configuration is
another objective of this research effort.

Hammerstrom [8] studied memory reference entropy
or information content of the memory references per-
formed by a computer program. He studied CPU memory
referencing behavior by separating the memory accesses
that are used for fetching data elements required for com-
putation purposes and those used for fetching data re-
quired for address generation purposes. He called the ac-
cesses solely used for address generation as overhead mem-
ory references. Examples of overhead memory references
are accessing of loop indices and loop bounds. Hammer-
strom observed that more than half of all memory refer-
ences made by IBM 360 programs are overhead memory
accesses. In some of the programs he traced, almost 90%
of all memory references constituted an overhead. With
the advent of RISC architectures with large register sets,
most of the information required to compute addresses are
allocated to registers. To the best of our knowledge, no
program behavior study after the advent of RISC archi-
tectures and the RISC optimizing compilers, has done a
study on the overhead memory accesses made by RISC
programs. To perform such a study is another objective
of this paper.

1.1 Overview

In this paper, we present an experimental evaluation of the
balance and memory reference entropy of several floating
point benchmark programs in a typical pipelined RISC
processor pair, the MIPS R3000/3010. Several bench-
mark programs are executed on the DEC 5000 worksta-
tion and program instruction mix analyzed to investigate
the loop or program balance. In section 2, we present
analysis based on the dynamic instruction mix of the pro-
grams. Program balance is analyzed in section 2.1. Ad-
dress arithmetic is quantified in section 2.2 and the access
related part of the instruction mix i1s quantified in sec-
tion 2.3. Overhead memory accesses are investigated in
section 2.4 and some effects of loop transformations and
compiler optimizations are discussed in section 2.5. In

section 3, we discuss the impact of the imbalance in the
instruction stream on superscalar instruction issue, on the
performance of DAE and other fine-grain parallel architec-
tures, and on prefetching and latency reducing techniques.
The design of a DAE architecture with multiple load/store
units and multiple queues is also presented. We conclude
the paper in section 4.

2 Instruction Stream Characterization

Our objective is to characterize floating point programs
that typically constitute supercomputing applications.
The experiments are performed on a DEC5000 worksta-
tion, which uses the MIPS R3000/3010 processors. The
benchmark programs include five of the six floating point
programs from the SPEC suite and several kernels from
typical supercomputing applications including concate-
nated Lawrence Livermore Loops, convolution and cor-
relation algorithms and the saxpy routine from Linpacks.
The Lawrence Loops are concatenated together to yield
a longer program. They are coded in Fortran and C;
the Fortran version is labeled concat.f and the C version
is called concat.c. The C programs are compiled with
MIPS compilers CC 2.1. The FORTRAN benchmarks are
compiled with the DEC FORTRAN compiler version 3.0.
While compiling the SPEC programs, the SPEC Makefiles
are strictly adhered to. The optimizations and various
flags are in accordance with the SPEC Makefiles. The
small benchmarks in C were compiled with the highest
level of optimization, -O4 and also with the default opti-
mization level of -O1. (Occasionally we refer to the -O1
and -O4 versions as unoptimized and optimized versions
respectively.)

Two sets of tools are used to collect dynamic instruc-
tion statistics - (i) the MIPS profiling tools pizie and pizs-
tats and (i) in-house profiling tools that we developed.
The profiling tools pizie and pizstats provide a variety of
details connected with program execution - such as each
opcode and its frequency of usage, a histogram of branch
distances, floating point interlock statistics, etc. In ad-
dition to details furnished by pizie and pizstats, we were
interested in obtaining information on address arithmetic
and overhead memory references performed by the pro-
grams. This motivated us to develop our own profiling
tools, which analyzed the instruction stream and tagged
address arithmetic and overhead memory references. The
arithmetic instructions used for computing addresses for
memory accesses are called address arithmetic instruc-
tions. Address arithmetic instructions can be identified by
back-tracking the base registers in load and store instruc-
tions. Manipulation of loop indices to point to the next
required array element is also considered as address arith-
metic. The memory accesses that fetch the operands used
in the computation instructions are tagged as data access
and memory accesses to fetch loop indices or such infor-
mation used for address generation are tagged as overhead
memory accesses. The profiler program accepts the a.out
files of the benchmarks. Appendix I provides an example
of how our profiling program would tag a sample program
with data access, execute, address arithmetic, overhead
memory access or branch tags.

2.1 Program Balance

We define program balance § on an architecture as the
ratio of number of accesses performed to the number of
floating point operations performed. i. e.

L+5S
= — 1
p= Lt 1)
where I denotes the number of loads and .S denotes the
number of stores and F' represents the number of float-
ing point operations performed. Callahan et al. discusses

how idle cycles in the floating point unit due to pipeline
interlocks make the aforementioned metric definition in-
accurate. Considering the pipeline interlocks, the balance
metric gets modified to

L+S
6m0d_F+I (2)

where I represents the number of idle cycles due to in-
terlock. The pizstats output gives information about the
number of floating point interlocks per flop. This lets us
to compute a ‘modified program balance’, taking into ac-
count the pipeline balance. Since I is dependent on the
implementation, the modified balance metric 3y oq is valid
only for a specific implementation of an architecture. Ta-
ble 1 illustrates the percentage of loads and stores and
floating point operations in the dynamic instruction mix
of the programs we analyzed.

Benchmark | %Load | %fl pt) inter- Bmod
+ locks
%Store per flop
tomcatv 55.9 32.2 1.74 0.264 1.37
nasa7 52.0 24.0 2.17 0.614 1.35
fpppp 60.5 24.2 | 250 | 0.542 | 1.62
doduc 35.9 22.9 1.57 1.490 0.62
matrix300 55.5 18.4 3.02 0.125 2.68
G.M. 51.2 24.0 2.14 0.439 1.38

Table 1.a Balance in the SPEC Floating Point Programs

Benchmark | %Load | %fl pt) inter- Bmod
+ locks
%Store per flop
concat.c 55.2 30.1 1.83 0.71 1.07
concat.f 67.5 25.7 2.62 0.27 2.07
conv 66.0 16.2 4.07 0.27 3.20
corr 41.1 21.0 1.96 0.01 1.94
saxpy.eq 69.2 22.7 3.04 0.25 2.43
saxpy.uneq 35.2 11.5 3.06 0.001 3.06
G.M. 53.9 20.2 2.66 0.07 2.16

Table 1.b Balance in the small benchmark programs

According to our definition, if program balance is
greater than 1, the program is access bound and if it
1s less than 1, it is compute bound. The metric Fmod
is equivalent to the ratio of A7 and B, in [3]. On the
MIPS system, the SPEC floating point benchmarks in-
dicate a balance of 2.14 (without considering idle cycles
due to pipeline interlocks) and 1.38 considering the in-
terlocks. The small benchmarks yield a balance of 2.66
without considering pipeline interlocks and 2.16 taking
into effect the interlocks. Thus we observe that the SPEC
floating point programs as well as the small benchmarks
place more demands on the memory subsystem than on
the floating point units in the MIPS environment. This is
evident from Fig. 1 which illustrates the memory access
part of the workload in comparison to the floating point
computation workload.

The most surprising observation from Table 1 is that
almost half of all the instructions in the instruction stream
are memory references. We looked at reported instruction
profiling studies on the MIPS architecture to verify that
we were not making an error. In Cmelik et al.’s studies
[4], for the SPEC floating point benchmarks, 46% of all
mstructions on the MIPS are memory reference instruc-
tions. In Sohi and Franklin’s studies presented in [20],
for the three SPEC floating point benchmarks they used,
loads and stores add up to 37%. (It may be noted that

B memory accesses

B8 computations

total instructions

Percentage of

Benchmark

Figure 1: Number of memory access vs floating point com-
putation instructions in typical benchmark programs

there is no difference in the order of the numbers, and that
there is nothing that makes our findings suspect.)
Caches can capture locality and hence the number of
words accessed from main memory may not be as high as
the number projected by the instruction mix. But this
number does denote the number of accesses required from
the cache even assuming all hits. If the cache can provide
only one word per cycle, we can safely conclude that all
the SPEC floating point benchmarks are cache bound.

2.2 Address Arithmetic

Traditional CISC architectures often have fewer on-chip
registers and for structured array references, an explicit
address calculation with the basic array access formula
is performed each time an array element is referenced.
With the advent of RISC architectures, several registers
are available to store base addresses for each of the vec-
tors being accessed, and that could possibly reduce the
address arithmetic involved. We analyzed MIPS code
and observed that even for RISC architectures, in the un-
optimized version, the array address is computed within
each iteration. In the optimized case, the starting ad-
dress is calculated once before entering the inner loop.
The inner loop consists of only increments to the base
address. Hence we may say that for iterative computa-
tions with nested loops, the address arithmetic involved
in the unoptimized case is of the order O(n2) whereas in
the optimized case, it is only of order O(n). Table 2.a
and Table 2.b illustrate the address arithmetic instruc-
tions for levels of optimization -O4 and -O1, expressed
as a percentage of all instructions in the respective dy-
namic instruction stream. The results are obtained from
our profiler program. The absolute number of instruc-
tions for each case is illustrated in Appendix II. It may
be observed that for the best optimization level available,
13% of all instructions for the SPEC floating point bench-
marks and approximately 11% of all instructions for the
small benchmarks are address arithmetic. Table 2.b also
illustrates the effect of optimizations. In the unoptimized
version, address arithmetic constitutes 33% of all instruc-
tions, whereas in the optimized code, it is only 11%. (Each
is expressed as a percentage of the total instructions in the
respective instruction stream.) The Fortran version of the

Lawrence Livermore Loops have the lowest percentage of
address calculation instructions. This is because, most of
the Lawrence Loops involve only sequential referencing of
arrays and such address patterns are efficiently optimized
by the Fortran compiler. For the SPEC benchmarks, only
the results from the optimized version are presented, since
finding out the effect of optimization on the SPEC bench-
marks involves altering the Makefiles provided by SPEC.

Benchmark | %Address Arithmetic
doduc 17.1
nasa7 18.2
matrix300 21.3
fppp 9.2
tomcatv 6.2
G.M. 13.0

Table 2.a Address Arithmetic Instructions in the SPEC
benchmarks expressed as a percentage of all instructions

Benchmark | Default (-O1) | Optimized (-O4)
concat.c 46.94 10.67
concat.f 30.65 3.90
conv 34.23 10.06
corr 21.88 18.66
saxpy.eq 26.43 3.97
saxpy.uneq 49.92 51.18
G.M. 33.53 10.80

Table 2.b Address Arithmetic Instructions
in the small benchmarks expressed as a percentage
of all instructions

2.3 Access-related Instructions

Many architectures now support concurrent execution of
floating point computations and access-related operations.
It is possible for load and store operations to be com-
pletely overlapped with floating point arithmetic opera-
tions. Load, store and address arithmetic constitute ac-
cess related operations that may be performed in overlap
with floating point computations. Table 3 presents the
access related instructions in the instruction stream. We
may observe that approximately two-thirds of all instruc-
tions in the instruction stream are access related. Fig. 2
illustrates the access-related operations as a part of the
whole workload, and it may be seen that they dominate
the instruction streams of all the benchmarks. The impact
of such an unbalanced instruction mix can be tremendous
but we postpone that discussion until section 3.

Benchmark | %Load | %Store | % Addr Total
Arith Access

Related

Instr(%)
doduc 26.6 9.3 17.1 53.0
nasa7 37.6 14.4 18.2 70.2
matrix300 37.0 18.5 21.3 76.8
fppp 43.8 16.7 9.2 69.7
tomcatv 43.6 12.3 6.2 62.1
concat.c 37.2 18.0 10.7 65.9
concat.f 47.9 19.6 3.9 71.4
conv 48.8 17.2 10.1 76.1
corr 30.6 10.5 18.7 59.8
saxpy.eq 45.9 23.3 4.0 73.2
saxpy.uneq 23.4 11.8 51.2 86.4
G.M. 37.4 15.0 11.8 68.9

Table 3 Access related instructions in the instruction
stream

B access-related

B other than access

saxpy.uneq

saxpy.eq

corr

conv

matrix300

Benchmark

doduc

foppp

nasa7

tomeaty

Percentage of instructions

Figure 2: Access related instructions constitute the bulk
of all instructions in typical benchmark programs

2.4 Overhead Memory References

As defined before, memory accesses that fetch data used
solely for the generation of addresses are considered over-
head memory accesses. Accessing of loop indices and
bound variables belong to this category. In CISC code
for iterative programs, often such variables are shuttled
back and forth from memory in every iteration and that
is the reason why Hammerstrom [8] found 90% of all mem-
ory accesses in some programs to be overhead. The cor-
responding behavior of RISC programs is investigated in
this section. We observe that even in RISC code, in the -
O1 version, index and address calculation information are
shuttled back and forth from memory in every iteration.
But in optimized code, a large part of such information
for structured array accesses is stored in on-chip registers.
Table 4.a illustrates the overhead memory references in
the small benchmarks with compiler options -O1 and -O4,
expressed as percentage of all instructions and of memory
reference instructions alone. It may be observed that 36%
of all memory references in the less optimized version (-
O1) are overhead memory references. The overhead mem-
ory references constitute less than 1% in the optimized
case (-O4), leading to the inference that RISC compil-
ers are very successful in allocating address calculation
information to on-chip registers and eliminating memory
references required solely for generation of addresses. The
overhead memory references in the SPEC benchmarks is
also less than 1% and is illustrated in Table 4.b (absolute
values and as percentage of memory references).

Benchmark | As percent of As percent of
all instructions | memory ref instr
-O1 -O4 -O1 -O4
concat.c 12.01 0.44 31.47 0.79
concat.f 12.04 0.34 38.50 0.51
conv 19.81 0.66 39.72 0.97
corr 14.13 0.20 29.95 0.43
saxpy.eq 16.07 1.11 27.90 1.59
saxpy.uneq | 20.10 0.58 55.80 1.59
G.M. 15.34 0.48 36.18 0.87

Table 4.a Overhead memory references
in the small benchmarks

Benchmark Total Overhead Overhead
mem ref mem ref (%)
(in millions) | (in millions)
doduc 566.1 67.3 11.8
nasa7 4627.7 18.5 0.4
matrix300 1303.3 5.2 0.4
fpppp 1462.2 25.5 1.7
tomcatv 767.8 0.2 0.1
G.M. 0.8

Table 4.b. Memory Access Overhead
in the SPEC benchmarks

2.5 Effects of Compiler Optimization

There are several loop transformations and optimizations
that affect the balance of programs [3]. Common subex-
pression elimination and register saving of temporaries re-
duce the number of off-chip loads. In computations such
as z(1) = z(2 — 1) + y(2) and z(2) = ¢+ y(2) * (r * z(10) +
t+2z(11)), register saving of temporaries can reduce loads.
The MIPS compilers perform common subexpression elim-
ination, elimination of RAW hazards by saving tempo-
raries in registers etc, and hence the optimized results
presented in this paper reflects the balance with these op-
timizations. The data in Appendix Il illustrates a few triv-
ial and widely understood effects of optimization. Some
of these effects are reduction in program size, reduction in
total number of memory references, reduction in address
arithmetic, reduction in overhead memory references etc.
Table 5 illustrates the effects quantitatively. The code
size and the total number of memory references reduce to
less than half with compiler optimization. The number of
overhead memory references made in the optimized case
is only 7% of that in the unoptimized (less optimized)
case and the number of address arithmetic instructions in
the optimized case is approximately 16% of that in the
unoptimized case.

Characteristic Optimized (-O4)/
default (-O1) (average)

Code Size 0.45

No of memory ref 0.48

Overhead memory ref 0.07

Address Arithmetic 0.16

Table 5. Some trivial effects of optimization

Another effect of compiler optimization is that it re-
duces the temporal locality in code. CISC architectures
often had fewer on-chip registers and in those architec-
tures and even in unoptimized RISC code, even scalars in
iterative computations used to be stored in main memory.
Repeated referencing of the scalars resulted in temporal
locality in the code. The availability of more registers in
RISC architectures resulted in scalars being allocated to

registers. The temporal locality through scalar referenc-
ing thus got reduced. For loops with RAW dependencies,
in CISC code, the results used to be written to memory
(or cache) and then read again by the next iteration (with
due care of RAW hazards). For RISC architectures with
large register sets, the compilers allocate the intermedi-
ate results to on—chip registers and avoid referencing them
from memory in further iterations. Conventional compiler
optimization thus results in a lot of the temporal locality
in the code to disappear. We do not imply that efficient
register allocation is not good. Efficient register allocation
significantly reduces the number of accesses performed by
a program and is extremely beneficial. But ezpectations
from a data cache in optimized RISC programs should be
formulated considering the fact that there is very little tem-
poral locality in the code once compiler performs efficient
register allocation.

3 Impact of the Instruction Stream Behavior

The results reported in section 2 of this paper indicate sur-
prising facts such as half of all the instructions in the in-
struction stream are memory references, almost two thirds
of all instructions are access related, etc. Such instruction
mezes indicate fundamental bottlenecks that may have a
sertous impact on the design of future high performance
architectures. In section 3.1, we discuss the impact it
can have on limiting the instruction issue in superscalar
processors. In section 3.2, the impact on decoupled ac-
cess/execute architectures is discussed in detail. A DAE
architecture with multiple load/store units and multiple
queues 1s presented. Section 3.3 shows the effect of a wider
bus and higher bandwidth. In section 3.4, the impact of
the instruction stream on latency reducing techniques is
briefly discussed.

3.1 Superscalar Instruction Issue

Benchmark | Limit
tomcatv 1.79
dnasa’7 1.92
fppp 1.65
doduc 2.78
matrix300 1.80
concat.c 1.81
concat.f 1.48
conv 1.52
corr 2.43
saxpy.eq 1.45
saxpy.uneq 2.84
G.M. 1.90

Table 6. Bound on superscalar instruction issue
assuming that the memory (or cache) supplies
a maximum of one word per cycle

The peak instruction issue of a superscalar processor
is limited to £%= instructions per cycle where BWj is the

bandwidth that the data memory can supply and fy, is
the fraction of all instructions that are loads and stores
[20]. The large percentage of loads and stores in the in-
struction stream points to the fact that if the peak band-
width supplied by the memory is limited to one, a future
superscalar processor is not capable of issuing more than
2 or 3 instructions. Table 6 illustrates the bound on in-
struction issue for each program assuming peak memory
bandwidth of one. One might argue that caches will cap-
ture the locality and reduce the bandwidth requirement
of the processor. Even assuming 100% hit ratio, caches
have to provide to CPU this large bandwidth. Sohi and
Franklin [20] introduced the notion of cache bandwidth.
We emphasize the significance of such a metric and point

out the fact that the dynamic instruction mix of modern
pipelined architectures suggest that cache bandwidth it-
self can become a bottleneck in the performance of future
high performance architectures. It is essential that future
processors use multiported caches [25] or implement cache
interleaving or other techniques to increase the bandwidth
of caches to more than one element per cycle.

3.2 The Access/Execute Balance

Callahan et al. [3] derived their balance metrics based
on the objective of overlapping accessing with floating
point operations. Decoupled access/execute (DAE) archi-
tectures [22] [26] [11] accomplish exactly this. It is true
that pixie and pizstats simulate execution of the program,
and give information about pipeline interlocks, but execu-
tion 1n a DAE paradigm with actual memory latencies and
cache configurations would provide a more realistic picture
of the program balance. Also, the balance metrics f and
Bmod section 2.1 do not consider branch instructions or
address arithmetic. In this subsection, we study the bal-
ance in a DAE architecture and illustrate the imbalance
taking into aspect the data cache, and address arithmetic
and branch instructions. We also present a multiple queue
decoupled architecture that reduces the imbalance.

We first simulate the execution of a DAE machine with
one access processor (AP) and one execute processor (EP)
as in [11] [12]. The access and execute unit are assumed
to have the instruction sets and operation latencies of the
MIPS R3000/3010 processors. There is a load queue and
store queue 1n the architecture, and they can be speci-
fied as sources and destinations (as appropriate) in the
instructions. Appropriate modifications in the instruc-
tion set for handling the queues is assumed. For array
accesses with addresses known at compile-time, the ac-
cess processor manages the loops and sends an end-of-data
token through the queues, after fetching the entire data
structure. The execute processor performs the computa-
tions until it receives the end-of-data token. Appendix
IIT shows a sample loop coded for the DAE architecture.
The number of instructions executed by the access pro-
cessor and execute processor for single precision data are
presented in Table 7.

Benchmark AP instr | EP instr | AP count/
count count EP count
convolution 5000 3975 1.26
correlation 11083 5926 1.87
saxpy.unequal 12253 2251 5.44
saxpy.equal 3502 2251 1.56
i1 2765 2501 1.11
strcpy 10012 6001 1.67

Table 7. AP and EP instruction counts and their ratio

Next, we calculate a ratio of the execution times of
the AP and the EP. We define AP stand-alone time as the
time taken by the AP to complete the access part of the
program assuming a perfect EP. Similarly, EP stand-alone
time is defined as the time taken by the EP to complete
its share of the code assuming a perfect AP and perfect
memory. We define AP/EP skew as the ratio of AP stand-
alone time to EP stand-alone time. Previous research [11]
[12] illustrates that data caches are useful in DAE archi-
tectures. The DAE architecture that we simulated uses a
1 kbyte data cache and the AP stand-alone time shown
does include the effect of the data cache. We actually
performed simulations without the cache also. In the pro-
grams that we executed on the DAE simulator, the data
cache was seen to improve the performance of only con-
volution, correlation and strcpy benchmarks. (The cache

is 8-way set associative and uses 8 byte blocks. The cache
size is kept small so that the entire data set does not fit
into the cache.) In Table 8 we present AP/EP skew for
memory cycle time ¢ equal to 5, 10, and 15 cycles. (A vlaue
greater than 1 indicates AP bottleneck and a value less
than 1 indicates EP bottleneck.) The values in parenthe-
sis shows the ratio without the cache. In the benchmark
column, .S represents single precision floating point data,
and .D indicates double precision floating point data.

fanl
I
fanl
I

Benchmark

conv.S
conv.D
corr.S
corr.D
saxpy.un.S
saxpy.un.D
saxpy.eq.S
saxpy.eq.D
mi.s

mi.D

ms3.s

ms.D
mi1.s
mii.p
strcpy

—_

~—

—_

~—

N0 I O W OR ot
TR O WO WO wmo o
e T T T T T]
o 00 I ~T B W D WO O 1O W OO i i
B O WO WO w O D
Il xsxreezelil
0 DO U O 00 O b 00 b = G0~
CHSdDWwNO NS E T ww o
e e e e e e e e
o N W = v e ol o e
DD TR O 0D 0D W by D
NS SDwNO NS R 0D
S22 22222y
B B 0 O O O O ~1 W 0 = — = %
SUARER IO 0D w100
e e e e e e
oW W o N N w o |
Mmoo a® o wo
B D R T D O O W W T © T
(Lo desLege2de2d

L W W R PO W WWH O
Bl w0 wo O o R o W = = RO | oy
ROH T O W H O UTOD Ul DO
BN O UTW W10 1~ Wwo

G.M.

@
=1
=
—
(&3]
A
©
©
=
-
o
=
A
o
=1
=
=
o
=
N

Table 8. AP/EP skew with (and without) data cache

The skew indicated in Table 8 is analogous to program
balance in section 2.1. Actually 8 (in section 2) gives
preliminary indications about program imbalance and the
skew presents more accurate information. The direction
of the skew in Table 8 indicates that immediate attention
is required in speeding up the AP and the memory relative
to the EP performance. It may be observed that this was
implied by the instruction mix and £ in section 2 also.

The skew presented in Table 8 is the combined effect
of instruction imbalance and insufficient memory band-
width. We isolate the memory bandwidth by computing
the memory access time for each program. The ratio of
time spent in memory access to EP stand-alone time be-
fore and after introducing the data cache is illustrated in
Table 9. The results indicate that bandwidth is a bottle-
neck in many programs even after the use of a data cache.
As mentioned in section 2.5, several compiler optimization
techniques are reducing the temporal locality in programs
and this contributes to loss of effectiveness of the data
cache in many programs.

Program imbalance as portrayed in section 2 and the
AP/EP imbalance in DAEs illustrated in this sub-section
point to the fact that DAE architectures should be de-
signed to handle an access process that is heavier than
the execute process. The simplest solution to this is to
incorporate more load/store units in the access proces-
sor. We propose a decoupled architecture with multiple
load/store units and multiple queues as in Fig. 3. The
system is comprised of an execute processor and an ac-
cess processor. The access processor is comprised of two
address generation and load units (AGLUs) and one ad-
dress generation and store unit (AGSU). Each AGLU and
AGSU has a control queue (CQ1, CQ2 and CQ3 in Fig. 3)
through which the EP can request AGLU/AGSU action.
The AGLUs and AGSU perform indexing and other ad-
dress calculation instructions and can issue memory ref-
erence instructions. Two register addresses, say 30 and
31 are allocated for the two load queues, and the store
queue will be denoted by the register address 31 because

load queues can only be read and store queue can only be
written from the EP side. The two-load-queue structure
will be very useful in programs that perform computa-
tions on two arrays simultaneously. The two queue struc-
ture can be utilized even in programs loading only one
data structure. Alternate elements can be loaded to al-
ternate queues, and the EP program loop can be unrolled
an odd number of times so that R31 and R30 are speci-
fied as sources in the alternate iterations. A multi-ported
data memory is essential for the successful operation of
decoupled systems with multiple load/store units.

Benchmark t=5 cycles t=15 cycles
without | with | without | with

avg of 3 1.63 0.27 4.88 0.8

avg of 8 1.81 1.33 5.43 3.67

(avg of 3 is the average of conv, corr, and strcpy)
(avg of 8 is the average of all 8 programs)

Table 9. Ratio of time spent in memory access to EP
stand alone time (with and without data cache)

To illustrate the operation of the multiple load and
store units, a program example is provided in Appendix
IV. The code segments for the AGLUs and the AGSU are
written in elementary operations in a MIPS style. The
AGLUs and the AGSU can be designed to include autoin-
crementing or update instructions or branch with decre-
ment instructions. The Wm architecture [26] has four
data fetch units and four data store units and bears some
similarities to our multiple queue decoupled architecture.
If we were to provide several load and store units, we
would have provided one store unit for every two load
units, because the frequency of store instructions is ap-
proximately half of that of load instructions.

AGLU - Address Generation and Load Unit
AGSU - Address Generation and Store Unit
LQ -Load Queue Instruction
SQ - Store Queue Memory
CQ - Control Queue ‘
CQU =
t—| .
ASLUL o —
La—1 Access Aot = Execute
Data > Processor e — | »| Processor
Memory
cQiE
- o
Figure 3: A decoupled architecture with multiple

load/store units and multiple queues

We simulated the multiple queue decoupled architec-
ture and studied the imbalance between access and ex-
ecute processes under that condition. The ratio of the
instruction counts in a decoupled architecture with one
load/store unit and the architecture with three load/store
units is shown in Table 10. There are 3 threads of op-
eration in the AP. By AP instruction count, the number
of instructions (or basic operations) in the longest thread

in the AP is referred to. Except in sazpy.unequal where
the compiler could not remove the address arithmetic in
each iteration, the access and computation workloads are
almost matched.

It may be beneficial to incorporate one load/store unit
for each data structure being accessed. In computations
of the form V = V + V*V_ where V denotes a vector,
efficient operation would need 3 load units and 1 store
unit, especially if an add-multiply pipeline (as in the IBM
RS/6000) exists in the EP. But it is yet to be seen how
frequently such computations arise, and how utilized the
third load unit would be.

Benchmark Single L/S unit | 3 L/S units
convolution 1.26 0.72
correlation 1.87 1.33
saxpy.unequal 5.44 2.77
saxpy.equal 1.56 1.11
strcpy 1.67 1.00
i1 1.11 0.71
G. M. 1.83 1.13

Table 10. Ratio of AP and EP instruction counts (with
single load/store unit and with 3 load/store units)

3.3 Impact of Wider Bus and Higher Memory
Bandwidth

The multiple queue decoupled architecture solves the im-
balance between access and execute processes, but it may
be very expensive to construct a memory with 3 ports and
3 buses. We thought that it is worthwhile to investigate
the effect of doubling the bus width on a uniprocessor. In
order to obtain preliminary indications on the balance of
a n-bit architecture with 2n-bit data bus, we decided to
assume an ISA similar to that of R3000/3010, but with
64-bit data paths to memory. The immediate effect of the
assumption would be that the number of floating point
loads get halved. We recomputed program balance un-
der the new assumption of double bus-width and double
memory (cache) bandwidth and the results are presented

in Table 11.a and Table 11.b.

benchmark | %Load + | %fl. pt) Bmod
%Store
tomcatv 38.8 44.7 0.87 0.69
dnasa7 31.5 29.1 1.09 0.67
fpppp 43.5 34.7 | 1.25 | 0.81
doduc 21.9 27.9 0.78 0.31
matrix300 38.3 25.5 1.51 1.34
G.M. 33.9 31.7 1.07 0.69

Table 11.a Balance in the SPEC floating point programs
on the MIPS assuming double bus-width and double

memory bandwidth

Benchmark | %Load + | %fl. pt) Bmod
%Store
concat.c 38.12 41.57 0.92 0.54
concat.f 50.94 38.79 1.31 1.03
conv 49.14 24.16 2.03 1.60
corr 25.78 26.28 0.98 | 0.97
saxpy.eq 52.79 34.68 1.52 1.22
saxpy.uneq 21.43 13.96 1.54 | 1.54
G.M. 37.50 28.13 1.33 1.08

Table 11.b Balance in the small benchmark programs
assuming double bus-width and double memory

bandwidth

The balance metric reduces to 1.33 and 1.07 for the
small programs and SPEC benchmarks ignoring pipeline
interlocks. Considering the interlocks as well, the respec-
tive numbers are 1.08 and 0.69. Thus we observe that
doubling bus and memory bandwidth is required to es-
tablish balance between accessing and computations in the
MIPS R3000/3010 system. It may be remembered that we
did not change our assumptions about the floating point
unit. Any improvements within the floating point unit
will aggravate the balance unless accompanied by similar
improvements on load/store issue, bus width and memory

bandwidth.

3.4 Further Comments

Number and nature of functional units in other
fine-grain parallel architectures:

Extensive research has been done on the mix of func-
tional units required for a fine-grain parallel processor [2]
[21] [9]. The significance of providing a close match be-
tween the number and nature of functional units in a sys-
tem and the dynamic instruction mix of the applications
running on the system was emphasized by Butler et al.
[2]. Quoting Butler et al., “Machine resources must re-
flect the instruction frequency if we are to achieve effi-
cient utilization of functional units. If integer op-
erations comprise nearly 38% of the instructions in the
integer benchmarks and the machine contains only one
integer unit, then it is unreasonable to expect a speed
up of much greater than two, simply because the integer
ALU will be saturated.” Along the same lines, we put our
argument that if two-thirds of all instructions are access
related and if only one access instruction is issued every
cycle, one would not obtain a speed up of much more
than 1.5. There will be endless combinations and per-
mutations of functional units that one could experiment
with. Program characteristics vary widely between appli-
cations and it is difficult and perhaps impossible to find
a ‘magic configuration’, ideal for all applications. Never-
theless, our studies emphasize the requirement to provide
sufficient number of load/store pipes and the need for a
large bandwidth from the main memory and caches.

Impact on Prefetching/Latency Hiding Tech-
niques:

In the recent past, as the speed disparity between pro-
cessors and memory has grown, there has been fervent
research on hardware and software cache prefetching and
other latency hiding techniques. The behavior of the in-
struction stream as presented in section 2 can have a se-
rious impact on many of those techniques.

Consider the simplest and time-tested mechanism of
caches. Multi-word caches capture spatial locality and re-
duce effective access time. But as larger block sizes to
capture more spatial locality are employed, there is the
risk that all elements fetched may not be used by the pro-
gram, and that results in further increasing the bandwidth
requirements of the program. This is particularly true in
the case of nonunit strides. We observed in section 2 that
bandwidth is a bottleneck in most supercomputing appli-
cations. Hence caches with large block sizes may consti-
tute a burden in such programs if all elements in the cache
block are not used. This would not have been the case if
extra bandwidth was available.

Now consider software cache prefetching [19] [6] [10]
[16]. In the simplest mechanism to insert advisory prefetch
mstructions, a prefetch is added for every load instruc-
tion. If loads constitute almost 40% of all instructions in
the instruction stream, indiscriminate software prefetch-
ing results in increasing the code size by 40%. The need to
issue so many extra instructions can nullify the benefits of

prefetching itself. This problem has been solved by previ-
ous researchers by generating prefetches only for potential
cache misses [19] [10] [16]. If the instruction stream con-
tained a fairly low percentage of loads, there would have
been no requirement for such optimizations. Another issue
is that indiscriminate (unoptimized) software prefetching
may increase the memory bandwidth requirement. If com-
puter systems had “lots and lots of extra bandwidth” [17],
this would not have been a problem, but in the light of
the scenario in section 2, it is a serious problem. In soft-
ware prefetching, if the address generated for prefetching
cannot be preserved until the actual load, duplicate ad-
dress generation may be required which can increase the
code size. Our studies show that the SPEC floating point
programs generate roughly 13% address computation in-
structions, which indicate the worst case overhead that
may arise due to duplicate address generation.

All anticipatory cache prefetching policies can result
in superfluous fetches and extra memory traffic. In the
case of control dependencies, incorrect branch predictions
or aggressive prefetching along both paths create super-
fluous fetches and extra memory traffic. Since memory
bandwidth is already a bottleneck, aggressive prefetching
can reduce performance rather than improve it.

The bottom line, as Mowry et al. [16] also pointed
out, is that latency can be hidden only if extra memory
bandwidth is available. Our studies on program balance
suggest that techniques such as blocking [13] that opti-
mize locality and reduce bandwidth requirements of the
program are more relevant than latency hiding techniques.

Caches capture locality and reduce memory band-
width requirements of programs. But as pointed out in
section 2.5, common subexpression elimination and avoid-
ing RAW (Read after Write) hazards by using registers
and many other common optimizations of code reduce
temporal locality in code, and that reduces the impact of
caches. As mentioned in section 3.2, out of the 8 traces we
used for simulations, only 3 benefitted from data caches.

4 Conclusions

In this paper, we studied the dynamic instruction stream
of the MIPS processor while executing the SPEC floating
point programs and several floating point kernels and ob-
served that these programs place heavier demands on the
memory system than on the floating point units in the
R3000/3010 system. On the average, every other instruc-
tion in the dynamic instruction stream of these programs
is a load or store instruction. Including address compu-
tation, access related instructions constitute roughly two-
thirds of all instructions executed by typical floating point
programs. The imbalance in the instruction stream has a
major impact on the design of future processor and mem-
ory systems. If two-thirds of all instructions are access-
related and if only one access instruction is issued every
cycle, one would not obtain a speed up of much more than
1.5. The computing power in many of today’s computers
exceeds their accessing power and computer designers and
architects should emphasize on balancing this mismatch.
We presented the design of a decoupled access/execute ar-
chitecture that can issue up to three access instructions
in a cycle. With the multiple load/store units that it has,
it is successful in balancing the access process with the
execute process.

The instruction stream statistics presented in the pa-
per point to a big demand from cache and memory in
terms of bandwidth. Aggressive instruction issue is be-
ing studied by many researchers. Unless supplemented
by equivalent memory systems, Amdahl’s law shows that
the performance of computer systems will be limited by
memory bandwidth. Single instruction stream parallelism
will not be much greater than two, if memory bandwidth
is limited to one. The Cray supercomputers always pro-

vided plenty of extra memory bandwidth [17]. As large
amounts of high performance computing is getting shifted
to smaller computers, their designers should be aware of
the demands made by supercomputing applications on the
memory system.

References
[1] Becker J.C. and Park A., “An Analysis of the In-

formation Content of Address and Data Reference
Streams”, Proceedings of the ACM Sigmetrics Con-
ference on Measurement and Modeling of Computer
Systems, May 1993, pp. 262-163.

[2] Butler M., Yeh T.Y., Patt Y., Alsup M., Scales H.,
and Shebanow M., “Single Instruction Stream Par-
allelism is Greater Than Two”, Proc. of the 18th
Annual International Symposium on Computer Ar-
chitecture, Toronto, Canada, May 1991, pp.276-286

[3] Callahan D., Cocke J., and Kennedy K., “Estimat-
ing Interlock and Improving Balance for Pipelined
Architectures”, Proc. Intl. Conf. on Parallel Process-
ing, 1987, Vol L., pp. 295-304.

[4] Cmelik Robert F., Kong Shing I.; Ditzel David R.,
and Kelly Edmund J., “An Analysis of MIPS and
SPARC Instruction Set Utilization on the SPEC
Benchmarks”, Proc. 4th Intl. Conf. on Architectural
Support for Programming Languages and Operating
Systems, 1991, pp.290-302.

[5] Z. Cvetanovic and D. Bhandarkar, “Characteriza-
tion of Alpha AXP Performance using TP and SPEC
Workloads”, Proceedings of the 22nd International
Symposium on Computer Architecture, 1994, pp. 60-
70.

[6] Gornish E., Granston E., and Veidenbaum A., “Com-
piler directed Data Prefetching in Multiprocessors
with Memory Hierarchies”, 1990 International Con-
ference on Supercomputing, pp. 354-368.

[7] Hall Brian C. and O’Brien Kevin, “Performance
Comparison of Architectural Features of the IBM
RISC System/6000”, Proc. 4th Intl. Conf. on Ar-
chitectural Support for Programming Languages and
Operating Systems, 1991, pp. 303-309.

[8] Hammerstrom D.W. and Davidson E.S., “Informa-
tion content of CPU memory referencing behavior”,

4th Annual Symposium on Computer Architecture,
March 1977, pp 184-192.

[9] Jouppi N.P. and Wall D., “Available Instruction
Level Parallelism for Superscalar and Superpipelined
machines”, 3rd Intl. Conf. on Architectural Support
for Programming Languages and Operating Systems,
April 1989, pp.272- -282.

[10] Klaiber A.C., and Levy H.M., “An architecture
for software-controlled data prefetching”, 18th Intl.
Symp. on Computer Architecture, May 1991, pp. 43—
53.

[11] Kurian L., Hulina P.T., and Coraor L.D.; “Mem-
ory Latency Effects in Decoupled Architectures with
Noninterleaved Memory”, Proc. 19th Intl. Sympo-
sium on Computer Architecture, Australia, May
1992, pp. 236-245.

[12] Kurian L., Hulina P.T., and Coraor L.D., “Memory
Latency Effects in Decoupled Architectures”, IEEE

[13]

[14]

[15]

[16]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Transactions on Computers, Vol. 43, No. 10, October
1994, pp. 1129 - 1139.

M.S. Lam, E.E. Rothberg and M. E. Wolf, “The
Cache Performance and Optimizations of Blocked Al-
gorithms”, Proceedings of the Fourth International
Conference on Architectural Support for Program-
ming Languages and Operating Systems, 1991, pp.
63-74.

Melvin S. and Patt Y., “Exploiting Fine—Grained
Parallelism Through a Combination of Hardware and
Software Techniques”, Proc. of the 18th Annual In-
ternational Symposium on Computer Architecture,
Toronto, Canada, May 1991, pp.287-296

S. Mirapuri, M. Woodacre, N. Vasseghi, “The Mips
R4000 Processor”, IEEE Micro, April 1992, pp. 10-
22.

Mowry T.C.; Lam M.S. and Anoop Gupta, “Design
and Evaluation of a Compiler Algorithm for Prefetch-
ing”, Proceedings of the International Conference on
Architectural Support for Programming Languages
and Operating Systems”, October 1992, pp. 62 — 73.

National Science Foundation Memory Workshop Re-
port, April 1993.

Pleszkun A.R., Sohi G.S, Kahalleh B.Z., and David-
son E.S., “Features of the Structured Memory Access
%SMA) Architecture”, Third IEEE Computer Society
nternational Conference, San Francisco, CA, March
1986.

Porterfield A. K., “Software Methods for Improve-
ment of Cache Performance on Supercomputer Ap-
plications”, Ph. D. dissertation, RICE COMP TR
89-93, May 1989.

G. S. Sohi and M. Franklin, “High Bandwidth Data
Memory Systems for Superscalar Processors”, Pro-
ceedings of the Fourth International Conference on
Architectural Support for Programming Languages
and Operating Systems, April 1991, pp. 53-62.

Smith M.D, Johnson M. and Horowitz M.A, “ Lim-
its on Multiple Instruction Issue”, Proceedings of
the Third International Conference on Architectural
Support for Programming Languages and Operating
Systems, 1989, pp. 290-302.

Smith J.E., Weiss S. and Pang N.Y, “A Simulation
Study of Decoupled Architecture Computers”, IEEE
Transactions on Computers, Vol.C-35, No.8, August
1986.

Smith W.M, Abraham S.G. and Davidson E.S, “A

performance comparison of the IBM RS/6000 and the
Astronautics ZS-17, IEEE Computer, January 1991.

Stephens C, Cogswell B, Heinlein J, Palmer G and
Shen J, “Instruction Level Profiling and Evalua-
tion of the IBM RS/6000”, Proceedings of the In-
ternational Symposium on Computer Architecture,
Toronto, Canada, May 1991, pp. 180-189.

Wolfe A and Boleyn R, “T'wo-ported Cache Alterna-
tives for Superscalar Processors”, Proceedings of the
26th Annual International Symposium on Microar-
chitecture, December, 1993, pp. 41-48.

[26] Wulf W.A., “Evaluation of the Wm Architecture”,
Proc. 19th Intl. Symp. on Computer Architecture,

Australia, May 1992,

pp.382-390

Appendix I

This appendix contains an example of how our profil-
ing program would tag the instructions to access, execute,
address arithmetic, overhead memory reference or branch
related types. This is the inner loop for saxpy with equal
increments, when compiled with the -O1 option. The less
optimized version is chosen for illustration so that the loop
contains a few overhead memory references. Most of the
overhead memory accesses are eliminated by compiler in

the -O4 option.

(a) Source - saxpy with equal increments

do 10 1=1,n

y(i)=y(i)+a*x(i);

10 continue

(b) tagged code

$32:1w $24,8004($sp) ;

mul $25,$24,4 :
addu $8,%$sp,8008 :
addu $9,$25,$8 :
lw $10,-4008(%$9)
mul $11,$15,$10
lw $12,-8008($9)
addu $13,$12,$11
sw $13,-8008($9)
lw $14,8004($sp)
addu $24,$14,1

sw $24,8004($sp)

blt $24,1000,$32

load current i to R24
Overhead memory access
1 times data size to R25 ;
Address arithmetic

;(OMA)
ADDR)
Array start address ;(ADDR)
Address arithmetic

Base address in R9 ;
Address arithmetic
operand x(i) to R10
Data access

a*x(i) — R15 contains a
Fzxecute

(
(
(
(ADDR)
(ACC)
(EXE)
operand y to R12 J(ACC)
(EXE)
(ACC)
(
(
(
(

(ACC
(EXE

Data access

y(i) + a*x(i) ;
FExecute

save new y ;
Data access

load current index ;(OMA)
Overhead memory Access

:(ADDR)

EXE
ACC

increment index
Address arithmetic
store new index back ;(OMA)
Overhead memory Access

inner loop ends ;(BR)

Branch

