=

Improving Java Performance Using Hardware Translation

Ramesh Radhakrishnan, Ravi Bhargava and Lizy K. John
Laboratory for Computer Architecture
Dept. of Electrical and Computer Engineering
The University of Texas at Austin
Austin, TX 78712
{radhakri, ravib, ljohn} @ece.utezas. edu

ABSTRACT

State of the art Java Virtual Machines with Just-In-Time
(JIT) compilers make use of advanced compiler techniques,
run-time profiling and adaptive compilation to improve per-
formance. How ever, these tec hniques for alleviating perfor-
mance bottlenecks are more effective in long running work-
loads, such as server applications. Short running Java pro-
grams, or client workloads, spend a large fraction of their ex-
ecution time in compilation instead of useful execution when
run using JIT compilers. In short running Java programs,
the benefits of runtime translation do not compensate for
the overhead.

We propose using hardware support to perform efficient Java
translation coupled with a ligh t-w eigh trun time environ-
ment. The additional hardware performs the translation of
Java bytecodes to native code, thus eliminating much of the
overhead of softw aretranslation. A translate d code buffer
is used to hold the translated code, enabling reuse at the
bytecode level. The proposed hardware can be used in any
general purpose processor without degrading performance of
native code. The proposed technique is extremely effective
for short running client workloads. A performance improve-

ment of 2.8 times to 7.7 times over a soft w are in terpreter is

achiev ed. When compared to a JIT compiler all SPECjvm98
benchmarks except one show a performance improvement
ranging from 2.7 times to 5.0 times. A performance degra-
dation (0.58 times) is observed for one benchmark which is
long running. Allowing hardware translation to perform op-
timizations similar to JIT compilers and Java processors will
execute long running programs more efficiently and provide
speedups similar to that of client workloads.

1. INTRODUCTION

Java is widely used to develop soft w are in differen environ-
ments, ranging from embedded systems to high-end server
applications. The popularity of Java is fueled by features
like its platform independence, object-oriented nature, and

Permission to make digital or hard copies of part or al of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citdion on thefirst page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or afee.

ICS’ 01 Sorrento, Italy

© ACM 2001 1-58113-410-x/01/06...$5.00

427

security. Platform independence is attained by compiling
Java to an intermediate “bytecode” format, which is the in-
struction set architecture (ISA) of the Java Virtual Machine
(JVM) [1]. Java bytecodes, which are stac k-based instruc-
tions, can be executed on any platform which has an im-
plementation of the JVM. The JVM dynamically interprets
each bytecode into platform-specific machine instructions to
execute the Java program.

Interpretation and other forms of software emulation of byte-
codes are very slow. The interpreter is typically slow because
fetch and decode functionalities of normal program execu-
tion (reading and updating program counters, decoding the
instruction, transferring control to activities that correspond
to the opcode of the instruction just decoded, etc) are per-
formed in softw are. While executing natively compiled code,
the microprocessor hardware performs the fetch and decode
actions. Therefore natively compiled code executes much
faster compared to softw are translated code.

Instead of dynamically interpreting each bytecode at run-
time, optimized JVMs use a Just In Time (JIT) compiler
(2, 3, 4] to compile Java methods (i.e. functions) to na-
tive code. JIT compilers compile bytecodes into native code
at run time, thereb y adding compilation time to the to-
tal execution time. Initial JIT compilers w ere quick and
dirty, generating unoptimized code for any method which
w as in vok edCurrent Java run time ewironments are more
sophisticated and mix interpretation and compilation us-
ing profiling information [5, 6]. This allows the compiler to
spend more time on optimizing frequently executed meth-
ods, which low ers the execution time spen in the compiled
methods. This method of execution which mix interpreta-
tion and JIT compilation is called adaptive or mixed-mode
compilation. An example of a compiler that uses adaptive
compilation is the Jalapeno [7] dynamic optimizing compiler
whic h uses a compile-only approab to program execution.
The Jalapeno compiler compiles the code with a low level
of optimization at the beginning. As hot regions of the pro-
gram are recognized, higher levels of optimization are used.

1.1 Limitationsof JIT compilers

JIT and adaptive compilers do not improve performance for
all w orkloads. Programs which touch a lot of code and do
not spend too m uchtime in loops can get better perfor-
mance when executed using an interpreter. We used tw o
micro-benchmarks to compare the execution times of differ-
ent execution modes. Table 1 shows the execution cycles,

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

instructions executed and IPC seen when executed using an
interpreter, JIT compiler and an adaptive compiler, HotSpot
[6]. The interpreter executes faster than a JIT compiler or
the HotSpot compiler for both the micro-benchmarks. The
overhead of compiling a method occurs at run-time and is
a more expensive option than interpretation. Server appli-
cations which are typically long running exhibit significant
code reuse are ideal workloads for JIT compilers.

A breakdown of execution time shows that compilation con-
stitutes a major fraction of total execution time in certain
Java applications. Figure 1 shows the time spent translating
and executing for five benchmarks from the SPECjvin98 [§]
benchmark suite and the hello world micro-benchmark. It is
observed that short running programs such as db and Hello
World spend more time in translation than program execu-
tion when using JIT compilers. Compress is a long running
benchmark displaying characteristics similar to server work-
loads, and benefits the most from JIT execution, spending
only a small fraction of the total execution time in transla-

tion.
100
o 904 m} Translatlon
£
‘E 80 ~ | Execution
S 704
3 60
<50
[+
- 404
(7]
N 304
g 20
S 10
c
0 4
javac jess jack compress hello
world

Figure 1: Breakdown of execution time

Another noted problem with JIT compilers is an increase in
data cache misses. Data cache miss rates during execution
with a JIT compiler are dominated by compulsory write
misses, which are caused by installation of the translated
code [9]. Another observed phenomenon is the depositing of
translated code into the data cache and subsequent fetch-
ing of the same code from the instruction cache, resulting
in avoidable data transfer and double-caching [9]. Due to
all these issues, JIT compilers are fruitful only in certain
environments.

1.2 Bridgingthe architectural gap

Interpreted execution of Java workloads using a native inter-
preter requires 35 SPARC instructions on average to emulate
each bytecode [10]. The average number of SPARC instruc-
tions required to emulate a bytecode is approximately 20
when using a JIT compiler [11]. These instruction counts
include the interpretive or translative overhead of the in-
terpreter and JIT. The actual instructions required for the
program to execute is only a small subset of the operations
that happen during Java program execution. Software em-
ulation is easy to implement for new platforms but cannot
offer a solution for fast execution of Java bytecodes.

Using hardware support to assist the execution of bytecodes
eliminates the requirement of a software layer to emulate

428

the bytecodes. The execution of Java programs can be im-
proved by a hardware accelerator or coprocessor that works
in conjunction with a standard microprocessor. Essentially
the effort is to bridge the semantic gap that exists between
the bytecodes and the native instructions. The bytecode
ISA is stack-based and uses few registers. General purpose
RISC and CISC machines are register-based, and the archi-
tectural gap' between the JVM and these general purpose
processors is large. If dedicated Java hardware, such as the
picoJava processor, is used as a coprocessor, Java execu-
tion can be relegated to this Java processor and execution
of other languages can be performed on the main processor.

By using a dedicated Java processor, the emulating microar-
chitecture is brought up to the level of the ISA being em-
ulated, bridging the architectural gap. However, our stud-
ies show that this is not the best way to bridge this gap,
especially for high performance environments. In modern
high performance processors, much of the performance is
obtained through instruction level parallelism (ILP). The
stack nature of the emulating architecture can significantly
limit the available parallelism. Figure 2 compares the avail-
able parallelism of Java programs to SPECint95 and C++
applications for a Machine Level Parallelism (MLP) of 8, 16,
32, 64, 128 and infinite.

250
SPECInt95
C++
200+ SPECjvm98 (Intr) e
SPECjvm98 (JIT)
o 150 1
=
o
Qo
°
©
kS
100+ A
50 1
0

16 32 64

MLP

128 Infinity

Figure 2: Available ILP in Java workloads

For this ILP study, only true dependencies are considered
while scheduling instructions. Perfect branch prediction and

!The architectural gap refers to the gap that exists between
the emulated architecture (JVM) and the emulating archi-
tecture (the general purpose processor).

Execution hello world AddClass
Mode || Cycles Inst | IPC Cycles Inst | IPC
JDK 1.1.6 Interpreter 7.29M | 21.76 M | 2.98 7.24M | 21.64M | 2.98
JDK 1.1.6 JIT 9.67M | 27.85M | 2.87 8.72M | 25.50M | 2.92
JDK 1.2 Interpreter || 19.58M | 46.44M | 2.37 || 19.69M | 46.95M | 2.38
JDK 1.2 JIT || 22.64M | 55.80M | 2.46 | 22.56M | 55.79M | 2.47
JDK 1.2.2 HotSpot || 38.19M | 88.23M | 2.31 || 37.64M | 88.45M | 2.35

Table 1: Comparison of different software translation modes

memory disambiguation are assumed. The latency of all op-
erations is set to one cycle. The harmonic mean of the avail-
able parallelism for the various benchmarks are presented.
The extremely low ILP of the interpreted Java programs
can be attributed to the stack-based implementation of the
JVM which imposes a strict ordering on the execution of the
bytecodes.

An alternative to a coprocessor is to provide support in
the microprocessor to decode the bytecodes to native code.
This is similar to the approach taken in recent IA32 proces-
sors [12] where X86 instructions are decoded dynamically in
hardware to simpler instructions. Original X86 instructions
are complex and variable-length taking multiple cycles to
execute. To alleviate this problem, the complex X86 instruc-
tions are decoded or translated into one or more fixed-length
RISC instructions called micro-ops. The micro-ops are then
executed in an aggressive RISC-style core. An X86 instruc-
tion that translates to four or fewer micro-ops is decoded in
hardware. If an X86 instruction is more than seven bytes
or translates to more than four micro-ops it is sent to the
micro instruction sequencer (MIS). The MIS is a microcode
ROM that contains the series of micro-ops associated with
each complex X86 instruction. Thus the RISC-style core is
the emulating architecture and the original x86 ISA is the
emulated ISA.

1.3 Overview of the paper

We propose an approach similar to the Pentium Pro for
translating Java bytecodes to the native instruction set of
the processor by using hardware decoding. A hardware
translator for the bytecode incurs a lower overhead than
software translation and thereby improves Java execution.
The proposed architecture also stores the recently executed
bytecodes to capture bytecode reuse, whereas a pure soft-
ware interpreter does not reuse previous translations. Sec-
tion 2 describes the implementation of the proposed archi-
tecture which uses a hardware translator. The experimental
methodology is explained in Section 3. The performance re-
sults and analysis are presented in Section 4. Simulation
studies based on SPECjvm98 benchmarks show that the
proposed architecture improves performance by 2.8 to 7.7
times relative to interpreters and 0.58 to 5.08 times relative
to JIT compilers. Benefits from the proposed scheme come
from many sources (i) performing bytecode to native code
conversion in hardware as opposed to software, (ii) transla-
tion of bytecodes in a pipelined fashion concurrently with
the execution of the native code, and (iii) capturing byte-
code reuse using the translated code buffer. Related work is
presented in Section 5 and concluding remarks are offered in
Section 6. The main contributions of our paper include: (i)

429

proposal and implementation details of hardware translation
for Java bytecodes, (ii) comparison of hardware translation
with state of the art JITs and interpreters, and (iii) detailed
performance evaluation illustrating sources of improvement.

2. IMPLEMENTATION OF THE

HARDWARE TRANSLATOR

The execution of a bytecode requires the execution of a short
sequence of native machine instructions. Software interpre-
tation uses an execution mechanism which consists of re-
peatedly executing the following steps:

e step 1. Locating the next bytecode to be executed,
fetching the bytecode and decoding it. This involves:

— reading and updating a program counter for the
bytecodes

— reading the contents of memory addressed by the
bytecode PC

— decoding the bytecode to get opcode, operands
etc

— transferring control to a routine which corresponds
to the opcode just decoded

o step 2. Executing the semantics that correspond to
the decoded bytecode. This involves executing a short
sequence of machine instructions.

e step 3. Transferring control back to step 1.

The JIT compiler also uses a similar mechanism, but when
it comes across a method call it transfers control to the
compiler. The compiler checks if a translated routine exists
for the method and if it does not, proceeds to compile the
method. In a sense, the JIT compiler creates a semantic
routine for each method invoked in the Java program at
runtime, whereas the interpreter uses a semantic routine for
individual bytecodes.

Step 2 actions are called ezecutive actions and form the ez-
ecution phase of the software translation. Steps 1 and 3
are responsible for fetching and decode of bytecodes and
perform the mapping actions. In natively compiled code
the mapping actions are performed in hardware, which is
significantly faster. A significant slowdown is observed for
software translated code, since the mapping actions are per-
formed in software. Using semantics different from native
code precludes the use of existing hardware in a general
purpose processor to perform the mapping actions.

Our proposal is to use additional hardware in a general pur-
pose processor to perform the mapping actions involved in
execution of Java bytecodes. The additional hardware will
have functionality similar to a software interpreter. We use
the term Hard-Int (Hardware Interpreter) in the rest of the
paper to denote a general purpose architecture that uses the
proposed hardware. The Hard-Int architecture performs the
mapping from bytecodes to native code using hardware, in-
stead of software. The translated instructions are fed to the
processor core which executes them in the normal fashion.
A high-level block diagram of the Hard-Int system is shown
in Figure 3. In addition to using a hardware translator,
a translated code buffer is added to facilitate reuse of the
translated bytecodes.

5 Instruction
§ Cache
g
g instruction
% buffer l " trandlator
? trandated Load Store Unit
% code
b= buffer
Data Cache

Figure 3: The Hardware Interpreter (Hard-Int) ar-
chitecture. Proposed additions are shaded in grey.

Figure 4 illustrates the proposed Hard-Int units. The hard-
ware translation unit fetches the bytecodes from the instruc-
tion cache and predecodes them before performing the trans-
lation using the microcode ROM, which contains the trans-
lated code for that bytecode. Complex bytecodes (which
form less than 5% of the dynamic instructions) do not con-
tain entries in the ROM. A dispatch table contains the start-
ing address of corresponding interpreter routine for these
complex bytecodes. Software translation is used to execute
these less frequently used bytecodes. The bytecode PC is
stored in a register (B-PC) and is read when fetching the
next bytecode to be executed. After a bytecode is decoded
the corresponding native instructions are sent to the decoder
from the ROM and are also stored in the translated code
buffer. During a fetch, the translated code buffer is checked
in parallel with the instruction cache. In the event of a
translated code buffer hit, the native instructions are fed to
the decoder from the translated code buffer. By providing
the instructions from the translated code buffer, an instruc-
tion cache access and the hardware mapping (using the mi-
crocoded ROM) is bypassed. A translated code buffer will
enable further optimization of bytecode sequences, similar
to the peephole optimizations performed by a JIT compiler.

The proposed architecture is very similar to an instruction
path coprocessor [13]. Typically coprocessors have been
used in general purpose processors to speedup specific tasks.
Coprocessors have been used for performing floating point
calculations, graphics and memory management. These co-

430

Hardware Trandator Unit

bytecode ROM

- bl fetchand |-
5 by |~ decode
5 b3 unit
= > decode
.8 lomplex bytecod
B » ~ L]
Tl
=
~ |interpretet I—j A

routine i

Al

Y

trandated code
buffer

Figure 4: Translating bytecodes in the Hard-Int ar-
chitecture

processors exist in the data path of the processor and do
not help in fetching or decoding instructions. Coprocessors
which exist on the instruction path of the processor, ob-
tain instructions from memory, and execute them are called
instruction path coprocessors [13]. The instruction path co-
processor was introduced as a way to provide hardware sup-
port to speed up interpretive applications by executing the
interpreter mapping concurrently with the CPU using a co-
processor. A programmable instruction path coprocessor is
used to perform dynamic transformations to the object code
in [14].

The proposed architecture may alternatively be viewed as a
translate coprocessor. Along the style of decoupled access-
execute architectures [15], it can constitute a decoupled
translate-execute architecture, with the translate processor
performing the conversion from bytecode to native sequence.
The execute processor is responsible for only the executive
actions pertaining to the program, whereas the translative
or mapping actions corresponding to the program are han-
dled by the translate processor.

Examples of bytecode translation

To illustrate the process, we provide a few simple exam-
ples of the translation of bytecodes to native code (with
SPARC as the native ISA). We will translate the following
bytecodes: (i) swap which swaps the top two words on top of
the operand stack, (ii) dup which duplicates the top word on
the operand stack and pushes it into the operand stack and
(iii) Istore which stores the word on the top of the operand
stack, of type long into the local variable area. The offset
into the local variable is obtained from an unsigned byte
following the Istore opcode.

The mapped instructions that are stored in the microcoded
ROM are shown in SPARC assembly, and variable names
are used in place of explicit register numbers. Variables used
here are: (i) SP - pointer to the topmost entry of the operand
stack (ii) TOSA and TOSB - registers to hold temporary
computation values, (iii) NextByte - parameter for current
bytecode (obtained by doing a fetch ahead of the instruction
stream) and (iv) Varbase - pointer to array of local variable.

BYTECODE SPARC ops comments
swap 1d [SP], TOSB ;load TOS entry to register
1d [SP-4], TOSA ;load TOS-1 entry to register
st TOSB, [SP-4] ;swap entries in the stack
st TOSA, [SP]
dup 1d [SP], TOSA ;load TOS into register
st TOSA, [SP+4] ;store register value to TOS+1
inc 4, SP ;increment stack top pointer
Istore 1d [SP-4], TOSA ;load TOS-1 entry to register

sll NextByte, 2, T2

dec 4, SP

1d [SP+4], TOSB

st TOSA, [Varbase+T12]
add Varbase, 4, T1

st TOSB, [T1+T2]

;get offset value from NextByte, store in register
; decrement stack pointer
;load TOS into register

;store

1st register value to local variable area

;point to next location
; store 2nd register value to local variable area

Table 2: Examples of translation routines used for swap, dup and Istore

A similar mapping scheme is used for most of the bytecodes
and the SPARC instructions are stored in the microcoded
ROM. The translated code contains stack references and
accesses to temporary registers. To avoid register usage in-
terfere with the registers used in the JVM, we use the same
register mapping model used in the JDK 1.2 interpreter (im-
plemented in SPARC assembly language) to minimize regis-
ter usage interference between the JVM and the translated
code. All accesses to the Java stack are treated as memory
references, unless they have been optimized and stored in
temporary registers previously.

3. EXPERIMENTAL EVALUATION

The performance of the proposed model is evaluated using
the SPECjvm98 benchmarks [8]. A description of the bench-
marks is given in Table 3, along with the number of methods
compiled and invoked at runtime. The benchmarks are run
with the sI dataset, since it generates workloads with con-
trasting characteristics (both server-like and client-like). A
characteristic of a client application is execution time spread
somewhat evenly across all the methods. The method in-
formation provided in Table 3 shows that benchmarks like
db, jess and javac show characteristics of client applications.
In benchmarks like mirt and mpegaudio, the majority of the
execution time is concentrated in a few methods. This is
typical of server workloads which attain good performance
using JIT compilers.

The performance of the Hard-Int architecture is evaluated
by comparing it to different JVMs running on a 4-way su-
perscalar processor machine as well as an aggressive 16-way
superscalar processor machine. A detailed, cycle-accurate
microprocessor simulator using Shade [16] as the functional
execution engine is used to compare the performance of the
Hard-Int architecture against the Sun JDK 1.1.6 and Sun
JDK 1.2 JVMs (which are run using an interpreter and JIT
compiler). The trace to the simulator includes class load-
ing, verification, garbage collection, and synchronization, in

431

addition to the instructions executed for translation of the
bytecodes. Therefore all aspects of the Java execution are
captured in the data that is presented in Section 4. Table 4
shows the configuration of the 4-way superscalar and 16-way
superscalar machines used in this study.

The runtime environment for JDK 1.2 is more optimized
compared to JDK 1.1.6 and uses more efficient synchroniza-
tion and garbage collection. The JIT compiler used in JDK
1.2 is more mature compared to the JDK 1.1.6 JIT, perform-
ing more optimizations and selective compilation. Recently
the Java HotSpot Client Virtual Machine was introduced as
a replacement for the classic virtual machine in the previ-
ous versions of the Java 2 SDK to offer improved runtime
performance for client applications and applets. The Java
HotSpot Client VM has been specially tuned to reduce ap-
plication start-up time and the memory footprint, making it
particularly well suited for client environments. However, at
the time of this experiment the Client VM was not available
and hence we do not have any studies comparing our hard-
ware approach to the client VM. It may be observed at the
SPEC web site that for the SPECjvm98 benchmarks, the
HotSpot Client VM outperforms the Server VM by approxi-
mately 8% for the first run, and the Server VM outperforms
the Client VM by 48% in the subsequent runs. Since we
consider only first runs in our simulations, i.e we include
the start up time and overhead of initializing the VM, the
HotSpot Client VM would perform better than the Server
VM in our simulation environment. Therefore we speculate
that speedups observed using the hardware approach and
Client VM will be 20-50% lower than what we present for
the JDK 1.2 JVM.

To model Hard-Int architecture, the simulator is modified
to incorporate the hardware translator and a table lookup
scheme to decode the bytecodes. A mapping from bytecode
to SPARC native instructions as described in the previous
section is used to emulate the bytecodes. The mappings are
stored in a microcoded ROM and a latency of 3 cycles is at-

no. of methods bytecodes

benchmark description compiled invoked executed
compress | A popular LZW compression program 577 | 17,330,744 | 954,990,234
db | Data management benchmarking software written by IBM 642 65,379 2,035,798

javac | The JDK Java compiler from Sun Microsystems 1,384 213,243 5,958,654

jess | Java version of NASA’s CLIPS rule-based expert systems 1,222 414,349 8,126,332
mpegaudio | The core algorithm that decodes an MPEG-3 audio stream 843 954,605 115748387
mtrt | A dual-threaded program that ray traces an image file 781 1,906,112 50683565

jack | A parser-generator from Sun Microsystems 1,230 2,318,110 | 175,740,325

Table 3: Description of the method frequency in the SPECjvm98 benchmarks

tributed to decode the bytecode and fetch the corresponding
mapping from the ROM. A 64-entry, 4-way translated code
buffer with an access time of two cycles is used to cache
the SPARC instructions associated with recently decoded
bytecodes. Each line of the translated code buffer can hold
up to 16 SPARC instructions associated with one or more
bytecodes. If a bytecode maps to more than 16 SPARC in-
structions, the translated code buffer is accessed in the next
cycle to retrieve the remaining instructions. In the event of
a translated code buffer miss, the bytecodes are fetched from
the instruction cache and decoded before obtaining the cor-
responding entries from microcoded ROM. This suffers the
latency of an instruction cache access in addition to three
cycles to access the microcoded ROM. The rest of the config-
uration of the Hard-Int architecture remains the same as in
Table 4. Our simulator does not implement the whole JVM
specification, just the translation of the bytecodes. To al-
low fair comparison we calculate the cycles spent to perform
other tasks in the form of system calls and Java Network In-
terface for each benchmark (during interpreted execution),
and add that as part of the execution time for the Hard-Int
model.

4. PERFORMANCE RESULTS

The performance of the proposed model is compared to both
the interpreter and JIT execution modes using JDK 1.1.6
and JDK 1.2 JVM runtime environments for the SPECjvm98
benchmarks (except for compress and jack which did not
run to completion due to problems in the simulation envi-
ronment).

4.1 Execution speedup

Figure 5 shows the number of execution cycles needed to run
the SPECjvm98 benchmarks on a 4-way processor machine
for the two interpreters, the two JIT compilers and the Hard-
Int architecture. The Hard-Int architecture performs bet-
ter than the interpreter for all the benchmarks, resulting in
speedups of 2.81 for db to 7.7 for jess. The translation over-
head for a bytecode in the Hard-Int architecture is smaller
than the overhead incurred in interpreters. The interpreter
must fetch each bytecode from the data cache, and perform
certain bookkeeping tasks (like incrementing the PC and
stack pointers) before executing each bytecode. By lowering
the translation overhead for executing each bytecode, the
Hard-Int architecture performs better than the interpreter
for all the benchmarks.

On comparing the performance of the Hard-Int architecture
to that of the JIT compiler, Hard-Int provides speedup rang-
ing from 2.68 for mtrt to 5.1 for jess, except in the case of

432

mpeg. For the mpeg benchmark, the JIT compiler has a
speedup of 1.72 over the Hard-Int architecture. The JIT
compiler performs better for this benchmark since most of
the execution time is spent in a few methods which were
compiled by the JIT compiler during the initial phases. The
JIT compiler obtains a speedup of 7.3 over the interpreter
for mpeg illustrating the exploitation of method reuse. The
high speedup obtained by Hard-Int for db, jess and javac
shows that the Hard-Int model performs consistently better
for client workloads, where the JIT results in little or no
improvement over an interpreter. For certain long running
workloads (like mpeg) the Hard-Int model performs better
than the interpreter. However, there is performance degra-
dation in Hard-Int when compared to a JIT compiler. The
performance of the Hard-Int architecture can be improved
further by lowering the overhead associated with the fetch
and decode of bytecodes. A hardwired decoder for the sim-
pler and more frequently executed bytecodes will reduce the
decode overhead to one cycle. Using a bigger translated
code buffer and allowing for optimizations on the stored
bytecodes will result in generation of more optimized se-
quences of bytecodes, similar to the code generated by JIT
compilers.

Figure 6 shows the number of cycles executed for the bench-
marks when run on a 16-way machine. The Hard-Int ar-
chitecture outperforms both interpreters in all cases, with
speedups in the 2.86 to 7.57 range. There is improvement
over JITs in all benchmarks except mpeg. The average
speedup (geometric mean) over the five benchmarks is 2.26
(over JDK 1.2 JIT), 2.07 (over JDK 1.1.6 JIT), 5.07 (over
JDK 1.2 interpreter) and 3.95 (over JDK 1.1.6 interpreter).
The current implementation of the hardware translator con-
verts one or more bytecodes at a time, and stores the trans-
lated instructions in the translated code buffer. If we store
traces of bytecodes, similar to a trace cache, we can improve
the ILP and increase performance when going to wider-issue
machines. Another option to improve performance is to
store the translated code for methods together, and fetch
them on a method call which will increase the ILP and help
the Hard-Int architecture to be effective in wide issue ma-
chines.

4.2 Cache performance

The cache performance of the SPECjvm98 benchmarks for
the various execution modes is shown in Table 5. When
using a hardware translator the bytecodes are stored and
fetched from the instruction cache and the translated code
is written to the translated code buffer. We see better in-
struction and data cache performance using this approach.

DATA MEMORY

- L1 Data Cache:
- L2 Unified cache:
- Non-blocking

- D-TLB

- Store buffer:

- Main memory:

Configuration-1
4-way, 64KB, 1-cycle access
4-way, 1 MB, 47 cycles
2 MSHRs and 1 port
128-entry, 1-cycle hit, 30-cycle miss
32-entry w/load forwarding
Infinite, +22 cycles

Configuration-2
4-way, 64KB, 1-cycle access
4-way, 1 MB, +7 cycles
8 MSHRs and 4 port
128-entry, 1-cycle hit, 30-cycle miss
128-entry w/load forwarding
Infinite, +22 cycles

FETCH ENGINE

- L1 Instruction Cache:
- Branch Predictor:

- Indirect Branch target buffer:

Configuration-1
4-way, 64KB, 1-cycle hit
16k gshare predictor
8-cycle misprediction penalty
512 entries

Configuration-2
4-way, 64KB, T-cycle hit
16k gshare predictor
8-cycle misprediction penalty
512 entries

EXECUTION CORE

Int/FP ROB entries
Decode Width

Issue Width
Execute Width
Retire Width

Configuration-1
64 each
4 instructions
4 instructions
4 instructions
4 instructions

Configuration-2
144 each

16 instructions

16 instructions

16 instructions

16 instructions

- Functional unit # exec. lat. issue lat. # exec. lat. issue lat.
Load/store 2 1 cycle 1 cycle 6 1 cycle 1 cycle
Simple Integer 3 1 1 9 1 1
Int. Mul/Div 2 3/20 1/19 6 3/20 1/19
Simple FP 2 3 1 4 3 1
FP Mul/Div/Sqrt 2 3/12/24 1/12/24 4 3/12/24 1/12/24
Table 4: Configurations of simulated processor
= =< N
4-way performance g 2 98

—

%)

C 400 T

L

= w0+ S) A —

Ewsw !l - - - L1 L —%— —

w

I -] b —

§ 2004 —————— —— e T PO I

o m 80 e P b

g W ———————g=2g—— o] D —

S-RRT) . 0= - S —— —

5 3 Ll - SN ~

¢ ol [E - - ~

m 0 T T T

db javac jess mpeg mtrt
OJDK 1.1.6 Interpreter BJDK1.1.6 JIT OJDK 1.2 Interpreter OJDK 1.2 JIT B Hard-Int

Figure 5: Execution cycles for different execution modes on a 4-way machine

433

400

16-way performance

705.9
750.5
7121
746.7

300 -
250 -+
200 -
150 -+
100 -

50 -

execution cycles {millions)

/+————————————

'90.)5

javac

jess
O0JDK 1.1.6 Interpreter BJDK 1.1.6 JITOJDK 1.2 Interpreter O0JDK 1.2 JIT B Hard- Int

mpeg mtrt

Figure 6: Execution cycles for different execution modes on a 16-way machine

The better data cache performance is the result of not stor-
ing the bytecodes, the translated code for the bytecodes,
or the large data structures required by the JIT compiler
in the data cache. Fewer instruction and data cache refer-
ences are generated when using the Hard-Int architecture.
There are fewer cache misses in a majority of cases, except
a few benchmarks where the JDK 1.1.6 interpreter shows
impressive instruction cache performance. The interpreter
executes a basic loop that fetches and decodes a bytecode
fetched from the data cache. The instruction footprint of
the interpreter is small and we see very few misses in the
instruction cache. The JIT compiler on the other hand has
a larger instruction footprint than the interpreter and also
generates references to the compiled native code. The work-
ing set switches between the compiled code and the code for
the JIT compiler often, resulting in more instruction cache
misses.

The difference in number of misses is more prominent in the
case of the data cache, where the JIT compiler has higher
misses that the interpreter for all the benchmarks. This is
the case even when the interpreter has more data references
in certain benchmarks such as mirt and javac. Loads to fetch
bytecodes are the main source of data cache references for
the interpreter. In the JIT compiled execution, the compiled
code has to be written to memory and cause write misses
in the data cache. Data cache misses are also caused by
frequent accesses to large data structures used by the JIT
compiler. When that code is executed for the first time it
also causes misses in the instruction cache.

4.3 Performance of thetransated code buffer

The translated code buffer is a 64-entry, four-way associative
buffer which is used to store the corresponding SPARC in-
structions associated with recently executed bytecodes. It is
a means of enabling some reuse at the bytecode level. A JIT
compiler stores the translated code for methods, and thereby
making it unnecessary to translate that method when it is
invoked in the future. Similarly, but at a finer granularity,
we store the translated code for each bytecode in a buffer
and provide the translation from the buffer if the bytecode

434

is executed again. If the translated code for a bytecode does
not exist in the translated code buffer, the mapping is pro-
vided by the microcoded ROM after the bytecode is fetched
and decoded.

Table 6 shows the references and misses encountered by the
translated code buffer. Using a small buffer of only 64 en-
tries, a hit rate of 54.7% to 81.3% is observed. The trans-
lated code buffer used here is a very simple structure. Op-
timizations can also be done on the stored entries in the
translated code buffer which will allow the performance of
the hardware translator to be more on par with the JIT
performance for server workloads.

4.4 Emulation cost

The larger the architectural gap that exists between the
JVM and the emulating processor, the higher the number
of cycles taken to emulate a bytecode. Figure 7 shows the
average number of cycles to emulate (translate and execute)
a single bytecode on a 4-way processor. Using an inter-
preter, the overhead associated with fetching and decoding
each bytecode in software is high resulting in a large trans-
lation cost ranging from 8.0 cycles per bytecode executed
(for mpeg) to 35 cycles per bytecode (for db).

In the Hard-Int architecture the fetching and decoding of the
bytecodes are done in hardware (taking two cycles for each
bytecode). The cost seen in Figure 7 ranges from 2.2 cycles
per bytecode for mpeg to around 8.0 cycles per bytecode for
db. The emulation cost for the JIT ranges from 1.1 cycles
per bytecode for mpeg to 29.7 cycles per bytecode for db.

The cost is low for benchmarks which spend relatively large
amounts of time in a few methods, and higher if the execu-
tion time is distributed across a lot of methods. The JIT
does a good job of exploiting the architectural features us-
ing optimizations, but the compilation time is added to the
translation overhead. If the compiled code is not executed
frequently and more time is spent in compiling methods than
executing them, the cost may be higher than when executed
using an interpreter. This is observed in Figure 7 for db and

JVM Execution I-Cache D-Cache
Benchmark mode References | Cache-misses || References | Cache-Misses
db [JDK 1.1.6 interpreter 13.52M 4304 21.9M 225425
JDK 1.1.6 JIT 19.37TM 125768 27.67TM 454032
JDK 1.2 interpreter 19.51M 77772 35.03M 440581
JDK 1.2 JIT 17.50M 189801 28.69M 615089
Hard-Int 7.62M 35820 11.91 299405
javac | JDK 1.1.6 interpreter 31.0IM 14058 53.7IM 596469
JDK 1.1.6 JIT 41.82M 265825 61.16M 1.08M
JDK 1.2 interpreter 35.82M 205450 61.31M 979362
JDK 1.2 JIT 31.81M 456543 48.07TM 1.24M
Hard-Int 13.2M 54169 17.62M 439674
jess | JDK'1.1.6 interpreter 40.36M 17012 73.54M 791518
JDK 1.1.6 JIT 29.48M 140802 43.09M 885864
JDK 1.2 interpreter 55.79M 264831 107.4M 1.53M
JDK 1.2 JIT 42.43M 634877 67.23M 1.88M
Hard-Int 10.10M 36659 11.98M 314735
mpeg | JDK 1.1.6 interpreter 206.73M 12314 451.62M 511866
JDK 1.1.6 JIT 37.23M 197381 91.45M 765343
JDK 1.2 interpreter 222.47TM 125611 485.7TM 917192
JDK 1.2 JIT 37.7TM 302112 110.68M 1.01M
Hard-Int 36.03M 77292 54.24M 522781
mtrt | JDK 1.1.6 interpreter 218.35M 17162 487.38M 5.16M
JDK 1.1.6 JIT 162.69M 172562 229.64M 5.56M
JDK 1.2 interpreter 189.17TM 105299 502.25M 4.06M
JDK 1.2 JIT 81.9M 266588 164.41M 4.50M
Hard-Int 17.82M 76356 58.21M 518483

Table 5: Cache Performance for the SPECjvm98

This table shows the number of references and misses for the instruction and data cache. Cache size= 64K
bytes, block size= 32 bytes, I-cache is 2-way and D-cache is 4-way set-associative. M - indicates million.

w
o

w
(=

)
[&]

N
o

-
(4]

-
o

o

execution cycles per bytecode

Q

O0JDK 1.1.6 Interpreter
BJIDK 1.1.6 JIT

0JDK 1.2 Interpreter
OJDK 1.2 JIT

B Hard-Int

I

db

javac

jess

mpeg

mtrt

Figure 7: Cycles executed per bytecode on a 4-way machine

435

100%
90%
BO%
O Branch
TO% mis prediction|
- I L . B Pipelihe stalls|
60% = L
= |
= O Load stalls
50%
= = . == O Store stalls
40% = |
— | IC stall
30%
O Retiring
20%
10%
0% T T T T T T T T T T T
db db{JIT) db jess jess jess mpeg mpeg mpeg mtrt mtrt mtrt
(INTR) {Hard- (INTR) @JIT) (Hard- (INTR) (JT) (Hard- (INTR) {JIT) {Hard-
Int) Int) Int) Int)

Figure 8: Hard-Int IPC Breakdown for JDK 1.2

javac when executed using the JDK 1.1.6 interpreter and
JIT.

[Benchmark [References | Hits [Hit Rate |

db 13.28M | 927392 69.79%
javac 3.86M | 2.86M 74.32%
jess 5.40M | 4.39M 81.34%
mpeg 72.97M | 55.77TM 76.42%
mtrt 34.94M | 19.11M 54.70%

Table 6: Translated code buffer performance
This table shows the number of references and
hits for the translated code buffer. Buffer size is
64 entries and 4-way set-associative. M indicates
million.

45 Performance bottlenecks

Figure 8 graphically illustrates the retire-time bandwidth
for each benchmark. In the 4-way configuration, four in-
structions can potentially be retired each cycle. This figure
breaks down the utilization of these retire slots. The bottom
section of the column is the percentage of retire slots that are
filled with instructions that successfully retire. The section
above that represents the percentage of slots that are empty
due to instruction cache misses. The next portion of the
bar (and generally the smallest for these benchmarks) is due
to store instructions that can not progress due to memory
resource contentions. The load stalls segment is above the
store stalls. Loads stalls are caused by load instructions that
are currently in the process of loading or can not progress
due to memory resource contentions. The slice second from
the top is due to pipeline stalls. These instructions are de-
tained because the pipeline is backed up and they have yet
to execute. The top section of the column represents retire-
time bandwidth lost due to branch mispredictions. When
a branch mispredicts, no other valid instructions can reach
the retire slots until the branch has resolved and a new fetch
has occurred.

436

The top slice of the breakdown, which shows the stalls due
to branch misprediction is the most striking difference be-
tween the different execution modes. The performance of
the branch predictor is fairly consistent across the different
modes, but it is the number of indirect branches and BTB
misses which account for the difference. The interpreter ex-
ecutes a large number of indirect branches to implement the
decode loop and large number of BTB misses occur when
predicting the targets. This effect is mitigated in the JIT
but not completely eliminated. The Hard-Int does not exe-
cute a branch to decode the bytecode and branch mispredic-
tion forms a small percent of the retire bandwidth. Stalls
due to store waiting are more prominent for the Hard-Int
architecture. Benchmarks mirt and mpeg show up to 1.3%
stalls due to stores that could not complete. This is due to
memory operations becoming a more prominent percentage
of the instruction mix in the Hard-Int architecture. The
percentage of load stalls are similarly higher in the Hard-Int
architecture compared to the interpreter. The load stalls
are seen to be fairly large across all three execution modes
and is the worst for the JIT, where the stall is as high as
32% in mtrt. The pipeline stalls are more of a bottleneck in
performance for the Hard-Int architecture since other stalls
are not as prominent in the other execution modes. It is evi-
dent that eliminating BTB misses mode would result in sub-
stantial performance improvement for the interpreter. Load
stalls are seen to limit the JIT performance. In the case of
the Hard-Int architecture, it is mainly memory performance
that is the bottleneck.

5. RELATED WORK

Several language specific processors have been designed in
the past. These processors would show considerable speedup
over a general purpose processor for languages which they
target. In a very specialized processor the assembly lan-
guage is the high level language and no semantic gap exists.
The disadvantages of such a processor is that it requires

complex hardware compared to conventional machines, and
it is also very inflexible. The Pasdec architecture [17] and
the SYMBOL machine [17] are examples of such special-
ized processors. Architectures which provide support for a
language by raising the level of the machine language also
exist. Ideally for such machines, there exists a one to one
correspondence between the high level language and the ma-
chine instructions. and a compiler translates each instruc-
tion. The DELtran [18] and Scheme-79 chip [19] are exam-
ples of such architectures.

Past research also includes a large body of work towards
providing architectural support for efficient Java execution.
Java processors such as picoJava [20] from Sun Microsys-
tems, JEM1 [21] from Rockwell Inc, and Patriot Scientific
corporations PSC1000 [22] used in the embedded market
are examples of architectures providing support for direct
execution of Java bytecodes. Hardware support for Java
stack processing, object manipulation and method invoca-
tion was proposed by Vijaykrishnan et al. [23, 24, 25]. Dy-
namic translation of bytecodes to the DELFT-JAVA RISC
instruction set and a link translation buffer to help in dy-
namic method invocation was proposed by Glossner et al.
(26, 27]. The MAJC (Microprocessor Architecture for Java)
chip [28] proposed by Sun Microsystems uses thread level
parallelism and speculation to improve performance of Java
applications. Java methods are mapped to threads and ex-
ecuted speculatively to reduce execution time.

The JSTAR accelerator [29] recently announced by Nazomi
Communications is a Java coprocessor for general purpose
embedded processors. JSTAR is a coprocessor that inter-
faces to the native microprocessor core and its cache or mem-
ory subsystem. JSTAR fetches bytecodes from memory and
executes them in conjunction with the native processor. A
speedup of 5.5 over an interpreter was achieved when on a
MIPS R3000 processor core [29]. While available literature
mentions that JSTAR performs translation using hardware,
details on the architecture or implementation have not been
revealed.

The HotShot architecture from Chicory Systems [30] uses a
hardware engine to compile and optimize Java code. The
hardware engine is not a coprocessor or part of the proces-
sor core. Instead, it is implemented as a standard periph-
eral device. The hardware engine performs optimizations
that include branch elimination, branch folding, loop trans-
formations, etc., similar to software compilers. Technical
details about the implementation of the HotShot architec-
ture have not been published. However, we speculate that
their approach is similar to the one proposed in this paper.
The main difference between HotShot and Hard-Int is that
we implement the hardware engine as a part of the micropro-
cessor core, whereas HotShot implements it as a peripheral
chip.

Kent and Serra [31] study the feasibility and design issues
related to a hardware/software codesign of the JVM. They
propose a coprocessor implemented in FPGA, that will work
in unison with a general purpose micro-controller to increase
Java performance. This is similar to the approach we pro-
pose in this paper. Their implementation includes a software
partition (which supports the execution of the Java copro-

437

cessor) for performing the object-oriented operations, and a
hardware partition which implements the other instructions
that exist in the JVM. Their work talks about the design is-
sues involved in performing some of the tasks of the JVM in
hardware (to improve performance) however no performance
results are provided.

6. SUMMARY AND CONCLUSIONS

The primary bottleneck in Java execution is the overhead
of translation or mapping. In interpretation, it is the over-
head of software fetch and decode. In JITs, it is the over-
head of (i) performing compilation and compiler optimiza-
tions at run time, (ii) installing the compiled code into data
caches/memory at run time, and (iii) using extra memory
for the JIT itself. The JIT overheads are more prominent
for short running, client-like workloads, where the execu-
tion time is not concentrated in a small number of meth-
ods. Using additional hardware in general purpose proces-
sors to perform the mapping actions lowers the overhead
and improves performance of client-like workloads. We pro-
posed the Hard-Int architecture which dynamically trans-
lates bytecodes to native machine instructions using a hard-
ware translation unit and a translated code buffer. The
hardware translation unit fetches the bytecodes from the in-
struction cache and predecodes them before performing the
translation using the microcoded ROM. We compared the
performance of SPECjvm98 benchmarks when executed us-
ing software translation (interpreter and JIT) to hardware
translation using the Hard-Int architecture.

We summarize the important observations from the perfor-
mance study below:

e Hardware translation results in an average® speedup
over the JDK 1.2 (JDK 1.1.6) interpreter of 5.43 (4.39)
on a 4-way processor. The average speedup attained
in a 16-way processor is 5.07 (3.95).

The Hard-Int architecture performs consistently bet-
ter than a JIT compiler for client workloads, showing
an average speedup over the JDK 1.2 (JDK 1.1.6) JIT
compiler of 2.59 (2.58) on a 4-way machine. The aver-
age is significantly affected by mpeg, which is the only
program that shows a performance degradation. Ex-
cluding mpeg, the average speedup is 3.76 (3.87) over
the JIT compiler on a 4-way machine. On a 16-way
machine, the Hard-Int architecture shows a speedup
of 2.26 (2.07) over the JIT compiler. With mpeg ex-
cluded, the average speedup obtained is 3.35 (3.18) on
a 16-way machine.

The emulation cost per bytecode varies from 2.2 cy-
cles per bytecode to 7.8 cycles per bytecode for the
SPECjvm98 benchmarks when executed on a 4-way
processor using the Hard-Int architecture. In the in-
terpreter the cost ranged from 8.1 to 34.9 cycles per
bytecode, and from 1.1 to 29.7 cycles per bytecode in
a JIT.

When analyzing performance bottlenecks, we find that
the cache performance of the Hard-Int is better than

Zall averages for speedup use the geometric mean

the JIT. This is because the translated code is not
written to memory, and therefore write misses in the
data cache and read misses in the instruction cache are
not incurred as frequently. In addition, Hard-Int re-
sults in less speculative execution due to fewer branch
direction and target mispredictions.

As certain workloads become dominant general purpose com-
puter architectures have added support to execute them ef-
ficiently. This was the case with numerical coprocessors be-
ing integrated into the processor core as more transistors
could fit onto a single die. MMX technology was introduced
when media workloads became a dominant part of the desk-
top workloads. Java technology is emerging as a force in
the software industry and Java workloads are becoming an
important part of general processor workloads. Current ex-
ecution modes of Java using software translation suffer from
poor performance compared to compiled native code. Pro-
viding hardware support in general purpose processors is one
way to bridge this performance gap between the execution of
Java applications and natively compiled applications. The
scheme proposed in this paper shows that this performance
gap can be greatly reduced using the Hard-Int architecture
support.

ACKNOWLEDGMENTS

This research is supported in part by the National Science
Foundation under CAREER Award CCR-9796098 and grant
EIA-9807112. The authors also wish to acknowledge the re-
search support from the State of Texas Higher Education
Coordinating Board under ATP grant #403, and from Cor-
porations such as IBM, Tivoli, Sun Microsystems, Intel, Mi-
crosoft, AMD and Dell.

7. REFERENCES

(1] F. Y. T. Lindholm, The Java Virtual Machine
Specification. Addison Wesley, 1997.

[2] A. Krall and R. Grafl, “CACAO- a 64 bit JavaVM
Just-In-time Compiler,” in Concurrency: Practice and
Ezperience, 9(11):1017-1030, 1997.

[3] A.-R.Adl-Tabatabai, M.Ciernaki, G.-Y.Lueh,
V.M.Parikh, and J.MStichnoth, “Fast, Effective Code
Generation in a Just-In-Time Java Compiler,” in
Proceedings of Conference on Programming Language
Design and Implementation, pp. 280-290, 1998.

[4] T. Cramer, R. Friedman, T. Miller, D. Seberger,
R. Wilson, and M. Wolczko, ¢ Compiling Java Just In
Time ,” IEEE Muicro, vol. 17, pp. 36-43, May-June
1997.

[5] HotSpot: A New Breed of Virtual Machine,
http://www.javaworld.com/jw-03-1998 /jw-03-
hotspot.html?030998.

[6] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue,
M. Kawahito, K. Ishizaki, H. Komatsu, and T.
Nakatani, “Overview of the IBM Java Just-in-Time
Compiler,” IBM Systems Journal, vol. 39, no. 1,
pp- 175-194, 2000.

[7] M. Burke, J.-D. Choi, S. Fink, D. Grove, M. Hind,
V. Sarkar, M. Serrano, V. Sreedhar, and
H. Srinivasan, “The Jalapeo Dynamic Optimizing
Compiler for Java,” in ACM Java Grande Conference,
pp. 129-141, June 1999.

[8] The SPEC JVM98 Benchmarks,
http://www.spec.org/osg/jvm9s/.

[9] R. Radhakrishnan, N. Vijaykrishnan, L. K. John and
A. Sivasubramanium , “Architectural Issues in Java
Runtime Systems,” in Proceedings of the Intl.
Symposium on High Performance Computer
Architecture (HPCA-6), pp. 387-398, January 2000.

[10] R. Radhakrishnan, J. Rubio, and L. John,
“Characterization of Java applications at the bytecode
level and at UltraSPARC-II Machine Code Level,” in
Proceedings of International Conference on Computer
Design, October 1999.

[11] R. Radhakrishnan, N. Vijaykrishnan, L. K. John,
A. Sivasubramaniam, J. Rubio, , and J. Sabarinathan,
“Java Runtime Systems: Characterization and
Architectural Implications,” IEEE Transactions on
Computers, pp. 131-146, Feb 2001.

[12] T. Shanley, Pentium Pro and Pentium II System
Architecture. Addison-Wesley, 1998.

[13] E. Debaere and J. Campenhout, Interpretation and
Instruction Path Coprocessing. MIT Press, 1990.

[14] Y. Chou and J. P. Shen, “Instruction Path
Coprocessors,” in Proceedings of the 27th Annual
International Symposium on Computer Architecture,
pp. 270-281, June 2000.

[15] J. E. Smith, “ Decoupled Access/Execute Computer
Architecture,” in ACM Transactions on Computer
Systems, pp. 289-308, November 1984.

[16] Robert F. Cmelik and David Keppel, “Shade: A Fast
Instruction-Set Simulator for Execution Profiling,
SMLI TR-93-12,” tech. rep., Sun Microsystems Inc,
1993.

[17] A. Silbey, V. Milutinovic, and V. Mendoza-Grado, “A
Survey of Advanced Microprocessors and HIl
Computer Architectures,” vol. 19, pp. 72-85, 1986.

[18] M. J. Flynn and L. W. Hoevel, “Execution
Architecture: The Deltran Experiment,” vol. C-32,
pp. 156-175, 1983.

[19] G. J. Sussman, J. Holloway, J. Ixx Steel, and A. Bell,
“Scheme-79 Lisp on a Chip,” vol. 14, pp. 10-21, 1981.

[20] J. Michael O’Connor and M. Tremblay, “Picojava-I:
The Java Virtual Machine in Hardware,”
IEEE-MICRO, vol. 17, pp. 45-53, Mar/Apr 1997.

[21] A. Wolfe, “ First Java-specific chip takes wing ,”
Electronic Engineering Times, 22 April 1997.
http://www.techweb.com/.

[22] R. B. Slack, “A Java chip available now,” Gamelans
Java Journal, April 1999.
http://softwaredev.earthweb.com/java.

[23]

[26]

[27]

[28]

[29]

[30]

[31]

N.Vijaykrishnan, N.Ranganathan, and R.Gadekarla,
“Object-Oriented Architectural Support for a Java
Processor,” in Proceedings of ECOOP’98, the 12th
European Conference on Object-Oriented
Programming, pp. 330-354, 1998.

N.Vijaykrishnan, Issues in the Design of a Processor
Architecture. PhD thesis, University of South Florida,
1998.

N. Vijaykrishnan and N. Ranganathan, “Tuning
Branch Predictors to Support Virtual Method
Invocation in Java,” in Proc. of COOTS’99,

pp. 217-228, May 1999.

J. Glossner and S. Vassiliadis, “The Delft-Java
Engine: An Introduction,” in Proceedings of the Third
International Euro-Par Conference (Euro-Par’97
Parallel Processing), pp. 766-770, August 1997.

J. Glossner and S. Vassiliadis, “Delft-Java Link
Translation Buffer,” in Proceedings of the 24th
EUROMICRO conference (EuroMicro 98),

pp. 221-228, August 1998.

M. Tremblay, “An Architecture for the New
Millenium,” in Proceedings of Hot Chips 11, August
1999.

H. Shiffman, “JSTAR: Practical Java Acceleration For
Information Appliances.” http://www.nazomi.com/.

Chicory Systems, “A Comparison of Java Acceleration
Technologies.” White Paper, Dec 2000.

K. B. Kent and M. Serra, “Hardware/Software
Co-Design of a Java Virtual Machine,” in Proceedings
of the 11th IEEE International Workshop on Rapid
System Prototyping (RSP 2000), June 2000.

439

