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Abstract

Java processors are ideal for embedded and network

computing applications such as Internet TV’s, set-top
bozes, smart phones, and other consumer electron-
ics applications. In this paper, we investigate cost-
effective microarchitectural techniques to exploit par-
allelism in Java bytecode streams. Firstly, we propose
the use of a fill unit that stores decoded bytecodes into
a decoded bytecode cache. This mechanism improves

the fetch and decode bandwidth of Java processors by 2

to 8 times. These additional hardware units can also

be used to perform optimizations such as instruction

folding. This is particularly significant because exper-
iments with the Verilog model of Sun Microsystems
picoJava-II core demonstrates that instruction folding

lies in the critical path. Moving folding logic from the
critical path of the processor to the fill unit allows to
improve the clock frequency by 25%. Out-of-order ILP

exploitation” is not investigated due to the prohibitive

cost, but in-order dual-issue with a 64-entry decoded
bytecode cache is seen to result in 10% to 14% im-
provement in ezecution cycles. Another contribution
of the paper is a stack disambiguation technique that

allows elimination of false dependencies between dif-

ferent types of stack accesses. Stack disambiguation
further exzposes parallelism and a dual in-order issue
microengine with a 64-entry bytecode cache yields an
additional 10% reduction in cycles, leading to an ag-

gregate reduction of 17% to 24% in execution cycles.
1 Introduction

Java is steadily increasing in popularity in the em-
bedded and network chips arena, fueled primarily
by the convenience and elegance of its “write-once
run-anywhere” motto. The Java technology, which
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consists of the Java language, Java Virtual Machine
(JVM) and the Application Programming Interface
(API), achieves its platform independence by compil-
ing Java source code into machine independent ‘byte-
codes’ which are executed on the JVM. These byte-
codes are typically executed by an interpreter [1], or a
Just-In-Time (JIT) compiler [2], or executed directly
by specialized Java processors (3, 4, 5].

Java is used in a broad range of applications from
high end servers to low-end hand-held gadgets and
house-hold appliances. The server class Java appli-
cations are typically executed using JIT compilers to
achieve high performance. When interpreted, byte-
codes have been seen to be 30x slower than opti-
mized C code, whereas JIT compilers could provide
up to 20x speedup {or more) with respect to inter-
preted code. However, the memory requirement of
JIT compilers is prohibitively expensive for embed-
ded systems and pervasive computing applications.
Chips based on dedicated Java processors are favored
for embedded applications due to their small memory
requirements, low power consumption and low cost.
Java processors are ideal for Internet information ap-
pliances such as digital set-top boxes, Internet TV’s,
smart phones, personal digital assistants (PDAs), and
other consumer electronics applications.

Java processors such as Sun Microsystems pico-
Java cores [4, 5] and JEM (3] are low-cost hardware
engines optimized to directly execute Java bytecodes.
A glance through the SPEC JVM resources [6] shows
that the picoJava-II offers performance in between
that of general purpose embedded processors and gen-
eral purpose processors, such as the ARM and the Ul-
traSPARC respectively. A 120 MHz ARM processor
with 32MB of memory provides a SpecJVM98 metric
of 1.65 and the 300 MHz Sun Ultra AXi with 48MB
yields a performance of 9.8. The performance of the
picoJava-II core at 120 Mhz is estimated to be 4.2 [7].
For comparison, on the server side a Sun Ultra 60 with
512MB yields a performance metric of 31.9 and Com-
paq’s Alpha server workstation with 2048MB yields
a SpecJVM98 metric of approximately 75 [6]. Ac-
tual performance, clock frequency, area and power
achieved by picoJava-II will depend on the cell li-



.braries used for synthesis. The performance numbers
quoted here have been cited to merely indicate the
approximate complexity of Java bytecode engines.

The Java Virtual Machine ISA is stack based and
provides the advantage of dense code, which is impor-
tant for the embedded environment. However, direct
execution of bytecodes on stack based embedded pro-
cessors is invariably constrained by the limitations of
the stack architecture for accessing operands. Fold-
ing [8]-is an optimization implemented in such ar-
chitectures, (for example, picoJava-I and picoJava-
IT) to coalesce multiple stack based instructions to
a single RISC-style instruction with optimized data
accessing. High end Java platforms such as servers
can implement equivalent optimizations in the JIT
compiler. Microarchitectural enhancements in mod-
ern ILP processors can also contribute to exploiting
the parallelism in Java. Space-time computing and
multithreaded execution on clustered hardware as in
Sun’s -MAJC [9] architecture will exploit both ILP
and thread level parallelism in Java. However, at the
low end of the Java horizon, Java chips for embedded
and networked arena need to be specially tailored to
exploit fine-grain parallelism.” Many ILP techniques
used at the server end will not be feasible to imple-
ment at the embedded end.

The basic goals of this study are to investigate
cost-effective microarchitectural techniques to exploit
the available parallelism in the bytecode stream and
enhance the performance of Java processors for the
embedded environment. Inexpensive hardware tech-
niques: to ‘enable efficient fetching, decoding and ex-
ecution of bytecodes are explored for applications
which require high performance, but are constrained
in terms of area, memory and power requirements
(and therefore cannot use dynamic compilation or
"aggressive ILP techniques). We explore these issues
adopting the picoJava-II processor core from Sun Mi-
crosystems as the reference processor. This choice is
well justified as the picoJava-II core implements sev-
eral optimizations including folding and is the highest
performing specialized Java processor for the embed-
ded environment [6]. This allows us to gauge our en-

“hancements: in comparison to a competitive baseline
model.

Synthesis of the Verilog source code model of
picoJava-II provided by Sun Microsystems in their

- Community ‘Source Licensing effort !, revealed that
instruction folding performed by picoJava-II (in the
decode stage) falls in the critical path. We propose
to remove instruction folding from the decode stage,

In late 1998, Sun Microsystems instituted community source li-
censing for picoJava-II enabling tool vendors, chip developers, uni-
versities and research organizations to experiment with the Java
processor RTL source code in verilog. The source code distributed

. is ‘the same source RTL code Sun Microsystems used for their
picoJava-II chip [10].
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using a fill unit [11, 12] and a decoded bytecode cache
(DB-Cache). By moving pattern checking and folding
logic from the decoder to the fill unit, we effectively
remove it from the critical path. The fill unit dy-
namically groups decoded bytecodes into a DB-Cache
line, which can be fetched and executed in parallel
when the same bytecodes are executed next time. The
fill unit and the decoded bytecode cache also exploit
method reuse in Java applications. In the picoJava-II,
patterns have to be detected and folding performed
for a sequence of bytecodes irrespective of prior use
of the same sequence. However, using the fill unit
we store the folded instructions in a DB-Cache line.
The folded instruction is directly executed from the
DB-Cache, when the same bytecode sequence is en-
countered again. The JVM uses a variable length
instruction set and the DB-cache eliminates the need
to dynamically identify instruction boundaries.

Another contribution of the paper is the stack dis-
ambiguation technique to exploit parallelism in the
bytecode sequence. Use of the Java stack as an
operand scratch pad for computations and as a local
variable storage area results in enforcement of false
dependencies while exploiting parallelism. We pro-
pose the use of special logic to distinguish between
the operand stack (at the top of the stack) and the lo-
cal variable area (at the bottom of the stack). Such a
logical distinction between references to these distinct
areas in the stack exposes more parallelism, which can
be exploited by simple in-order multiple issue engines.

Our studies demonstrate that use of a fill unit
and decoded bytecode cache can improve the decode
bandwidth by 2x to 3x and the clock speed by ap-
proximately 25%. In-order paired (dual) execution in
a simple RISC-style pipeline can utilize the increased
decode bandwidth and reduce execution time by 10%
to 15%. The proposed stack disambiguation technique
can result in an additional 10% improvement, yielding
an overall performance improvement of 17% to 24%.

1.1 Related Work

The fill unit and decoded instruction cache were hard-
ware assists proposed by Patt et. al. as part of the
HPS design philosophy [13, 14]. They describe the
fill unit, which compacts instructions generated from
a serial instruction stream into a decoded instruction
cache. The use of these hardware assists on an HPS
version of the DEC VAX processor was seen to result
in significant performance improvements [14, 15]. The
idea of a fill unit was revisited by Franklin and Smoth-
erman in 1994, to dynamically group RISC instruc-
tions into a VLIW like instructions, and showed up
to two times improvements over a single issue proces-
sor [12]. In a later paper, Smotherman and Franklin
showed that collecting decoded X86 instructions us-



ing a fill unit and storing them in a decoded instruc-
tion cache can improve the decode rate as compared
to a P6-like decoding structure [16]. They also pre-
sented a register allocation and renaming scheme us-
ing the fill unit approach to alleviate the excessive
bandwidth placed on the P6 register renaming hard-
ware. The picoJava-II does not require additional re-
naming stage or excessive ports to the Stack Cache
register file, as it already has multiple ports to facili-
tate instruction folding optimizations.

Fill unit based optimizations for trace caches [17]
and trace cache based preprocessing [18] improves
performance by transforming instructions within a
trace line. However, trace caches have been proposed
for machines which can execute up to 8 or 16 in-
structions in parallel and hence store multiple basic
blocks in a trace cache line. In marked contrast, we
store only one basic block of bytecodes in the DB-
Cache, as we are limited by the hardware resources
which we can add in an embedded environment. We
perform instruction folding within a DB-Cache line,
‘instead of across basic blocks to reduce complexity.
As an example, the designers of picoJava-II decided
against adding a sophisticated dynamic branch pre-
dictor to the picoJava-II and instead opted for a static
branch predictor. Investing the hardware resources
for dynamic predictor was considered an overkill in
terms of area and power. For high end server applica-
tions;-dynamic branch predictors and aggressive ILP
techniques are relevant. Object oriented architectural
support in hardware is another approach taken to im-
prove performance in Java processors, which tries to
provide support for manipulating objects, specialized
caches and other such optimizations [19, 20]. Sev-
eral tradeoffs concerning the design of caches, branch
predictors, and exploitation of parallelism using ILP
techniques are explored in [21]. The dynamic execu-
tion time behavior of Java investigated in [22, 23] are
also useful in understanding issues related to improv-
ing Java performance.

1.2 Outline of the paper

The rest of the paper is organized as follows: Sec-
tion 2 describes the decoding and folding stages in the
picoJava-II processor. Experiments using the Verilog
model of the picoJava-II are also presented, showing
that the folding logic falls in the critical path of the
decode stage. Section 3 describes the addition of the
fill unit and DB-Cache to the picoJava-II core to im-
prove embedded Java performance. We also explain
how. instruction folding can be performed in the fill
unit. Seétion 4 quantifies the performance improve-
ment that can be attained using the fill unit and the
DB-Cache. In section 5, cost-effective and restricted
multiple instruction issue is investigated. We also pro-
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pose an optimization, namely stack disambiguation,
that exposes more parallelism resulting in additional
performance improvements. Finally, we summarize
and conclude in Section 6.

2 Background and Motivation

To motivate the research effort in the rest of the pa-
per, we present an analysis of the decode and folding
stages of the picoJava-II processor pipeline in detail.
The picoJava-II is a stack based processor, since it is
a silicon version of the stack-based Java Virtual Ma-
chine (JVM). We show that the decode stage is the
longest stage in the pipeline (using critical path anal-
ysis), and the delay can be reduced by removing the
folding logic from the decode stage.

2.1 Decoding instructions in picoJava-II

The picoJava-II core illustrated in Figure 1 consists of
an integer execution unit, a stack cache, instruction
folding hardware and optional instruction and data
caches [24]. The instruction and data caches can be
configured to be between 0 to 16 KBytes. The stack
cache is implemented as a 64-entry register file with
random access. The picoJava-II core implements the
commonly executed bytecodes in hardware and han-
dles the remaining ones using microcode and software
traps. The pipeline in the picoJava-II is implemented
in six stages as shown in Figure 2, similar to a simple
RISC pipelines (with modifications to reflect the stack
based nature of the bytecode ISA). The core fetches
the instructions from the instruction cache into an in-
struction buffer in the fetch stage. The next stage de-
codes the instruction and performs folding optimiza-
tions. The stack cache is read for operands in the
register stage, if necessary. The instruction executes
in one or more cycles in the execute stage and goes
through the memory access stage if it needs data from
the data cache. Results are written back to the stack
cache during the final stage in the pipeline.

A 16 byte instruction buffer is used to decouple the
instruction cache from the rest of the pipeline. The
processor can write a maximum of 8 bytes into the
buffer at one time, where as it can read 7 bytes from
the buffer at once. The bytecode ISA has variable
length instructions, and most bytecodes consist of a
1 byte opcode, followed by 0, 1 or 2 operands. Since
the average length of bytecode instructions is approx-
imately 1.8 bytes [20], the processor can potentially
read more than one instruction in a cycle. The pro-
cessor can read up to four instructions, depending on
the length of the instructions in the buffer.
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Figure 1: Block diagram of the picoJava-II micropro-
cessor core. The caches and the floating point unit
are optional.
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Figure 2: Basic Pipeline of the picoJava-II core

2.2 Folding optimizations performed in

picoJava-I1

The design choice of a stack based machine facili-
tates the advantage of small instruction (bytecode)
size, but causes the generation of abundant load and
store operations to the stack. For example, to com-
pute an expression a+b=c, the sequence of bytecodes
generated are:

e iload.a ; ioad local variable a into TOS (Top Of Stack)

e iload b ; load local variable b into TOS

e iadd y Pop top 2 elements and add them. Push result to TOS
® istore._c ; Store the element on TOS to local variable ¢

The picoJava-II takes 4 cycles to compute a+b=c,
due to the requirement that bytecodes operate only
on the elements at the top of the stack. The processor
tries to eliminate the unnecessary loads and stores to
the stack by utilizing an instruction folding technique.
This is possible because the stack is implemented as
a register file in the picoJava-II with 3 read ports,
two write ports and a single cycle access to any en-
try of the stack. When a pattern like the one shown
earlier is detected, the picoJava-1I replaces it with a
three-operand instruction add c+ a, b which takes
advantage of the single-cycle random access to the
stack cache.

The folding optimization is implemented in the
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picoJava-II as follows:

1. Folding logic is added to the decoder design to de-
tect patterns of instructions which can be folded
together. The pipeline stages for a picoJava-
1T processor which implements the folding opti-
mization is shown in Figure 3. Since there are in-
numerable folding patterns, only those patterns
which occur with a high frequency are checked
for using the decoder logic. The most common
foldable patterns consist of instructions that are
between 2 and 4 bytecode instructions.

. Up to four instructions are decoded in the de-
coder and checked for foldable patterns consist-
ing of 4 instructions. If no 4 instruction pattern
is detected, then the instructions are checked for
a three instruction pattern. In the event that
no three instruction pattern is detected, poten-
tial for a two instruction pattern is explored,
in the absence of which one instruction is sent
to the next pipeline stage. If a pattern is de-
tected, then the instructions are folded together
and one (RISC style register-based) instruction
is constructed for that pattern.

IF EX
. WL
o Inrcion Decodeand || nstoction ) Regir || pyemte [ e 1 Wi |
Fech | patemchek folding 1| resd back

Figure 3: Pipeline stages in the picoJava-II processor
to implement instruction folding. The stages within the
dotted line are responsible for detecting patterns and folding.

2.3 Critical path analysis

Folding in the picoJava-II core is performed by the
Instruction Folding Unit (IFU) where the instructions
are grouped and pre-decoded. The picoJava-II doc-
umentation names the decode stage as the IFU, al-
though both decoding and instruction folding is per-
formed in this stage. The IFU classifies instructions
into different types and groups them depending on
their opcodes. Each of the bytes in the I-Buffer have
other information associated with them, namely, a 4-
bit length information corresponding to that opcode,
a valid bit and a dirty bit. The folding logic examines
the top 7 bytes of the instruction buffer and deter-
mines the number of instructions that can be folded
depending on the bytecode, and length information



[ Stage/Unit | description of the pipeline stage or functional unit

[[ delay (ns) |

ICU Instruction cache unit: fetches instructions and writes it to the I-Buffer 4.00
IFU (D) Instruction Folding Unit: decodes and folds instructions 12.74
IFU (D) Modified decode stage, after removing folding logic from the IFU 8.68
RCU Register cache unit: access the register file (stack cache) for operands 9.33
EX Execute stage, multicycle instructions are executed using microcode datapath 2.58
DCU Data cache unit: handles sourcing and sinking of data for loads and stores 5.48

Table 1: Critical path delay for the picoJava-II datapath and control units

(associated with that bytecode) from the Instruction
Cache Unit (ICU).

We analyzed the timing of all the single-cycle units
in the picoJava-II core using the Verilog hardware
description language model obtained from Sun Mi-
crosystems. Based on maximum timing optimiza-
tions in Synopsys targeting LSI Logic’s 3.3V G10TM-
p Cell-Based 0.29 micron ASIC library [25], we syn-
thesized the Verilog code. Table 1 shows the results
of the synthesis of various stages of the picoJava-II
core. The pipeline stage that is the slowest is the
IFU (decode+folding) stage.

Figure 4 shows the logic elements in the critical
path in the Decode pipeline stage (IFU). The length
decoder computes the lengths of prospective instruc-
tions to be folded using special adders called index
adders, Iadd. These adders use length information
of each byte (ly to lg) and the position of the byte
in the I-Buffer. Symbols (Lo to L3) represent the
cumulative length of one to four instructions. For ex-
ample, L, represents the sum of lengths of the first
three instructions out of the four prospective foldable
instructions. To compute L3, Lo needs to be com-
puted which in turn depends on the earlier cumulative
length, elongating the critical path.

The folding decoder consists of an array of folding
decode (FDEC) blocks, each of which examines two
consecutive bytes and generates information about
prospective foldable instructions. Two bytes are used
by each block due to the fact that the picoJava-II
opcodes can either be one byte or two bytes long?.
Using the accumulated lengths and the FDEC block
outputs, folding patterns can be identified. Associ-
ated folding logic uses these patterns to output the
number of foldable instructions and also a shift signal
to the I-Buffer to move the contents of the buffer for
decoding in the next cycle.

We isolated the folding logic from the decode stage
and present the timing analysis of the modified de-
code stage (D) in Table 1. Isolating the folding logic
from the critical path brings down the maximum de-

2The picoJava-1I uses special two byte opcodes for implementa-
tion specific extensions to the JVM instruction set [4]
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Figure 4: Logic along the critical path of the decode
stage.This figure shows the logic that contributes to the critical
path , in the decode stage (additional logic occurring in parallel is

not shown).

lay from 12.74 ns to 8.68 ns, thus allowing to drive the
clock at a faster rate than it would have been possi-
ble with folding logic in the critical path. We propose
to move the instruction folding logic from the decode
stage to the fill unit. The fill unit is outside the critical
path of the pipeline, and does not affect the clock as it
can take multiple cycles to operate without affecting
the performance. After the folding logic is removed
from the critical path of processor and added to the
fill unit, the register cache unit (RCU) becomes the
longest stage in the pipeline (having a delay of 9.33
ns). Therefore, by moving the folding logic to the fill
unit we can increase the clock rate of picoJava-II by
approximately 25%, which is a significant improve-
ment. Increase in clock frequency will however result
in increase in processor power. Embedded applica-
tions with power as the primary design constraint
may want to make use of only the other proposed
microarchitectural enhancements.



38 Fill unit and DB-Cache operation: decod-
ing and folding

3.1 Collecting decoded bytecode instructions

Figure 5 shows the fill unit approach that we propose
in this paper. The fill unit collects decoded bytecodes
and stores them into the lines of a decoded bytecode
cache (DB-Cache). During instruction access, if the
instruction fetch address matches an entry in the DB-
Cache, the entry in the DB-Cache is given priority
over the normal instruction cache and decoding path,
and decoded bytecodes are supplied directly to the
operand fetch stage. It should be noted that by stor-
ing the decoded bytecodes in the DB-Cache, there is
no need to repeat fetching of instructions from the
normal instruction cache nor finding the instruction
boundaries®. However, operand fetch must still occur
before the instructions can be fed to the processor
core for execution. The advantages of the fill unit are
that it can collect more than two decoded instructions
into the same DB-Cache line and pass to the operand
fetch stage in one cycle. Thereby, we increase the
instruction decode bandwidth without increasing the
decoder width, the fetch bandwidth and the instruc-
tion buffer size.

Instruction Filt Unit
16 Cache [ -———y----- -
bytes :
i
‘ 1 ins y n inst
. Dext instruction address |
F D
8 7
E |bytes . bytes | E g
T instruction buffer —— | C g
- o S
¢ e 16 bytes — D o
H E g

Figure 5: Increasing decode bandwidth using a fill
unit and DB-Cache. The processor core is fed decoded in-
structions from the normal decode path, or from the DB-Cache
(when there is hit in the DB-Cache).

Since a variable number of decoded bytecodes
form a DB-Cache line, each line should also include
a next-address field and supply it to the branch unit.
Bytecodes are filled into the DB-Cache line only if
they represent more than one instruction, as it is
more efficient to fetch single instructions from the
instruction cache. The DB-Cache line could poten-
tially include as many bytecodes as possible, but we
restrict it to 5 decoded bytecodes for this study. We
place an additional restriction that only bytecodes of
length 3 bytes and below are stored in the DB-Cache.

37The picoJava-II has variable length instructions, and instruc-
tion boundaries are calculated in the IFU stage while decoding the
bytecodes.
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We are able to capture more than 99% of the byte-
codes executed (even with this restriction), as most of
the longer length bytecodes are executed very infre-
quently. Based on these constraints we would require
15 bytes (5 times 3) in each DB-Cache line to store
up to 5 decoded bytecodes.

Data dependencies will not prevent filling of the
decoded bytecodes, but will be resolved by the pro-
cessor core similar to instructions fetched along the
normal path. Control dependencies, such as branches
will stop the filling of a DB-Cache line in our design.
We could use a more complex design where we fill
past branches (to store multiple basic blocks), how-
ever, that would prove to be too expensive in terms of
resources (additional memory and branch prediction
logic) for the picoJava-II processor. The next-address
field in each DB-Cache line is used to provide cor-
rect instruction sequencing. If there is no branch or
control-changing instruction in a DB-Cache line, the
next-address field is set to the first instruction that
was not filled into the current line. A branch is rep-
resented in the DB-Cache line by two fields - a condi-
tion and a branch address. When the last instruction
to be filled is a conditional branch, the next-address
field serves as the branch-untaken address, and the
branch address field serves as the branch taken ad-
dress. This is to facilitate pre-fetching of lines from
the DB-Cache by using the branch predictor to pre-
dict the outcome of the branch. The predictor output
is used to generate the next instruction address and
sent to the instruction cache and the DB-Cache. The
total DB-Cache line size for this design will be 23
bytes (15 bytes for decoded bytecodes and 8 bytes to
store next-address and the branch address).

3.2 Performing folding operations

In the previous section we saw how the DB-Cache
can be used to increase the decode bandwidth for
the picoJava. We now investigate some optimizations
which can be performed by the fill unit while filling
DB-Cache lines. One such optimization is instruction
folding. As explained in the Section 2.3, implementing
the folding optimizations in hardware requires adding
additional logic to the decode stage. This could have a
serious impact, especially if we want to detect many
patterns, and patterns consist of large instructions.
Since the folding logic falls in the critical path of the
processor, it has to be highly optimized and kept to
a bare minimum (in terms of functionality). Instead,
we can use the fill unit to perform the folding oper-
ations while it is filling the decoded instructions into
the DB-Cache, and this in turn has its own advan-
tages. We explain how the fill unit performs the fold-
ing operations using Figure 6.

The fill unit collects instructions as described ear-
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Figure 6: Storing basic blocks and foldable patterns
of bytecodes in the DB-Cache. The DB-Cache will store
basic blocks of bytecodes as well as RISC-style instructions (folded
bytecodes).

lier and checks for instructions that can be stored in
a DB-Cache line. We incorporate the pattern check
and folding logic in the fill unit so that it checks for
patterns in the bytecodes that it collects. If it detects
a pattern, then it can store the synthesized (register-
based) instruction and substitute it for the pattern of
bytecodes. This is then stored in the DB-Cache in-
stead of the bytecodes themselves. In Figure 6, [bl,
b2, b3, b4] is a basic block of bytecodes which is col-
lected and filled into the DB-Cache. The bytecodes
are stored without modification (folding) if they do
not form a foldable pattern. During the execution
of the program if the fill unit came across a 4 byte-
code sequence which matched a foldable pattern, the
fill unit fills the DB-Cache line with the synthesized
RISC-style instruction. A DB-Cache line could con-
tain a mix of both a synthesized instruction and byte-
codes as long as they do not exceed the DB-Cache line
size (and are part of the same basic block). The ad-
vantages of incorporating the pattern checking and
instruction folding in the fill unit are as follows:

1. By moving the pattern checking and folding logic
from the decoder to the fill unit, we are effectively
removing it from the critical path of the decode
stage. Now that the folding logic is not in the
critical path we can implement other patterns
(less frequent) that were not included because
of cost and timing considerations.

. The decode width of the processor need not be in-
creased to identify patterns which are wider than
the decode width. Since the picoJava-II has a de-
code width of 7 bytes(1-4 bytecodes depending on
their length), it can identify patterns of 4 byte-
code instructions. If it has to identify instruc-
tion patterns of 5 instructions, the decode width
will have to be increased from 4 to 5 (by increas-
ing the I-Buffer and decode logic). If we move
the pattern checking and folding logic to the fill
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unit, we still need to only have a decode band-
width of 4, as the pattern check is done by the
fill unit when collecting the decoded instructions
(the DB-Cache line holds up to 5 instructions).
Along the same lines, the picoJava-I core [4] has
a decode width of two, and can fold only up to
2 bytecodes. If we add a fill unit and DB-Cache
(similar to the one proposed in this paper), and
move the folding logic to the fill unit we will be
able to detect patterns of 3 and 4 in picoJava-I
without increasing the decode width.

. In the picoJava-II we have to check for patterns
and perform folding for a sequence of bytecodes,
no matter how many times it is executed. How-
ever, using the fill unit we replace the pattern
with the synthesized RISC-style instruction and
store it in the DB-Cache line, and then we can is-
sue the synthesized instruction when the pattern
is repeated (assuming we have a DB-Cache hit).
In the picoJava-II (without the DB-Cache) the
bytecodes would have to go through the decode
stage and perform the folding operation again,
before it can be issued thereby taking more cy-
cles.

4 Effectiveness of the fill unit and DB-Cache

4.1 Experimental Methodology

The effectiveness of the proposed techniques are eval-
uated using a picoJava-II simulator that accepts byte-
code traces extracted using a tracing JVM [26]. The
simulator models the picoJava-II pipeline on a cy-
cle by cycle basis using instruction latencies* of each
bytecode. Single cycle instruction and data caches
with 100% hit ratio are assumed. The branch predic-
tor used in the picoJava-II is a static predictor, and
has a penalty of 3 cycles for mis-predicted branches
(not taken branches).

We use 6 benchmarks from the SpecJVM98
suite [28] to evaluate the proposed architectural addi-
tions to the picoJava-II core design. A description of
the benchmarks is given in Table 2. The benchmarks
were run with with the sf data set. The number of
bytecodes simulated range from 2 million for db to
176 million for mpegaudio. These benchmarks do not
include any graphics, networking or AWT, and there-
fore do not represent a whole spectrum of Java appli-
cations. They however, do provide us with a starting
point to evaluate the effectiveness of microarchitec-
tural enhancements for Java processors.

%The instruction latencies for the bytecodes are obtained
from [27]. We assume a 30 cycle latency for software traps. These
traps account for less than 0.1% of the total instructions.



benchmark | Description count

jess | NASA’s CLIPS rule-based expert system 8M

db | Data management software from IBM 2M

javac | Sun JDK Java compiler 5M

mpegaudio | software algorithm to decode an 115M
MPEG layer 3 audio stream

mtrt | A program that ray traces an image 50M

jack | A parser-generator from Sun 176M

Table 2: Description of the SpecJVM98 Benchmarks
used in this study

4.2 Instruction decode rate

Figure 7 shows the increase in decode rate which can
be achieved using the fill unit and the DB-Cache. The
decode rate increases as we increase the number of en-
tries in the DB-Cache from 64 to 16K. DB-Cache with
more than 1K entries are shown only for comparison
purposes, since it would not be feasible to have such a
big cache structure in the picoJava-II core (due to its
power and area impact). The picoJava-II processor
could potentially decode up to four instructions (due
to folding), and we see a decode rate of 1.4 to 1.7
across the different benchmarks (first bar in Figure
7 (i)). We can achieve a two-fold increase in decode
rate even with a DB-Cache of only 64 entries. The de-
code rate increases to up to three-fold for a 1K entry
DB-Cache. The increase in decode rate corresponds
to the hit rate that is seen for the different DB-Cache
configurations (Figure 7 (ii)).

4.3 Folding efficiency and performance

In this section, we look at the folding coverage and
percentage of instructions that are eliminated when
moving the folding logic to the fill unit. As described
in the previous section, the number of bytecode pat-
terns detected would depend on the hit rate of the
DB-Cache, and certain other factors which we de-
scribe in this section.

Figure 8 shows the absolute number of patterns
detected for each benchmark in the picoJava-II pro-
cessor with and without the fill unit and DB-Cache.
The total number of folded two instruction pat-
terns (2-fold), three instruction patterns (3-fold) and
four instruction patterns (4-fold) are shown for each
benchmark. The last bar in the graph (named as
picoJava-II) shows the number of patterns detected
when the pattern check is done at the decode stage
of the picoJava-II processor. The number of three
instruction and four instruction patterns detected in
the fill unit is seen to be lower compared to the nor-
mal picoJava-II processor. This is mainly due to two
reasons; (i) We fail to detect a pattern the first time
the fill unit encounters it, since it follows the normal
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Figure 7: Trends in decode rate and Hit rate for dif-
ferent DB-Cache sizes

decode and execute path, which does not have pat-
tern checking and folding logic, and (ii) some of the
larger patterns, especially four instruction patterns
get stored in two lines due to overflow. For example,
if a 4 instruction pattern starts at the middle of a
DB-Cache line, and continues into the next cache line
(because the pattern starts at the middle of a basic
block stored in that line) we would fail to detect it.
We refer to this as pattern fragmentation. Because
of pattern fragmentation, a four instruction pattern
might avoid being detected when using the fill unit.
However, if the split pattern forms a smaller instruc-
tion pattern (of two or three instructions) which is
stored in one DB-Cache line, the pattern checker in
the fill unit will detect it. Thus, there is a poten-
tial that the total number of two instruction patterns
that are detected will be more when we do the pattern
checking in the fill unit. It can be seen in Figure 8
that this is the case, and the two instruction patterns
(2-fold) that are detected using the fill unit exceed
that detected by the normal picoJava-II processor (as
these 2 instruction patterns were part of a longer 3
or 4 instruction pattern, which was detected in the
picoJava, but went undetected in the fill unit).

Figure 9 shows the percentage of total dy-
namic instructions which were folded for four of the
SpecJVM98 benchmarks, based on the instruction
patterns (2-fold, 3-Fold and 4-Fold) that were de-
tected in the bytecode execution stream. The per-
centage of instructions eliminated when folding is
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Figure 9: Percentage of total dynamic instructions
that are eliminated (folded) using instruction folding

done at the decode stage is 2% higher compared to
using a DB-Cache (to hold the folded patterns) of 64
entries for db, javac and jess. This percentage differ-
ence increases to 6% for mpeg, but goes down to al-
most 2% when using a DB-Cache entry of 1k entries.
It can be inferred from the graph, that using a fill unit
to capture and store foldable instruction patterns in
the DB-Cache allows to eliminate almost the same
percentage of instructions as when doing the folding
at the decode stage. Failing to detecting a pattern
the first time it is encountered, pattern fragmentation
and misses in the DB-Cache cause the percentage of
instructions to be slightly lower than what one would
observe when folding is done at the decode stage.

5 Improving performance using multiple in-
struction issue

One straightforward technique to improve perfor-
mance is to exploit parallelism in the instruction

302

stream using ILP techniques. However, obtaining in-
creased performance in a resource-constrained embed-
ded processor involves detecting and executing multi-
ple instructions in a cost-effective manner. The previ-
ous sections illustrated how a fill unit and DB-Cache
can achieve up to a three-fold increase in the decode
rate. In this section, we investigate the performance
improvement achieved by executing multiple instruc-
tions in conjunction with the fill unit and DB-Cache
which provide an abundant supply of instructions.
While we want to exploit instruction level parallelism,
we would like to keep the complexity manageable for
embedded environments and hence restrict the explo-
ration to in-order execution as opposed to using ag-
gressive ILP techniques which require substantially
higher amount of resources.

5.1 Effectiveness of in-order multiple instruc-
tion issue

To detect the level of exploitable concurrency in the
bytecode stream, we relax the resource constraints on
number of execution units and estimate the optimum
number of execution units. When the execute stage is
fed a basic block of instructions from the DB-Cache,
it could potentially execute all of them in parallel as-
suming there are no dependencies and resource con-
straints. If any instruction in the basic block writes to
the stack, then all following instructions which read
from the stack will have a dependency on that in-
struction (and will be executed in the next cycle).
We simulate the picoJava-II core with the above con-
straints for the different benchmarks to find the po-



tential execution rate assuming a DB-Cache of 128
entries. It should be noted that no exploration be-
yond basic blocks is done and what is revealed here
is by no means the bound on available parallelism in
the whole application.

Instructions Executed in Parallel

benchmark 1 2 3 4 5
db | 90.12 | 9.88 | 0.00 | 0.00 | 0.00

javac | 93.41 | 6.28 | 0.17 | 0.00 | 0.00

jess | 92.05 | 7.95 { 0.00 | 0.00 | 0.00

mpeg | 94.70 | 5.30 | 0.00 |{ 0.00 | 0.00

mtrt | 91.22 | 8.78 | 0.00 { 0.00 | 0.00

Table 3: Percentage of instructions executed in par-
allel when using a DB-Cache of 128 entries

Table 3 shows the percentage of instructions that
can be executed in parallel for the picoJava-II with a
fill unit and DB-Cache (of 128 entries). It is seen that
90-94% of the instructions are executed without being
paired with other instructions. Javac is one bench-
mark in which we see a negligible small percent of the
instructions being executed at a rate of 3 instructions
per cycle (0.17%). We never see 4 or 5 bytecodes
being executed in one cycle, because of the depen-
dencies to the stack. This implies that in the limited
window we are investigating, most of the instructions
have a dependency to the stack, and is limiting the
execution width even if we are able to decode up to
5 instructions in one cycle. Since there is one unique
stack, an operation which expects an operand from
the stack must wait and depend on the previous load
or written back data to be stored into the stack. This
causes a severe limitation to the instruction level par-
allelism that can be exploited. Therefore, it we will be
not be possible to gain much performance by adding
resources to execute more than 2 instructions in one
cycle, without alleviating the constraints imposed by
the stack.

Figure 10 shows the relative performance of a dual
issue architecture with the proposed fill unit and a
few different DB-Cache configurations. This archi-
tecture can execute pairs of bytecodes if they have no
dependencies. If one bytecode has a longer latency
than than its pair, the pipeline stalls till the longer
latency. instruction completes. A DB-Cache of 64 en-
tries yields a performance improvement of 10% to
13%, but performance does not improve beyond 15%
for larger DB-Caches. Even though this is not a very
significant improvement in performance, it should be
- kept in mind that this is in addition to the clock speed
improvements made possible by the fill unit and the
DB-Cache. Performance improvement is limited pri-
marily by stack dependencies. In the next section, we
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show how we can alleviate some of this problem by
using an optimization called the stack disambiguation.

PicoJavadl B dbc-84 O dbe-128 O dbe-256 B dbe-542 8 dbe-tk 8 dbe-18k
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Figure 10: Performance improvement when adding a
fill unit, DB-Cache (64-16K entries) and instruction
execute width of two to a picoJava-II processor.

5.2 Using stack disambiguation to improve
exploitable concurrency

The Java stack is used to hold the operand stack,
local variable area and frame data for each method.
The operand stack is used as a scratch pad to perform
computations and store values. All operations on the
operand stack take place at the top of the stack and
the OPTOP (top of operand stack) register is used to
manipulate the operand stack. The local variable area
consists of values for commonly used local variables
for a particular method, and occupies the bottom en-
tries of the Java stack. A register VARS is used in the
picoJava-II to mark the beginning of the local vari-
able area. The sizes of the operand stack and local
variable area varies depending on the requirements of
each method. Any data access generated as an offset
from the OPTOP or VARS register in the picoJava, is
recognized as a stack access and all other data access
go the data cache. If we use additional logic to dis-
tinguish between stack access generated as an offset
to the OPTOP and VARS register, we can schedule
more instructions in parallel since the operand stack
is the true stack, and the local variable area is a stor-
age area. We refer to this optimization to distinguish
between operand stack and local variable access as
stack disambiguation, since it logically separates the
stack into the operand stack and local variable area.

Using additional logic to check the type of access,
could affect the cycle time if it falls in the critical path
of the data cache access. Instead we could use an ad-
ditional bit along with each instruction stored in the
DB-Cache, to mark if it is an access to the operand
stack or the local variable area®. The percentage of in-
structions executed in parallel, when using stack dis-

5This would add 5 bits to each DB-Cache line for the configu-
ration used in this study



Instructions executed in Parallel

benchmark 1 2 3 4 5
db | 78.76 | 21.06 | 0.17 { 0.00 | 0.00

javac | 81.25 | 18.17 | 0.57 | 0.00 | 0.00

jess | 81.06 | 18.20 | 0.74 | 0.00 | 0.00

mpeg | 87.32 | 12.47 | 0.21 | 0.00 | 0.00

mtrt | 86.44 | 11.56 | 2.00 | 0.00 | 0.00

Table 4: Percentage of instructions executed in paral-
lel when using stack disambiguation with a 128 entry
DB-Cache)

ambiguation is given in Table 4. As expected, we see
an improvement in the execution rate, and more in-
structions being executed in parallel, when compared
to the data in Table 3 where we do not distinguish
between stack and local variable access. The percent-
age of instructions that are executed with a width of
three increases, and we see 0.17% to 2% of the in-
structions in this category. In Table 3 only javac was
seen to have a small percentage of instructions which
were executed with a rate of 3 instructions per cy-
cle. Similarly, we see 2 to 3 times improvement in the
percent of instructions that are executed in pairs.

The performance of the picoJava-II processor with
the fill unit configuration and the stack disambigua-
tion is plotted relative to the performance seen for
the original picoJava-II in Figure 11. Performance
improvements range from 17% to 24% for the differ-
ent DB-Cache configurations. Stack disambiguation
alone is seen to contribute approximately 10% over a
naive stack access implementation.
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Figure 11: Relative performance of picoJava-II using
the fill unit, DB-Cache (64-16K entries), execution
width of two and stack disambiguation

6 Summary and Conclusions

Due to their low cost and low power requirements,
achieving high performance in Java processors neces-
sitates a balance of complexity and performance. In
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this study we extended the concept of fill unit for
Java bytecode engines, and explored the effectiveness
of fill unit based optimizations. We show that a fill
unit coupled with a relatively small decoded byte-
code cache (64 entries) improves performance, show-
ing that cost-effective techniques exist to exploit lim-
ited ILP for the low-end embedded Java processors.
The major contributions of this paper are summarized
below:

Performing instruction folding using the fill unit
and DB-Cache allows to increase clock frequency
by approzimately 25%.

The picoJava-II core performs instruction folding
in the decode stage. Based on maximum timing
optimizations in Synopsys targeting LSI Logic’s
3.3V G10TM-p Cell-Based 0.29 micron ASIC li-
brary [25], synthesizing the Verilog code for the
picoJava-II core showed that instruction folding
does elongate the critical path.

Adding a fill unit and DB-Cache improves decode
bandwidth by 2z to 3x.

This result is obtained from simulation studies
using the SpecJVM98 benchmarks on a picoJava-
II simulator with fill unit and DB-Cache. This
improvement in decode width is obtained with-
out increasing the baseline decoder width, fetch
width and the instruction buffer size.

Instruction folding in the fill unit may not detect
all foldable patterns, however the loss in perfor-
mance s negligible.

Failing to detect a pattern during its first occur-
rence, detecting only a part of the pattern (pat-
tern fragmentation) and misses in the DB-Cache
reduce the overall number of dynamic instruc-
tions folded by approximately 2%.

An in-order dual issue execution core with a 64-
entry DB-Cache improves performance by 10%
to 14%.

Increasing the number of functional units to more
than two is not beneficial due to stack dependen-
cies. It is seen that 90% to 95% of the instruc-
tions cannot be paired and issued in parallel due
to dependencies on the stack.

Stack disambiguation increases pairing of in-
structions by eliminating false dependencies.

Logically separating the stack accesses to the
operand stack and the local variable area allows
more instructions to be executed in parallel. De-
pendencies to the stack is the limiting factor for
exploiting ILP in stack-based architectures. Us-
ing our technique of stack disambiguation allows



for an additional improvement of 10% over the fill
unit and DB-Cache configuration, leading to an
overall improvement of 17% to 24% in execution
cycles over the picoJava-II processor.

It may be noted that we have not investigated any
" out-of-order ILP techniques. Incorporating fill unit
- and the DB-Cache into the picoJava-II core was seen
to improve performance in many different aspects.
Implementing aggressive ILP techniques to improve
" performance in embedded processors has to be done
judicially, keeping in mind the power and area impact
of the optimizations.
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