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ABSTRACT
This work addresses the issues of access latency and energy
consumption in value predictor design for high-frequency,
wide-issue microprocessors. Previous value prediction re-
search allows for generous assumptions regarding table con-
figurations and access conditions, while ignoring prediction
latencies and energy issues. However, the latency of a high-
performance value predictor cannot always be completely
hidden by the early stages of the instruction pipeline as
previously assumed, and it causes noticeable performance
degradation versus unconstrained value prediction. This pa-
per describes and compares several variations of basic value
prediction methods: at-fetch, post-decode, and decoupled.

The performance of at-fetch and post-decode value pre-
dictors is limited by the high access latency of accurate pre-
dictor configurations. Decoupled value prediction excels at
overcoming the high-frequency table access constraints by
placing completion-time predictions into a separate and eas-
ily accessible storage. However, it has high energy require-
ments. We study a value prediction approach that com-
bines the latency-friendly approach of decoupled value pre-
diction with a more energy-efficient implementation. The
traditional PC-indexed prediction tables are removed and
replaced by a queue of prediction traces. This latency and
energy aware method of maintaining and distributing spec-
ulated values leads to a 58%-95% reduction in value pre-
dictor energy consumption versus known value prediction
techniques while still maintaining high performance.

Categories and Subject Descriptors: C.1.1 [Processor
Architectures]: Single Data Stream Architectures

General Terms: Design, Measurement, Performance

Keywords: data speculation, low power, complexity-
effective design, trace cache processors
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1. INTRODUCTION
One trend in recent microprocessor design is the increas-

ing density of on-die transistors. This has allowed design-
ers and researchers to explore creative new techniques for
improving instruction throughput. One strategy for utiliz-
ing this wealth of transistors is to increase execution re-
sources and speculation hardware. Value prediction is one
technique that has shown great potential for improving in-
struction throughput. True data dependencies are a funda-
mental obstacle to higher instruction level parallelism (ILP),
and value prediction allows these dependencies to be satis-
fied early by speculating on instruction results. Instructions
are then free to execute in parallel, leading to higher uti-
lization of the processor resources. This is especially useful
in wide-issue microprocessors where execution resources are
often underutilized.

Urgency To Predict Values: One way to quantify the
potential usefulness of successful value prediction is to study
the distance between result-producing instructions and their
consumers. In Figure 1, the producer-consumer distance is
measured in clock cycles for a specific implementation of a
wide-issue microarchitecture. The cycles are measured from
instruction issue to the first request from an issued consumer
instruction.

These graphs depict the urgency to break data dependen-
cies. Notice that 78-94% of load instructions have a con-
sumer within one cycle, and 73-99% of integer instruction
results are in demand within one cycle. Consumers appear
more quickly as the achievable fetch and issue widths in-
crease. If values cannot be predicted swiftly enough to break
these data dependencies, value prediction will be less useful.

Table Access Latency: The push toward high frequen-
cies in microprocessors creates a processor constrained by
wire delay, causing a nontrivial latency (in clock cycles) for
large centralized structures [1, 20], such as a value predictor.
The latency reduces the impact of value prediction, which
requires quick resolution of data dependencies to be most
effective.

The graph in Figure 2 illustrates the access times for value
predictors of several sizes versus the number of ports. The
smallest structure, a 1024-entry predictor with one port, has
a two cycle access latency. As the table size increases, the
impact of additional ports becomes more severe. A simi-
lar analysis shows that port related delays dominate to the
point that increasing associativity causes little additional
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Figure 1: Distribution of Issue to Consume-Request Distances Measured in Clock Cycles
The benchmarks are the SPEC CPU2000 integer benchmarks presented in Section 3. The processor configuration
for this graph is our baseline microarchitecture described in Section 3.1.
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Figure 2: Access Latency Versus Number of Ports
A next generation processor [25] with a 100nm technology and a 3.5
GHz clock frequency is modeled. Each horizontal line on the graph
represents one clock period (0.2857ns) at 3.5 GHz. These latencies are
obtained using Cacti 2.0 [21]. We use the minimum block size of eight
bytes in this graph. Cacti allows two read/write ports to be modeled.
We model the first two ports this way and the remainder of the reported
number of ports as one read port and one write port.

delay [3].
Value predictors in literature do not typically account for

the table access latency. However, this latency can quickly
become an issue in reasonable predictor configurations. For
example, consider a two-level context value predictor for a
wide-issue microprocessor where each table is direct-mapped
with 8192 entries. Based on the latencies in Figure 2, access-
ing such a context predictor (8-ports for each table) takes
28 total cycles, 14 cycles for each table. These values do
not even include the latency for value calculation, selection
logic, and value routing.

Prediction Latency Overlaps Execution: Excessive
value prediction latency is a detriment to overall instruc-
tion throughput. It reduces the effectiveness of successful

predictions by prolonging the resolution of data dependen-
cies. A lengthy latency for computing a predicted value can
overlap with the out-of-order processing of instructions, al-
lowing an instruction to produce its actual result before the
predicted result is even available!

The graphs in Figure 3 illustrate the distribution of in-
struction execution latencies for load instructions and in-
teger operations. For load instructions, the execution la-
tency is measured from instruction rename to the return of
a value from the memory subsystem. For integer operations,
latency is from instruction rename to the completion of ex-
ecution. The perceived execution latency can be reduced or
even eliminated by timely and successful value prediction.
However, there is no benefit to speculating on an instruction
value if the prediction latency exceeds the execution latency.

The figure reveals that value predictor latencies that ex-
tend just a few cycles past instruction rename will not be
able to provide predictions quickly enough for a large per-
centage of instructions. A successful value prediction which
is provided three cycles after an instruction is renamed ben-
efits 81-99% of load instructions. However, predictions pro-
vided eight cycles past rename can no longer help 41-77%
of loads. Most of the load instructions fall into the 4-7 cy-
cle category. These are the data cache hits. On the other
hand, a large percentage, 13-51%, of integer operations ex-
ecute within three cycles, but not many fall within the 4-7
cycle category. In both cases, approximately half of the in-
structions benefit from successful value predictions produced
within eight cycles of the rename stage.

Excessive Energy Consumption: More transistors,
higher clock rates, increased speculation, and wider microar-
chitectures all contribute to the growing problem of energy
consumption. Always a concern for embedded processors,
energy is now driving high-performance microprocessor de-
sign as well. Useful value predictors are typically composed
of one or more large cache-like structures. Commonly stud-
ied table sizes range from 8KB to 160KB and beyond. In
each cycle, multiple instructions must read from and write to
this structure to maintain high performance in a wide-issue
microprocessor. In the SPEC CPU2000 integer benchmarks
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Figure 3: Distribution of Rename to Result Times Measured in Clock Cycles
The benchmarks are the SPEC CPU2000 integer benchmarks described in Section 3. The processor configuration for this
graph is our baseline microarchitecture detailed in Section 3.1. The bars are decomposed into groupings based on the number
of cycles shown in the legend.

analyzed in this work, 45% to 82% of all instructions are
candidates for value prediction. With this level of activity
and the complexity of value predictors, an understanding of
the energy requirements is essential.

Figure 4 underscores the impact that ports and associa-
tivity have on energy. The number of ports is varied for
different numbers of table entries in Figure 4.a, while asso-
ciativity is varied in Figure 4.b. Increasing either design fac-
tor is expensive in terms of energy, but note that the energy
scale for associativity (number of ports fixed at four) is more
than double that of the ports graph. So while access latency
is dominated by delay due to ports, energy consumption is
more sensitive to the associativity. These graphs solidify the
notion that straightforward steps to increase performance
can cost designers in energy consumption.

A value predictor may not dominate overall energy con-
sumption, but our results confirm that it can contribute
non-trivially. Since a value predictor is read and updated
by multiple instructions each cycle, it consumes more total
energy than similar sized instruction and data caches. Us-
ing measured port access counts from simulation and the
modeled port access energy, we find that a four-ported at-
fetch hybrid predictor (as described in Table 3) consumes
almost 10 times more energy than all of the on-chip caches
combined! Although on-chip caches store large amounts of
data, the energy consumed is not dramatic since the num-
ber of ports is typically limited to one or two. In addition,
the cache port accesses are less frequent than value predic-
tor port accesses. (More details are provided in Section 4.3).

Contributions: Value prediction is often studied in ideal
and theoretical configurations to determine its potential. In
this work, we study how value prediction will perform in a
wide-issue, high-frequency environment with realistic con-
straints on the number of read and write ports, table access
latencies, and energy requirements. These constraints are
applied to known value predictors and proposed derivatives
to understand their impact on performance. We look at
the implications of performing value prediction both at the
front-end and back-end of the processor pipeline. Based on

our observations, we propose a latency and energy aware
form of value prediction that reduces value prediction com-
plexity and energy consumption while maintaining high per-
formance. In addition to the analysis in this section, the
contributions of this work include:

1. Studying the sensitivity of value prediction speedup to
access latencies and port considerations. The perfor-
mance gained from increasing the number of ports is
tempered by the resulting increase in latency.

2. Proposing a latency and energy aware (LEA) form of
value prediction. LEA prediction yields high-
performance, low-complexity value prediction. The
centralized PC-indexed value prediction tables are elim-
inated in LEA prediction in favor of trace-based reads
from a specialized cache (as in decoupled prediction)
and trace-based updates of buffered prediction traces.

3. Comparing performance of several methods and con-
figurations of value prediction in the presence of la-
tency considerations. We compare the LEA predic-
tor to hybrid and stride versions of the traditional at-
fetch value predictor and post-decode value predictor,
as well as a decoupled value predictor. The decou-
pled predictor provides the best performance, achiev-
ing 10.2% speedup versus the base architecture with
no value prediction.

4. Extending the analysis to account for the energy for
a variety of value predictors. LEA value prediction
reduces the dynamic table access energy by 58%-95%
while achieving 8.6% speedup versus the base archi-
tecture.

The remainder of this paper is organized as follows. Sec-
tion 2 explains at-fetch, post-decode, decoupled, and LEA
value predictions. Section 3 describes our evaluation method-
ology. Section 4 compares several value predictor strategies
with respect to performance and energy. Section 5 discusses
related value predictor work. Section 6 summarizes and con-
cludes the paper.
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Figure 4: Energy Per Port Access for Potential Predictor Sizes in 100nm Technology
The energy per port access values are obtained using Cacti 2.0. We use the model’s minimum block size of eight bytes in
this graph. Cacti supports a minimum of one read/write port and a maximum of two to be modeled. We model the first two
ports this way and the remainder as one read port and one write port.

2. VALUE PREDICTOR PLACEMENT AND
IMPLEMENTATION CHOICES

We examine multiple points for predicting an instruction
value. Two basic methods are seen in the literature, at-
fetch front-end prediction and decoupled back-end predic-
tion. Each stage has advantages and drawbacks which are
discussed below. To address the drawbacks, we study post-
decode prediction as a front-end alternative, and latency and
energy aware prediction as a back-end option.

2.1 At-fetch Value Prediction
Performing value prediction at instruction fetch is a com-

monly assumed implementation [5, 10, 14, 22]. In a typical
processor, an instruction address can be sent to the fetch
logic each cycle. This same fetch address is used to access
the value predictor. Based on the fetch PC, the value pre-
dictor generates predictions for all of the instructions being
fetched in that cycle.

This imposes two restrictions. In a processor that fetches
beyond branches in a single cycle (such as trace cache pro-
cessors), the instruction PCs can be non-contiguous. De-
termining the PC for each fetched instruction requires more
information than is typically available at fetch. Solutions for
acquiring multiple predictions with a single access that may
work when fetching up to the first branch, such as banking,
no longer work well [10]. The second restriction is the lack of
instruction type information. During fetch, the instruction
types are indistinguishable, so value prediction resources are
being consumed by instructions that are not eligible for pre-
dictions (branches, stores, floating point operations). This
proves costly for a port-constrained predictor.

The advantage of at-fetch prediction is compelling. In
general, there is no need for a predicted value until the in-
struction has been decoded and renamed. Therefore, in at-
fetch prediction some or all of the value predictor’s table
access latency is hidden by the instruction fetch latency and
decode stages.

2.2 Post-decode Value Prediction
An alternative to predicting at fetch time is to predict

after the instruction is decoded. After instruction decode
there is more information available about the instruction.
The PCs for any non-contiguous instructions beyond the
first branch are known, allowing more instructions to access
the value prediction hardware. Using the instruction type
information obtained at decode, more judicious read port
access arbitration can take place, limiting access only to
instructions that generate results. Access to this type of
post-decode information is commonly (and optimistically)
assumed for at-fetch predictors.

The disadvantage of post-decode prediction is that the
value predictor access latency can no longer be hidden by
earlier stages of the pipeline. Value predictions are being
initiated at the point when the predicted value is ideally
desired. Every extra cycle means a delay in breaking a pos-
sible data dependency. If there is any delay in obtaining
a value prediction, the corresponding instruction will enter
the instruction window.

2.3 Decoupled Value Prediction
Predicting at fetch time or after instruction decode in-

volves computing the predicted value just before an instruc-
tion needs it. Instead, prediction computation for an in-
struction can be done immediately after a previous instance
of the instruction retires. In decoupled value prediction, an
instruction retires and updates the value predictor table as
in traditional value prediction. Then the retired instruction
accesses the value predictor again right away and computes
a new prediction. This predicted value is stored in a Pre-
diction Value Cache (PVC) and can be used by the next
instance of the instruction. Two versions of the decoupled
value predictor have been presented, one for machines with
trace caches [12] and one for machines with no trace cache
[13]. The trace cache strategy is used in this paper since it
fits perfectly within the wide-issue environment being eval-
uated. The following summary applies to both strategies.

The fill unit [26] stores the predicted value and some ad-
ditional bits for each instruction in the PVC. This cache is
indexed just like the instruction cache (either a traditional
instruction cache or a trace cache) and there is a one-to-



one mapping of instruction to predicted values in the PVC.
Therefore, based on the fetch PC, one prediction is avail-
able for each instruction in the cache line. This is similar
to cache banking in that one fetch provides multiple predic-
tions. The cache and PVC have similar sizes and latencies,
so the predictions arrive in parallel with the fetched instruc-
tions. This eliminates both the access latency problem and
the port arbitration problems.

From a complexity and energy standpoint, decoupled value
prediction offers little help. It maintains the traditional cen-
tralized PC-indexed value predictor table and structure. At
retire-time this table must be both read to perform new
value predictions and updated by retiring instructions. The
number of read accesses decreases since wrong-path instruc-
tions (from mispredicted branches) do not ever access the
value prediction tables. The additional PVC also requires
area and consumes energy with its own reads and updates,
although they occur with less frequency than value predictor
table updates.

The primary performance weakness of this approach is
the dependency on cache performance. Predictions are lost
whenever a cache line is kicked out. Any instructions fetched
from outside the cache receive no prediction. Another prob-
lem is staleness. Gathering a prediction for an instruction
immediately after update produces a different result than
waiting for the instruction to be fetched again. This is espe-
cially true if multiple instances of the instruction are present
in the instruction window simultaneously (e.g. a tight loop).

2.4 LEA Value Prediction
In this section we present a latency and energy aware

(LEA) value prediction technique to address the energy and
complexity concerns of decoupled value prediction. The nov-
elty of LEA prediction is that it does away with the central-
ized PC-indexed value prediction table. Instead, predicted
values are always kept in trace form and trace-based up-
dates are performed in the fill unit. This is made possible
by including stride information in the PVC along with the
predicted value.

As shown in Figure 5, value predictions are fetched in
trace format from the PVC and fed to the processor core
as in decoupled prediction. This method of value predic-
tion reduces complexity and energy versus decoupled value
prediction by eliminating the centralized, multi-ported PC-
indexed tables and replacing them with a queue of predic-
tion traces. This requires a separate Prediction Trace Queue
(PTQ) in the fill unit to buffer the prediction traces. This
queue is more energy efficient than value prediction tables
because it is direct-mapped, requires only one read and one
write port, needs fewer entries (since multiple predictions
are stored in one entry), and is accessed fewer times.

The prediction traces persist in the PTQ until the related
instructions retire. While the fill unit is creating new traces
from the retired instructions, the fill unit value prediction
logic compares the final values to the predicted values from
the oldest trace in the PTQ1. New predictions are then com-
bined by the fill unit logic into a prediction trace which is
stored in the PVC.

We analyze two types of LEA prediction. One version,
referred to simply as LEA, uses basic stride prediction which
requires only the value, a 16-bit stride, and two bits for

1
Wrong-path instructions exist in the PTQ, but it is relatively simple

to recognize this condition and to ignore or discard those predictions.
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Figure 5: Overview of Latency and Energy Aware
Value Prediction

Up to 16 instructions and corresponding predictions are fetched to-
gether from the trace cache and PVC, respectively. The instruction
trace passes through the pipeline as usual. The trace of predictions
advance in a similar manner, and are placed in the ROB during in-
struction rename. The prediction trace is then stored in the PTQ until
it is needed by the Fill Unit at instruction retirement.

confidence. The other version does matched (also know as
two-delta) stride prediction which requires another 16-bit
stride. We call this LEA+.

LEA prediction is restricted to performing value predic-
tion based on one-level algorithms, such as stride prediction.
Context prediction, and thus traditional hybrid prediction,
are no longer feasible without requiring extra hardware and
increasing the PVC and PTQ sizes. Also, the PVC experi-
ences the redundancy phenomenon seen in trace caches [17,
19]. Prediction values for a particular instruction can ex-
ist in multiple prediction traces if the instruction is found
on multiple paths. However, we have seen that trace-like
storage is often an advantage due to correlation and context
effects.

3. METHODOLOGY
In this section, we describe the benchmarks and simu-

lation environment used to study value predictor trade-offs.
We examine the integer benchmarks from the SPEC
CPU2000 suite [27]. The SPEC programs are dynamically
linked and compiled using the Sun C Compiler with the
-fast -xO5 optimizations. The benchmarks and their re-
spective inputs are presented in Table 1. All benchmarks
are run for 100 million instructions after skipping the first
100 million instructions.

3.1 Baseline Microarchitecture
To perform the simulations, we use a functional, program-

driven, cycle-accurate simulator. Given a SPARC executable
as input, the front-end functional execution is performed
by the Sun tool Shade [6]. The simulator models aggres-
sive instruction-level parallelism techniques, as well as all
resource contentions and speculative execution. The basic
pipeline consists of eight stages: three stages of fetch plus
decode/merge, rename, issue, execute, and writeback. Mem-
ory operations require additional pipeline stages, including
TLB access and cache access. We assume the same clock



Table 1: SPEC CINT2000 Benchmarks

Benchmark Inputs
bzip2 input.random 2
crafty crafty.in
eon chair.control.kajiya chair.camera chair.surfaces

chair.kajiya.ppm ppm pixels out.kajiya
gap -l ./ -q -m 64M test.in
gcc cccp.i -o cccp.s
gzip input.compressed 2
mcf inp.in
parser 2.1.dict -batch test.in
perlbmk -I. -I./lib splitmail.pl 1 5 19 18 150
twolf test
vortex bendian.raw
vpr net.in arch.in place.out dum.out -nodisp -place only

-init t 5 -exit t 0.005 -alpha t 0.9412 -inner num 2

frequency in all simulations (3.5 GHz in 100nm technology),
and adjust value predictor latencies based on this fixed time
period. The parameters for the simulated base microarchi-
tecture can be found in Table 2.

Table 2: Baseline Microarchitecture Configuration

Data memory

L1 Data Cache: 4-way, 32KB, 2-cycle access
L2 Unified cache: 4-way, 1MB, 10 cycles
Non-blocking: 12 MSHRs and 2 ports
D-TLB: 512-entry, 4-way, 1-cyc hit, 30-cyc miss
Store buffer: 32-entry w/load forwarding
Load queue: 32-entry, no speculative disambiguation
Main Memory: Infinite, 75 cycles

Fetch Engine

Trace cache: 4-way, 1K entry, 3-cycle access
partial matching, no path assoc.

L1 Instr cache: 4-way, 4KB, 1-cycle access
one basic block per access

Branch Predictor: 16k entry gshare/bimodal hybrid
Branch target buffer: 512 entries, 4-way

Execution Core

· Functional unit # Exec. lat. Issue lat.
Load/store 6 1 cycle 1 cycle
Simple Integer 8 1 1
Int. Mul/Div 2 3/20 1/19
Simple FP 4 3 1
FP Mul/Div/Sqrt 1 3/12/24 1/12/24
Branch 4 1 1

· Data Forwarding Latency: 1 cycle
· Register File Latency: 2 cycle

· 128-entry ROB
· 8 reservation station entries per func. unit
· Fetch width: 16
· Decode width: 16
· Issue width: 16
· Execute width: 16
· Retire width: 16

The trace cache and value predictor latencies are mod-
eled with Cacti 2.0 [21, 31]. The trace cache access latency
is noticeably lower because it has just one read/write port.
The configurations of the remaining cache structures are
intentionally aggressive to place a little extra pressure on
the instruction window and execution resources. Cacti 2.0
projects a four cycle latency for our data cache configura-
tion. Applying this latency would reduce overall processor
performance, but increase the relative benefit of all forms

of value prediction. However, we simulate a more aggres-
sive two-cycle latency so that the load latency effect is less
prominent.

3.2 Simulated Value Predictors
The simulated value predictors are shown in Table 3. The

Unconstrained configuration is an aggressive but unrealistic
value predictor with no port restrictions and zero latency.
This is primarily presented for comparison purposes. All
value predictors are assumed to be fully pipelined and ca-
pable of serving new requests every cycle. Since the clock
frequency is fixed, the access latency is altered if necessary
when the value predictor configurations are changed. The
modeled latency from Cacti is divided by the clock period
(0.2857 ns) to produce the latency. This is an optimistic as-
sumption, partly because pipelining overheads are not con-
sidered.

For all value predictors, each table is direct-mapped,
tagged2, and updated by every result-producing instruction.
When a value misspeculation is encountered, the microar-
chitecture reissues all instructions younger than the mispre-
dicted instruction.

The number of table entries for the context predictor is
chosen based on the observation that stride prediction is
the main contributor to hybrid performance. For hybrid
configurations we picked a high-performing stride predictor
configuration and used its latency to fix the sizes of the other
sub-predictors. In the case of a 4096-entry stride predictor,
there is no reasonable two-level configuration that can be
accessed in parallel.

The unhidden latency for the post-decode predictors
equals the total prediction latency. The unhidden latency
for the at-fetch predictors is the total prediction latency mi-
nus the four fetch and decode pipeline stages. Table access
latency only accounts for reading data from predictor en-
tries. The process of calculating and choosing a value and its
prediction status is lumped into one cycle for hybrid predic-
tors and ignored for stride predictors. Update latencies are
modeled (16 cycles for all predictors), but we find that up-
date latencies have negligible effects on overall performance.

The two-level value predictor used in hybrid prediction
is similar to the one discussed by Wang and Franklin [30].
The stride predictors studied use matched (two-delta) stride
prediction [7]. The stride predictor uses a two-bit saturat-
ing counter for its internal prediction confidence mechanism.
Each sub-predictor in the hybrid predictor tracks its pre-
diction confidence with a four-bit saturating counter. The
confidence is incremented by one when the sub-predictor is
correct and decremented by three when it is incorrect. The
hybrid predictor uses the prediction from the sub-predictor
with the highest confidence, as long as that value is greater
than the threshold of 12. For the indicated hybrid predictor
simulations, we simulate a perfect confidence mechanism.
In this case, if any of the sub-predictors produce the cor-
rect value, then this value is chosen. Even with a perfect
confidence mechanism, the value predictor can speculate in-
correctly if none of the sub-predictors produce the proper
value. More details on the value predictor configurations
can be found in our accompanying report [3].

2
Using tags trades energy savings for noticeable performance, even

in direct-mapped predictors. This is a difficult trade-off and we ul-

timately use tags so that the Cacti (a cache simulator) results will

more accurately represent our simulated predictors.



Table 3: Table Access Parameters for Analyzed Value Predictors
Predictor LVP Entries Stride Entries Context Entries Ports Total Prediction Lat. Unhidden Lat.
Unconstrained 8192 8192 8192 16 0 cycles 0 cycles
At-fetch Hybrid 8192 8192 1024 4 8 cycles 4 cycles
At-fetch Stride - 4096 - 4 5 cycle 1 cycle
Post-decode Hybrid 8192 8192 1024 4 8 cycles 8 cycles
Post-decode Stride - 4096 - 4 5 cycles 5 cycles
Decoupled 8192 8192 8192 4 3 cycles 0 cycles
LEA/LEA+ - - - - 3 cycles 0 cycles

Ports refers to the available ports at read or write, modeled as two read/write ports and then matching read-write pairs beyond that.
Total Prediction Lat. is the latency in clock cycles from value prediction request until a value is produced. Unhidden Lat. is the
number of total prediction latency cycles that extend past rename.

4. ANALYSIS
This sections first presents an analysis of value predictor

sensitivity to latency, access ports, and predictor size. Un-
derstanding these effects, a comparison of the different value
prediction strategies is performed. After analyzing the pre-
dictors strictly from a performance point of view, we study
the energy implications of each configuration.

For aesthetic reasons, in the speedup figures, the geomet-
ric mean of all 12 SPEC CINT2000 benchmarks is presented
along with select individual benchmarks. These selected
benchmarks represent different performance levels attain-
able with value prediction. We chose three programs that
show the highest performance speedup from value predic-
tion (perlbmk, bzip2 and gap), two that show reasonable
speedup (crafty and parser), and three that show low
speedup (mcf, cc1 and eon). The other four benchmarks do
not show visually different trends from the selected bench-
marks but are included in the geometric mean.

4.1 Effects of Table Access Latency
This section analyzes the impact of value predictor la-

tency on performance. Figure 6 presents speedup as the
access latency is altered for a version of the Unconstrained

predictor with non-zero latencies. The latency (lat) is the
unhidden latency, i.e. the number of cycles between when
an instruction is renamed and when its predicted value be-
comes available. The assumption in previous value predictor
work is that unhidden latency is zero.

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

bzip2 cc1 crafty eon gap mcf parser perlbmk GM All
12

S
pe

ed
up

V
er

su
s

B
as

e
W

ith
N

o
V

P

lat0 lat1 lat2 lat3 lat4 lat8 lat16 lat32

Figure 6: Effect of Unhidden Table Access Latency
lat is the number of cycles after an instruction is decode that its pre-
dicted value becomes available.

The figure shows that unhidden latency can significantly

affect performance. One extra cycle of value predictor la-
tency reduces overall performance, but by less than 0.5%
for the whole benchmark suite. Applying four cycles of
unhidden latency to predictor access reduces the absolute
speedup by 1.7%, a significant portion of the original 10.5%
speedup. As the unhidden latency increases, a larger per-
centage of instructions are able to compute a result for them-
selves and the benefits of successful value prediction deterio-
rate. However, it is interesting to note that even with 32 cy-
cles of unhidden latency, there is still potential for achieving
4.0% speedup with value prediction. Although few instruc-
tions take 32 cycles to complete execution, the impact of
successfully predicting their results still provides noticeable
speedup.

Factors that have a large effect on value prediction table
access latency include the number of ports and the number
of entries in the tables. Access ports are isolated in Figure 7
using the Unconstrained configuration. Port arbitration is
done on a first-come, first-serve basis. Therefore, decreasing
the number of ports reduces the number of instructions that
have the opportunity to access their prediction entry.
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Figure 7: Effect on Performance of Restricted Ports
Ports are expressed in the number of read and write ports. This is
modeled in Cacti as two read/write ports and read and write port pairs
after two.

Figure 7 illustrates that reducing read ports to 12 in a 16-
wide environment affects performance very little. Having
eight read ports limits value prediction coverage, but still
provides reasonable performance, 1.2% below the 16-port
configuration on average. However, reducing the number
of read ports to four cuts the average speedup from 10.2%
to 7.4% versus a 16-port configuration. With an average



trace length of around 11 instructions, a significant number
of predictable instructions will never get a chance to access
the value predictor.

In Figure 8, the number of table entries is varied for a hy-
brid predictor. The number of entries shown in the legend
apply to all of the tables in the hybrid predictor. The largest
configuration is double the size of the Unconstrained predic-
tor. Each subsequent configuration is obtained by reducing
the table by half, ending with 1024 entries. On average,
the 8192-entry hybrid predictor provides very similar per-
formance to the 16k-entry predictor. With 1k-entry tables,
it is still possible to reach 62% of the 16k-entry predictor
speedup. However, to maintain high performance, 4096-
entry and 8192-entry tables are attractive.

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

bzip2 cc1 crafty eon gap mcf parser perlbmk GM All
12

S
pe

ed
up

V
er

su
s

B
as

e
W

ith
N

o
V

P

1024 2048 4096 8192 16384

Figure 8: Effect on Performance of Number of Table
Entries

4.2 Comparing Prediction Strategies
In this section, performance is presented for specific im-

plementations of the value prediction strategies covered in
this work. The analysis in Section 4.1 shows that tables with
eight ports incur high access times and energy consumption,
while those with two ports lead to a significant performance
decrease. Tables with less than 4096 entries are too small
for high performance, but those with more than 8192 entries
provide little benefit given the energy and latency penalty.
Therefore, we focus on two port/size configurations, 4096-
entry tables with four ports and 8192-entry tables with four
ports (as discussed in Section 3.2, Table 3).

Figure 9 compares the overall performance of each value
prediction strategy and latency-constrained configuration.
In this section, the Unconstrained, at-fetch, post-decode,
and decoupled hybrid predictors use perfect confidence for
choosing among the sub-predictors. Two versions of LEA
prediction are also analyzed. One performs matched stride
prediction (LEA+) while the other performs basic stride pre-
diction (LEA).

On average, decoupled value prediction has the best per-
formance, achieving 10.2% speedup over the base model.
Expectedly, it does not reach the performance of
Unconstrained, but does achieve 77% of its speedup. The
two versions of LEA achieve the next best performance, with
LEA+ (8.6% speedup) expectedly outperforming LEA (7.5%
speedup). The traditional at-fetch hybrid predictor pro-

duces a 6.8% speedup but falls far short of Unconstrained.
This is notable since at-fetch value predictors are often mod-
eled with assumptions similar to that of the unconstrained
predictor.

The post-decode hybrid predictor is able to match the
performance of the at-fetch hybrid predictor. This is some-
what surprising since post-decode predictors cannot hide ac-
cess latency like at-fetch prediction. However, post-decode
predictors perform more successful predictions as a result
of better read port utilization. Even for small predictors
whose latency can be fully hidden in the at-fetch scenario,
post-decode predictors perform comparably or even better.

The performance superiority of the decoupled and LEA
value predictors is not surprising since there is intrinsically
no unhidden latency. In addition, the prediction read band-
width is effectively unconstrained by ports because the pre-
dictions are in a trace format. These performance results
highlight the advantage of performing completion time pre-
dictions and acquiring multiple predictions with one access.

The advantage of decoupled prediction over LEA predic-
tion is the result of performing hybrid prediction versus
matched stride prediction. The staleness concerns men-
tioned earlier do not manifest in these simulations. All
prediction strategies face this problem to some degree be-
cause of the large instruction window and retire-time up-
dates. Speculative updating of the value predictor (which is
complex and has high energy consumption) is required for
the at-fetch and post-decode strategies to realize a perfor-
mance advantage over predictors that generate prediction
information at instruction retire.

4.3 Energy Analysis
In addition to performance enhancement, it is important

to understand the energy requirements of value predictors.
Figure 10 reports relevant port access occurrences for a pre-
dictor similar to Unconstrained, but restricted to four ports.
Each port access consumes energy, so one important aspect
of low-energy value prediction is to reduce these counts.

The first column for each benchmark is the number of
port accesses that take place during execution due to value
predictor reads (VP Read). Only load and integer instruc-
tions access the predictor since it is a post-decode predictor.
The next column, VP Update, is the number of port accesses
made at instruction retire due to updates to the value pre-
dictor. The TR Read column is the number of traces read.
Since the PVC is synchronized with the trace cache in this
work, this number is equivalent to the number of port ac-
cesses due to PVC reads for decoupled and LEA predictors.
(The TR Read value for mcf is less than 100,000 and therefore
looks like zero on this graph.) The final column represents
trace cache builds, TR Build. Retired instructions are coa-
lesced to make a trace and then selectively written to the
trace cache by the fill unit.

While a trace of instructions is frequently similar to a cur-
rently stored trace, traces of values almost always change
so the PVC is written on each trace build. VP Update is
greater than VP Read when there are predictable instruc-
tions that do not obtain access to a read port. All eligible
instructions perform updates whether or not they read a
prediction. VP Read is greater than VP Update when a large
number of wrong-path instructions access the read ports.
These instructions do not retire and therefore do not per-
form updates.
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Figure 9: Comparison of Prediction Strategies
DVP is decoupled value prediction. AF is at-fetch value prediction. PD is post-decode value prediction. The at-fetch,
post-decode, and decoupled hybrid predictors use perfect confidence for choosing.
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Figure 10: Table Port Accesses
The predictor used is a four-ported hybrid post-decode predictor with
8192-entries per table and a 0 total access latency.

Table 4 outlines all of the value prediction hardware used
in the evaluated predictors. For instance, the at-fetch hybrid
predictor discussed in the previous sections consists of the
two levels of the context sub-predictor each with a 1024-
entry table, the 8192-entry table of the stride sub-predictor,
and the 8192-entry table of the LVP sub-predictor. On the
other hand, the LEA predictor requires the 1024-entry PVC
and a 32-entry PTQ. Three different PVC structures are
presented, allowing for the differing sizes of per-instruction
data that are stored for the decoupled, LEA, and LEA+
predictors. To determine the total energy for each prediction
strategy, we use port access counts (similar to Figure 10)
for each predictor and then multiply those totals by the
corresponding energy per port access from Table 4. It is
assumed that the energy to perform a write is equivalent to
the energy to perform a read.

The equations used for determining the overall energy of
our value prediction strategies are presented with Table 4.
The term in the Energy Notation field is the variable used
in the equations to represent port access energy for the par-

ticular hardware structure. The subscript E stands for en-
ergy. The variable hybridE is the energy required to access a
hybrid predictor, defined directly below the Equation 6. The
terms VP Read, VP Update, TR Read, and TR Build have the
same meaning as in the previous discussion of Figure 10.
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Figure 11: Energy Consumption of Value Predictors
and On-chip Caches.
Caches Combined is the Data L1, Trace Cache, Instruction L1, and Uni-
fied L2 combined energy

To put the energy consumption of value prediction into
perspective, Figure 11 compares the dynamic access energy
of value prediction to the energy of the L1 data cache, L1 in-
struction cache, L2 cache, and trace cache from our baseline
microarchitecture. Moreno et al. [16] present a classifying
hybrid predictor where only one prediction table is “turned
on” during a value prediction. Taking this possibility into
account, Decoupled Gated is also presented. In this config-
uration, only the stride predictor energy is consumed and
the other tables are assumed to consume no energy.

Studying just the value predictor energy results, the hy-
brid predictors (At-Fetch Hybrid and Decoupled) consume
more energy than other configurations. The stride predic-
tor versions of at-fetch and the gated decoupled predictors



Table 4: Energy Parameters for Value Predictor Structures
Structure Energy Notation Entries Block Size Assoc Ports Energy Per Port Access
1k-entry Context L1 Table 1kCtxtL1E 1024 16B 1 4 2.7108 nJ
1k-entry Context L2 Table 1kCtxtL2E 1024 8B 1 4 2.2605 nJ
4k-entry Stride/LVP Table 4kTableE 4096 8B 1 4 3.8961 nJ
8k-entry Stride/LVP Table 8kTableE 8192 8B 1 4 5.7957 nJ
Decoupled Prediction Value Cache DVPPVCE 1024 64B 2 1/1 2.4213 nJ
LEA Prediction Value Cache LEAPVCE 1024 96B 2 1/1 2.6194 nJ
LEA+ Prediction Value Cache LEA+PVCE 1024 128B 2 1/1 5.1731 nJ
LEA Prediction Trace Queue LEAPTQE 32 96B 1 1/1 0.5435 nJ
LEA+ Prediction Trace Queue LEA+PTQE 32 128B 1 1/1 0.5847 nJ

The energy per port access is for a read access and is calculated using Cacti 2.0. The 1/1 value for Ports refers to one read/write
port and one read port. The Ports for the value prediction tables are modeled as two read/write ports plus two read and write
port pairs. Eight bytes is the minimum allowable block size in the Cacti 2.0 model.

Equations used to determine total energy for each predictor strategy:
(1) At-fetch HybridE = (VP Read * hybridE) + (VP Update * hybridE)
(2) At-fetch StrideE = (VP Read * 4kTableE) + (VP Update * 4kTableE)
(3) Decoupled HybridE = (VP Update * hybridE) + (TR Read * DVPPVCE) + (TR Build * DVPPVCE)
(4) Decoupled GatedE = (VP Update * 4kTableE) + (TR Read * DVPPVCE) + (TR Build * DVPPVCE)
(5) LEA+E = (TR Read * LEA+PVCE) + (TR Build * LEA+PVCE) + (2 * TR Read * LEA+PTQE)
(6) LEAE = (TR Read * LEAPVCE) + (TR Build * LEAPVCE) + (2 * TR Read * LEAPTQE)
...where hybridE = (8kTableE + 8kTableE + 1kCtxtL1E + 1kCtxtL2E)

do significantly better, consuming 4.1 and 2.8 times less en-
ergy. However, LEA prediction is a far more energy-efficient
method for value prediction. Trading the PC-indexed value
prediction tables for a smaller, single-ported trace-accessed
Prediction Trace Queue is the main source of energy re-
duction. LEA+ uses one-fifth the energy of the next-best
non-LEA value predictor. LEA with basic stride prediction
has smaller entries and is even more energy efficient, reduc-
ing energy by almost one-half versus LEA+. This energy
analysis highlights the primary benefits of LEA prediction.

The lower portion of Figure 11 presents the energy con-
sumed by the on-chip caches. An at-fetch hybrid predic-
tor consumes 14 times as much energy than all of the on-
chip caches combined. The at-fetch stride predictor and the
gated decoupled predictor prove to be more energy friendly,
but still consume 3.29 and 2.74 times the energy of the on-
chip caches. The reduction in energy is a direct result of
the value predictor ports being accessed more often than
the cache ports. Each instruction must access a port for
reading and writing. However, in the trace cache, multiple
instructions are retrieved with just one port access. These
results assume that a fetch occurs from either the instruc-
tion cache or the trace cache data, but never both on the
same fetch. Finally, only the LEA predictors has similar
energy consumption as the caches.

In an extended version of this work [3], load-only value
prediction is found to have lower energy requirements than
LEA prediction. A two-ported, post-decode, 4k-entry stride
load value predictor is analyzed, and it consumes 22% of
the energy of LEA+ value prediction. However, it only
produces 4.5% speedup, lowest of the predictors analyzed.
Even under optimal conditions (similar to Unconstrained),
load value prediction only allows for 6.2% speedup for these
benchmarks.

5. RELATED WORK
There have been many strategies proposed for data value

prediction. The primary ones include last value prediction
[14, 15], stride prediction [9, 11], context prediction [24, 30],
and hybrid prediction [22, 30]. More recently, hybrid pre-

dictors with the ability to dynamically classify instructions
have been evaluated [12, 23]. In this work, we look primar-
ily at advanced hybrid predictors with a last value predictor,
stride predictor and a context predictor, but without the dy-
namic classification schemes.

5.1 Reducing Size and Increasing Efficiency
There have been several proposals to reduce the size of

value predictors, particularly hybrid predictors. It is pos-
sible to share hardware and improve table efficiency while
maintaining or increasing performance. As shown in this
work, hybrid predictors can be very expensive in size and
power. So any efforts to reduce table size will help both the
energy and latency aspects of value prediction. However,
the port problem still exists, and the reduced state often
comes with an increase in access complexity and post-access
logic, which add to predictor latency.

Burtscher and Zorn [4] propose a hybrid load-only value
predictor which performs better than predictors with more
state, similar to the ones studied in this work. They are
able to reduce the hybrid predictor size in half using state
sharing and value compression techniques while increasing
performance. Similarly, Pinuel et al. [18] explored a more
efficient hybrid value predictor that exploits redundant pre-
dictions (e.g. last value predictor, stride predictor, and con-
text predictor all unnecessarily do last value prediction).

A very high performing context value predictor is the dif-
ferential FCM predictor by Goeman et al. [2]. This predictor
uses the FCM scheme for context prediction [24] to predict
strides (difference in values) instead of the actual values.
This strategy for prediction increases the efficiency of the
tables, especially the second level table.

Tullsen et al. present a method of storageless value pre-
diction [28]. Their method is based on exploiting locality of
register values. By using values already in registers, there
is no need to store these values in a value prediction table.
Using static and dynamic approaches with compiler assis-
tance, they show improvement over a 1024-entry last value
predictor. While the energy requirements of this technique
may be less than typical predictors, the performance lags
that of high-performance value predictors.



5.2 Port Constrained Value Prediction
Calder et al. [5] present techniques to determine when to

use value predictions and which instructions to value pre-
dict. They investigate limiting the instructions that update
the predictor and the instructions that consume predicted
values. This work is based on determining critical paths.
Tune et al. continue this work with Critical Path Predic-
tions which they apply to value prediction [29]. Their archi-
tecture allows only one value prediction per cycle (one read
port). Critical Path Prediction is used to determine which
instructions will use this resource. Fields et al. also propose
a mechanism to isolate critical instructions, but they apply
it to value prediction update [8].

Lee et al. propose a decoupled value prediction for pro-
cessors with a trace cache [12]. Our decoupled predictor
is based on this model. They perform value predictions at
instruction retire using a dynamic classification value pre-
diction scheme based on a scheme by Rychlik et al. [23].
The goal of this work is to remove value prediction from
the critical path in instruction fetch and to reduce the port
requirements for the four value prediction tables.

Gabbay and Mendelson study the effects of fetch band-
width on value prediction [10]. The authors propose a highly-
interleaved prediction table for trace cache processors to ad-
dress the observations and issues uncovered in their work.
Their simulated architecture uses idealized components to
stress the instruction fetch and value prediction aspects of
the work. They also measure the distance between produc-
ers and consumers in numbers of instructions, similar to the
issue to consume latency which we measure in number of
cycles.

5.3 Energy and Latency
There have been efforts to quantify the performance im-

pact of latency-constrained tables for an entire processor [1]
and fetch hardware [20], but there is no work of which we
are aware that has applied these constraints to value predic-
tors. Moreno et al. analyze power-related issues with value
speculation without dealing with restricted ports or latency
issues [16]. They present speedup versus power consumed
for several configurations of value predictors. They note that
a classifying hybrid predictor can potentially reduce the en-
ergy for value predictor reads. They also discuss the power
issues due to mispredicted values and instruction window
complexity.

6. SUMMARY
In this paper, we take a close look at the viability of value

prediction in a high-frequency, wide-issue microprocessor.
Our initial analysis shows that 78-94% of load instructions
and 73-99% of integer operations in the SPEC CINT2000
benchmark suite have a potential consumer within one cy-
cle. This indicates an urgency to break data dependencies.
We also see that about one-third of integer operations exe-
cute in under three cycles. Even value predictors with short
unhidden access latencies will not benefit these instructions.

Based on this analysis, the study focuses on a) the per-
formance impact of table access latency on value predictors
and b) the energy consumed under these constraints when
targeting high performance. We see that unhidden value
predictor latency can cause noticeable performance degra-
dation in a traditional at-fetch value predictor, up to a 62%
reduction in speedup with a latency of 32 cycles. When

carefully choosing the size of the table, number of ports,
and associativity, the actual latency can be much less and
the performance is tolerable.

At-fetch, post-decode, decoupled, and latency and energy
aware (LEA) value predictors are explained and analyzed
with restricted resources and table access latencies. Decou-
pled prediction provides 10.2% speedup over our baseline
processor, the best performance among the studied predic-
tors. It benefits from low-latency high-bandwidth prediction
access from a Prediction Value Cache, and incurs the value
predictor table access latencies only at update time when
the delay does not affect performance.

We propose LEA value prediction to address the complex-
ity and energy consumption shortcomings of decoupled value
prediction. Centralized, PC-indexed value prediction tables
are eliminated. LEA uses the original prediction traces and
performs stride value prediction updates on the buffered pre-
diction traces at instruction retire in the fill unit. These
prediction traces are then stored directly to the Prediction
Value Cache. LEA prediction reduces energy consumption
by 58-95% versus the other value prediction strategies stud-
ied and is the only method that consumes less energy than
the on-chip caches.

Value prediction is an important technique for increasing
instruction level parallelism and improving the utilization
of the resources available in wide-issue microprocessors. In
this work, we have shown that under technology and en-
ergy constraints, value predictors must be chosen with care
to be useful. With the proper latency and energy consid-
erations, value prediction can be a productive mechanism
for achieving high performance in future wide-issue high-
frequency processors.
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