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Abstract

Designing a new microprocessor is extremely time-
consuming. One of the contributing reasons is that com-
puter designers rely heavily on detailed architectural sim-
ulations, which are very time-consuming. Recent work
has focused on statistical simulation to address this is-
sue. The basic idea of statistical simulation is to mea-
sure characteristics during program execution, generate a
synthetic trace with those characteristics and then simu-
late the synthetic trace. The statistically generated synthetic
trace is orders of magnitude smaller than the original pro-
gram sequence and hence results in significantly faster
simulation.

This paper makes the following contributions to the sta-
tistical simulation methodology. First, we propose the use
of a statistical flow graph to characterize the control flow of
a program execution. Second, we model delayed update of
branch predictors while profiling program execution char-
acteristics. Experimental results show that statistical sim-
ulation using this improved control flow modeling attains
significantly better accuracy than the previously proposed
HLS system. We evaluate both the absolute and the rela-
tive accuracy of our approach for power/performance mod-
eling of superscalar microarchitectures. The results show
that our statistical simulation framework can be used to ef-
ficiently explore processor design spaces.

1. Introduction

Designing a new microprocessor is both complex and
time-consuming (taking up to 7 years [19]). Computer de-
signers rely heavily on detailed architectural simulators to
identify the optimal design in a large design space under
a number of constraints such as chip area, power budget,
etc. These architectural simulation tools are at least a fac-
tor of a thousand slower than native hardware execution.
Another issue that contributes to the long simulation time

is the use of real-world applications as benchmarks and the
ever-increasing number of dynamic instructions that need to
be simulated. The increasing performance of current micro-
processor systems coupled with the increasing complexity
of current computer applications means that the dynamic in-
struction count must be increased proportionally to simulate
a respectable time slice of a real system. For example, some
benchmarks in the SPEC CPU2000 benchmark suite have
a dynamic instruction count that is greater than 500 billion
instructions [12]. Since several benchmarks may need to be
simulated and various design points evaluated, the conse-
quences are an impractically long simulation time and an
undesirably long time-to-market.

Researchers have proposed several techniques to shorten
the total simulation time such as sampling [6, 25, 29], re-
duced input sets [18] and analytical modeling [7, 20, 27].
Over the last few years, interest has grown in yet another ap-
proach, namely statistical simulation [5, 8, 9, 10, 21, 22, 23,
24]. The basic idea of statistical simulation is simple: mea-
sure a well-chosen set of program characteristics during ex-
ecution, generate a synthetic trace with those characteris-
tics and simulate the synthetic trace. If the set of charac-
teristics reflects the key properties of the program’s behav-
ior, accurate performance/power predictions can be made.
The statistically generated synthetic trace is several orders
of magnitude smaller than the original program execution,
and hence simulation finishes very quickly. The goal of sta-
tistical simulation is not to replace detailed simulation but to
be a useful complement. Statistical simulation can be used
to identify a region of interest in a large design space that
can, in turn, be further analyzed through slower but more
detailed architectural simulations.

In this paper, we present an improved statistical simula-
tion framework that extends previous work with two ma-
jor contributions. First, we propose the use of a statisti-
cal flow graph to characterize the control flow of a pro-
gram’s execution. Control flow behavior is characterized
by modeling sequences of basic blocks along with their
mutual transition probabilities and execution characteris-
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Figure 1. Statistical simulation: general framework.

tics. This statistical flow graph combines the graph repre-
sentation proposed in the SMART technique by Iyengar et
al. [14, 15] with previously proposed statistical simulation
frameworks [5, 8, 9, 10, 22, 23, 24]. This combines the ma-
jor benefit of SMART, workload modeling accuracy, with
the major benefits of statistical simulation, simplicity and
rapid convergence. Second, we show that it is important to
consider delayed update when characterizing the branch be-
havior. This improved statistical simulation framework is
extensively evaluated by considering both absolute and rela-
tive accuracy in modeling the performance and energy con-
sumption of superscalar microarchitectures. We report an
average error of 6.6% and 4% for predicting performance
and energy, respectively, on an 8-way superscalar out-of-
order processor using SPECint2000 benchmarks. We also
show that our framework is significantly more accurate than
the previously proposed HLS framework. In addition, we
demonstrate that the error when predicting relative perfor-
mance/power trends is generally less than 3%. As a conse-
quence, we conclude that statistical simulation is a useful
tool for accurately and efficiently exploring processor de-
sign spaces.

This paper is organized as follows. Section 2 presents our
statistical simulation framework: the use of the statistical
flow graph is discussed and our branch profiling approach
using delayed update is proposed. Section 3 discusses our
experimental setup which is used in Section 4 during the
evaluation. Related work and how it differs from this work
is discussed in Section 5. Finally, we conclude in Section 6.

2. Statistical simulation

Statistical simulation consists of three steps as shown in
Figure 1. In the first step, a collection of program execu-
tion characteristics is measured. Subsequently, this statisti-
cal profile is used to generate a synthetic trace. In the fi-
nal step, this synthetic trace is simulated on a trace-driven
simulator. In the following subsections, we discuss all three
steps.

2.1. Statistical profiling

In our statistical profiles, we make a distinction be-
tween microarchitecture-independent characteristics and
microarchitecture-dependent characteristics. This will be
discussed in the following two subsections. In the final sub-
section, we discuss how to improve the microarchitecture-
dependent branch characteristics.

2.1.1. Microarchitecture-independent characteris-
tics. During statistical profiling we build a statistical flow
graph (SFG). To clarify how this is done, we refer to Fig-
ure 2 in which first- (k = 1) and second-order (k = 2) SFGs
are shown for an example basic block sequence ‘AABAAB-
CABC’. Each node in the graph represents the history of
the preceding basic block(s) as its state. This is shown with
the labels ‘A’, ‘B’ and ‘C’ in the first-order SFG and la-
bels ‘AA’, ‘AB’, ‘BA’, ‘BC’ and ‘CA’ in the second-order
SFG. The numericals in each node show the occur-
rences or the number of times the history of preceding
basic block(s) appears in the basic block stream. The la-
bels and the percentages next to the edges represent the
current basic block and the transition probabilities be-
tween the nodes Prob[Bn|Bn−1, . . . , Bn−k], with k being
the order of the SFG. Note that during statistical pro-
filing only one SFG is built for one specific value of k.
In the evaluation section of this paper, we will evalu-
ate the importance of the chosen value of k. For com-
parison, we will also consider k = 0 or no edges in the
graph.

For each basic block in the SFG we record the instruc-
tion types of each instruction. We classify the instruction
types into 12 classes according to their semantics: load,
store, integer conditional branch, floating-point conditional
branch, indirect branch, integer alu, integer multiply, integer
divide, floating-point alu, floating-point multiply, floating-
point divide and floating-point square root. For each instruc-
tion, we record the number of source operands. Note that
some instruction types, although classified within the same
instruction class, may have a different number of source
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Figure 2. Example first-order (k=1) and
second-order (k=2) SFGs corresponding to
the basic block sequence ‘AABAABCABC’.

operands. For each operand we also record the dependency
distance which is the number of dynamically executed in-
structions between the production of a register value (reg-
ister write) and the consumption of it (register read). We
only consider read-after-write (RAW) dependencies since
our focus is on out-of-order architectures in which write-
after-write (WAW) and write-after-read (WAR) dependen-
cies are dynamically removed through register renaming as
long as enough physical registers are available. Although
not done in this paper, this approach could be extended to
also include WAW and WAR dependencies to account for
a limited number of physical registers or in-order execu-
tion. Note that recording the dependency distance requires
storing a distribution since multiple dynamic versions of
the same static instruction could result in multiple depen-
dency distances. In theory, this distribution could be very
large due to large dependency distances; in practice, we can
limit this distribution. This however limits the number of
in-flight instructions that can be modeled during synthetic
trace simulation. In our study, we limit the dependency dis-
tribution to 512 which still allows the modeling of a wide
range of current and near-future microprocessors. More for-
mally, the distribution of the dependency distance of the p-
th operand of the o-th instruction in basic block Bn given
its basic block history Bn−1, . . . , Bn−k can be expressed as
follows: Prob[Dn,o,p|Bn, Bn−1, . . . , Bn−k].

Note that these characteristics are independent of
any microarchitecture-specific organization. In other
words, these characteristics do not rely on assump-
tions related to issue width, window size, etc. They are
therefore called microarchitecture-independent characteris-
tics.

2.1.2. Microarchitecture-dependent characteristics. In
addition to the above characteristics we also measure a
number of characteristics that are related to locality events,
specifically the branch behavior and the cache behavior. The
branch characteristics consist of three probabilities:

• the probability of a taken branch, which will be used
to limit the number of taken branches that are fetched
per clock cycle;

• the probability of a fetch redirection, which corre-
sponds to a target misprediction (BTB miss) in con-
junction with a correct taken/not-taken prediction for
conditional branches; and

• the probability of a branch misprediction, which ac-
counts for BTB misses for indirect branches and
taken/not-taken mispredictions for conditional
branches.

The cache characteristics consist of the following six
probabilities: (i) the L1 I-cache miss rate, (ii) the L2 cache
miss rate due to instructions only1, (iii) the L1 D-cache miss
rate, (iv) the L2 cache miss rate due to data accesses only,
(v) the I-TLB miss rate and (vi) the D-TLB miss rate.

It is important to note that these characteristics are an-
notated to the corresponding edges in the SFG. Therefore
branch characteristics are recorded for a particular branch
with its history of preceding basic blocks. The same branch
with a different history is stored separately. The same ap-
plies for the cache characteristics.

Note that characteristics related to locality events, such
as branch and cache characteristics, are hard to model in
a microarchitecture-independent way. Therefore we take
a pragmatic approach and use characteristics for specific
branch predictors and specific cache configurations. In our
framework, we use functional simulation extended with
branch predictors and cache structures to compute these
locality events. Our tools are extended versions of Sim-
pleScalar’s sim-bpred and sim-cache [1]. Note that
although this approach requires the simulation of the com-
plete program execution for specific branch predictors and
specific cache structures, this does not limit its applicability.
Indeed, a number of tools exist that measure a wide range
of these structures in parallel, e.g., the cheetah simula-
tor [28] which is a single-pass multiple-configuration cache
simulator.

Statistical profiling can be carried out using trace-driven
tools operating on an execution trace that is stored on a disk.
However, in cases where storing a large trace is impractical,
an execution-driven tool can be used to measure the charac-
teristics during functional simulation. We take the latter op-
tion in this paper.

2.1.3. Improving the branch characteristics. The tools
that are used to measure the statistical profiles operate on
an instruction-per-instruction basis. In particular, during the
computation of the branch characteristics, the outcome of

1 We assume a unified L2 cache. However, we make a distinction be-
tween L2 cache misses due to instructions and due to data.
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Figure 3. Number of branch mispredictions
per 1,000 instructions under three scenarios:
(i) execution-driven simulation, (ii) branch
profiling with immediate update, and (iii)
branch profiling with delayed update.

the previous branch is updated before the branch predic-
tor is accessed for the current branch (immediate update).
In pipelined architectures, however, this situation rarely oc-
curs. Instead, multiple lookups to the branch predictor of-
ten occur between the lookup and the update of one par-
ticular branch. This is well known in the literature as de-
layed update. In a conservative microarchitecture the up-
date occurs at commit time (at the end of the pipeline)
whereas the lookup occurs at the beginning of the pipeline
by the fetch engine. Delayed update can have a significant
impact on overall performance. Therefore computer archi-
tects have proposed speculative update of branch predic-
tors [11, 16, 26] with the predicted branch outcome in-
stead of the resolved outcome. Speculative update can yield
significant performance improvements because the branch
predictor is updated earlier in the pipeline, for example at
writeback time or at dispatch time. Note that speculative up-
date requires a repair mechanism to recover from corrupted
state due to mispredictions. In this paper, we assume the
most aggressive speculative update mechanism available in
SimpleScalar2, namely at dispatch time, i.e., when instruc-
tions from the instruction fetch queue are inserted into the
register update unit. It is interesting to note that speculative
update mechanisms have been implemented in commercial
microprocessors, for example in the Alpha 21264 [17].

Delayed update, even when using a speculative update
mechanism, can have a significant impact on overall perfor-
mance when modeling microprocessor performance. There-
fore we propose a branch profiling approach that takes into
account delayed update. This is done using a FIFO buffer
in which lookup and update occur at the head and at the tail

2 The simulation environment that is used in this paper is SimpleScalar,
see section 3.

of the FIFO, respectively. The branch prediction lookups
that are made when instructions enter the FIFO are based
on ‘stale’ state that lacks updated information from branch
instructions still residing in the FIFO. At each step of the
algorithm, an instruction is inserted into the FIFO and re-
moved from the FIFO. A branch predictor lookup occurs
when a branch instruction enters the FIFO; an update occurs
when a branch instruction leaves the FIFO. If a branch is
mispredicted—this is detected upon removal—the instruc-
tions residing in the FIFO are squashed and new instruc-
tions are inserted until the FIFO is completely filled. As
mentioned above, we assume speculative update at dispatch
time. Therefore a natural choice for the size of the FIFO is
the size of the instruction fetch queue. If other update mech-
anisms are used, such as speculative update at write-back
time or non-speculative update at commit time, appropri-
ate sizes should be chosen for the FIFO buffer.

To evaluate the benefits of this branch profiling ap-
proach, we refer to Figure 3 which shows the number of
branch mispredictions per 1,000 instructions under vari-
ous scenarios: (i) execution-driven simulation using Sim-
pleScalar’s sim-outorder simulator while assuming de-
layed update at dispatch time3, (ii) branch profiling with im-
mediate update after lookup, and (iii) the newly proposed
branch profiling approach with delayed update. This graph
shows that the new approach closely resembles the behav-
ior that is observed during execution-driven simulation. In
the evaluation section of this paper, we will show that this
significantly improves the accuracy of statistical simulation.

2.2. Synthetic trace generation

Once a statistical profile is computed, we generate a syn-
thetic trace that is a factor R smaller than the original pro-
gram execution. R is defined as the synthetic trace reduc-
tion factor; typical values range from 1,000 to 100,000. Be-
fore applying our synthetic trace generation algorithm, we
first generate a reduced statistical flow graph. This reduced
SFG differs from the original SFG in that the occurrences of
each node are divided by the synthetic trace reduction fac-
tor R. In other words, the occurrences in the reduced SFG
Ni are a fraction R of the original occurrences Mi for all
nodes i: Ni = bMi

R
c. Subsequently, we remove all nodes for

which Ni equals zero. Along with this removal, we also re-
move all incoming and outgoing edges. In doing so, we ob-
tain a reduced statistical flow graph that is no longer fully
interconnected. However, the interconnection is still strong
enough to allow for accurate performance predictions. Once
the reduced statistical flow graph is computed, the synthetic
trace is generated using the following algorithm.

3 See section 3 for details on the experimental setup concerning the pro-
cessor configuration as well as the benchmarks.



1. If the occurrences of each of the nodes in the reduced
statistical flow graph are zero, terminate the algorithm.
Otherwise, generate a random number in the interval
[0,1] and use this value to point to a particular node in
the reduced statistical flow graph. Pointing to a node
is not done in a uniform way but using a cumulative
distribution function built up by the occurrence of each
node. In other words, a node with a higher occurrence
will be more likely to be selected than a node with a
smaller occurrence.

2. Decrement the occurrence of the selected node reflect-
ing the fact that this node has been accessed. De-
termine the current basic block corresponding to the
node.

3. Assign the instruction types and the number of source
operands of each of the instructions in the basic block.

4. For each source operand, determine its dependency
distance. This is done using random number genera-
tion on the cumulative dependency distance distribu-
tion. Therefore an instruction x is made dependent on a
preceding instruction x− δ with δ the dependency dis-
tance. Note that we do not generate dependencies that
are produced by branches or stores since those types
of instructions do not have a destination operand. This
is achieved by trying a number of times until a depen-
dency is generated that is not supposedly generated by
a branch or a store. If after a maximum number of
times (in our case 1,000 times) still no valid depen-
dency is created, the dependency is simply squashed.

5. For each load in the synthetic trace, determine whether
this load will cause a D-TLB hit/miss, an L1 D-cache
hit/miss and in case of an L1 D-cache miss whether
this load will cause an L2 cache hit/miss.

6. For the branch terminating the basic block, determine
whether this is a taken branch and whether this branch
is correctly predicted, results in a fetch redirection or
is a branch misprediction.

7. For each instruction, determine whether this instruc-
tion will cause an I-TLB hit/miss, an L1 I-cache
hit/miss, and, in case of an L1 cache miss, whether
this instruction will result in an L2 cache miss.

8. Output the synthetically generated instructions along
with their characteristics.

9. If the current node in the reduced statistical flow graph
does not have outgoing edges, go to step 1, otherwise
proceed. Generate a random number in the interval
[0,1] and use this value to point a particular outgo-
ing edge. This is done using a cumulative distribution
built up by the transition probabilities of the outgoing
edges. Use this outgoing edge to point to a particular
node. Go to step 2.

2.3. Synthetic trace simulation

The trace-driven simulation of the synthetic trace is very
similar to the trace-driven simulation of real program traces.
In particular, for this paper, the synthetic trace simulator is a
modified version of SimpleScalar’s sim-outorder sim-
ulator in which a synthetic trace is fed into the simulator.
The synthetic trace simulator does not need to model branch
predictors nor caches. However, special actions are needed
during synthetic trace simulation for the following cases.

• When a branch is mispredicted in an execution-
driven simulator, instructions from an incorrect path
are fetched and executed. When the branch is ex-
ecuted, it is determined whether the branch was
mispredicted. In case of a misprediction, the in-
structions down the pipeline need to be squashed.
A similar scenario is implemented in the syn-
thetic trace simulator: when a mispredicted branch
is fetched, the pipeline is filled with instructions
from the synthetic trace as if they were from the in-
correct path; this is to model resource contention.
When the branch gets executed, the synthetic instruc-
tions down the pipeline are squashed and synthetic
instructions are fetched as if they were from the cor-
rect path.

• For a load miss, the latency will be determined by
whether this load is an L1 D-cache hit, an L1 D-cache
miss, an L2 cache miss, or a D-TLB miss. For exam-
ple, in case of an L2 miss, the access latency to main
memory is assigned.

• In case of an I-cache miss, the fetch engine stops fetch-
ing for a number of cycles. The number of cycles is
determined by whether the instruction causes an L1 I-
cache miss, an L2 cache miss or a D-TLB miss.

The most important difference between the synthetic
trace simulator and the reference execution-driven sim-
ulator, other than the fact that the former operates on
synthetic traces, is that the synthetic trace simulator
does not take into account instructions along misspecu-
lated paths when accessing the caches. This can potentially
have an impact on the performance prediction accu-
racy [2].

3. Experimental setup

The SPEC CINT2000 benchmarks4 that are used in
the evaluation of this paper are listed in Table 1. We
have used the Alpha binaries from the SimpleScalar web-
site.5 The second column shows the inputs that were used

4 http://www.spec.org
5 http://www.simplescalar.com



instruction cache 8KB, 2-way set-associative, 32-byte block, 1 cycle access latency
data cache 16KB, 4-way set-associative, 32-byte block, 2 cycles access latency
unified L2 cache 1MB, 4-way set-associative, 64-byte block, 20 cycles access latency
I-TLB and D-TLB 32-entry 8-way set-associative with 4KB pages
memory 150 cycle round trip access
branch predictor 8K-entry hybrid predictor selecting between an 8K-entry bimodal predictor and a two-level (8K x 8K) local branch

predictor xor-ing the local history with the branch’s PC, 512-entry 4-way set-associative BTB and 64-entry RAS
speculative update at dispatch time
branch misprediction penalty 14 cycles
IFQ 32-entry instruction fetch queue
RUU and LSQ 128 entries and 32 entries, respectively
processor width 8 issue width, 8 decode width (fetch speed = 2), 8 commit width
functional units 8 integer ALUs, 4 load/store units, 2 fp adders, 2 integer and 2 fp mult/div units

Table 2. Baseline configuration.

benchmark input simpoints (weight) IPC
bzip2 program 5 (20%), 6 (32%), 8 (48%) 1.83
crafty ref 8 (100%) 0.51
eon rushmeier 2 (100%) 0.81
gcc integrate 9 (18%), 12 (4%), 17 (22%), 33

(9%), 53 (5%), 62 (18%), 88
(14%), 107 (6%)

1.37

gzip graphic 4 (100%) 1.94
parser ref 5 (55%), 13 (45%) 1.03
perlbmk makerand 2 (100%) 0.97
twolf ref 10 (100%) 0.64
vortex lendian2 58 (100%) 1.11
vpr route 72 (100%) 0.69

Table 1. The SPEC CINT2000 benchmarks
used in this paper, their inputs, their simula-
tion points with their corresponding weights,
and the IPC for the baseline configuration.

for each benchmark. All these inputs are reference in-
puts. The third column shows the simulation points pro-
vided by SimPoint [25] along with their weights.6 These
simulation points are representative samples of 100M in-
structions. The main reason why we used these simula-
tion points instead of the complete benchmark run is to limit
the total simulation time. As will become clear in the evalu-
ation section, a large number of simulations were run using
detailed execution-driven simulation to validate the accu-
racy of the proposed statistical simulation approach. Run-
ning larger samples or complete benchmarks would have
been too time-consuming. Note that this is exactly the prob-
lem we are addressing through statistical simulation.
However, in section 4.4 we will evaluate whether statisti-
cal simulation is also accurate for larger sample sizes (1B
and 10B instruction samples).

The baseline processor configuration is detailed in Ta-
ble 2. We have used SimpleScalar/Alpha v3.0 [1]. The
fourth column in Table 1 shows the baseline IPC over the

6 http://www.cs.ucsd.edu/∼calder/simpoint now pro-
vides new simulation points.

SimPoint simulation points. For estimating the on-chip
power consumption per cycle, we have used Wattch
v1.02 [4] assuming a 0.18 µm-technology and a 1.2GHz
clock frequency. We assume a base activity factor of 0.5
or random switching activity for single-ended array bit-
lines. Further, the most aggressive clock gating mecha-
nism (cc3) is considered: a unit that is unused consumes
10% of its max power and a unit that is only used for a frac-
tion x only consumes a fraction x of its max power.

4. Evaluation

In the evaluation of this statistical simulation approach
we consider the following factors: (i) the simulation speed,
(ii) the order k of the statistical flow graph, (iii) the useful-
ness of delayed update during branch profiling, (iv) the ab-
solute accuracy for modeling performance and power con-
sumption, (v) a comparison with HLS [23], (vi) modeling
program phases and a comparison with SimPoint [25], (vii)
the relative accuracy as a function of various architectural
parameters, and (viii) the applicability for efficiently explor-
ing huge design spaces.

4.1. Simulation speed

Due to the statistical nature of this technique, perfor-
mance metrics converge to ‘steady-state’ values. To quan-
tify the simulation speed of the statistical simulation ap-
proach we calculate the coefficient of variation (CoV) of
the IPC as a function of the number of synthetic instruc-
tions. The CoV is defined as the standard deviation divided
by the mean of the IPC over a given number of synthetic
traces, in our case 20. The variation that is observed is due
to the different random seeds that were used for the vari-
ous synthetic traces. We clearly observe that the CoV de-
creases for longer synthetic traces and that small CoVs are
obtained for small synthetic traces, e.g., 4% for 100K, 2%
for 200K, 1.5% for 500K and 1% for 1M synthetic instruc-
tions. From these data we can conclude that statistical sim-
ulation is significantly faster than execution-driven simula-
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Figure 4. Evaluating the order k of the SFG;
perfect caches and perfect branch prediction
are assumed.

tion. In our setup (with 100M-instruction reference sam-
ples), we achieve a speedup of 100X to 1,000X. If larger
instruction streams are considered (in section 4.4 we con-
sider 10B instructions), even higher speedups are obtained:
10,000X to 100,000X.

4.2. Absolute accuracy

This section evaluates the absolute accuracy of the sta-
tistical simulation approach proposed in this paper. The ab-
solute prediction error for a metric M is defined as

AEM =
|MSS − MEDS|

MEDS

with MSS and MEDS computed through statistical simu-
lation (SS) and execution-driven simulation (EDS), respec-
tively. The metrics can be IPC (instructions retired per cy-
cle) or EPC (energy consumption per cycle). We will use
the absolute accuracy to evaluate the importance of using a
statistical flow graph in our statistical profile. Subsequently,
we will evaluate the importance of considering delayed up-
dates during branch profiling. In the final subsection, we
will evaluate the absolute accuracy of our method in esti-
mating overall power/performance metrics.

4.2.1. Evaluating the statistical flow graph. Recall from
section 2 that the order k of the SFG is yet to be defined.
Figure 4 presents IPC prediction errors for various values
of k under the assumption of perfect caches (each access
is a hit) and perfect branch prediction (each branch is cor-
rectly predicted). These data show that k = 0 can result in
large IPC prediction errors (up to 35%); if k ≥ 1, the IPC
predictions are significantly more accurate (less than 2% on
average). Since k = 1 leads to predictions that are as accu-
rate as k = 2 and k = 3, we will use k = 1 for the remain-
der of this paper. Table 3 presents the total number of nodes
in the SFG as a function of its order k.

k = 0 k = 1 k = 2 k = 3

bzip2 675 945 1,314 1,799
crafty 1,534 2,579 3,983 5,732
eon 466 645 836 1,028
gcc 30,834 43,157 57,031 71,879
gzip 291 434 632 863
parser 2,483 3,711 5,266 7,140
perlbmk 473 549 623 693
twolf 414 594 809 1,082
vortex 4,221 5,209 6,193 7,161
vpr 149 184 220 261

Table 3. The number of nodes in the SFG.
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Figure 5. Evaluating the importance of mod-
eling delayed update during branch profiling;
perfect caches are assumed.

4.2.2. Evaluating branch profiling with delayed update.
In section 2.1.3, we proposed a delayed update branch pro-
filing technique. Figure 5 shows that modeling delayed up-
date during branch profiling improves the IPC prediction
accuracy. The benchmarks that benefit most are eon and
perlbmk. Not surprisingly, these benchmarks showed the
largest discrepancies in the number of branch mispredic-
tions between execution-driven simulation and branch pro-
filing with immediate update, as shown in Figure 3. Branch
profiling with delayed update will be used for the remain-
der of this paper.

4.2.3. Overall power/performance prediction er-
ror. The left graph of Figure 6 presents IPC numbers ob-
tained using our enhanced statistical simulation approach.
For the baseline configuration, the average IPC predic-
tion error is 6.6%; the maximum error is observed for
parser (14.2%).

When the synthetic trace simulator is extended with an
architectural power estimation tool, power consumption can
be estimated using statistical simulation [9, 24]. The right
graph of Figure 6 shows that statistical simulation estimates
energy consumption per cycle (EPC) accurately. The av-
erage error is 4%; the largest error is observed for bzip2
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Figure 6. Execution-driven simulation versus statistical simulation for estimating IPC (on the left)
and EPC (on the right).
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Figure 7. Comparing HLS to SMART-HLS, the
statistical simulation framework presented in
this paper.

(9.5%).
We have also considered the energy-delay product

(EDP), which is an energy-efficiency metric that com-
bines energy consumption with performance. EDP is de-
fined as follows [3]: EDP = EPC ·CPI2 = EPC · 1

IPC2 .
The average EDP prediction error using statistical simula-
tion is 11%; the largest error is observed for parser and
twolf: 21% and 18%, respectively. Not surprisingly, these
are the benchmarks with the highest IPC prediction er-
rors, as shown in Figure 6 on the left.

4.3. Comparison with HLS

We now compare our statistical simulation framework
to HLS as proposed by Oskin et al. [23]. The HLS syn-
thetic trace simulator models an out-of-order architecture
that is a simplification of SimpleScalar’s model. HLS mod-
els the workload as a front-end graph structure, but the in-
structions in the graph are generated randomly from an in-
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Figure 8. Evaluating the impact of modeling
program phases and comparison with Sim-
Point.

struction mix distribution without regard to the instruction
sequences found in particular basic blocks. This is in con-
trast to the SFG proposed in the present work. The gener-
alized HLS model was calibrated to match SimpleScalar’s
out-of-order simulator for one particular processor configu-
ration, i.e., SimpleScalar’s baseline configuration, as given
in [23]. To allow for a fair comparison between HLS and
the framework presented in this paper we have used Sim-
pleScalar’s baseline configuration instead of the configura-
tion from Table 2. Figure 7 clearly shows that our frame-
work, called SMART-HLS, is more accurate than HLS with
an average error of 1.8% versus 10.1%.

4.4. Modeling program phases

It is well known that a computer program goes through
various phases of execution [25]. In this section, we evalu-
ate whether measuring separate statistical profiles and gen-



erating separate synthetic traces for each of these program
phases yields more accurate performance predictions. For
these experiments, we consider 10B instructions for each
benchmark as our reference streams after skipping the first
1B instructions.7 We consider the following scenarios:

• We apply statistical simulation over the complete ref-
erence stream, i.e., we generate one statistical profile
and one synthetic trace to characterize the 10B instruc-
tions.

• We apply statistical simulation over each sample of 1B
instructions. So, in total we have ten statistical profiles
and ten synthetic traces. These ten synthetic traces are
simulated and the performance metrics are averaged.

• We run statistical simulation on one hundred 100M-
instruction samples.

• We use the SimPoint software [25] to compute repre-
sentative 10M-instruction intervals from these 10B in-
struction streams. These 10M-instruction samples are
then simulated through execution-driven simulation.

We draw a number of interesting conclusions from the
results presented in Figure 8. First, applying statistical sim-
ulation to smaller samples only slightly improves accuracy,
e.g., compare statistical simulation over one hundred 100M-
instruction samples vs. statistical simulation over one 10B-
instruction sample. Second, SimPoint is more accurate than
statistical simulation. The average errors for SimPoint and
statistical simulation are 2% and 7.2%, respectively. How-
ever, the number of simulated instructions for SimPoint
is significantly larger than for statistical simulation. Sim-
Point simulates 20 million (crafty) to 300 million (gcc) in-
structions whereas statistical simulation only requires 1 mil-
lion instructions at the most. In addition, SimPoint employs
execution-driven simulation which is slower than synthetic
trace simulation since the latter does not model caches nor
branch predictors. In contrast to SimPoint however, statis-
tical simulation needs to compute a new statistical profile
when the cache or branch predictor is changed during a de-
sign space exploration. Nevertheless, statistical simulation
will be much faster than SimPoint.

4.5. Relative accuracy

In prior sections we only considered absolute
power/performance prediction accuracy, i.e., the er-
ror in one single design point. For a computer architect,
relative accuracy or the ability to accurately predict a per-
formance trend, is often more important. Indeed, the
sensitivity of power and performance to a particular ar-
chitectural parameter can help the designer identify the

7 perlbmk was excluded from these experiments because we had prob-
lems simulating it for such a large instruction count.

(near) optimal design point, e.g., on the ‘knee’ of the per-
formance curve, or where performance begins to saturate
as a function of a given architectural parameter. To eval-
uate statistical simulation in this perspective we have
measured the relative accuracy as a function of five archi-
tectural parameters: window size, processor width, instruc-
tion fetch queue size, branch predictor size and cache size.
The relative prediction error for a metric M when mov-
ing from design point A to design point B is defined
as

REM =
|MB,SS/MA,SS − MB,EDS/MA,EDS|

MB,EDS/MA,EDS

.

Table 4 shows the relative prediction errors averaged over
the various benchmarks. This table not only presents sen-
sitivity of IPC and EPC to a given architectural parameter,
but also sensitivity of other metrics, such as the RUU oc-
cupancy, the LSQ occupancy, the IFQ occupancy, the fetch
unit’s energy consumption, the dispatch unit’s energy con-
sumption, etc. An accurate estimate of those trends is par-
ticularly relevant for a designer who wants to ensure that
the various parameters are tuned properly to optimize per-
formance. The results in Table 4 show that the average rel-
ative prediction errors are generally smaller than 3%.

4.6. Design space exploration

Statistical simulation can be used to efficiently explore
large design spaces. In spite of the absolute errors ob-
tained when estimating EDP (see section 4.2.3), a region of
energy-efficient designs can be identified through statistical
simulation. To demonstrate this we have set up the follow-
ing experiment. We computed the energy-delay product for
a large design space using statistical simulation by varying
the size of the RUU (8,16,32,48,64,96,128), the size of the
LSQ8 (4,8,16,24,32,48,64), the decode width (2,4,6,8), the
issue width (2,4,6,8) and the commit width (2,4,6,8). The
total number of design points in this experiment is 1,792.
These 1,792 design points are all evaluated through statis-
tical simulation and the design point with optimal EDP is
identified. To verify that statistical simulation indeed iden-
tifies a region of optimal design points, we have computed
the EDP for the design points that were in a 3% range of the
optimal design point. For 7 out of the 10 benchmarks, sta-
tistical simulation indeed identified the optimal design. For
the remaining three benchmarks, statistical simulation iden-
tified a design that is in a very short range to the optimal de-
sign: gzip (0.03%), eon (1.03%) and vpr (1.24%).

8 We limit the LSQ size not to be larger than the RUU size.



Sensitivity to window size (the RUU size is varied from 8 to 128; the LSQ size is half the RUU size)

8 → 16 16 → 32 32 → 48 48 → 64 64 → 96 96 → 128
IPC 1.0% 1.7% 1.2% 0.7% 0.6% 1.3%
RUU occupancy 0.4% 1.8% 2.3% 1.9% 3.6% 3.2%
LSQ occupancy 0.6% 1.9% 2.3% 2.0% 3.7% 2.9%
EPC 0.6% 1.0% 0.6% 0.6% 1.0% 0.7%
RUU power consumption 0.7% 1.3% 0.8% 0.8% 0.8% 0.9%
LSQ power consumption 0.4% 0.7% 0.4% 0.3% 0.6% 0.5%

Sensitivity to processor width
(decode width = issue width = commit width)

2 → 4 4 → 6 6 → 8
IPC 1.7% 1.2% 0.8%
execution bandwidth 1.5% 2.1% 1.6%
EPC 1.6% 1.1% 0.4%
fetch unit power consumption 0.8% 0.7% 0.4%
dispatch unit power consumption 1.1% 1.6% 1.1%
issue unit power consumption 1.6% 1.3% 0.5%

Sensitivity to the instruction fetch queue (IFQ) size

4 → 8 8 → 16 16 → 32
IPC 1.3% 0.8% 0.9%
EPC 0.9% 1.1% 0.5%
IFQ occupancy 3.2% 5.0% 6.4%

Sensitivity to the branch predictor size

base ÷ 4 → base ÷ 2 base ÷ 2 → base base → base · 2 base · 2 → base · 4
IPC 0.5% 0.5% 0.7% 0.4%
EPC 0.5% 0.5% 0.5% 0.6%
RUU occupancy 0.8% 0.7% 0.7% 0.6%
RUU power consumption 0.4% 0.4% 0.6% 0.3%
LSQ occupancy 0.8% 0.5% 0.7% 0.4%
LSQ power consumption 0.2% 0.2% 0.3% 0.2%
IFQ occupancy 0.6% 0.6% 0.8% 0.6%
fetch unit power consumption 0.4% 0.3% 0.5% 0.5%
branch predictor power consumption 0.3% 1.4% 1.2% 0.2%

Sensitivity to the cache configuration size

base ÷ 4 → base ÷ 2 base ÷ 2 → base base → base · 2 base · 2 → base · 4
IPC 2.2% 1.4% 3.3% 2.6%
EPC 1.3% 1.3% 1.7% 4.0%
RUU occupancy 4.6% 1.6% 3.6% 2.0%
RUU power consumption 1.3% 1.0% 1.5% 1.1%
LSQ occupancy 3.9% 2.0% 3.2% 3.9%
LSQ power consumption 0.7% 0.6% 1.0% 0.7%
IFQ occupancy 5.6% 7.3% 8.9% 8.5%
fetch unit power consumption 1.0% 0.7% 0.9% 1.2%
I-cache power consumption 1.5% 1.2% 2.1% 2.4%
D-cache power consumption 6.8% 7.2% 9.3% 6.0%
L2 cache power consumption 0.4% 0.2% 0.4% 0.3%

Table 4. Relative error of statistical simulation as a function of window size, processor width, instruc-
tion fetch queue size, branch predictor size and cache size.

5. Related work

Noonburg and Shen [21] present a framework that mod-
els the execution of a program on a particular architecture
as a Markov chain, in which the state space is determined
by the microarchitecture and in which the transition proba-
bilities are determined by the program execution. This ap-
proach was evaluated for in-order architectures. Extending
it for wide-resource out-of-order architectures would result
in a far too complex Markov chain.

Hsieh and Pedram [13] present a technique to estimate
performance and power consumption of a microarchitec-
ture by measuring a characteristic profile of a program exe-
cution, synthesizing a fully functional program from it, and
simulating this synthetic program on an execution-driven
simulator. The main disadvantage of their approach is the

fact that no distinction is made between microarchitecture-
dependent and microarchitecture-independent characteris-
tics. All characteristics are microarchitecture-dependent,
which makes this technique unusable for design space ex-
plorations.

Iyengar et al. [15] present SMART to generate repre-
sentative synthetic traces based on the concept of a fully
qualified basic block. A fully qualified basic block is a ba-
sic block together with its context. The context of a ba-
sic block is determined by its n preceding qualified basic
blocks—a qualified basic block is a basic block together
with the branching history (of length k) of its preceding
branch. This work was later extended in [14] to account
for cache behavior. In this extended work the focus was
shifted from fully qualified basic blocks to fully qualified



instructions. The context of a fully qualified instruction is
then determined by n singly qualified instructions. A singly
qualified instruction is an instruction annotated with its in-
struction type, its I-cache behavior, and, if applicable, its
D-cache behavior and its branch behavior. Therefore a dis-
tinction is made between two fully qualified instructions
having the same preceding instructions, except that, in one
case, a preceding instruction missed in the cache, whereas
in the other case it did not. Obviously, collecting all these
fully qualified instructions during profiling results in a huge
amount of data to be stored in memory. For some bench-
marks, the authors report that the amount of memory that is
needed can exceed the available memory in a machine, so
that some information needs to be discarded from the graph.
The statistical simulation framework presented in this paper
shares the concept of using a context by qualifying a basic
block with its preceding basic blocks. However, the statisti-
cal flow graph that is built for this purpose is both simpler
and smaller than the fully qualified one used in SMART.
In addition, we have found that qualifying with one single
basic block is sufficient. Another interesting difference be-
tween SMART and the framework presented here is the fact
that SMART generates memory addresses during synthetic
trace generation. We simply assign hits and misses.

In recent years, a number of papers [5, 8, 9, 10, 22, 23,
24] have been published that are built around (slightly dif-
ferent forms of) the general statistical simulation framework
presented in Figure 1. We identify one major difference be-
tween these approaches and the present work related to the
degree of correlation in the statistical profile. The simplest
way to build a statistical profile is to assume that all charac-
teristics are independent from each other [5, 8, 9, 10], which
results in the smallest statistical profile and the fastest con-
vergence time but potentially the largest prediction errors.
In HLS, Oskin et al. [23, 24] generate one hundred basic
blocks of a size determined by a normal distribution over
the average size found in the original workload. The basic
block branch predictabilities are statistically generated from
the overall branch predictability obtained from the original
workload. Instructions are assigned to the basic blocks ran-
domly based on the overall instruction mix distribution, in
contrast to the basic block modeling granularity of the SFG.
As in the present work, the HLS synthetic trace generator
then walks through the graph of instructions. Nussbaum and
Smith [22] propose to correlate various characteristics such
as the instruction types, the dependencies, the cache behav-
ior and the branch behavior to the size of the basic block.
Using the size of the basic block to correlate statistics raises
the possibility of basic block size aliasing, in which statisti-
cal distributions from basic blocks with very different char-
acteristics are combined and reduce simulation accuracy. In
a SFG, all characteristics are correlated to the basic block
itself, not just its size. Moreover, we correlate basic blocks

on previously executed basic blocks by using higher order
(k ≥ 1) SFGs, i.e., basic blocks with a different history of
executed basic blocks are characterized separately.

Intuitively, the framework presented in this paper com-
bines SMART with previously proposed statistical simula-
tion approaches to combine the benefits and to eliminate
the drawbacks of both techniques. The major benefit gained
from SMART is the accurate modeling of instruction se-
quences and their dependencies; this is achieved by consid-
ering basic blocks along with their context, i.e., we statisti-
cally model at the granularity of the basic block. The draw-
back that is eliminated from SMART is the explosion of
state (and thus memory) that is needed to keep track of all
the qualified instructions. The major benefit that is gained
from statistical simulation is its simplicity. The major draw-
back that is eliminated from previously proposed statistical
simulation approaches is their inability to accurately model
instruction sequences and their dependencies.

6. Conclusion

Architectural simulations are extremely time-consuming
and often impact the time-to-market of newly designed
microprocessors. One possible approach to this problem
is to use statistical simulation as an accurate and effi-
cient complement to detailed simulation. The statistical
simulation approach presented in this paper has two ma-
jor contributions. First, the use of the statistical flow graph
(SFG) for statistical simulation combines the benefits of
the previously proposed graph representation in SMART—
accuracy—with features from previously proposed statis-
tical simulation frameworks—simplicity and rapid conver-
gence. Second, we have shown that it is important to model
delayed update of branch predictors during statistical pro-
filing. This improved statistical simulation framework was
extensively evaluated. First, we show that statistical simula-
tion is indeed a fast simulation technique, i.e., the synthetic
traces can be very short (100K to 1M instructions). Sec-
ond, our measurements show that the performance and en-
ergy consumption of an 8-issue out-of-order superscalar ar-
chitecture for SPECint2000 benchmarks can be predicted
with an average error of only 6.6% and 4%, respectively.
Third, we show that our approach is significantly more ac-
curate than the previously proposed HLS statistical simu-
lation framework. A comparison with the SimPoint sam-
pling technique shows that SimPoint is more accurate, but
that statistical simulation is faster. We also show that rela-
tive accuracy, the ability to predict performance trends, us-
ing statistical simulation is very high; the relative error is
generally below 3%. And finally, we show that statistical
simulation can be used to identify energy-efficient microar-
chitectures in a large design space.
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