

Understanding the data memory behavior of benchmarks

using Principal Components Analysis

by

Saket Kumar, B.E.

Report

Presented to the Faculty of the Graduate School

of the University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science in Engineering

The University of Texas at Austin

May 2004

 Understanding the data memory behavior of benchmarks

using Principal Components Analysis

APPROVED BY

SUPERVISING COMMITTEE

Dedication

To my family and all my well-wishers who have always shown me the right

way, due to whom, I am where I am now.

 iv

Acknowledgements

I would like to thank Dr. Lizy Kurian John for her invaluable guidance and advice

during the course of this work. I would also like to express my gratitude to Dr.

Tony Ambler for agreeing to be the reader for my report. I also want to thank all

the members of the Laboratory for Computer Architecture for their invaluable help

and encouragement.

 May 2004

 v

Understanding the data memory behavior of benchmarks

using Principal Components Analysis

by

Saket Kumar, M.S.E

The University of Texas at Austin, 2004

SUPERVISOR: Lizy Kurian John

Minimizing simulation time and hence reducing the time to market is a very

important issue in modern microprocessor designs. Benchmark programs take a

considerable amount of time running on complex machine simulators. These

benchmarks explore different areas of the design space and there is a possibility

that some of the benchmarks end up testing the same aspect of the processor

design.

For studying program characteristics like data memory behavior, it may not be

necessary to run all the benchmark programs from a benchmark suite. We need to

find out minimum number of program-input pairs from a benchmark suite, that

 vi

represent the whole suite in terms of its behavior. This helps in reducing the

simulation time considerably.

The objective of this report is to study data memory behavior of different

benchmark programs and find out how clustered or far away, they are in the

workload design space. SPECCPU2000 and SPECJVM98 benchmarks are

characterized for different cache parameters and their sensitivity to varying cache

parameters is studied. A statistical data analysis technique called Principal

Components Analysis (PCA) is used to identify the differences.

 vii

Table of Contents

1. Introduction…………………………………...………………………….1

2. Background and Motivation……………………..……………………...5

2.1 Motivation………………………………………………………….…5

2.2 Related Work………………………………………………………...6

3. Methodology……………………………………………………………...9

3.1 Data Memory Characterization ………...……….…………..….….9

3.2 Description of the Benchmarks………………..……………..……13

3.3 Principal Components Analysis……….……....………...........…...18

3.4 Procedure…………………………..…...............…………...……...25

4. Results……………………………………………………………..…….27

4.1 Analysis of SPECJVM98…………………………………...…..….27

4.2 Analysis of SPECCPU2000…………..………....………….......….35

4.3 Combined Analysis of SPECCPU2000 & SPECJVM98………...45

4.4 Selecting a Subset of Benchmarks…………………….…………..54

5. Conclusion………………………………………………………………58

Appendix…...………………………………………………………..…………..60

References……..………………………………………………………........…...74

Vita………………………...…………………………………………………….79

viii

List of Figures

Figure 1: Scatter Plot of two standardized variables………………………….21

Figure 2: One-dimensional representation by largest principal components of

two dimensional data…………………………………………………………..21

Figure 3: Scatter Plot of PC1 vs. PC2 (SPECJVM98)………………………..32

Figure 4: Scatter Plot of PC1 vs. PC3 (SPECJVM98)………………………..33

Figure 5: Scatter Plot of PC2 vs. PC3 (SPECJVM98)………………………..34

Figure 6: Scatter Plot of PC1 vs. PC2 (SPECCPU2000)……………………...40

Figure 7: Scatter Plot of PC1 vs. PC3 (SPECCPU2000)……………………...42

Figure 8: Scatter Plot of PC1 vs. PC4 (SPECCPU2000)……………………...43

Figure 9: Scatter Plot of PC3 vs. PC4 (SPECCPU2000)……………………...44

Figure 10: Scatter Plot of PC1 vs. PC2 (SPECCPU2000 & SPECJVM98

combined)……………………………………………………………………...50

Figure 11: Scatter Plot of PC1 vs. PC3 (SPECCPU2000 & SPECJVM98

combined)……………………………………………………………………...52

Figure 12: Scatter Plot of PC1 vs. PC4 (SPECCPU2000 & SPECJVM98

combined)……………………………………………………...………………53

Figure 13: Scatter Plot of PC3 vs. PC4 (SPECCPU2000 & SPECJVM98

combined)……………………………………………………………………...54

ix

List of Tables

Table 1: The different workload characteristics……….…………...…………12

Table 2: Fraction of total variance explained by the PCs (SPECJVM98)….....28

Table 3: Factor Loadings (SPECJVM98)…………………………….……….30

Table 4: Fraction of total variance explained by the PCs (SPECCPU2000)….36

Table 5: Factor Loadings (SPECCPU2000)……………………………….….38

Table 6: Fraction of total variance explained by the PCs (SPECCPU2000 &

SPECJVM98 combined)………………………………………………………46

Table 7: Factor Loadings (SPECCPU2000 & SPECJVM98 combined)……..48

1

1. Introduction

Reducing the simulation time, while running benchmarks during the design of a

microprocessor is a very important concern from the time to market

perspectives. The design of modern computer systems is based upon the

experimental procedure of measuring the running time of different workloads

on the machine to be designed.

Various simulation models at different levels of accuracy are created during the

design phase of a computer. The models represent the structure and behavior of

the microprocessor in various ways. The more detailed the model is, the more

accurately it models the machine, at the same time, the longer it takes to

simulate a cycle.

A workload could be considered as a benchmark program, given particular

inputs. It has to satisfy certain criteria in order to increase the likelihood of a

good design. It has to be representative for the target application domain of the

system, i.e. it should exhibit similar properties as the applications that will

actually be running on the system.

2

In the current scenario, workloads are continuously evolving to keep pace with

the technological improvements. At the same time, they are becoming larger

and larger requiring huge amount of simulation time. However, there is a

certain amount of redundancy within a benchmark suite as well as within

different benchmark suites, which if identified, could help significantly in

reducing the simulation time. John et al [9] state that certain benchmark input

pairs result in testing the same area in the potential workload domain.

Moreover, when we are studying certain program characteristics like data

memory behavior, we need not run the whole benchmark suite with all the input

pairs, as many of the program-input pairs incidentally target the same area in

the workload design space. It saves a lot of simulation time, if we are able to

identify a minimum number of program-input pairs from the benchmark suites,

which are non-overlapping; at the same time they explore all the possible areas

of the workload space.

By characterizing the benchmarks, the program-input pairs stressing upon a

portion of the application space already tested by another program-input pair,

can be identified, thereby eliminating the redundancy. Ideally, benchmarks

3

should stress all locations of the design space, thereby evaluating the machine

in all aspects.

If we consider a p-dimensional workload space, where each dimension

represents one of the p workload characteristics, then each benchmark program-

input pair can be mapped as a point, where the coordinates of the point are

determined by the p workload characteristics. The benchmark suite corresponds

to the cloud of points of its individual programs. Projecting both suites in the p-

dimensional space and analyzing their corresponding clouds can analyze the

differences in the two workloads. We need to find out, if there are regions

containing points of one workload, but not of the other. We also want to find

out how diverse one workload is compared to the other.

Considering the large amount of data to inspect, it is going to be very difficult

to determine the similarity of data memory behavior from the p workload

characteristics. Moreover, many of the workload characteristics are correlated,

making it difficult to determine the true cause of the differences between the

workloads. We tackle this problem using a statistical data reduction technique

called as Principal Components Analysis (PCA) that reduces the dimensionality

of the data from p to q (q << p), without losing important information.

4

Reducing the dimensionality makes our analysis much easier and helps in

identifying the similarity between benchmark programs and the extent of

diversity within a benchmark suite.

In this report, we try to study the data memory behavior of different

benchmarks programs and try to find out how clustered or far away, they are in

the workload design space. At first, we characterize the miss rates of various

benchmarks of SPECJVM98 benchmark suite for different cache configurations

and their sensitivity to different cache parameter changes is studied. The

analysis is done using PCA. A similar analysis is performed for different

program-input pairs of the SPECCPU2000 benchmark suite. Then a combined

analysis is performed for the benchmarks of SPECJVM98 and SPECCPU2000

combined together to find out the difference between the two benchmark suites.

An attempt is made to come up with a small subset of benchmarks from each

benchmark suite, in order to study the data memory behavior, without

compromising upon the extent of coverage of the workload design space.

5

2. Background and Motivation

2.1 Motivation

Long time back, computers were designed based on intuition and individual

experiences. During the last two decades, a more systematic approach has been

followed by the micro-architects. Different simulation tools have come into

existence and computers are designed based on the results provided by them.

However, due to the increasing complexity of the microprocessors and the

applications that runs on them, the simulators have become very time

consuming and it has become very important to reduce the simulation time.

The memory behavior of programs is often explained using temporal and

spatial localities. These characteristics are measured using distributions that

make them hard to compare across programs. They are also not capable of

predicting the conflict misses.

Memory behavior of workloads can be characterized using different metrics.

We have chosen cache miss rate as the performance metric because it

6

corresponds closely to the performance that can be expected with caches, and it

is independent of other system parameters.

Moreover, data cache miss rates vary considerably between different programs,

making it a very important metric towards characterizing different programs. A

lot of studies have been done related to understanding the data memory

behavior of different benchmark suites.

In this report, we have used Principal Components Analysis (PCA) to study the

data memory behavior of benchmarks within a benchmark suite as well as the

differences between two benchmark suites. PCA is a very powerful tool to find

out the dependencies between different correlated variables and helps us to

come up with a set of uncorrelated variables that can be used to study the

behavior of benchmarks in the presence of a large amount of data. We also try

to single out the eccentric benchmarks, if any, in the benchmark suites.

2.2 Related Work

John et al [10] have explained the short term and long term goals that can be

achieved using workload characterization. In the short term, it can be used to

7

impact the performance tuning of architectures for emerging workloads. It can

also lead to tuning of compiler optimizations and application development. In

the long term, workload characterization can be used to develop a program

behavior model, which can be used along with a processor model to do the

analytical performance modeling of computer systems.

Gee et al [8] have studied the cache performance of SPEC92 benchmarks for a

variety of cache configurations. They found that the instruction cache miss

ratios are generally very low, and that the data cache miss ratios for the integer

benchmarks are also quite low. Data cache miss ratios for floating point

benchmarks are more in line with the published measurements of real

workloads.

Chow et al [2] have used PCA to compare the emerging Java workloads with

non-Java workloads. The most significant difference was found in their density

of indirect branches. This work showed the effectiveness of using PCA in

screening and categorizing workload statistics as well as some interesting

patterns of indirect branches of Java workloads.

8

Eeckhout et al [4] [5] [6] [7] have used PCA to analyze the impact of different

inputs on the behavior of programs. They selected a limited set of

representative program-input pairs with small dynamic instruction counts. They

were able to substantiate their claims by showing that the program-input pairs

that are close to each other in the principal components space indeed exhibit

similar behavior as a function of micro-architectural changes.

Vandierendonck et al [21] have used PCA to study the data memory behavior

of SPECCPU95 and SPECCPU2000 benchmark suites and identified the

eccentric and fragile benchmarks present in the two suites. Eccentric

benchmarks have a behavior that differs significantly from the other

benchmarks present in the suite. Fragile benchmarks are weak benchmarks as

their execution time is determined entirely by a single bottleneck. Removing

that bottleneck can reduce their execution time to a significant extent.

9

3. Methodology

In this section, we are going to explain how data memory behavior is

characterized, what workload characteristics we are taking into account, which

benchmarks are being used, what principal components analysis is, and what

the procedure for our experiment is.

3.1 Data memory Characterization

Data memory behavior of a workload can be characterized by its data cache

miss rates in a wide range of cache configurations. In order to perform principal

components analysis, we convert the measured data cache miss rates into ratios

of miss rates by taking the ratio of miss rates in two different cache

configurations with one cache parameter varying, others remaining the same.

This helps in a better interpretation of data, because each variable measures the

influence of changing one cache parameter while keeping the other parameters

intact. This transformation also helps in removing much of the variability

between caches with a different size or block size.

10

The various cache parameters that we take into account are the cache size,

associativity, block size, cache replacement policy and the write-back policy.

These parameters are sufficient enough to describe most of the cache

configurations in the modern processors [16] [17].

We form 58 workload characteristics (variables), which are simply the ratios of

the miss rates, varying one cache parameter at a time. These 58 variables for

each of the benchmarks are fed into the PCA.

These variables are tabulated as below.

Variable Size Assoc. Blk Size Repl. Policy alloc/non alloc
1 8 1->2 32 LRU non alloc
2 8 2->4 32 LRU non alloc
3 8 4->8 32 LRU non alloc
4 8 1->2 32 Random non alloc
5 8 2->4 32 Random non alloc
6 8 4->8 32 Random non alloc
7 8 2 32 LRU->Random non alloc
8 8 4 32 LRU->Random non alloc
9 8 8 32 LRU->Random non alloc
10 32 1->2 32 LRU non alloc
11 32 2->4 32 LRU non alloc
12 32 4->8 32 LRU non alloc
13 32 1->2 32 Random non alloc

11

14 32 2->4 32 Random non alloc
15 32 4->8 32 Random non alloc
16 32 2 32 LRU->Random non alloc
17 32 4 32 LRU->Random non alloc
18 32 8 32 LRU->Random non alloc
19 128 1->2 32 LRU non alloc
20 128 2->4 32 LRU non alloc
21 128 4->8 32 LRU non alloc
22 128 1->2 32 Random non alloc
23 128 2->4 32 Random non alloc
24 128 4->8 32 Random non alloc
25 128 2 32 LRU->Random non alloc
26 128 4 32 LRU->Random non alloc
27 128 8 32 LRU->Random non alloc
28 8 2 32->64 LRU non alloc
29 8 2 64->128 LRU non alloc
30 32 2 32->64 LRU non alloc
31 32 2 64->128 LRU non alloc
32 128 2 32->64 LRU non alloc
33 128 2 64->128 LRU non alloc
34 32 1->2 64 LRU non alloc
35 32 2->4 64 LRU non alloc
36 32 4->8 64 LRU non alloc
37 32 1->2 64 Random non alloc
38 32 2->4 64 Random non alloc
39 32 4->8 64 Random non alloc
40 32 2 64 LRU->Random non alloc
41 32 4 64 LRU->Random non alloc
42 32 8 64 LRU->Random non alloc
43 4->16 8 32 LRU non alloc
44 16->64 8 32 LRU non alloc
45 64->256 8 32 LRU non alloc
46 4->16 8 32 Random non alloc
47 16->64 8 32 Random non alloc
48 64->256 8 32 Random non alloc
49 8 2 64 LRU non alloc->alloc

12

50 8 2 128 LRU non alloc->alloc
51 32 2 64 LRU non alloc->alloc
52 32 2 128 LRU non alloc->alloc
53 128 2 64 LRU non alloc->alloc
54 128 2 128 LRU non alloc->alloc
55 32 1 32 LRU non alloc->alloc
56 32 2 32 LRU non alloc->alloc
57 32 4 32 LRU non alloc->alloc
58 32 8 32 LRU non alloc->alloc

Table 1: The different workload characteristics

As can be seen from the table 1, variables 1-3, 10-12 and 19-21 measure the

impact of associativity changes for 8KB, 32KB and 128KB caches with a block

size of 32 bytes and LRU replacement policy, respectively. Variables 4-6, 13-

15 and 22-24 do the same for caches with random replacement policy.

Variables 34-39 do the same for a 32KB cache with a block size of 64 bytes.

Variables 7-9, 16-18, 25-27 and 40-42 correspond to cache replacement policy

changes for cache sizes of 8KB, 32KB and 128KB respectively for different

associativities.

13

Variables 28-33 measure the impact of block size changes in 8KB, 32KB and

128KB caches with a degree of associativity of 2 and having LRU replacement

policy.

Variables 43-45 account for the impact of cache size changes in caches having

a degree of associativity of 8 and LRU replacement. Variables 46-48 do the

same for random replacement policy.

Variables 49-58 study the impact of sensitivity to write back policies in

different cache configurations with LRU replacement policy.

3.2 Description of the Benchmarks

3.2.1 SPEC CPU2000

The SPEC CPU2000 benchmark suite is a collection of 26 computation-

intensive, non-trivial programs used to evaluate the performance of a

computer's CPU, memory system, and compilers. The benchmarks in this suite

were chosen to represent real-world applications, and thus exhibit a wide range

14

of runtime behaviors. The integer benchmarks are written in C & C++, while

the floating-point benchmarks are mostly in Fortran.

The different integer benchmarks used for our experiment are as follows:

1. 164.gzip: gzip (GNU zip) is a popular data compression program that uses

Lempel-Ziv coding as its compression algorithm.

2. 175.vpr: VPR is a placement and routing program. It automatically

implements a technology-mapped circuit (i.e. a netlist, or hypergraph,

composed of FPGA logic blocks and I/O pads and their required

connections) in a Field-Programmable Gate Array (FPGA) chip.

3. 176.gcc: 176.gcc is based on gcc Version 2.7.2.2. It generates code for a

Motorola 88100 processor. The benchmark runs as a compiler with many of

its optimization flags enabled.

4. 181.mcf: A benchmark derived from a program used for single-depot

vehicle scheduling in public mass transportation. The program is written in

C and the benchmark version uses almost exclusively integer arithmetic.

15

5. 186.crafty: Crafty is a high-performance Computer Chess program that is

designed around a 64-bit word. It runs on 32-bit machines using the "long

long" data type. It is primarily an integer code, with a significant number of

logical operations such as and, or, exclusive or and shift.

6. 197.parser: The Link Grammar Parser is a syntactic parser of English, based

on link grammar, an original theory of English syntax.

7. 252.eon: Eon is a probabilistic ray tracer. It sends a number of 3D lines

(rays) into a 3D polygonal model. Intersections between the lines and the

polygons are computed, and new lines are generated to compute light

incident at these intersection points.

8. 253.perlbmk: 253.perlbmk is a cut-down version of Perl v5.005_03, the

popular scripting language.

9. 254.gap: It implements a language and library designed mostly for

computing in groups (GAP is an acronym for Groups, Algorithms and

Programming).

16

10. 255.vortex: VORTEX is a single-user object-oriented database transaction

benchmark, which exercises a system kernel coded in integer C.

11. 256.bzip2: 256.bzip2 is based on Julian Seward's bzip2 version 0.1. The

only difference between bzip2 0.1 and 256.bzip2 is that SPEC's version of

bzip2 performs no file I/O other than reading the input. All compression and

decompression happens entirely in memory. This is to help isolate the work

done to only the CPU and memory subsystem.

12. 300.twolf: The TimberWolfSC placement and global routing package is

used in the process of creating the lithography artwork needed for the

production of microchips. Specifically, it determines the placement and

global connections for groups of transistors (known as standard cells),

which constitute the microchip.

3.2.2 SPECJVM98

The SPECJVM98 benchmark suite basically measures the performance of Java

Virtual Machines. Most of the programs are real-world applications with high

17

demand on the memory system. The various Java benchmark programs used for

our experiment are as follows:

1. _201_compress: It is similar to 164.zip and uses modified Lempel-Ziv

method. It basically finds common substrings and replaces them with a

variable size code. This is deterministic, and can be done on the fly.

2. _209_db: It performs multiple database functions on memory resident

database. It reads in a 1 MB file, which contains records with names,

addresses and phone numbers of entities and a 19KB file called scr6,

which contains a stream of operations to perform on the records in the

file.

3. _213_javac: This is the Java compiler from the JDK 1.0.2.

4. _222_mpegaudio: This is an application that decompresses audio files

that conform to the ISO MPEG Layer-3 audio specification.

18

5. _227_mtrt: This is a raytracer program that works on a scene depicting a

dinosaur, where two threads each renders the scene in the input file

time-test model, which is 340KB in size.

6. _202_jess: JESS is the Java Expert Shell System, based on NASA's

CLIPS expert shell system. The benchmark workload solves a set of

puzzles commonly used with CLIPS.

7. _228_jack: It is a Java parser generator that is based on the Purdue

Compiler Construction Tool Set.

3.3 Principal Components Analysis (PCA)

Appendix A shows the data cache miss rates for 7 SPECJVM98 benchmarks

for different data cache configurations. As we can see from there, there is a

huge chunk of data and it is not an easy task to interpret it and draw some

meaningful conclusions regarding the sensitivity of the benchmarks to different

cache parameter changes. Moreover, there is a large correlation between the

variables, if we transform these miss rates into 58 variables as described in

section 3.1.

19

In order to interpret such a large amount of data and make some meaningful

conclusion from it, we need to reduce the number of variables to be analyzed

from such a large value to a much smaller number, which could be easily

interpreted using 2-dimensional plots. Principal Components Analysis helps us

achieve that, without losing much of the information.

Principal components analysis is a multi-variate data analysis technique that

reduces the dimensionality of a data set consisting of strongly correlated

variables, to a set of uncorrelated variables called as Principal Components.

Since the principal components are uncorrelated, each one makes an original

contribution towards accounting for the variance of the original variables.

The principal components are arranged in decreasing order of their variance. It

is often found that the first few principal components account for most of the

information present in the original data set. This helps in reducing the

dimensionality of the data and makes the analysis simpler with smaller set of

variables.

20

The p original variables, Xi, i = 1 to p are linearly transformed into p principal

components, Zi, i = 1 to p. The principal components are constructed such that

Z1 has the maximum variance and then Z2 is chosen such that it has the

maximum variance under the constraint that it is not correlated to Z1. The same

procedure is followed to form the other principal components. Consequently,

the principal components are arranged in the order of decreasing variance and

are uncorrelated, i.e. the covariance between one principal component and the

other is equal to zero. Covariance is a measure of the extent to which the

deviations of two variables match.

The geometrical properties of principal components can be elucidated by some

two dimensional figures. Let us assume that we have a sample of observations

on two standardized variables X1 and X2. We can use X1 and X2 as coordinate

axes and plot the standardized variables as in figure 1.

From the shape of the scatterplot, we can see that there is a substantial

correlation between X1 and X2. There are two variables, and if the variables are

not perfectly correlated, two principal components are required to completely

account for the variation in the two variables. The first principal component is a

new coordinate axis in the variable space which is oriented in a direction that

21

maximizes the variation of the projections of the points on the new coordinate

axis, the first principal component Z1 (Figure 2). Since the second principal

component Z2 is not correlated with Z1, it is orthogonal to Z1.

Figure 1: Scatter Plot of two standardized variables

Figure 2: One-dimensional representation by largest principal components

of two dimensional data

Z1

X1

X2

Z2

22

Retaining only those principal components that have the maximum variance

brings down the dimensionality of the data set. The number of retained

principal components, depends upon what fraction of the variance in the

original data set, we want to explain.

It is advisable to standardize the variables before applying principal

components analysis. By standardizing, we mean that the variables are rescaled

such that they have zero mean and unit variance. This ensures that the variable

having higher variance doesn’t have higher impact on the first few principal

components.

The main idea behind reducing the dimensionality is that, by having say q = 3

or 4 variables, makes it much easier to understand the differences between the

benchmarks, compared to the case when the benchmarks can differ in say p =

50 different ways.

If q is small, the user can visualize the reduced space by means of a scatter plot

that shows the position of each benchmark with respect to the principal

components. The eccentricity of the benchmarks with respect to the analyzed

benchmark suite determines their position on the scatter plot. Benchmarks that

23

are close to the origin of the q-dimensional space are average benchmarks, i.e.

when one of the parameters is changed, the benchmark will see a change similar

to the average over the entire suite. Benchmarks that are far away from the

origin are very sensitive to the changes in the parameter.

Factor loadings are used to determine the parameters that play an important role

in each principal component. Naturally, only a few parameters play an

important role in each principal component. The factor loadings are the

coefficients aij in the linear combination, Zi = Xjaij
p

j
∑

=1

. The larger aij is in

magnitude, the stronger it influences the principal component. The closer it is to

zero, the lesser or nil impact it has on the principal component. Thus, the

benchmarks with large values of Xj will score positively on Zi when aij is

positive, while those that have small values for Xj will score negatively.

Principal components analysis can also be used to judge the impact of the input

on a program as well. The inputs usually have a small impact, when their

workload characteristics do not differ much, while the programs are affected

much by the inputs, if they are widely separated in the scatter plots.

24

Consequently, these program-input pairs will be close to each other in the

original p-dimensional space as well in the q-dimensional space of the principal

components. It is also possible to find groups of benchmarks that are internally

close, but externally distant from other clusters. It can be said that inputs have

little effect on the behavior of the program, if all the instances of the same

program run on different inputs are in the same cluster.

Principal components analysis can also be used to compare benchmark suites. It

can be used to find out whether two benchmark suites differ significantly

depending upon their relative positions of their benchmarks in the scatter plot.

When the benchmark suites behave entirely different, they will occupy disjoint

areas in the q-dimensional space of principal components.

In reality, it can be expected that the benchmarks overlap, thereby a few

benchmarks exhibiting similar behavior. When a region of space contains

benchmarks from only one suite, then those benchmarks are characteristically

different from the benchmarks in the other suite that are not present in that

region.

25

3.4 Procedure

The SPECCPU2000 and SPECJVM98 benchmarks were run on SUN machines

for different cache configurations. We used shade-analyzer’s cache simulator

‘cachesim5’ for measuring the data cache miss rates. The configuration of the

Instruction Cache was fixed to be of 8KB, 32 bytes block size, direct mapped

cache.

The miss rates obtained for the various different cache configurations was

transformed into ratios of miss rates and we obtained 58 different variables for

each benchmark.

Each variable was normalized to have a zero mean and unit variance. Then

principal components analysis was performed on the data, delivering 58 (if

number of benchmarks > 58 else equal to number of benchmarks) uncorrelated

principal components sorted in the order of decreasing variance.

The eigenvalues and the fraction of variance contained in all the principal

components are calculated. A proper choice of the number of principal

26

components, q to be retained is made based on the percentage of variance of the

actual data that we want to retain.

The benchmarks are plotted in the q-dimensional space with first q principal

components as the axes. The plots and the factor loadings are analyzed and they

are used to figure out the differences in behavior of different benchmark

programs.

27

4. Results

This section summarizes the results of the study that characterizes the

SPECJVM98 and SPECCPU2000 benchmark programs in terms of their data

memory behavior. At first, we analyze the SPECJVM98 and SPECCPU2000

benchmark suites using PCA in sections 4.1 and 4.2 respectively. Then we

perform the combined analysis of SPECJVM98 and SPECCPU2000 programs

taken together. The results of the combined analysis are discussed in section

4.3. Section 4.4 makes an attempt towards selecting a subset of benchmark

programs from both the benchmark suites for study of data memory behavior.

4.1 Analysis of SPECJVM98

SPECJVM98 benchmarks were run on Sun machines for different data cache

configurations and the miss rates were obtained using Shade Analyzer’s

cachesim. The benchmarks were run for 1 billion instructions after skipping

400 million instructions at the beginning.

58 variables were formed using the procedure given in the methodology

section. Principal components analysis was performed on the 58 variables,

28

describing the data memory behavior, for seven of the SPECJVM98

benchmarks. Table 2 shows the percentage of variance accounted by each of the

seven Principal Components (PCs). The Eigen value of a principal component

reflects the amount of variance it accounts for.

Table 2: Fraction of total variance explained by the PCs (SPECJVM98)

As seen from the table, the principal components are ordered in decreasing

amount of variance and the first principal component, PC1 accounts for 37% of

the total variance. It can also be seen that the first 3 principal components

account for almost 85% of the total variance. So, we can explain the 85% of the

variance present in the original 58 variables with the first 3 principal

components.

Eigen
Value %Variance Cumulative %

PC1 18.460 37.133 37.133
PC2 13.326 26.805 63.938
PC3 10.427 20.973 84.911
PC4 4.461 8.973 93.884
PC5 2.279 4.583 98.467
PC6 0.762 1.533 100.000
PC7 0.000 0.000 100.000

29

We can exclude the other components from the analysis because they include

comparatively much less information and are relatively harder to interpret.

Table 3 shows the factor loadings for the all the 58 variables corresponding to

the first 3 principal components. In this analysis, we look for weights having an

absolute value greater than 0.15 and they have been displayed in bold. The

impact of the variables with smaller weights is ignored in the explanation of the

principal components.

30

Xi PC1 PC2 PC3 Xi PC1 PC2 PC3
1 0.001 0.092 -0.168 30 0.018 -0.140 0.162
2 -0.010 -0.188 -0.178 31 0.051 -0.171 0.195
3 -0.114 -0.171 0.034 32 -0.106 -0.161 0.119
4 0.008 0.111 -0.129 33 -0.104 -0.179 0.137
5 -0.064 -0.207 -0.053 34 0.028 -0.228 -0.055
6 0.069 -0.107 -0.239 35 -0.114 -0.204 -0.044
7 0.015 0.002 0.148 36 -0.127 -0.191 -0.073
8 -0.030 0.003 0.249 37 -0.005 -0.234 0.049
9 0.112 0.086 0.094 38 -0.111 -0.204 -0.030

10 0.138 -0.161 -0.046 39 -0.030 -0.106 0.243
11 -0.144 -0.175 0.061 40 -0.081 0.008 0.253
12 0.052 -0.096 0.219 41 -0.071 0.011 0.260
13 -0.083 -0.212 -0.016 42 -0.028 0.018 0.273
14 -0.171 -0.142 -0.041 43 0.140 -0.150 -0.025
15 -0.082 -0.038 0.252 44 0.123 0.036 0.180
16 0.209 -0.011 -0.035 45 0.171 0.122 0.016
17 -0.212 0.002 -0.006 46 0.148 -0.136 -0.022
18 -0.210 0.002 0.049 47 0.162 0.025 0.132
19 -0.116 -0.081 0.107 48 0.171 0.121 0.010
20 0.207 0.014 0.076 49 0.146 -0.099 -0.030
21 0.211 0.020 0.055 50 0.174 -0.055 -0.050
22 -0.190 -0.057 0.050 51 0.142 -0.165 -0.066
23 0.212 0.010 0.049 52 0.153 -0.156 -0.051
24 0.170 -0.020 0.167 53 0.119 -0.204 -0.032
25 -0.205 -0.003 -0.045 54 0.116 -0.207 -0.038
26 -0.171 -0.018 -0.156 55 0.138 -0.157 -0.068
27 -0.208 -0.039 -0.056 56 0.126 -0.179 -0.062
28 0.116 -0.027 0.210 57 0.116 -0.188 -0.070
29 0.043 -0.115 0.248 58 0.111 -0.191 -0.075

Table 3: Factor Loadings (SPECJVM98)

31

The factor loadings help us finding out what each principal component

correspond to.

As can be seen from table 3, PC1 scores heavily for variables X43 to X48,

which account for cache size variation. It can also be seen that PC1 has high

factor loadings for variables X16 to X18 and X19 to X24, that correspond to

cache replacement policy changes and associativity changes respectively. So,

we can conclude that PC1 doesn’t represent a single variable; rather it accounts

for cache-size, replacement policy and associativity variations.

PC2 has high factor loadings for the variables X51 to X58, which correspond to

cache allocate/non-allocate policies. So, PC2 measures the impact of changing

from non-allocate to allocate caches.

PC3 scores high for variables X28 to X33, which measure the impact of

increasing the block size. Hence we can conclude that PC3 primarily measures

the spatial locality of the benchmarks.

The workload space can be visualized by means of scatter plots. The scatter

plots show that the different benchmarks have different sensitivity to the cache

32

parameters. As we have retained 3 principal components in our analysis, we

can have three possible plots, viz. PC1 vs. PC2, PC1 vs. PC3, PC2 vs. PC3.

-8.0

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

-12.0 -10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0

PC1

PC
2

mpegaudio

jack

jess
javac

mtrt

db

compress

Figure 3: Scatter Plot of PC1 vs. PC2 (SPECJVM98)

Figure 3 shows the scatter plot between the first two principal components that

account for 64% of the total variance contained between the 58 variables. As

can be seen from the plot, mpegaudio is far away from the other benchmarks,

that means it is much more distinct that the other benchmarks in the suite, if we

are considering their data memory behavior.

33

The benchmarks having positive value of PC2, i.e. jack, jess, javac and mtrt are

benefited by write allocate caches while mpegaudio, compress and db are

favored by no write-allocate caches.

Having larger size data–cache, benefits the benchmarks that have positive

values of PC1. That means all the benchmarks except mpegaudio; perform well

with larger sized data caches. Mpegaudio is very much sensitive to cache-size

and associativity variations.

-8.0

-6.0

-4.0

-2.0

0.0

2.0

4.0

-12.0 -10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0

PC1

PC
3 mpegaudio

mtrt

db

jess

jack
compress

javac

Figure 4: Scatter Plot of PC1 vs. PC3 (SPECJVM98)

34

Figure 4 shows the scatter plot of PC1 vs. PC3. As PC3 accounts for sensitivity

of the benchmarks towards block-size variations, we can see that jess, db and

mpegaudio, that have very low value of PC3, are almost insensitive to block-

size variations. Larger block sized caches benefit javac, compress and jack

while mtrt performs well for smaller block sizes.

-8.0

-6.0

-4.0

-2.0

0.0

2.0

4.0

-8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

PC2

PC
3

compress javac jack

jess

mpegaudio

mtrt

db

Figure 5: Scatter Plot of PC2 vs. PC3 (SPECJVM98)

Figure 5 shows the scatter plot between PC2 and PC3. Here, we can see that all

the benchmarks appear to be scattered far apart. Since PC2 and PC3 account for

35

lesser variance than PC1, so we can conclude that mpegaudio is far distinct

from the other benchmarks in the suite as it scores highly on PC1.

Eccentric Benchmarks: It can be concluded from the scatter plots that

mpegaudio is an eccentric benchmark as it has a relatively much larger absolute

value of PC1 compared to the other benchmarks in the suite. It is very much

sensitive to data cache size variations. Compress and mtrt are somewhat

eccentric as they have relatively distinct values of PC2 and PC3, with respect to

the other members of the benchmark suite.

4.2 Analysis of SPECCPU2000

SPECCPU2000 benchmarks were run on Sun machines for different data cache

configurations and the miss rates were obtained using Shade Analyzer’s

cachesim. The benchmarks were run for 1 billion instructions after skipping 1

billion instructions at the beginning for initialization.

58 variables were formed using the procedure given in the same way as done

for the java benchmarks. Principal components analysis was performed on the

58 variables, describing the data memory behavior, for 12 of the

36

SPECCPU2000 benchmarks for 33 program-input pairs. Table 4 shows the

percentage of variance accounted by the first six Principal Components (PCs).

As stated earlier, the Eigen value of a principal component reflects the amount

of variance it accounts for.

Table 4: Fraction of total variance explained by the PCs (SPECCPU2000)

The Principal Components are ordered in decreasing amount of variance and

the first principal component, PC1 accounts for nearly 42% of the total

variance. It can also be seen that the first 4 principal components account for

almost 77% of the total variance. So, we can explain the 77% of the variance

present in the original 58 variables with the first 4 principal components.

Eigen
Value %Variance Cumulative %

PC1 23.46431 41.72 41.72
PC2 9.40455 16.72 58.44
PC3 6.10782 10.86 69.30
PC4 4.33553 7.71 77.01
PC5 2.99607 5.33 82.34
PC6 2.36802 4.21 86.55

37

We exclude the other principal components as they include much lesser

information and therefore their exclusion wouldn’t affect the analysis much.

Thus, we have reduced the dimensionality of the data from 58 to 4 variables,

without losing much of the variability in the data.

The factor loadings for the all the 58 variables corresponding to the first 4

principal components are shown in table 5. All the weights having an absolute

value greater than 0.15 are significant in the analysis and they have been

marked bold.

38

Xi PC1 PC2 PC3 PC4 Xi PC1 PC2 PC3 PC4
1 0.093 -0.177 0.237 -0.040 30 -0.065 0.089 0.230 -0.191
2 0.006 -0.256 0.127 0.145 31 -0.146 0.045 -0.015 -0.162
3 0.029 -0.193 0.002 -0.030 32 0.017 0.158 0.194 -0.048
4 0.082 -0.143 0.274 -0.037 33 -0.062 0.169 -0.020 0.183
5 0.007 -0.116 0.002 0.391 34 0.180 -0.057 0.105 0.043
6 0.082 0.033 -0.027 0.038 35 0.177 0.049 -0.096 -0.005
7 -0.088 0.201 -0.072 0.015 36 0.167 0.106 -0.087 0.013
8 -0.057 0.249 -0.144 0.098 37 0.186 -0.029 0.010 0.092
9 -0.035 0.270 -0.118 0.077 38 0.172 0.093 -0.090 -0.041

10 0.188 -0.049 -0.048 0.107 39 0.164 0.063 -0.081 -0.142
11 0.187 0.044 -0.100 -0.003 40 -0.077 0.075 -0.318 0.129
12 0.184 -0.009 -0.066 -0.081 41 -0.105 0.133 -0.240 0.016
13 0.180 -0.047 -0.082 0.116 42 -0.149 0.043 -0.176 -0.132
14 0.181 0.062 -0.097 -0.047 43 0.175 0.013 -0.094 0.143
15 0.160 -0.007 -0.089 -0.140 44 0.183 -0.075 -0.096 -0.025
16 -0.183 0.036 -0.049 -0.005 45 -0.065 -0.109 -0.060 -0.147
17 -0.188 0.015 0.046 0.001 46 0.179 0.013 -0.079 0.141
18 -0.182 0.006 0.031 0.030 47 0.183 -0.094 -0.078 -0.031
19 0.186 -0.065 -0.078 -0.101 48 0.014 -0.098 -0.074 -0.222
20 0.163 -0.096 -0.064 -0.177 49 0.105 0.184 -0.101 0.005
21 0.059 -0.172 -0.022 -0.005 50 0.082 0.221 -0.049 -0.138
22 0.176 -0.077 -0.087 -0.138 51 0.107 0.186 0.169 0.036
23 0.156 -0.061 -0.075 -0.252 52 0.058 0.203 0.140 -0.094
24 0.040 -0.138 -0.026 -0.066 53 0.120 0.185 0.130 0.113
25 -0.161 -0.037 0.050 0.207 54 0.078 0.226 0.094 0.014
26 -0.099 0.114 -0.016 -0.273 55 0.125 0.155 0.205 -0.028
27 -0.092 0.072 -0.031 -0.329 56 0.120 0.183 0.190 0.050
28 -0.053 0.095 0.177 -0.247 57 0.120 0.202 0.165 0.076
29 -0.019 0.066 -0.356 0.027 58 0.124 0.204 0.156 0.075

Table 5: Factor Loadings (SPECCPU2000)

The factor loadings help us to analyze what cache parameter variation, each

principal component represents.

39

As we can see from table 5, PC1 has high factor loadings for variables X43 to

X48, which corresponds to cache size variation. PC1 scores highly for the

variables X10 to X15 and X34 to X39, which correspond to cache associativity

variation. Hence PC1 accounts for the sensitivity of the benchmarks to cache

size and associativity variations.

PC2 has high value of factor loadings for the variables X49 to X58, which

correspond to cache write allocate/non-allocate policies. So, PC2 measures the

impact of changing from non-allocate to allocate caches.

PC3 scores high for variables X28 to X30, which correspond to the sensitivity

of the benchmarks to block size variations of the data cache. Hence it primarily

measures the spatial locality of the various program-input pair of the

SPECCPU2000 benchmark suite.

PC4 has high value of factor loadings for variables X25 to X27, which

correspond to the sensitivity of the benchmarks to changes in cache

replacement policy from LRU to random.

40

As we have retained the first four principal components in our analysis, we can

have a maximum possible of 6, 2-dimensional scatter plots. The scatter plots

between PC1 vs. PC2, PC1 vs. PC3, PC1 vs. PC4 and PC3 vs. PC4 are

discussed in our analysis.

-6

-4

-2

0

2

4

6

8

-15 -10 -5 0 5 10

PC1

PC
2

eon.rushmeier eon.cook

eon.kajiya

gapperlbmk.splitmail

perlbmk.diffmail

perlbmk.perfect

vortex.bendian

vpr

perlbmk.makerand parser

mcf

gcc

twolf

gzip & bzip2

crafty

Figure 6: Scatter Plot of PC1 vs. PC2 (SPECCPU2000)

Figure 6 shows the scatter plot between the first two principal components. PC1

and PC2 account for 58% of the total variance contained in the data. As we can

see here, the benchmarks in the SPECCPU2000 suite are much more scattered

41

compared to those in the SPECJVM98 suite. That means that SPECCPU2000

benchmarks represent a much more diversified set of programs, if we intend to

study the data memory behavior.

It can also be observed that the different inputs corresponding to the same

benchmark program have almost similar behavior except for the perlbmk

benchmark whose different program-input pairs are scattered.

The other interesting behavior that can be seen is the close proximity of gzip

and bzip2 program-input pairs. As we can see here, the different program-input

pairs of the two benchmarks are closely clustered. That implies that the two

benchmark programs have similar data memory behavior. The same can be said

about gcc and mcf.

The benchmarks vpr, parser, twolf, gcc, mcf, crafty, vortex and some program

input pairs of perlbmk (perfect and makerand) and eon (kajiya) have a positive

value of PC2, that means that they are benefited by write allocate caches. The

others are favored by non-allocate policy in the data cache.

42

The benchmarks that have positive values of PC1 are benefited by having larger

data cache with higher associativities. The benchmarks vpr, parser, twolf, gcc,

mcf, gzip, bzip2 and gap perform well with larger data caches. For others, it is

advisable to have smaller cache size.

-14

-12

-10

-8

-6

-4

-2

0

2

4

-15 -10 -5 0 5 10

PC1

PC
3

 eon

perlbmk.makerand

gap

gcc
mcfcrafty

vortex

perlbmk.splitmail

perlbmk.diffmail

vpr
gzip &

Figure 7: Scatter Plot of PC1 vs. PC3 (SPECCPU2000)

Figure 7 shows the scatter plot of PC1 vs. PC3 for the various program-input

pairs of the SPECCPU2000 benchmark suite. Since PC3 corresponds to the

sensitivity of the benchmarks to block-size variations, we can see that

43

makerand input of the perlbmk benchmark program, having high values of PC3,

is very sensitive to block-size variations. The other benchmarks are relatively

less sensitive to block-size variations. The different input pairs of the same

benchmark are seen to be clustered together except for perlbmk and eon to

some extent.

-6

-4

-2

0

2

4

6

8

-15 -10 -5 0 5 10

PC1

PC
4

eon.rushmeier

eon.kajiya

perlbmk.perfect

crafty

perlbmk.splitmail
eon.cook

vortex

perlbmk.makerand gcc

vpr

mcf

bzip & gzip2

Figure 8: Scatter Plot of PC1 vs. PC4 (SPECCPU2000)

Figure 8 shows the scatter plot between PC1 and PC4. As PC4 corresponds to

the sensitivity of the benchmarks to the change in the cache replacement policy

from LRU to Random, we can see that gcc, mcf, bzip2, gzip and vpr benefit

44

from having a random replacement policy while vortex, eon, crafty, and

perlbmk benefit from having least recently used (LRU) replacement algorithm.

-6

-4

-2

0

2

4

6

8

-14 -12 -10 -8 -6 -4 -2 0 2 4

PC3

PC
4

perlbmk.makerand

gap

crafty

eon.cook perlbmk.
splitmail

eon.rushmeier

eon.kajiya

gcc

perlbmk.perfect

vortexvpr.route
perlbmk.diffmail

vpr.place

bzip & gzip2

Figure 9: Scatter Plot of PC3 vs. PC4 (SPECCPU2000)

Figure 9 shows the scatter plot between PC3 and PC4 that account for 19% of

the variance within them. As seen in the earlier plots, the benchmarks seem to

be clustered. The different program input pairs of the same benchmark behave

similar for data cache parameter variation. From all these plots, it can be seen

that various program-input pairs of gzip and bzip2 have almost identical data

memory behavior. The same can be said about gcc and mcf.

45

Eccentric Benchmarks: Eon is an eccentric benchmark as it is very sensitive

to cache size variations, hence has very distinct value of PC1 compared to the

other program-input pairs. Vpr, crafty and some inputs of perlbmk also exhibit

somewhat eccentric behavior as their response is much affected by cache write

allocate policies compared to the other benchmark programs.

4.3 Combined Analysis of SPECCPU2000 & SPECJVM98

We have analyzed the data memory behavior of SPECJVM98 and

SPECCPU2000 benchmark programs in the earlier two sections. Now, we

perform the same analysis for all the benchmark programs of SPECJVM98 and

SPECCPU2000, combined together.

Using the procedure given in the methodology section, we formed 58 variables

for 12 of the SPECCPU2000 benchmarks for 33 different program-input pairs

and 7 SPECJVM98 benchmark programs. So, we have 40 different program-

input pairs for the analysis. Principal components analysis was performed on

those 58 variables. Table 6 shows the percentage of variance accounted by the

first six principal components. As mentioned earlier, the Eigen value of a

46

principal component reflects the amount of variance present in the total data, it

accounts for.

Table 6: Fraction of total variance explained by the PCs (SPECCPU2000

& SPECJVM98 combined)

As we can see from the table, first principal component PC1 accounts for nearly

40% of the total variance contained in the data. The first 4 principal

components account for almost 76% of the total variance. So, we can drop in

the other principal components and consider the first 4 components for our

analysis.

So, we can explain the 76% of the variance present in the original 58 variables

with the first 4 principal components.

Eigen
Value %Variance Cumulative %

PC1 22.798 40.31 40.31
PC2 9.688 17.13 57.44
PC3 6.035 10.67 68.11
PC4 4.190 7.41 75.52
PC5 3.564 6.30 81.82
PC6 2.424 4.29 86.11

47

As explained earlier as well, the principal components are arranged in

decreasing order of their variance. By excluding the lower principal

components, we wouldn’t be losing much of the variability in the data, but our

analysis becomes much simpler as we are reduced to 4 variables from original

58 variables.

The factor loadings for the all the 58 variables corresponding to the first 4

principal components are shown in table 7. As done in the earlier analyses, all

the weights having an absolute value greater than 0.15 are marked as bold and

they are considered to be significant in the analysis.

48

Xi PC1 PC2 PC3 PC4 Xi PC1 PC2 PC3 PC4
1 0.099 -0.153 0.255 -0.038 30 -0.071 0.084 0.197 -0.206
2 0.016 -0.231 0.167 0.157 31 -0.149 0.041 -0.012 -0.156
3 0.030 -0.151 0.060 -0.004 32 0.015 0.135 0.139 -0.059
4 0.086 -0.124 0.280 -0.040 33 -0.064 0.138 -0.060 0.179
5 0.015 -0.110 0.020 0.399 34 0.185 -0.047 0.094 0.039
6 0.081 0.048 -0.006 0.055 35 0.180 0.047 -0.103 -0.001
7 -0.097 0.176 -0.107 0.003 36 0.169 0.094 -0.110 0.010
8 -0.067 0.221 -0.184 0.089 37 0.190 -0.019 0.006 0.090
9 -0.044 0.240 -0.163 0.066 38 0.174 0.087 -0.106 -0.039

10 0.194 -0.039 -0.043 0.106 39 0.167 0.060 -0.097 -0.145
11 0.190 0.041 -0.108 -0.001 40 -0.083 0.069 -0.298 0.138
12 0.188 0.000 -0.061 -0.075 41 -0.113 0.121 -0.231 0.021
13 0.185 -0.041 -0.076 0.118 42 -0.153 0.044 -0.149 -0.120
14 0.183 0.057 -0.107 -0.042 43 0.180 0.019 -0.090 0.143
15 0.163 0.003 -0.086 -0.138 44 0.188 -0.064 -0.081 -0.023
16 -0.186 0.022 -0.048 0.003 45 -0.049 -0.120 -0.048 -0.150
17 -0.193 0.008 0.048 0.008 46 0.183 0.019 -0.077 0.140
18 -0.186 -0.001 0.032 0.032 47 0.188 -0.078 -0.058 -0.030
19 0.191 -0.053 -0.065 -0.093 48 0.028 -0.106 -0.065 -0.218
20 0.169 -0.069 -0.038 -0.177 49 0.084 0.214 -0.071 0.015
21 0.065 -0.135 0.023 -0.007 50 0.067 0.235 -0.044 -0.132
22 0.182 -0.064 -0.071 -0.127 51 0.072 0.226 0.183 0.040
23 0.162 -0.039 -0.056 -0.252 52 0.027 0.230 0.153 -0.070
24 0.047 -0.120 0.003 -0.064 53 0.088 0.224 0.146 0.112
25 -0.165 -0.041 0.059 0.210 54 0.045 0.250 0.112 0.025
26 -0.107 0.100 -0.031 -0.269 55 0.095 0.202 0.216 -0.020
27 -0.097 0.058 -0.042 -0.322 56 0.089 0.223 0.197 0.052
28 -0.059 0.098 0.149 -0.260 57 0.093 0.237 0.169 0.076
29 -0.021 0.060 -0.342 0.038 58 0.097 0.238 0.160 0.076

Table 7: Factor Loadings (SPECCPU2000 & SPECJVM98 combined)

As can be seen from table 7, PC1 has high factor loadings for variables X34 to

X39 and X10 to X15 that implies that PC1 reflects the sensitivity of the

49

benchmarks to associativity variation. PC1 also scores highly for X43 to X44

and X46 to X47 that correspond to data cache size increase. Hence, PC1

accounts for the sensitivity of the benchmarks to the associativity and size of

the data cache variations.

The factor loadings for the variables X49 to X58 are pretty high for PC2. As

these variables correspond to cache allocate/non-allocate policies, PC2

measures the impact of changing from non-allocate to allocate policy in data

cache.

PC3 scores high for variables X28 to X30, which correspond to the sensitivity

of the benchmarks to block size variations of the data cache. Hence it primarily

measures the spatial locality of the various program-input pairs of the

SPECCPU2000 and SPECJVM98 benchmark suites.

PC4 has high value of factor loadings for variables X25 to X27, which

correspond to the sensitivity of the benchmarks, while the cache replacement

policy is changed from LRU to Random.

50

Now that we have retained first 4 principal components out of total 40

components, we can have 6 scatter plots possible. As used in the earlier

analysis, we will consider scatter plots between PC1 vs. PC2, PC1 vs. PC3,

PC1 vs. PC4 and PC3 vs. PC4.

-6

-4

-2

0

2

4

6

8

-15 -10 -5 0 5 10

PC1

PC
2

SPECJVM 98
SPECCPU2000

eon.kajiya

eon.rushmeier

db
jessjack

mpegaudio

gapperlbmk.diffmail

mtrtjavac

compress
perlbmk.makerand

bzip & gzip2

gcc

mcftwolf

parser

vpr

vortex

crafty
perlbmk.perfect

vortex.splitmail

eon.cook

Figure 10: Scatter Plot of PC1 vs. PC2 (SPECCPU2000 & SPECJVM98

combined)

Figure 10 shows the scatter plot between the first two principal components that

account for 57% of the total variability contained in the data. We can clearly

see the extent of diversity in the SPECCPU2000 benchmarks with respect to

SPECJVM98 benchmark programs, while we are studying the data memory

51

behavior. The SPECJVM98 benchmark programs are clustered within a small

area in the two dimensional space of PC1 and PC2.

As observed in the analysis of SPECCPU2000, here also, we can see that the

different inputs corresponding to the same benchmark program exhibit similar

behavior. Of course, perlbmk is an exception, as it is scattered all around the

space.

The various program-input pairs of bzip2 and gzip can be seen to be closely

clustered. That means that the two benchmarks are similar in terms of their

dealings with the data cache. The different input pairs of gcc behave quite

similar to the mcf benchmark present in the SPECCPU2000 benchmark suite.

As PC1 corresponds to the sensitivity of the benchmarks to data cache

associativity and size, we can see that all the SPECJVM98 benchmarks perform

better for increasing cache size and associativities. Amongst the

SPECCPU2000 benchmarks, vpr, parser, gcc, mcf, twolf, bzip2, gzip and gap

have positive value of PC1, implying their likings for larger data cache. The

other programs perform better if the cache size is reduced.

52

Since PC2 reflects the sensitivity of a benchmark while changing from non-

allocate to allocate cache write policy, all the programs having positive value of

PC2 perform better when write allocate policy is incorporated in the data cache.

Others behave just the opposite.

-14
-12
-10
-8
-6
-4
-2
0
2
4
6

-15 -10 -5 0 5 10

PC1

PC
3

SPECJVM 98
SPECCPU2000

gapjackmpegaudio

perlbmk.makerand

eon.kajiya

eon.rushmeier

gcc

mcf

jess bzip & gzip2

parser

vortex

crafty
eon.cook

perlbmk.splitmail

vpr

Figure 11: Scatter Plot of PC1 vs. PC3 (SPECCPU2000 & SPECJVM98

combined)

Figure 11 shows the scatter plot between PC1 and PC3. As PC3 corresponds to

the sensitivity of the benchmarks to increase in block size, all the benchmarks

having positive value of PC3 are supportive of increasing block size while the

ones having negative value of PC3 perform better when the block size is

53

decreased. Here also, we can observe the close proximities of the different input

pairs of the same benchmark.

-6

-4

-2

0

2

4

6

8

-15 -10 -5 0 5 10

PC1

PC
4

SPECJVM 98
SPECCPU2000

eon.rushmeier

eon.kajiya
perlbmk.perfect perlbmk.makerand

mpegaudio

crafty perlbmk.splitmail

vpr.route

jess
jack

javac bzip & gzip2

gcc

mcf

eon.cook

vortex

vpr.place

Figure 12: Scatter Plot of PC1 vs. PC4 (SPECCPU2000 & SPECJVM98

combined)

Figure 12 shows the scatter plot between PC1 and PC4. Since PC4 corresponds

to the response of a benchmark when the cache replacement algorithm changes

from LRU to Random, all the benchmarks having positive value of PC4 are

supportive of Random replacement algorithm while the others perform better

with LRU algorithm.

54

-6

-4

-2

0

2

4

6

8

-15 -10 -5 0 5

PC3

PC
4

SPECJVM 98
SPECCPU2000

perlbmk.makerand

crafty
perlbmk.splitmail

eon.cook

eon.rushmeier

eon.kajiya

gcc
mcf

jack
gap

mpegaudio

perlbmk.perfect

jess
javac

bzip & gzip2

vpr.route
vortex

Figure 13: Scatter Plot of PC3 vs. PC4 (SPECCPU2000 & SPECJVM98

combined)

PC3 and PC4 account for almost 18% of the variance contained in the data. The

scatter plot of PC3 vs. PC4 is shown in Figure 13. Here also, we can see the

clustering of the java benchmarks as well as the clustering of different program

inputs of the same benchmark program.

4.4 Selecting a subset of benchmarks for studying data memory behavior

SPECJVM98: In order to stress the data cache of a machine using java

programs, we need not run all the programs of the SPECJVM98 benchmark

55

suite. Based upon the scatter plots obtained using PCA, we would select

mpegaudio, compress, mtrt and javac.

SPECCPU2000: We observed the similarity in the data memory behavior of

different inputs of the same program. Perlbmk was an exception in this case as

it behaved differently for different inputs applied to it.

We also observed that bzip2 and gzip behaved similar to each other and they

were clustered together in all the scatter plots. So, we could choose either of the

two with one input set.

We need not run mcf, if are studying the data cache miss rates. Its behavior is

much similar to that of different program-input pairs of gcc.

Since SPECCPU2000 is a very diversified benchmark suite, we can chose one

program-input pair for each benchmark program, taking into account the above

observations. Perlbmk needs to be run with different input combinations as its

data memory behavior is much dependent upon the input set.

56

SPECCPU2000 & SPECJVM98: As we observed from the combined scatter

plots, SPECCPU2000 is a much more diversified benchmark suite as compared

to SPECJVM98. When we are studying the data memory behavior of a

machine, SPECCPU2000 benchmarks cover a much wider area in the 4-

dimensional space of the principal components compared to the SPECJVM98

benchmarks. Moreover, there are some or other benchmark programs of the

SPECCPU2000 benchmark suite that are very close in behavior to the

SPECJVM98 benchmarks. So, we can conclude that SPECCPU2000

benchmarks are much more diverse as compared to SPECJVM98 programs and

they are able to measure the same workload characteristics that the java

benchmarks measure.

The clustering of the Java benchmarks can be attributed to the fact that, here the

properties of the Java Virtual Machine (JVM) are dominating instead of the

actual program. The Java compiler converts the Java code into bytecodes and

puts them into a “.class” file. This “.class” file can be interpreted on any

machine that has a Java Virtual Machine on it. The JVM processes each of the

bytecodes and executes them. When a JIT (Just In Time) compiler is present, it

takes the bytecodes and compiles them into the native code for the machine that

we are running the program upon. It can actually be faster to grab the

57

bytecodes, compile them, and run the resulting executable than it is to interpret

them. So, in the presence of JIT compilation, the properties of the Java Virtual

Machine dominate and it is actually the behavior of the JVM rather than the

benchmarks that is reflected, when the different benchmarks are characterized.

Hence, all the Java benchmarks appear to be closely clustered.

58

5. Conclusion

We studied and analyzed the data memory behavior of the SPECJVM98 and

SPECCPU2000 benchmark suites using principal components analysis. We

studied the sensitivity of the benchmark programs of the two suites towards

changes in the various data cache parameters.

We also studied the effect of different inputs applied to the same benchmark

program for SPECCPU2000. We performed the analysis for the benchmarks of

the two benchmark suites taken together to carve out the differences between

them.

We found that different inputs to the same program behave almost identical, in

terms of study of the data memory behavior. This helps us to conclude that we

need not run all the program-input pairs for the same program, when we are

studying the data cache behavior. We also found out that perlbmk is sensitive to

input variations and its inputs are very diverse compared to other program-input

pairs.

59

We also found that certain benchmarks have almost identical sensitivities to

changes in data cache parameters. Our experiment helped us to find out such

benchmark pairs. This can help us in eliminating the redundancy existing

between different benchmark programs and help us chose a minimum number

of benchmark programs to be run on a machine to explore the entire workload

space while studying data memory. This can help us considerably in reducing

the simulation time spent on running the benchmarks and hence the time to

market.

This analysis also helped us figure out some of the eccentric benchmarks in the

two benchmark suites. An eccentric benchmark has a significantly different

behavior with respect to the other benchmarks. They are useful when

constructing benchmark suites, as it is possible to obtain a large coverage of the

behavior space with a few eccentric benchmarks. It is important to include them

whenever we are sub-setting a benchmark suite in order to reduce the

simulation time.

60

Appendix A

Data Cache Miss Rates for SPECJVM98 programs for different cache

configurations.

 compress jess db javac mpgaudio mtrt jack
8Kb32s1wt 11.626 21.774 21.146 16.006 11.247 16.004 19.358

8Kb32s2rlruwt 9.014 18.881 19.214 13.552 9.650 14.238 16.530
8Kb32s4rlruwt 8.738 17.972 18.900 12.747 9.334 13.937 15.382
8Kb32s8rlruwt 8.656 17.586 18.567 12.388 9.306 13.396 14.565

8Kb32s1wt 11.626 21.774 21.146 16.006 11.247 16.004 19.358

8Kb32s2rrandomwt 9.618 19.624 19.890 14.833 10.124 14.900 17.315
8Kb32s4rrandomwt 9.522 19.051 19.852 14.095 10.021 14.443 16.563
8Kb32s8rrandomwt 9.424 18.751 19.660 13.707 9.812 14.567 16.089

32Kb32s1wt 7.969 17.018 18.457 12.133 6.890 11.552 14.110

32Kb32s2rlruwt 7.462 15.268 17.729 10.709 5.959 10.617 12.638
32Kb32s4rlruwt 7.368 14.777 17.346 10.341 5.919 10.219 12.219
32Kb32s8rlruwt 7.346 14.662 17.279 10.232 5.832 9.990 12.113

32Kb32s1wt 7.969 17.018 18.457 12.133 6.890 11.552 14.110

32Kb32s2rrandomwt 7.696 15.614 17.982 11.208 6.679 10.816 13.121
32Kb32s4rrandomwt 7.654 15.247 17.916 10.905 6.818 10.623 12.809
32Kb32s8rrandomwt 7.650 15.128 17.821 10.896 6.829 10.141 12.733

128Kb32s1wt 5.982 14.263 16.917 9.749 3.240 8.762 12.477

128Kb32s2rlruwt 5.678 13.395 16.551 9.439 3.169 8.129 11.761
128Kb32s4rlruwt 5.641 13.174 16.246 9.332 2.499 7.764 11.648
128Kb32s8rlruwt 5.625 13.102 16.135 9.298 2.322 7.691 11.620

128Kb32s1wt 5.982 14.263 16.917 9.749 3.240 8.762 12.477

128Kb32s2rrandomwt 5.780 13.614 16.678 9.603 3.352 8.299 11.945
128Kb32s4rrandomwt 5.774 13.457 16.599 9.549 2.671 8.137 11.885
128Kb32s8rrandomwt 5.789 13.408 16.626 9.561 2.569 7.958 11.861

8Kb64s2rlruwt 9.369 17.756 17.213 12.927 7.983 12.124 16.430

8Kb128s2rlruwt 10.020 17.485 17.588 13.399 7.821 11.304 16.579

61

32Kb64s2rlruwt 7.530 13.848 15.588 9.316 5.299 8.947 11.447
32Kb128s2rlruwt 7.704 12.201 14.820 8.501 4.648 7.416 10.446

128Kb64s2rlruwt 5.672 11.838 14.524 8.032 3.066 6.643 10.209

128Kb128s2rlruwt 5.679 10.281 13.737 7.012 3.026 5.299 8.920

32Kb64s1wt 8.116 16.206 16.534 10.945 5.995 10.014 13.273
32Kb64s2rlruwt 7.530 13.848 15.588 9.316 5.299 8.947 11.447
32Kb64s4rlruwt 7.399 12.987 15.250 8.893 5.266 8.622 10.752
32Kb64s8rlruwt 7.362 12.807 15.118 8.753 5.258 8.536 10.562

32Kb64s1wt 8.116 16.206 16.534 10.945 5.995 10.014 13.273

32Kb64s2rrandomwt 7.811 14.190 15.947 9.805 5.518 8.943 11.846
32Kb64s4rrandomwt 7.755 13.451 15.841 9.473 5.541 8.693 11.289
32Kb64s8rrandomwt 7.748 13.299 15.761 9.457 5.498 8.474 11.149

4Kb32s8rlruwt 9.545 20.110 19.583 14.841 10.961 15.630 19.431

16Kb32s8rlruwt 7.958 15.690 17.848 11.004 6.875 12.121 12.837
64Kb32s8rlruwt 6.607 13.786 16.701 9.738 4.698 8.524 11.822
256Kb32s8rlruwt 4.279 12.601 15.553 8.903 2.091 7.256 11.456

4Kb32s8rrandomwt 10.787 22.013 21.572 17.051 12.880 16.954 20.790

16Kb32s8rrandomwt 8.465 16.532 18.662 11.972 7.837 12.519 13.845
64Kb32s8rrandomwt 6.815 14.138 17.171 10.096 4.616 8.828 12.179
256Kb32s8rrandomwt 4.466 12.903 15.957 9.137 2.164 7.544 11.615

8Kb64s2rlruwbwa 5.680 7.507 7.658 6.537 2.878 6.974 7.486
8Kb128s2rlruwbwa 6.170 9.039 9.272 7.527 3.443 7.083 9.067

32Kb64s2rlruwbwa 3.962 3.198 5.929 2.830 0.643 4.171 2.141

32Kb128s2rlruwbwa 4.173 3.086 5.722 2.700 0.536 3.454 2.301

128Kb64s2rlruwbwa 2.224 1.049 4.832 1.463 0.165 1.807 0.756
128Kb128s2rlruwbwa 2.249 0.819 4.350 1.065 0.130 1.422 0.550

32Kb32s1wbwa 4.349 4.990 7.748 4.760 1.367 5.904 3.226

32Kb32s2rlruwbwa 3.919 3.367 7.008 3.504 0.943 4.855 2.182
32Kb32s4rlruwbwa 3.828 2.834 6.826 3.119 0.900 4.600 1.732
32Kb32s8rlruwbwa 3.809 2.632 6.772 2.975 0.882 4.511 1.560

62

Appendix B

Data Cache Miss Rates for SPECCPU2000 programs for different cache

configurations.

 gap parser twolf vpr.place vpr.route mcf crafty
8Kb32s1wt 3.341 12.857 22.008 19.150 8.549 37.756 12.055

8Kb32s2rlruwt 2.959 10.828 19.194 12.023 5.278 37.381 9.255
8Kb32s4rlruwt 2.850 9.987 17.960 10.288 4.400 37.349 7.242
8Kb32s8rlruwt 2.843 9.810 17.237 9.631 4.213 37.317 6.274

8Kb32s1wt 3.341 12.857 22.008 19.150 8.549 37.756 12.055

8Kb32s2rrandomwt 3.141 11.659 21.113 14.278 5.989 37.810 9.955
8Kb32s4rrandomwt 3.085 11.051 20.990 13.329 5.386 38.393 8.710
8Kb32s8rrandomwt 3.058 10.930 20.812 13.224 5.239 38.100 8.318

32Kb32s1wt 3.022 8.336 17.095 8.942 4.266 35.322 4.354

32Kb32s2rlruwt 2.846 7.115 15.845 7.596 3.019 35.128 2.238
32Kb32s4rlruwt 2.842 6.818 15.628 7.351 2.818 35.156 1.614
32Kb32s8rlruwt 2.842 6.695 15.506 7.271 2.760 35.371 1.293

32Kb32s1wt 3.022 8.336 17.095 8.942 4.266 35.322 4.354

32Kb32s2rrandomwt 2.940 7.463 16.783 8.460 3.343 35.268 2.548
32Kb32s4rrandomwt 2.927 7.235 16.704 8.420 3.223 35.308 2.118
32Kb32s8rrandomwt 2.924 7.154 16.658 8.343 3.197 35.369 2.031

128Kb32s1wt 2.888 5.201 13.655 6.211 2.751 32.711 1.605

128Kb32s2rlruwt 2.835 4.656 13.076 5.795 2.254 31.840 1.077
128Kb32s4rlruwt 2.833 4.508 12.906 5.631 2.184 31.457 0.764
128Kb32s8rlruwt 2.830 4.469 12.880 5.587 2.161 31.303 0.740

128Kb32s1wt 2.888 5.201 13.655 6.211 2.751 32.711 1.605

128Kb32s2rrandomwt 2.873 4.845 13.422 6.119 2.394 32.286 1.161
128Kb32s4rrandomwt 2.868 4.763 13.386 6.025 2.354 32.104 1.064
128Kb32s8rrandomwt 2.867 4.745 13.390 6.011 2.341 32.068 1.039

8Kb64s2rlruwt 2.278 9.328 14.585 13.228 6.428 28.548 12.538

8Kb128s2rlruwt 1.749 9.310 12.630 16.179 9.435 23.521 15.216

63

32Kb64s2rlruwt 2.094 5.574 10.989 7.168 2.831 27.195 2.920
32Kb128s2rlruwt 1.298 4.871 8.421 7.357 3.176 22.366 3.909

128Kb64s2rlruwt 2.084 3.342 8.739 5.368 1.881 23.972 1.152

128Kb128s2rlruwt 1.276 2.732 6.309 5.145 1.735 20.004 1.292

32Kb64s1wt 2.298 6.986 12.341 8.780 4.570 27.462 5.414
32Kb64s2rlruwt 2.094 5.574 10.989 7.168 2.831 27.195 2.920
32Kb64s4rlruwt 2.088 5.268 10.572 6.864 2.509 27.148 2.125
32Kb64s8rlruwt 2.088 5.139 10.525 6.773 2.434 27.053 1.656

32Kb64s1wt 2.298 6.986 12.341 8.780 4.570 27.462 5.414

32Kb64s2rrandomwt 2.184 5.929 11.854 8.225 3.208 27.421 3.244
32Kb64s4rrandomwt 2.170 5.671 11.684 8.211 2.988 27.442 2.758
32Kb64s8rrandomwt 2.167 5.581 11.612 8.118 2.934 27.456 2.575

4Kb32s8rlruwt 2.852 11.833 22.108 13.611 5.455 37.829 13.527

16Kb32s8rlruwt 2.842 8.091 16.175 8.048 3.312 36.629 2.769
64Kb32s8rlruwt 2.842 5.484 14.538 6.501 2.421 32.286 0.868
256Kb32s8rlruwt 2.828 3.494 10.153 4.354 1.928 30.743 0.673

4Kb32s8rrandomwt 3.280 13.744 25.190 18.244 7.484 39.035 15.215

16Kb32s8rrandomwt 2.971 8.793 18.309 10.059 3.966 37.215 4.003
64Kb32s8rrandomwt 2.894 5.813 15.210 7.142 2.697 33.410 1.299
256Kb32s8rrandomwt 2.851 3.812 10.704 4.710 2.040 31.115 0.888

8Kb64s2rlruwbwa 0.457 7.553 9.754 9.633 5.945 26.142 9.903
8Kb128s2rlruwbwa 0.500 7.593 9.686 10.970 8.856 18.312 12.989

32Kb64s2rlruwbwa 0.268 4.142 7.004 5.780 2.409 25.200 1.743

32Kb128s2rlruwbwa 0.143 3.539 6.037 5.744 2.731 17.452 2.692

128Kb64s2rlruwbwa 0.262 2.179 5.350 4.167 1.469 22.718 0.336
128Kb128s2rlruwbwa 0.132 1.642 4.343 3.934 1.307 15.944 0.465

32Kb32s1wbwa 0.636 6.537 9.629 7.273 3.821 33.155 2.780

32Kb32s2rlruwbwa 0.529 5.463 8.630 6.261 2.619 33.043 1.168
32Kb32s4rlruwbwa 0.527 5.204 8.489 6.068 2.422 33.214 0.740
32Kb32s8rlruwbwa 0.527 5.099 8.467 5.996 2.364 33.512 0.603

64

Data Cache Miss Rates (Contd.)

 gzip.src gzip.log gzip.gra gzip.rand gzip.prog
8Kb32s1wt 11.537 7.249 15.114 18.848 13.300

8Kb32s2rlruwt 9.894 6.404 13.809 16.590 11.291
8Kb32s4rlruwt 9.636 6.288 13.622 16.449 10.874
8Kb32s8rlruwt 9.577 6.254 13.581 16.383 10.783

8Kb32s1wt 11.537 7.249 15.114 18.848 13.300

8Kb32s2rrandomwt 10.329 6.645 14.222 18.409 11.852
8Kb32s4rrandomwt 10.152 6.562 14.105 18.285 11.561
8Kb32s8rrandomwt 10.120 6.536 14.071 18.251 11.479

32Kb32s1wt 8.269 5.493 12.300 14.705 9.463

32Kb32s2rlruwt 7.342 5.144 11.501 13.732 8.393
32Kb32s4rlruwt 7.256 5.148 11.526 13.714 8.216
32Kb32s8rlruwt 7.252 5.154 11.546 13.722 8.174

32Kb32s1wt 8.269 5.493 12.300 14.705 9.463

32Kb32s2rrandomwt 7.760 5.388 11.852 14.708 8.796
32Kb32s4rrandomwt 7.746 5.404 11.897 14.537 8.779
32Kb32s8rrandomwt 7.732 5.394 11.901 14.682 8.724

128Kb32s1wt 4.900 3.372 6.357 7.421 5.353

128Kb32s2rlruwt 4.411 3.399 5.953 7.066 4.826
128Kb32s4rlruwt 4.594 3.562 6.370 7.468 5.018
128Kb32s8rlruwt 4.702 3.620 6.430 7.496 5.128

128Kb32s1wt 4.900 3.372 6.357 7.421 5.353

128Kb32s2rrandomwt 4.617 3.423 6.202 7.391 5.056
128Kb32s4rrandomwt 4.696 3.450 6.578 7.699 5.153
128Kb32s8rrandomwt 4.714 3.466 6.663 7.754 5.201

8Kb64s2rlruwt 9.775 5.750 13.608 16.312 11.227
8Kb128s2rlruwt 9.908 5.476 13.761 16.206 11.521

32Kb64s2rlruwt 6.417 4.041 10.536 12.586 7.429

32Kb128s2rlruwt 6.189 3.629 10.410 12.466 6.989

65

128Kb64s2rlruwt 3.462 2.612 4.771 5.777 3.798
128Kb128s2rlruwt 3.072 2.243 4.526 5.556 3.372

32Kb64s1wt 7.586 4.567 11.645 13.750 8.668
32Kb64s2rlruwt 6.417 4.041 10.536 12.586 7.429
32Kb64s4rlruwt 6.343 4.056 10.586 12.577 7.211
32Kb64s8rlruwt 6.385 4.077 10.590 12.595 7.206

32Kb64s1wt 7.586 4.567 11.645 13.750 8.668

32Kb64s2rrandomwt 6.941 4.379 11.055 13.560 7.884
32Kb64s4rrandomwt 6.951 4.416 11.168 13.707 7.925
32Kb64s8rrandomwt 6.949 4.418 11.198 13.854 7.886

4Kb32s8rlruwt 10.399 6.619 13.983 17.216 11.851
16Kb32s8rlruwt 8.709 5.900 13.087 15.657 9.756
64Kb32s8rlruwt 6.020 4.561 9.717 11.571 6.769

256Kb32s8rlruwt 2.316 1.603 2.592 3.737 2.466

4Kb32s8rrandomwt 11.361 7.161 14.979 20.007 13.033
16Kb32s8rrandomwt 8.971 5.996 13.158 16.644 10.134
64Kb32s8rrandomwt 6.405 4.664 9.954 11.947 7.185

256Kb32s8rrandomwt 2.575 1.929 2.603 4.083 2.627

8Kb64s2rlruwbwa 5.707 3.357 7.227 8.638 6.612
8Kb128s2rlruwbwa 6.107 3.051 7.678 8.801 7.440

32Kb64s2rlruwbwa 3.276 2.371 5.524 6.719 3.674
32Kb128s2rlruwbwa 3.004 1.750 5.307 6.480 3.479

128Kb64s2rlruwbwa 1.259 1.254 1.927 2.216 1.305

128Kb128s2rlruwbwa 0.892 0.755 1.624 1.929 0.995

32Kb32s1wbwa 4.619 3.459 6.644 7.566 5.200
32Kb32s2rlruwbwa 3.750 3.164 5.937 7.133 4.053
32Kb32s4rlruwbwa 3.626 3.130 5.904 7.090 3.880
32Kb32s8rlruwbwa 3.588 3.114 5.903 7.089 3.805

66

Data Cache Miss Rates (Contd.)

 gcc.166 gcc.200 gcc.expr gcc.integ gcc.scilab
8Kb32s1wt 51.071 18.460 23.917 38.099 21.032

8Kb32s2rlruwt 49.064 15.788 21.420 35.901 18.883
8Kb32s4rlruwt 48.510 14.902 20.332 34.974 18.199
8Kb32s8rlruwt 48.319 14.631 19.946 34.690 18.126

8Kb32s1wt 51.071 18.460 23.917 38.099 21.032

8Kb32s2rrandomwt 49.594 16.508 22.121 36.557 19.514
8Kb32s4rrandomwt 49.220 16.013 21.417 35.909 19.272
8Kb32s8rrandomwt 49.136 15.860 21.183 35.755 19.208

32Kb32s1wt 47.974 13.158 18.971 34.536 17.190

32Kb32s2rlruwt 47.076 12.019 18.028 33.592 16.035
32Kb32s4rlruwt 46.891 11.592 17.605 33.346 15.880
32Kb32s8rlruwt 46.839 11.466 17.460 33.290 15.850

32Kb32s1wt 47.974 13.158 18.971 34.536 17.190

32Kb32s2rrandomwt 47.263 12.119 17.627 33.809 16.221
32Kb32s4rrandomwt 47.142 11.732 17.225 33.622 16.062
32Kb32s8rrandomwt 47.104 11.621 17.074 33.563 16.841

128Kb32s1wt 47.343 8.683 12.075 27.843 11.992

128Kb32s2rlruwt 46.799 8.225 11.139 30.072 11.892
128Kb32s4rlruwt 46.767 8.046 10.342 32.957 12.033
128Kb32s8rlruwt 46.763 8.038 10.164 32.944 12.413

128Kb32s1wt 47.343 8.683 12.075 27.843 11.992

128Kb32s2rrandomwt 45.821 8.231 11.573 27.627 11.721
128Kb32s4rrandomwt 45.438 8.160 11.464 27.461 11.697
128Kb32s8rrandomwt 45.266 8.127 11.418 27.313 11.733

8Kb64s2rlruwt 49.127 15.960 21.373 35.903 18.441
8Kb128s2rlruwt 40.971 15.103 19.285 31.163 16.712

32Kb64s2rlruwt 47.006 11.660 17.375 33.617 15.270

32Kb128s2rlruwt 37.728 9.882 14.089 26.922 12.678

67

128Kb64s2rlruwt 46.609 7.771 10.434 30.111 11.291
128Kb128s2rlruwt 37.238 6.956 9.618 25.070 10.379

32Kb64s1wt 47.867 12.864 18.556 34.441 16.568

32Kb64s2rlruwt 47.006 11.660 17.375 33.617 15.270
32Kb64s4rlruwt 46.676 11.100 16.975 33.145 15.107
32Kb64s8rlruwt 46.652 10.959 16.865 33.114 15.064

32Kb64s1wt 47.867 12.864 18.556 34.441 15.568

32Kb64s2rrandomwt 47.168 11.769 17.050 33.765 15.486
32Kb64s4rrandomwt 46.962 11.274 16.599 33.431 15.317
32Kb64s8rrandomwt 46.932 11.149 16.436 33.401 15.249

4Kb32s8rlruwt 50.352 20.678 22.638 37.259 23.397
16Kb32s8rlruwt 47.123 12.315 18.453 33.548 16.060
64Kb32s8rlruwt 46.795 10.104 13.336 33.158 14.796

256Kb32s8rlruwt 46.676 5.660 8.595 18.642 8.219

4Kb32s8rrandomwt 51.667 21.504 24.465 38.809 23.802
16Kb32s8rrandomwt 47.585 13.104 19.113 34.164 16.966
64Kb32s8rrandomwt 46.774 9.976 13.552 32.490 14.396

256Kb32s8rrandomwt 36.569 7.092 10.441 20.328 9.944

8Kb64s2rlruwbwa 47.501 13.588 18.661 34.432 16.039
8Kb128s2rlruwbwa 26.072 9.869 12.504 20.007 9.506

32Kb64s2rlruwbwa 45.609 10.326 15.442 32.003 14.316
32Kb128s2rlruwbwa 23.289 6.048 8.414 16.628 7.533

128Kb64s2rlruwbwa 45.208 6.853 6.239 30.414 10.985

128Kb128s2rlruwbwa 22.859 3.677 3.394 15.498 5.693

32Kb32s1wbwa 46.444 11.729 16.661 32.962 15.771
32Kb32s2rlruwbwa 45.845 10.653 15.755 32.185 15.067
32Kb32s4rlruwbwa 45.747 10.360 15.523 32.041 14.969
32Kb32s8rlruwbwa 45.720 10.270 15.467 32.014 14.942

68

Data Cache Miss Rates (Contd.)

 vortex.in1 vortex.in2 vortex.in3 bzip2.src bzip2.gra
8Kb32s1wt 14.734 18.027 16.990 8.760 7.013

8Kb32s2rlruwt 10.725 10.865 10.768 7.745 6.299
8Kb32s4rlruwt 9.622 9.701 9.606 7.530 6.104
8Kb32s8rlruwt 9.247 9.395 9.165 7.444 6.078

8Kb32s1wt 14.734 18.027 16.990 8.760 7.013

8Kb32s2rrandomwt 12.167 13.206 13.516 8.027 6.581
8Kb32s4rrandomwt 11.481 12.196 12.141 7.855 6.376
8Kb32s8rrandomwt 11.528 12.048 11.747 7.801 6.358

32Kb32s1wt 7.572 10.244 7.447 6.786 5.777

32Kb32s2rlruwt 3.653 3.766 3.810 6.334 5.567
32Kb32s4rlruwt 2.636 2.781 2.695 6.228 5.559
32Kb32s8rlruwt 2.188 2.234 2.406 6.189 5.562

32Kb32s1wt 7.572 10.244 7.447 6.786 5.777

32Kb32s2rrandomwt 4.143 4.369 4.341 6.467 5.651
32Kb32s4rrandomwt 3.366 3.621 3.560 6.407 5.655
32Kb32s8rrandomwt 3.113 3.183 3.296 6.394 5.660

128Kb32s1wt 4.337 3.806 3.650 5.756 4.899

128Kb32s2rlruwt 1.558 1.445 1.818 5.569 4.747
128Kb32s4rlruwt 1.103 1.103 1.092 5.519 4.699
128Kb32s8rlruwt 1.025 1.030 1.028 5.499 4.671

128Kb32s1wt 4.337 3.806 3.650 5.756 4.899

128Kb32s2rrandomwt 1.790 1.661 1.984 5.632 4.813
128Kb32s4rrandomwt 1.307 1.319 1.320 5.606 4.809
128Kb32s8rrandomwt 1.262 1.257 1.258 5.599 4.814

8Kb64s2rlruwt 11.295 11.598 11.639 7.711 6.121

8Kb128s2rlruwt 12.595 12.731 12.789 8.312 6.691

32Kb64s2rlruwt 4.321 4.561 4.410 6.095 5.220
32Kb128s2rlruwt 4.902 5.157 5.172 5.799 4.992

69

128Kb64s2rlruwt 1.697 1.456 2.002 5.297 4.485
128Kb128s2rlruwt 1.748 1.640 2.202 4.910 4.291

32Kb64s1wt 9.299 11.607 8.915 6.716 5.553
32Kb64s2rlruwt 4.321 4.561 4.410 6.095 5.220
32Kb64s4rlruwt 3.345 3.400 3.346 5.975 5.194
32Kb64s8rlruwt 3.134 3.201 3.230 5.931 5.187

32Kb64s1wt 9.299 11.607 8.915 6.716 5.553

32Kb64s2rrandomwt 5.003 5.301 5.208 6.238 5.328
32Kb64s4rrandomwt 4.206 4.519 4.824 6.161 5.325
32Kb64s8rrandomwt 3.991 4.201 4.352 6.142 5.328

4Kb32s8rlruwt 13.098 13.373 13.345 8.026 6.300

16Kb32s8rlruwt 5.753 5.651 5.712 6.699 5.811
64Kb32s8rlruwt 1.209 1.204 1.191 5.838 5.185
256Kb32s8rlruwt 0.961 0.957 0.961 5.025 4.347

4Kb32s8rrandomwt 17.433 18.022 17.910 8.566 6.774

16Kb32s8rrandomwt 6.954 7.198 7.189 6.983 5.994
64Kb32s8rrandomwt 1.651 1.655 1.648 5.981 5.256
256Kb32s8rrandomwt 1.087 1.083 1.090 5.040 4.442

8Kb64s2rlruwbwa 6.775 7.163 7.020 4.886 3.613
8Kb128s2rlruwbwa 8.250 8.442 8.308 5.848 4.451

32Kb64s2rlruwbwa 2.551 2.687 2.603 3.058 2.651

32Kb128s2rlruwbwa 3.045 3.132 2.949 3.019 2.523

128Kb64s2rlruwbwa 0.721 0.646 0.927 2.102 2.017
128Kb128s2rlruwbwa 0.909 0.816 1.105 1.876 1.828

32Kb32s1wbwa 4.120 4.576 4.200 3.840 3.283

32Kb32s2rlruwbwa 1.969 2.028 2.134 3.330 3.031
32Kb32s4rlruwbwa 1.507 1.663 1.645 3.197 3.010
32Kb32s8rlruwbwa 1.251 1.306 1.421 3.147 3.003

70

Data Cache Miss Rates (Contd.)

 bzip2.prog eon.cook eon.rush eon.kajiya perlbmk.diff
8Kb32s1wt 7.215 9.746 15.349 12.753 18.568

8Kb32s2rlruwt 6.308 7.302 10.860 9.785 15.267
8Kb32s4rlruwt 6.027 6.890 11.576 9.773 15.107
8Kb32s8rlruwt 5.965 6.158 11.118 9.772 15.237

8Kb32s1wt 7.215 9.746 15.349 12.753 18.568

8Kb32s2rrandomwt 6.630 8.283 12.147 10.557 15.526
8Kb32s4rrandomwt 6.375 7.676 13.429 11.151 15.028
8Kb32s8rrandomwt 6.341 6.544 12.160 11.364 14.840

32Kb32s1wt 5.638 3.524 6.682 2.416 9.936

32Kb32s2rlruwt 5.273 2.216 3.175 0.956 8.424
32Kb32s4rlruwt 5.202 1.153 1.262 0.186 8.341
32Kb32s8rlruwt 5.167 0.954 0.739 0.135 7.421

32Kb32s1wt 5.638 3.524 6.682 2.416 9.936

32Kb32s2rrandomwt 5.400 2.498 4.029 1.118 8.661
32Kb32s4rrandomwt 5.365 1.267 1.873 0.300 8.429
32Kb32s8rrandomwt 5.345 1.213 1.611 0.195 7.909

128Kb32s1wt 4.746 1.422 4.806 1.120 7.161

128Kb32s2rlruwt 4.561 0.757 0.426 0.043 6.189
128Kb32s4rlruwt 4.502 0.744 0.118 0.013 5.980
128Kb32s8rlruwt 4.476 0.744 0.118 0.013 5.884

128Kb32s1wt 4.746 1.422 4.806 1.120 7.161

128Kb32s2rrandomwt 4.637 0.759 0.791 0.064 6.400
128Kb32s4rrandomwt 4.613 0.744 0.119 0.013 6.235
128Kb32s8rrandomwt 4.606 0.744 0.118 0.013 6.252

8Kb64s2rlruwt 6.130 9.168 10.658 8.481 15.334

8Kb128s2rlruwt 6.633 8.205 11.492 7.693 15.576

32Kb64s2rlruwt 4.967 2.818 1.983 1.174 8.704
32Kb128s2rlruwt 4.759 2.715 2.428 1.336 9.151

71

128Kb64s2rlruwt 4.239 0.601 0.153 0.050 6.268
128Kb128s2rlruwt 3.992 0.393 0.172 0.060 6.205

32Kb64s1wt 5.457 3.809 5.808 2.788 10.089

32Kb64s2rlruwt 4.967 2.818 1.983 1.174 8.704
32Kb64s4rlruwt 4.889 1.414 0.674 0.345 8.824
32Kb64s8rlruwt 4.852 1.035 0.367 0.166 7.553

32Kb64s1wt 5.457 3.809 5.808 2.788 10.089

32Kb64s2rrandomwt 5.101 2.832 2.591 1.385 9.003
32Kb64s4rrandomwt 5.053 1.429 0.758 0.470 8.874
32Kb64s8rrandomwt 5.030 1.398 0.462 0.233 8.074

4Kb32s8rlruwt 6.516 17.217 20.791 17.215 17.439

16Kb32s8rlruwt 5.524 1.837 3.433 1.272 9.424
64Kb32s8rlruwt 4.819 0.744 0.124 0.016 6.501
256Kb32s8rlruwt 4.130 0.744 0.118 0.013 5.748

4Kb32s8rrandomwt 7.126 18.333 24.476 20.310 18.844

16Kb32s8rrandomwt 5.769 2.283 4.164 1.938 9.847
64Kb32s8rrandomwt 4.968 0.746 0.385 0.019 6.853
256Kb32s8rrandomwt 4.228 0.744 0.118 0.013 5.948

8Kb64s2rlruwbwa 3.830 2.887 2.967 2.675 4.673
8Kb128s2rlruwbwa 4.520 3.048 2.916 2.929 5.041

32Kb64s2rlruwbwa 2.584 0.548 0.683 0.476 1.590

32Kb128s2rlruwbwa 2.447 0.663 0.788 0.580 1.888

128Kb64s2rlruwbwa 1.818 0.026 0.026 0.014 0.378
128Kb128s2rlruwbwa 1.601 0.030 0.031 0.015 0.397

32Kb32s1wbwa 3.345 1.021 1.333 0.792 2.476

32Kb32s2rlruwbwa 2.946 0.480 0.664 0.386 1.588
32Kb32s4rlruwbwa 2.867 0.101 0.105 0.076 1.209
32Kb32s8rlruwbwa 2.829 0.050 0.068 0.042 0.843

72

Data Cache Miss Rates (Contd.)

 pbmk.mr pbmk.perf pbmk.s1 pbmk.s2 pbmk.s3 pbmk.s4
8Kb32s1wt 8.453 14.740 17.795 17.939 18.587 17.919

8Kb32s2rlruwt 3.824 11.661 16.599 16.962 17.395 16.960
8Kb32s4rlruwt 3.287 9.765 17.383 17.570 16.206 17.640
8Kb32s8rlruwt 3.274 9.208 18.223 18.098 18.421 18.155

8Kb32s1wt 8.453 14.740 17.795 17.939 18.587 17.919

8Kb32s2rrandomwt 4.153 12.957 16.839 17.446 17.273 17.443
8Kb32s4rrandomwt 4.141 11.625 16.128 16.523 14.760 16.483
8Kb32s8rrandomwt 4.154 11.445 15.806 15.847 15.408 15.786

32Kb32s1wt 3.621 6.513 7.574 8.378 8.386 8.386

32Kb32s2rlruwt 3.270 4.921 4.664 5.490 4.613 5.479
32Kb32s4rlruwt 3.265 3.847 3.269 3.176 3.180 3.151
32Kb32s8rlruwt 3.268 3.573 2.964 3.004 2.990 2.984

32Kb32s1wt 3.621 6.513 7.574 8.378 8.386 8.386

32Kb32s2rrandomwt 3.645 5.609 5.466 5.947 5.385 5.961
32Kb32s4rrandomwt 3.595 4.664 4.250 4.142 4.144 4.133
32Kb32s8rrandomwt 3.622 4.472 4.045 4.023 4.019 4.018

128Kb32s1wt 3.318 1.801 3.795 3.617 3.735 3.683

128Kb32s2rlruwt 3.222 0.641 2.975 2.922 2.930 2.930
128Kb32s4rlruwt 3.088 0.254 2.853 2.815 2.837 2.824
128Kb32s8rlruwt 3.064 0.194 2.851 2.811 2.836 2.821

128Kb32s1wt 3.318 1.801 3.795 3.617 3.735 3.683

128Kb32s2rrandomwt 3.310 0.742 3.467 3.300 3.367 3.348
128Kb32s4rrandomwt 3.239 0.323 3.422 3.223 3.296 3.287
128Kb32s8rrandomwt 3.179 0.187 3.435 3.200 3.313 3.262

8Kb64s2rlruwt 2.179 11.570 17.156 16.957 16.909 16.985

8Kb128s2rlruwt 7.777 12.152 16.798 16.758 15.646 16.772

32Kb64s2rlruwt 1.237 4.918 3.955 5.655 3.952 5.628
32Kb128s2rlruwt 1.235 4.630 3.694 6.217 5.543 6.185

73

128Kb64s2rlruwt 1.195 0.610 1.841 1.869 1.818 1.841
128Kb128s2rlruwt 1.211 0.582 0.754 1.609 0.819 1.569

32Kb64s1wt 2.903 6.392 6.704 8.323 7.561 8.315

32Kb64s2rlruwt 1.237 4.918 3.955 5.655 3.952 5.628
32Kb64s4rlruwt 1.227 3.478 2.478 2.522 3.504 2.423
32Kb64s8rlruwt 1.227 3.050 1.866 1.959 1.930 1.931

32Kb64s1wt 2.903 6.392 6.704 8.323 7.561 8.315

32Kb64s2rrandomwt 2.190 5.664 4.393 5.532 4.403 5.502
32Kb64s4rrandomwt 2.136 4.462 2.951 3.000 3.441 2.912
32Kb64s8rrandomwt 2.109 4.196 2.580 2.702 2.685 2.649

4Kb32s8rlruwt 3.639 13.146 22.842 22.613 22.704 22.698

16Kb32s8rlruwt 3.273 5.606 4.568 5.260 4.045 5.125
64Kb32s8rlruwt 3.209 1.548 2.872 2.864 2.874 2.856
256Kb32s8rlruwt 3.064 0.165 2.829 2.742 2.792 2.774

4Kb32s8rrandomwt 4.645 16.350 25.157 25.056 25.239 25.117

16Kb32s8rrandomwt 3.875 7.324 5.657 5.942 5.308 5.828
64Kb32s8rrandomwt 3.346 1.606 3.666 3.543 3.599 3.557
256Kb32s8rrandomwt 3.141 0.165 3.229 2.988 3.058 3.075

8Kb64s2rlruwbwa 2.715 7.113 7.650 7.673 7.522 7.650
8Kb128s2rlruwbwa 5.728 7.910 8.574 8.689 8.608 8.675

32Kb64s2rlruwbwa 0.319 2.800 1.804 1.860 1.790 1.834

32Kb128s2rlruwbwa 0.323 2.457 2.563 2.691 2.660 2.667

128Kb64s2rlruwbwa 0.300 0.445 0.316 0.338 0.322 0.327
128Kb128s2rlruwbwa 0.305 0.414 0.287 0.390 0.297 0.381

32Kb32s1wbwa 0.331 4.069 3.636 3.687 3.714 3.674

32Kb32s2rlruwbwa 0.319 3.125 1.457 1.537 1.495 1.498
32Kb32s4rlruwbwa 0.316 2.671 0.601 0.585 0.557 0.555
32Kb32s8rlruwbwa 0.317 2.558 0.439 0.495 0.468 0.473

74

References

[1] Pradeep Bose, and T. M. Conte, “Performance Analysis and its Impact on

Design”, IEEE Computer, 31(5): 41-49, May 1998.

[2] K. Chow, A. Wright, and K. Lai, “Characterization of Java Workloads by

Principal Components Analysis and Indirect Branches”, In Proceedings of the

Workshop on Workload Characterization (WWC-1998), held in conjunction

with the 31st Annual ACM/IEEE International Symposium on Micro-

architecture (MICRO-31), pp. 11–19, Nov. 1998

[3] G.H. Dunteman, “Principal Components Analysis”, SAGE Publications,

1989.

[4] L. Eeckhout, H. Vandierendonck, and K. De Bosschere, "Workload Design:

Selecting Representative Program-Input Pairs", In Proceedings of the 2002

International Conference on Parallel Architectures and Compilation Techniques

(PACT), IEEE CS Press, pp. 83-94, 2002.

75

[5] L. Eeckhout, H. Vandierendonck, and K. De Bosschere, “Designing

Computer Architecture Research Workloads”, IEEE Computer Magazine, pp.

65-71, Feb. 2003.

[6] L. Eeckhout, A. Georges, and K. De Bosschere, “How Java Programs

interact with Virtual Machines at the microarchitectural level”, OOPSLA

2003.

[7] L. Eeckhout, H. Vandierendonck, and K. De Bosschere, “Quantifying the

impact of input data sets on program behavior and its applications”, Journal of

Instruction Level Parallelism, 5:1-33, 2 2003.

[8] Jeffrey D. Gee, Mark D. Hill, Dionisios N. Pnevmatikatos, and Alan J.

Smith, “Cache Performance of the SPEC92 Benchmark Suite”, IEEE MICRO,

1993.

[9] L. John, "Performance Evaluation: Techniques, Tools and Benchmarks",

The Computer Engineering Handbook, CRC Press, 2001.

76

[10] L. John, P. Vasudevan and J. Sabarinathan, "Workload Characterization:

Motivation, Goals and Methodology", in Workload Characterization:

Methodology and Case Studies, IEEE Computer Society, 1999.

[11] Tao Li, Lizy John, N. Vijaykrishnan, Anand Sivasubramaniam, Jyotsana

Sabarinathan, and A. Murthy, “Using Complete System Simulation to

Characterize SPECjvm98 Benchmarks”, In Proceedings of ACM International

Conference on Supercomputing, pp. 22-23, 2000.

[12] David L. Lilja “Measuring Computer Performance – A Practitioner’s

Guide”, Cambridge University Press, 2000.

[13] B. F. J. Manly, “Multivariate Statistical Methods: A Primer”, Chapman &

Hall, Second edition, 1994.

[14] Patterson and Hennessy, Computer Architecture: The Hardware/Software

Approach, by Hennessy and Patterson, Morgan Kaufman Publishers, 2nd

edition, 1998, ISBN 1558604286.

77

[15] R. Radhakrishnan, N. Vijaykrishnan, Lizy John, and Anand

Sivasubramaniam, “Architectural Issues in Java Runtime Systems”, In

Proceedings of the International Symposium on High Performance Computer

Architecture, pp. 387-398, 2000.

[16] A. J. Smith, “Cache Memories”, ACM Computing Surveys, 14(3): 473-

530, Sept. 1982.

[17] A. J. Smith, “Cache evaluation and the impact of workload choice”, In

Proceedings of the 12th Annual Symposium on Computer Architecture, pp. 64-

73, 1985.

[18] J. E. Smith, “Characterizing Computer Performance with a Single

Number”, Communications ACM, vol. 31, no. 10, pp. 1202-1206, 1998.

[19] SPEC Benchmarks, http://www.spec.org/

[20] Shade Analyzer User’s Manual, http://www.sun.com/

78

[21] Hans Vandierendonck, and Koen De Bosschere, “Eccentric and Fragile

Benchmarks”, ISPASS 2004.

[22] Reinhold P. Weicker, "An Overview of Common Benchmarks", IEEE

Computer, pp. 65-75, December 1990.

[23] Reinhold Weicker, "On the Use of SPEC Benchmarks in Computer

Architecture Research", Computer Architecture News, pp. 19-22, March 1997.

79

VITA

Saket Kumar, the son of Girish Kumar Verma and Prabha Verma, was born in

Ranchi, India on July 27, 1979. After completing his work at Kendriya

Vidyalaya, Patna, in 1996, he entered into the Indian Institute of Technology

Roorkee (erstwhile University of Roorkee), Roorkee, India. He received the

Bachelor of Engineering from Indian Institute of Technology Roorkee in May

2000. After working for C-DOT, New Delhi, India for two years, he joined the

graduate school at the University of Texas at Austin in August 2002.

Permanent Address: 9,Kesrinagar,

 Patna-800024,

 Bihar,

 India.

This report was typed by Saket Kumar.

