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Minimizing simulation time and hence reducing the time to market is a very 

important issue in modern microprocessor designs. Benchmark programs take a 

considerable amount of time running on complex machine simulators. These 

benchmarks explore different areas of the design space and there is a possibility 

that some of the benchmarks end up testing the same aspect of the processor 

design. 

 

For studying program characteristics like data memory behavior, it may not be 

necessary to run all the benchmark programs from a benchmark suite. We need to 

find out minimum number of program-input pairs from a benchmark suite, that 
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represent the whole suite in terms of its behavior. This helps in reducing the 

simulation time considerably. 

 

The objective of this report is to study data memory behavior of different 

benchmark programs and find out how clustered or far away, they are in the 

workload design space. SPECCPU2000 and SPECJVM98 benchmarks are 

characterized for different cache parameters and their sensitivity to varying cache 

parameters is studied. A statistical data analysis technique called Principal 

Components Analysis (PCA) is used to identify the differences. 
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1. Introduction 

 

Reducing the simulation time, while running benchmarks during the design of a 

microprocessor is a very important concern from the time to market 

perspectives. The design of modern computer systems is based upon the 

experimental procedure of measuring the running time of different workloads 

on the machine to be designed. 

 

Various simulation models at different levels of accuracy are created during the 

design phase of a computer. The models represent the structure and behavior of 

the microprocessor in various ways. The more detailed the model is, the more 

accurately it models the machine, at the same time, the longer it takes to 

simulate a cycle.  

 

A workload could be considered as a benchmark program, given particular 

inputs. It has to satisfy certain criteria in order to increase the likelihood of a 

good design. It has to be representative for the target application domain of the 

system, i.e. it should exhibit similar properties as the applications that will 

actually be running on the system.  
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In the current scenario, workloads are continuously evolving to keep pace with 

the technological improvements. At the same time, they are becoming larger 

and larger requiring huge amount of simulation time. However, there is a 

certain amount of redundancy within a benchmark suite as well as within 

different benchmark suites, which if identified, could help significantly in 

reducing the simulation time. John et al [9] state that certain benchmark input 

pairs result in testing the same area in the potential workload domain. 

 

Moreover, when we are studying certain program characteristics like data 

memory behavior, we need not run the whole benchmark suite with all the input 

pairs, as many of the program-input pairs incidentally target the same area in 

the workload design space. It saves a lot of simulation time, if we are able to 

identify a minimum number of program-input pairs from the benchmark suites, 

which are non-overlapping; at the same time they explore all the possible areas 

of the workload space. 

 

By characterizing the benchmarks, the program-input pairs stressing upon a 

portion of the application space already tested by another program-input pair, 

can be identified, thereby eliminating the redundancy. Ideally, benchmarks 
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should stress all locations of the design space, thereby evaluating the machine 

in all aspects. 

 

If we consider a p-dimensional workload space, where each dimension 

represents one of the p workload characteristics, then each benchmark program-

input pair can be mapped as a point, where the coordinates of the point are 

determined by the p workload characteristics. The benchmark suite corresponds 

to the cloud of points of its individual programs. Projecting both suites in the p-

dimensional space and analyzing their corresponding clouds can analyze the 

differences in the two workloads. We need to find out, if there are regions 

containing points of one workload, but not of the other. We also want to find 

out how diverse one workload is compared to the other.  

 

Considering the large amount of data to inspect, it is going to be very difficult 

to determine the similarity of data memory behavior from the p workload 

characteristics. Moreover, many of the workload characteristics are correlated, 

making it difficult to determine the true cause of the differences between the 

workloads. We tackle this problem using a statistical data reduction technique 

called as Principal Components Analysis (PCA) that reduces the dimensionality 

of the data from p to q (q << p), without losing important information. 
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Reducing the dimensionality makes our analysis much easier and helps in 

identifying the similarity between benchmark programs and the extent of 

diversity within a benchmark suite. 

 

In this report, we try to study the data memory behavior of different 

benchmarks programs and try to find out how clustered or far away, they are in 

the workload design space. At first, we characterize the miss rates of various 

benchmarks of SPECJVM98 benchmark suite for different cache configurations 

and their sensitivity to different cache parameter changes is studied. The 

analysis is done using PCA. A similar analysis is performed for different 

program-input pairs of the SPECCPU2000 benchmark suite. Then a combined 

analysis is performed for the benchmarks of SPECJVM98 and SPECCPU2000 

combined together to find out the difference between the two benchmark suites. 

 

An attempt is made to come up with a small subset of benchmarks from each 

benchmark suite, in order to study the data memory behavior, without 

compromising upon the extent of coverage of the workload design space. 
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2. Background and Motivation 

 

2.1 Motivation 

 

Long time back, computers were designed based on intuition and individual 

experiences. During the last two decades, a more systematic approach has been 

followed by the micro-architects. Different simulation tools have come into 

existence and computers are designed based on the results provided by them. 

However, due to the increasing complexity of the microprocessors and the 

applications that runs on them, the simulators have become very time 

consuming and it has become very important to reduce the simulation time. 

 

The memory behavior of programs is often explained using temporal and 

spatial localities. These characteristics are measured using distributions that 

make them hard to compare across programs. They are also not capable of 

predicting the conflict misses. 

 

Memory behavior of workloads can be characterized using different metrics. 

We have chosen cache miss rate as the performance metric because it 
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corresponds closely to the performance that can be expected with caches, and it 

is independent of other system parameters. 

 

Moreover, data cache miss rates vary considerably between different programs, 

making it a very important metric towards characterizing different programs. A 

lot of studies have been done related to understanding the data memory 

behavior of different benchmark suites.  

 

In this report, we have used Principal Components Analysis (PCA) to study the 

data memory behavior of benchmarks within a benchmark suite as well as the 

differences between two benchmark suites. PCA is a very powerful tool to find 

out the dependencies between different correlated variables and helps us to 

come up with a set of uncorrelated variables that can be used to study the 

behavior of benchmarks in the presence of a large amount of data. We also try 

to single out the eccentric benchmarks, if any, in the benchmark suites. 

 

2.2 Related Work 

 

John et al [10] have explained the short term and long term goals that can be 

achieved using workload characterization. In the short term, it can be used to 
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impact the performance tuning of architectures for emerging workloads. It can 

also lead to tuning of compiler optimizations and application development. In 

the long term, workload characterization can be used to develop a program 

behavior model, which can be used along with a processor model to do the 

analytical performance modeling of computer systems. 

 

Gee et al [8] have studied the cache performance of SPEC92 benchmarks for a 

variety of cache configurations. They found that the instruction cache miss 

ratios are generally very low, and that the data cache miss ratios for the integer 

benchmarks are also quite low. Data cache miss ratios for floating point 

benchmarks are more in line with the published measurements of real 

workloads. 

 

Chow et al [2] have used PCA to compare the emerging Java workloads with 

non-Java workloads. The most significant difference was found in their density 

of indirect branches. This work showed the effectiveness of using PCA in 

screening and categorizing workload statistics as well as some interesting 

patterns of indirect branches of Java workloads. 
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Eeckhout et al [4] [5] [6] [7] have used PCA to analyze the impact of different 

inputs on the behavior of programs. They selected a limited set of 

representative program-input pairs with small dynamic instruction counts. They 

were able to substantiate their claims by showing that the program-input pairs 

that are close to each other in the principal components space indeed exhibit 

similar behavior as a function of micro-architectural changes. 

  

Vandierendonck et al [21] have used PCA to study the data memory behavior 

of SPECCPU95 and SPECCPU2000 benchmark suites and identified the 

eccentric and fragile benchmarks present in the two suites. Eccentric 

benchmarks have a behavior that differs significantly from the other 

benchmarks present in the suite. Fragile benchmarks are weak benchmarks as 

their execution time is determined entirely by a single bottleneck. Removing 

that bottleneck can reduce their execution time to a significant extent.  

 

 

 

 

 

 



  

9 
 

3. Methodology 

 

In this section, we are going to explain how data memory behavior is 

characterized, what workload characteristics we are taking into account, which 

benchmarks are being used, what principal components analysis is, and what 

the procedure for our experiment is. 

 

3.1 Data memory Characterization 

 

Data memory behavior of a workload can be characterized by its data cache 

miss rates in a wide range of cache configurations. In order to perform principal 

components analysis, we convert the measured data cache miss rates into ratios 

of miss rates by taking the ratio of miss rates in two different cache 

configurations with one cache parameter varying, others remaining the same.  

 

This helps in a better interpretation of data, because each variable measures the 

influence of changing one cache parameter while keeping the other parameters 

intact. This transformation also helps in removing much of the variability 

between caches with a different size or block size. 
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The various cache parameters that we take into account are the cache size, 

associativity, block size, cache replacement policy and the write-back policy.  

 

These parameters are sufficient enough to describe most of the cache 

configurations in the modern processors [16] [17]. 

 

We form 58 workload characteristics (variables), which are simply the ratios of 

the miss rates, varying one cache parameter at a time. These 58 variables for 

each of the benchmarks are fed into the PCA.  

 

These variables are tabulated as below. 

 

Variable Size Assoc. Blk Size Repl. Policy alloc/non alloc 
1 8 1->2 32 LRU non alloc 
2 8 2->4 32 LRU non alloc 
3 8 4->8 32 LRU non alloc 
4 8 1->2 32 Random non alloc 
5 8 2->4 32 Random non alloc 
6 8 4->8 32 Random non alloc 
7 8 2 32 LRU->Random non alloc 
8 8 4 32 LRU->Random non alloc 
9 8 8 32 LRU->Random non alloc 
10 32 1->2 32 LRU non alloc 
11 32 2->4 32 LRU non alloc 
12 32 4->8 32 LRU non alloc 
13 32 1->2 32 Random non alloc 
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14 32 2->4 32 Random non alloc 
15 32 4->8 32 Random non alloc 
16 32 2 32 LRU->Random non alloc 
17 32 4 32 LRU->Random non alloc 
18 32 8 32 LRU->Random non alloc 
19 128 1->2 32 LRU non alloc 
20 128 2->4 32 LRU non alloc 
21 128 4->8 32 LRU non alloc 
22 128 1->2 32 Random non alloc 
23 128 2->4 32 Random non alloc 
24 128 4->8 32 Random non alloc 
25 128 2 32 LRU->Random non alloc 
26 128 4 32 LRU->Random non alloc 
27 128 8 32 LRU->Random non alloc 
28 8 2 32->64 LRU non alloc 
29 8 2 64->128 LRU non alloc 
30 32 2 32->64 LRU non alloc 
31 32 2 64->128 LRU non alloc 
32 128 2 32->64 LRU non alloc 
33 128 2 64->128 LRU non alloc 
34 32 1->2 64 LRU non alloc 
35 32 2->4 64 LRU non alloc 
36 32 4->8 64 LRU non alloc 
37 32 1->2 64 Random non alloc 
38 32 2->4 64 Random non alloc 
39 32 4->8 64 Random non alloc 
40 32 2 64 LRU->Random non alloc 
41 32 4 64 LRU->Random non alloc 
42 32 8 64 LRU->Random non alloc 
43 4->16 8 32 LRU non alloc 
44 16->64 8 32 LRU non alloc 
45 64->256 8 32 LRU non alloc 
46 4->16 8 32 Random non alloc 
47 16->64 8 32 Random non alloc 
48 64->256 8 32 Random non alloc 
49 8 2 64 LRU non alloc->alloc 
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50 8 2 128 LRU non alloc->alloc 
51 32 2 64 LRU non alloc->alloc 
52 32 2 128 LRU non alloc->alloc 
53 128 2 64 LRU non alloc->alloc 
54 128 2 128 LRU non alloc->alloc 
55 32 1 32 LRU non alloc->alloc 
56 32 2 32 LRU non alloc->alloc 
57 32 4 32 LRU non alloc->alloc 
58 32 8 32 LRU non alloc->alloc 

 

Table 1: The different workload characteristics 

 

As can be seen from the table 1, variables 1-3, 10-12 and 19-21 measure the 

impact of associativity changes for 8KB, 32KB and 128KB caches with a block 

size of 32 bytes and LRU replacement policy, respectively. Variables 4-6, 13-

15 and 22-24 do the same for caches with random replacement policy. 

Variables 34-39 do the same for a 32KB cache with a block size of 64 bytes.  

 

Variables 7-9, 16-18, 25-27 and 40-42 correspond to cache replacement policy 

changes for cache sizes of 8KB, 32KB and 128KB respectively for different 

associativities. 
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Variables 28-33 measure the impact of block size changes in 8KB, 32KB and 

128KB caches with a degree of associativity of 2 and having LRU replacement 

policy. 

 

Variables 43-45 account for the impact of cache size changes in caches having 

a degree of associativity of 8 and LRU replacement. Variables 46-48 do the 

same for random replacement policy. 

 

Variables 49-58 study the impact of sensitivity to write back policies in 

different cache configurations with LRU replacement policy. 

 

3.2 Description of the Benchmarks 

 

3.2.1 SPEC CPU2000 

 

The SPEC CPU2000 benchmark suite is a collection of 26 computation-

intensive, non-trivial programs used to evaluate the performance of a 

computer's CPU, memory system, and compilers. The benchmarks in this suite 

were chosen to represent real-world applications, and thus exhibit a wide range 
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of runtime behaviors. The integer benchmarks are written in C & C++, while 

the floating-point benchmarks are mostly in Fortran. 

 

The different integer benchmarks used for our experiment are as follows: 

 

1. 164.gzip: gzip (GNU zip) is a popular data compression program that uses 

Lempel-Ziv coding as its compression algorithm. 

 

2. 175.vpr: VPR is a placement and routing program. It automatically 

implements a technology-mapped circuit (i.e. a netlist, or hypergraph, 

composed of FPGA logic blocks and I/O pads and their required 

connections) in a Field-Programmable Gate Array (FPGA) chip. 

 

3. 176.gcc: 176.gcc is based on gcc Version 2.7.2.2. It generates code for a 

Motorola 88100 processor. The benchmark runs as a compiler with many of 

its optimization flags enabled. 

 

4. 181.mcf: A benchmark derived from a program used for single-depot 

vehicle scheduling in public mass transportation. The program is written in 

C and the benchmark version uses almost exclusively integer arithmetic. 
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5. 186.crafty: Crafty is a high-performance Computer Chess program that is 

designed around a 64-bit word.  It runs on 32-bit machines using the "long 

long" data type.  It is primarily an integer code, with a significant number of 

logical operations such as and, or, exclusive or and shift. 

 

6. 197.parser: The Link Grammar Parser is a syntactic parser of English, based 

on link grammar, an original theory of English syntax.  

 

7. 252.eon: Eon is a probabilistic ray tracer. It sends a number of 3D lines 

(rays) into a 3D polygonal model.  Intersections between the lines and the 

polygons are computed, and new lines are generated to compute light 

incident at these intersection points. 

 

8. 253.perlbmk: 253.perlbmk is a cut-down version of Perl v5.005_03, the 

popular scripting language. 

 

9. 254.gap: It implements a language and library designed mostly for 

computing in groups (GAP is an acronym for Groups, Algorithms and 

Programming). 

 



  

16 
 

10. 255.vortex: VORTEX is a single-user object-oriented database transaction 

benchmark, which exercises a system kernel coded in integer C. 

 

11. 256.bzip2: 256.bzip2 is based on Julian Seward's bzip2 version 0.1.  The 

only difference between bzip2 0.1 and 256.bzip2 is that SPEC's version of 

bzip2 performs no file I/O other than reading the input. All compression and 

decompression happens entirely in memory. This is to help isolate the work 

done to only the CPU and memory subsystem. 

 

12. 300.twolf: The TimberWolfSC placement and global routing package is 

used in the process of creating the lithography artwork needed for the 

production of microchips. Specifically, it determines the placement and 

global connections for groups of transistors (known as standard cells), 

which constitute the microchip. 

 

3.2.2 SPECJVM98 

 

The SPECJVM98 benchmark suite basically measures the performance of Java 

Virtual Machines. Most of the programs are real-world applications with high 
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demand on the memory system. The various Java benchmark programs used for 

our experiment are as follows: 

 

1. _201_compress: It is similar to 164.zip and uses modified Lempel-Ziv 

method. It basically finds common substrings and replaces them with a 

variable size code. This is deterministic, and can be done on the fly. 

 

2. _209_db: It performs multiple database functions on memory resident 

database. It reads in a 1 MB file, which contains records with names, 

addresses and phone numbers of entities and a 19KB file called scr6, 

which contains a stream of operations to perform on the records in the 

file. 

 

3. _213_javac: This is the Java compiler from the JDK 1.0.2. 

 

4. _222_mpegaudio: This is an application that decompresses audio files 

that conform to the ISO MPEG Layer-3 audio specification. 
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5. _227_mtrt: This is a raytracer program that works on a scene depicting a 

dinosaur, where two threads each renders the scene in the input file 

time-test model, which is 340KB in size. 

 

6. _202_jess: JESS is the Java Expert Shell System, based on NASA's 

CLIPS expert shell system. The benchmark workload solves a set of 

puzzles commonly used with CLIPS. 

 

7. _228_jack: It is a Java parser generator that is based on the Purdue 

Compiler Construction Tool Set. 

 

3.3 Principal Components Analysis (PCA) 

 

Appendix A shows the data cache miss rates for 7 SPECJVM98 benchmarks 

for different data cache configurations. As we can see from there, there is a 

huge chunk of data and it is not an easy task to interpret it and draw some 

meaningful conclusions regarding the sensitivity of the benchmarks to different 

cache parameter changes. Moreover, there is a large correlation between the 

variables, if we transform these miss rates into 58 variables as described in 

section 3.1. 
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In order to interpret such a large amount of data and make some meaningful 

conclusion from it, we need to reduce the number of variables to be analyzed 

from such a large value to a much smaller number, which could be easily 

interpreted using 2-dimensional plots. Principal Components Analysis helps us 

achieve that, without losing much of the information. 

 

Principal components analysis is a multi-variate data analysis technique that 

reduces the dimensionality of a data set consisting of strongly correlated 

variables, to a set of uncorrelated variables called as Principal Components.  

 

Since the principal components are uncorrelated, each one makes an original 

contribution towards accounting for the variance of the original variables. 

 

The principal components are arranged in decreasing order of their variance. It 

is often found that the first few principal components account for most of the 

information present in the original data set. This helps in reducing the 

dimensionality of the data and makes the analysis simpler with smaller set of 

variables. 
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The p original variables, Xi, i = 1 to p are linearly transformed into p principal 

components, Zi, i = 1 to p. The principal components are constructed such that 

Z1 has the maximum variance and then Z2 is chosen such that it has the 

maximum variance under the constraint that it is not correlated to Z1. The same 

procedure is followed to form the other principal components. Consequently, 

the principal components are arranged in the order of decreasing variance and 

are uncorrelated, i.e. the covariance between one principal component and the 

other is equal to zero. Covariance is a measure of the extent to which the 

deviations of two variables match. 

 

The geometrical properties of principal components can be elucidated by some 

two dimensional figures. Let us assume that we have a sample of observations 

on two standardized variables X1 and X2. We can use X1 and X2 as coordinate 

axes and plot the standardized variables as in figure 1. 

 

From the shape of the scatterplot, we can see that there is a substantial 

correlation between X1 and X2. There are two variables, and if the variables are 

not perfectly correlated, two principal components are required to completely 

account for the variation in the two variables. The first principal component is a 

new coordinate axis in the variable space which is oriented in a direction that 
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maximizes the variation of the projections of the points on the new coordinate 

axis, the first principal component Z1 (Figure 2). Since the second principal 

component Z2 is not correlated with Z1, it is orthogonal to Z1. 

               

Figure 1: Scatter Plot of two standardized variables 

 

 

 

 

 

 

 

 

Figure 2: One-dimensional representation by largest principal components 

of two dimensional data 
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Retaining only those principal components that have the maximum variance 

brings down the dimensionality of the data set. The number of retained 

principal components, depends upon what fraction of the variance in the 

original data set, we want to explain. 

 

It is advisable to standardize the variables before applying principal 

components analysis. By standardizing, we mean that the variables are rescaled 

such that they have zero mean and unit variance. This ensures that the variable 

having higher variance doesn’t have higher impact on the first few principal 

components. 

 

The main idea behind reducing the dimensionality is that, by having say q = 3 

or 4 variables, makes it much easier to understand the differences between the 

benchmarks, compared to the case when the benchmarks can differ in say p = 

50 different ways. 

 

If q is small, the user can visualize the reduced space by means of a scatter plot 

that shows the position of each benchmark with respect to the principal 

components. The eccentricity of the benchmarks with respect to the analyzed 

benchmark suite determines their position on the scatter plot. Benchmarks that 



  

23 
 

are close to the origin of the q-dimensional space are average benchmarks, i.e. 

when one of the parameters is changed, the benchmark will see a change similar 

to the average over the entire suite. Benchmarks that are far away from the 

origin are very sensitive to the changes in the parameter. 

 

Factor loadings are used to determine the parameters that play an important role 

in each principal component. Naturally, only a few parameters play an 

important role in each principal component. The factor loadings are the 

coefficients aij in the linear combination, Zi = Xjaij
p

j
∑

=1

. The larger aij is in 

magnitude, the stronger it influences the principal component. The closer it is to 

zero, the lesser or nil impact it has on the principal component.  Thus, the 

benchmarks with large values of Xj will score positively on Zi when aij is 

positive, while those that have small values for Xj will score negatively. 

 

Principal components analysis can also be used to judge the impact of the input 

on a program as well. The inputs usually have a small impact, when their 

workload characteristics do not differ much, while the programs are affected 

much by the inputs, if they are widely separated in the scatter plots.  
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Consequently, these program-input pairs will be close to each other in the 

original p-dimensional space as well in the q-dimensional space of the principal 

components. It is also possible to find groups of benchmarks that are internally 

close, but externally distant from other clusters. It can be said that inputs have 

little effect on the behavior of the program, if all the instances of the same 

program run on different inputs are in the same cluster. 

 

Principal components analysis can also be used to compare benchmark suites. It 

can be used to find out whether two benchmark suites differ significantly 

depending upon their relative positions of their benchmarks in the scatter plot. 

When the benchmark suites behave entirely different, they will occupy disjoint 

areas in the q-dimensional space of principal components. 

 

In reality, it can be expected that the benchmarks overlap, thereby a few 

benchmarks exhibiting similar behavior. When a region of space contains 

benchmarks from only one suite, then those benchmarks are characteristically 

different from the benchmarks in the other suite that are not present in that 

region. 
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3.4 Procedure 

 

The SPECCPU2000 and SPECJVM98 benchmarks were run on SUN machines 

for different cache configurations. We used shade-analyzer’s cache simulator 

‘cachesim5’ for measuring the data cache miss rates. The configuration of the 

Instruction Cache was fixed to be of 8KB, 32 bytes block size, direct mapped 

cache. 

 

The miss rates obtained for the various different cache configurations was 

transformed into ratios of miss rates and we obtained 58 different variables for 

each benchmark. 

 

Each variable was normalized to have a zero mean and unit variance. Then 

principal components analysis was performed on the data, delivering 58 (if 

number of benchmarks > 58 else equal to number of benchmarks) uncorrelated 

principal components sorted in the order of decreasing variance. 

 

The eigenvalues and the fraction of variance contained in all the principal 

components are calculated. A proper choice of the number of principal 
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components, q to be retained is made based on the percentage of variance of the 

actual data that we want to retain. 

 

The benchmarks are plotted in the q-dimensional space with first q principal 

components as the axes. The plots and the factor loadings are analyzed and they 

are used to figure out the differences in behavior of different benchmark 

programs. 
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4. Results 

 

This section summarizes the results of the study that characterizes the 

SPECJVM98 and SPECCPU2000 benchmark programs in terms of their data 

memory behavior. At first, we analyze the SPECJVM98 and SPECCPU2000 

benchmark suites using PCA in sections 4.1 and 4.2 respectively. Then we 

perform the combined analysis of SPECJVM98 and SPECCPU2000 programs 

taken together. The results of the combined analysis are discussed in section 

4.3. Section 4.4 makes an attempt towards selecting a subset of benchmark 

programs from both the benchmark suites for study of data memory behavior. 

 

4.1 Analysis of SPECJVM98 

 

SPECJVM98 benchmarks were run on Sun machines for different data cache 

configurations and the miss rates were obtained using Shade Analyzer’s 

cachesim. The benchmarks were run for 1 billion instructions after skipping 

400 million instructions at the beginning.  

 

58 variables were formed using the procedure given in the methodology 

section. Principal components analysis was performed on the 58 variables, 
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describing the data memory behavior, for seven of the SPECJVM98 

benchmarks. Table 2 shows the percentage of variance accounted by each of the 

seven Principal Components (PCs). The Eigen value of a principal component 

reflects the amount of variance it accounts for. 

 

 

 

 

 

 

 

Table 2: Fraction of total variance explained by the PCs (SPECJVM98) 

 

As seen from the table, the principal components are ordered in decreasing 

amount of variance and the first principal component, PC1 accounts for 37% of 

the total variance. It can also be seen that the first 3 principal components 

account for almost 85% of the total variance. So, we can explain the 85% of the 

variance present in the original 58 variables with the first 3 principal 

components. 

 

 
Eigen 
Value %Variance Cumulative %

PC1 18.460 37.133 37.133 
PC2 13.326 26.805 63.938 
PC3 10.427 20.973 84.911 
PC4 4.461 8.973 93.884 
PC5 2.279 4.583 98.467 
PC6 0.762 1.533 100.000 
PC7 0.000 0.000 100.000 
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We can exclude the other components from the analysis because they include 

comparatively much less information and are relatively harder to interpret. 

 

Table 3 shows the factor loadings for the all the 58 variables corresponding to 

the first 3 principal components. In this analysis, we look for weights having an 

absolute value greater than 0.15 and they have been displayed in bold. The 

impact of the variables with smaller weights is ignored in the explanation of the 

principal components. 
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Xi PC1 PC2 PC3 Xi PC1 PC2 PC3 
1 0.001 0.092 -0.168 30 0.018 -0.140 0.162 
2 -0.010 -0.188 -0.178 31 0.051 -0.171 0.195 
3 -0.114 -0.171 0.034 32 -0.106 -0.161 0.119 
4 0.008 0.111 -0.129 33 -0.104 -0.179 0.137 
5 -0.064 -0.207 -0.053 34 0.028 -0.228 -0.055 
6 0.069 -0.107 -0.239 35 -0.114 -0.204 -0.044 
7 0.015 0.002 0.148 36 -0.127 -0.191 -0.073 
8 -0.030 0.003 0.249 37 -0.005 -0.234 0.049 
9 0.112 0.086 0.094 38 -0.111 -0.204 -0.030 

10 0.138 -0.161 -0.046 39 -0.030 -0.106 0.243 
11 -0.144 -0.175 0.061 40 -0.081 0.008 0.253 
12 0.052 -0.096 0.219 41 -0.071 0.011 0.260 
13 -0.083 -0.212 -0.016 42 -0.028 0.018 0.273 
14 -0.171 -0.142 -0.041 43 0.140 -0.150 -0.025 
15 -0.082 -0.038 0.252 44 0.123 0.036 0.180 
16 0.209 -0.011 -0.035 45 0.171 0.122 0.016 
17 -0.212 0.002 -0.006 46 0.148 -0.136 -0.022 
18 -0.210 0.002 0.049 47 0.162 0.025 0.132 
19 -0.116 -0.081 0.107 48 0.171 0.121 0.010 
20 0.207 0.014 0.076 49 0.146 -0.099 -0.030 
21 0.211 0.020 0.055 50 0.174 -0.055 -0.050 
22 -0.190 -0.057 0.050 51 0.142 -0.165 -0.066 
23 0.212 0.010 0.049 52 0.153 -0.156 -0.051 
24 0.170 -0.020 0.167 53 0.119 -0.204 -0.032 
25 -0.205 -0.003 -0.045 54 0.116 -0.207 -0.038 
26 -0.171 -0.018 -0.156 55 0.138 -0.157 -0.068 
27 -0.208 -0.039 -0.056 56 0.126 -0.179 -0.062 
28 0.116 -0.027 0.210 57 0.116 -0.188 -0.070 
29 0.043 -0.115 0.248 58 0.111 -0.191 -0.075 

 

Table 3: Factor Loadings (SPECJVM98) 
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The factor loadings help us finding out what each principal component 

correspond to. 

 

As can be seen from table 3, PC1 scores heavily for variables X43 to X48, 

which account for cache size variation. It can also be seen that PC1 has high 

factor loadings for variables X16 to X18 and X19 to X24, that correspond to 

cache replacement policy changes and associativity changes respectively. So, 

we can conclude that PC1 doesn’t represent a single variable; rather it accounts 

for cache-size, replacement policy and associativity variations. 

 

PC2 has high factor loadings for the variables X51 to X58, which correspond to 

cache allocate/non-allocate policies. So, PC2 measures the impact of changing 

from non-allocate to allocate caches. 

 

PC3 scores high for variables X28 to X33, which measure the impact of 

increasing the block size. Hence we can conclude that PC3 primarily measures 

the spatial locality of the benchmarks. 

 

The workload space can be visualized by means of scatter plots. The scatter 

plots show that the different benchmarks have different sensitivity to the cache 
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parameters.  As we have retained 3 principal components in our analysis, we 

can have three possible plots, viz. PC1 vs. PC2, PC1 vs. PC3, PC2 vs. PC3. 
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Figure 3: Scatter Plot of PC1 vs. PC2 (SPECJVM98) 

 

Figure 3 shows the scatter plot between the first two principal components that 

account for 64% of the total variance contained between the 58 variables. As 

can be seen from the plot, mpegaudio is far away from the other benchmarks, 

that means it is much more distinct that the other benchmarks in the suite, if we 

are considering their data memory behavior. 
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The benchmarks having positive value of PC2, i.e. jack, jess, javac and mtrt are 

benefited by write allocate caches while mpegaudio, compress and db are 

favored by no write-allocate caches. 

 

Having larger size data–cache, benefits the benchmarks that have positive 

values of PC1. That means all the benchmarks except mpegaudio; perform well 

with larger sized data caches. Mpegaudio is very much sensitive to cache-size 

and associativity variations.   
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Figure 4: Scatter Plot of PC1 vs. PC3 (SPECJVM98) 
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Figure 4 shows the scatter plot of PC1 vs. PC3. As PC3 accounts for sensitivity 

of the benchmarks towards block-size variations, we can see that jess, db and 

mpegaudio, that have very low value of PC3, are almost insensitive to block-

size variations. Larger block sized caches benefit javac, compress and jack 

while mtrt performs well for smaller block sizes. 
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Figure 5: Scatter Plot of PC2 vs. PC3 (SPECJVM98) 

 

Figure 5 shows the scatter plot between PC2 and PC3. Here, we can see that all 

the benchmarks appear to be scattered far apart. Since PC2 and PC3 account for 
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lesser variance than PC1, so we can conclude that mpegaudio is far distinct 

from the other benchmarks in the suite as it scores highly on PC1. 

 

Eccentric Benchmarks: It can be concluded from the scatter plots that 

mpegaudio is an eccentric benchmark as it has a relatively much larger absolute 

value of PC1 compared to the other benchmarks in the suite. It is very much 

sensitive to data cache size variations. Compress and mtrt are somewhat 

eccentric as they have relatively distinct values of PC2 and PC3, with respect to 

the other members of the benchmark suite. 

 

4.2 Analysis of SPECCPU2000 

 

SPECCPU2000 benchmarks were run on Sun machines for different data cache 

configurations and the miss rates were obtained using Shade Analyzer’s 

cachesim. The benchmarks were run for 1 billion instructions after skipping 1 

billion instructions at the beginning for initialization. 

 

58 variables were formed using the procedure given in the same way as done 

for the java benchmarks. Principal components analysis was performed on the 

58 variables, describing the data memory behavior, for 12 of the 
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SPECCPU2000 benchmarks for 33 program-input pairs. Table 4 shows the 

percentage of variance accounted by the first six Principal Components (PCs). 

As stated earlier, the Eigen value of a principal component reflects the amount 

of variance it accounts for. 

 

 

 

 

 

 

 

Table 4: Fraction of total variance explained by the PCs (SPECCPU2000) 

 

The Principal Components are ordered in decreasing amount of variance and 

the first principal component, PC1 accounts for nearly 42% of the total 

variance. It can also be seen that the first 4 principal components account for 

almost 77% of the total variance. So, we can explain the 77% of the variance 

present in the original 58 variables with the first 4 principal components. 

 

 
Eigen 
Value %Variance Cumulative %

PC1 23.46431 41.72 41.72 
PC2 9.40455 16.72 58.44 
PC3 6.10782 10.86 69.30 
PC4 4.33553 7.71 77.01 
PC5 2.99607 5.33 82.34 
PC6 2.36802 4.21 86.55 
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We exclude the other principal components as they include much lesser 

information and therefore their exclusion wouldn’t affect the analysis much. 

Thus, we have reduced the dimensionality of the data from 58 to 4 variables, 

without losing much of the variability in the data. 

 

The factor loadings for the all the 58 variables corresponding to the first 4 

principal components are shown in table 5. All the weights having an absolute 

value greater than 0.15 are significant in the analysis and they have been 

marked bold. 
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Xi PC1 PC2 PC3 PC4 Xi PC1 PC2 PC3 PC4 
1 0.093 -0.177 0.237 -0.040 30 -0.065 0.089 0.230 -0.191 
2 0.006 -0.256 0.127 0.145 31 -0.146 0.045 -0.015 -0.162 
3 0.029 -0.193 0.002 -0.030 32 0.017 0.158 0.194 -0.048 
4 0.082 -0.143 0.274 -0.037 33 -0.062 0.169 -0.020 0.183 
5 0.007 -0.116 0.002 0.391 34 0.180 -0.057 0.105 0.043 
6 0.082 0.033 -0.027 0.038 35 0.177 0.049 -0.096 -0.005 
7 -0.088 0.201 -0.072 0.015 36 0.167 0.106 -0.087 0.013 
8 -0.057 0.249 -0.144 0.098 37 0.186 -0.029 0.010 0.092 
9 -0.035 0.270 -0.118 0.077 38 0.172 0.093 -0.090 -0.041 

10 0.188 -0.049 -0.048 0.107 39 0.164 0.063 -0.081 -0.142 
11 0.187 0.044 -0.100 -0.003 40 -0.077 0.075 -0.318 0.129 
12 0.184 -0.009 -0.066 -0.081 41 -0.105 0.133 -0.240 0.016 
13 0.180 -0.047 -0.082 0.116 42 -0.149 0.043 -0.176 -0.132 
14 0.181 0.062 -0.097 -0.047 43 0.175 0.013 -0.094 0.143 
15 0.160 -0.007 -0.089 -0.140 44 0.183 -0.075 -0.096 -0.025 
16 -0.183 0.036 -0.049 -0.005 45 -0.065 -0.109 -0.060 -0.147 
17 -0.188 0.015 0.046 0.001 46 0.179 0.013 -0.079 0.141 
18 -0.182 0.006 0.031 0.030 47 0.183 -0.094 -0.078 -0.031 
19 0.186 -0.065 -0.078 -0.101 48 0.014 -0.098 -0.074 -0.222 
20 0.163 -0.096 -0.064 -0.177 49 0.105 0.184 -0.101 0.005 
21 0.059 -0.172 -0.022 -0.005 50 0.082 0.221 -0.049 -0.138 
22 0.176 -0.077 -0.087 -0.138 51 0.107 0.186 0.169 0.036 
23 0.156 -0.061 -0.075 -0.252 52 0.058 0.203 0.140 -0.094 
24 0.040 -0.138 -0.026 -0.066 53 0.120 0.185 0.130 0.113 
25 -0.161 -0.037 0.050 0.207 54 0.078 0.226 0.094 0.014 
26 -0.099 0.114 -0.016 -0.273 55 0.125 0.155 0.205 -0.028 
27 -0.092 0.072 -0.031 -0.329 56 0.120 0.183 0.190 0.050 
28 -0.053 0.095 0.177 -0.247 57 0.120 0.202 0.165 0.076 
29 -0.019 0.066 -0.356 0.027 58 0.124 0.204 0.156 0.075 

 

Table 5: Factor Loadings (SPECCPU2000) 

 

The factor loadings help us to analyze what cache parameter variation, each 

principal component represents. 
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As we can see from table 5, PC1 has high factor loadings for variables X43 to 

X48, which corresponds to cache size variation. PC1 scores highly for the 

variables X10 to X15 and X34 to X39, which correspond to cache associativity 

variation. Hence PC1 accounts for the sensitivity of the benchmarks to cache 

size and associativity variations. 

 

PC2 has high value of factor loadings for the variables X49 to X58, which 

correspond to cache write allocate/non-allocate policies. So, PC2 measures the 

impact of changing from non-allocate to allocate caches. 

 

PC3 scores high for variables X28 to X30, which correspond to the sensitivity 

of the benchmarks to block size variations of the data cache. Hence it primarily 

measures the spatial locality of the various program-input pair of the 

SPECCPU2000 benchmark suite. 

 

PC4 has high value of factor loadings for variables X25 to X27, which 

correspond to the sensitivity of the benchmarks to changes in cache 

replacement policy from LRU to random. 
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As we have retained the first four principal components in our analysis, we can 

have a maximum possible of 6, 2-dimensional scatter plots. The scatter plots 

between PC1 vs. PC2, PC1 vs. PC3, PC1 vs. PC4 and PC3 vs. PC4 are 

discussed in our analysis. 
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Figure 6: Scatter Plot of PC1 vs. PC2 (SPECCPU2000) 

 

Figure 6 shows the scatter plot between the first two principal components. PC1 

and PC2 account for 58% of the total variance contained in the data. As we can 

see here, the benchmarks in the SPECCPU2000 suite are much more scattered 
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compared to those in the SPECJVM98 suite. That means that SPECCPU2000 

benchmarks represent a much more diversified set of programs, if we intend to 

study the data memory behavior. 

 

It can also be observed that the different inputs corresponding to the same 

benchmark program have almost similar behavior except for the perlbmk 

benchmark whose different program-input pairs are scattered. 

 

The other interesting behavior that can be seen is the close proximity of gzip 

and bzip2 program-input pairs. As we can see here, the different program-input 

pairs of the two benchmarks are closely clustered. That implies that the two 

benchmark programs have similar data memory behavior. The same can be said 

about gcc and mcf. 

 

The benchmarks vpr, parser, twolf, gcc, mcf, crafty, vortex and some program 

input pairs of perlbmk (perfect and makerand) and eon (kajiya) have a positive 

value of PC2, that means that they are benefited by write allocate caches. The 

others are favored by non-allocate policy in the data cache. 
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The benchmarks that have positive values of PC1 are benefited by having larger 

data cache with higher associativities. The benchmarks vpr, parser, twolf, gcc, 

mcf, gzip, bzip2 and gap perform well with larger data caches. For others, it is 

advisable to have smaller cache size. 
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Figure 7: Scatter Plot of PC1 vs. PC3 (SPECCPU2000) 

 

Figure 7 shows the scatter plot of PC1 vs. PC3 for the various program-input 

pairs of the SPECCPU2000 benchmark suite. Since PC3 corresponds to the 

sensitivity of the benchmarks to block-size variations, we can see that 
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makerand input of the perlbmk benchmark program, having high values of PC3, 

is very sensitive to block-size variations. The other benchmarks are relatively 

less sensitive to block-size variations. The different input pairs of the same 

benchmark are seen to be clustered together except for perlbmk and eon to 

some extent. 
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Figure 8: Scatter Plot of PC1 vs. PC4 (SPECCPU2000) 

 

Figure 8 shows the scatter plot between PC1 and PC4. As PC4 corresponds to 

the sensitivity of the benchmarks to the change in the cache replacement policy 

from LRU to Random, we can see that gcc, mcf, bzip2, gzip and vpr benefit 



  

44 
 

from having a random replacement policy while vortex, eon, crafty, and 

perlbmk benefit from having least recently used (LRU) replacement algorithm. 
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Figure 9: Scatter Plot of PC3 vs. PC4 (SPECCPU2000) 

 

Figure 9 shows the scatter plot between PC3 and PC4 that account for 19% of 

the variance within them. As seen in the earlier plots, the benchmarks seem to 

be clustered. The different program input pairs of the same benchmark behave 

similar for data cache parameter variation. From all these plots, it can be seen 

that various program-input pairs of gzip and bzip2 have almost identical data 

memory behavior. The same can be said about gcc and mcf. 
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Eccentric Benchmarks:  Eon is an eccentric benchmark as it is very sensitive 

to cache size variations, hence has very distinct value of PC1 compared to the 

other program-input pairs. Vpr, crafty and some inputs of perlbmk also exhibit 

somewhat eccentric behavior as their response is much affected by cache write 

allocate policies compared to the other benchmark programs. 

 

4.3 Combined Analysis of SPECCPU2000 & SPECJVM98 

 

We have analyzed the data memory behavior of SPECJVM98 and 

SPECCPU2000 benchmark programs in the earlier two sections. Now, we 

perform the same analysis for all the benchmark programs of SPECJVM98 and 

SPECCPU2000, combined together. 

 

Using the procedure given in the methodology section, we formed 58 variables 

for 12 of the SPECCPU2000 benchmarks for 33 different program-input pairs 

and 7 SPECJVM98 benchmark programs. So, we have 40 different program-

input pairs for the analysis. Principal components analysis was performed on 

those 58 variables. Table 6 shows the percentage of variance accounted by the 

first six principal components. As mentioned earlier, the Eigen value of a 
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principal component reflects the amount of variance present in the total data, it 

accounts for. 

 

   

 

 

 

 

 

Table 6: Fraction of total variance explained by the PCs (SPECCPU2000 

& SPECJVM98 combined) 

 

As we can see from the table, first principal component PC1 accounts for nearly 

40% of the total variance contained in the data. The first 4 principal 

components account for almost 76% of the total variance. So, we can drop in 

the other principal components and consider the first 4 components for our 

analysis. 

 

So, we can explain the 76% of the variance present in the original 58 variables 

with the first 4 principal components. 

 
Eigen 
Value %Variance Cumulative %

PC1 22.798 40.31 40.31 
PC2 9.688 17.13 57.44 
PC3 6.035 10.67 68.11 
PC4 4.190 7.41 75.52 
PC5 3.564 6.30 81.82 
PC6 2.424 4.29 86.11 
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As explained earlier as well, the principal components are arranged in 

decreasing order of their variance. By excluding the lower principal 

components, we wouldn’t be losing much of the variability in the data, but our 

analysis becomes much simpler as we are reduced to 4 variables from original 

58 variables. 

 

The factor loadings for the all the 58 variables corresponding to the first 4 

principal components are shown in table 7. As done in the earlier analyses, all 

the weights having an absolute value greater than 0.15 are marked as bold and 

they are considered to be significant in the analysis. 
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Xi PC1 PC2 PC3 PC4 Xi PC1 PC2 PC3 PC4 
1 0.099 -0.153 0.255 -0.038 30 -0.071 0.084 0.197 -0.206 
2 0.016 -0.231 0.167 0.157 31 -0.149 0.041 -0.012 -0.156 
3 0.030 -0.151 0.060 -0.004 32 0.015 0.135 0.139 -0.059 
4 0.086 -0.124 0.280 -0.040 33 -0.064 0.138 -0.060 0.179 
5 0.015 -0.110 0.020 0.399 34 0.185 -0.047 0.094 0.039 
6 0.081 0.048 -0.006 0.055 35 0.180 0.047 -0.103 -0.001 
7 -0.097 0.176 -0.107 0.003 36 0.169 0.094 -0.110 0.010 
8 -0.067 0.221 -0.184 0.089 37 0.190 -0.019 0.006 0.090 
9 -0.044 0.240 -0.163 0.066 38 0.174 0.087 -0.106 -0.039 

10 0.194 -0.039 -0.043 0.106 39 0.167 0.060 -0.097 -0.145 
11 0.190 0.041 -0.108 -0.001 40 -0.083 0.069 -0.298 0.138 
12 0.188 0.000 -0.061 -0.075 41 -0.113 0.121 -0.231 0.021 
13 0.185 -0.041 -0.076 0.118 42 -0.153 0.044 -0.149 -0.120 
14 0.183 0.057 -0.107 -0.042 43 0.180 0.019 -0.090 0.143 
15 0.163 0.003 -0.086 -0.138 44 0.188 -0.064 -0.081 -0.023 
16 -0.186 0.022 -0.048 0.003 45 -0.049 -0.120 -0.048 -0.150 
17 -0.193 0.008 0.048 0.008 46 0.183 0.019 -0.077 0.140 
18 -0.186 -0.001 0.032 0.032 47 0.188 -0.078 -0.058 -0.030 
19 0.191 -0.053 -0.065 -0.093 48 0.028 -0.106 -0.065 -0.218 
20 0.169 -0.069 -0.038 -0.177 49 0.084 0.214 -0.071 0.015 
21 0.065 -0.135 0.023 -0.007 50 0.067 0.235 -0.044 -0.132 
22 0.182 -0.064 -0.071 -0.127 51 0.072 0.226 0.183 0.040 
23 0.162 -0.039 -0.056 -0.252 52 0.027 0.230 0.153 -0.070 
24 0.047 -0.120 0.003 -0.064 53 0.088 0.224 0.146 0.112 
25 -0.165 -0.041 0.059 0.210 54 0.045 0.250 0.112 0.025 
26 -0.107 0.100 -0.031 -0.269 55 0.095 0.202 0.216 -0.020 
27 -0.097 0.058 -0.042 -0.322 56 0.089 0.223 0.197 0.052 
28 -0.059 0.098 0.149 -0.260 57 0.093 0.237 0.169 0.076 
29 -0.021 0.060 -0.342 0.038 58 0.097 0.238 0.160 0.076 

 

Table 7: Factor Loadings (SPECCPU2000 & SPECJVM98 combined) 

 

As can be seen from table 7, PC1 has high factor loadings for variables X34 to 

X39 and X10 to X15 that implies that PC1 reflects the sensitivity of the 
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benchmarks to associativity variation. PC1 also scores highly for X43 to X44 

and X46 to X47 that correspond to data cache size increase. Hence, PC1 

accounts for the sensitivity of the benchmarks to the associativity and size of 

the data cache variations. 

 

The factor loadings for the variables X49 to X58 are pretty high for PC2. As 

these variables correspond to cache allocate/non-allocate policies, PC2 

measures the impact of changing from non-allocate to allocate policy in data 

cache. 

  

PC3 scores high for variables X28 to X30, which correspond to the sensitivity 

of the benchmarks to block size variations of the data cache. Hence it primarily 

measures the spatial locality of the various program-input pairs of the 

SPECCPU2000 and SPECJVM98 benchmark suites. 

 

PC4 has high value of factor loadings for variables X25 to X27, which 

correspond to the sensitivity of the benchmarks, while the cache replacement 

policy is changed from LRU to Random. 
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Now that we have retained first 4 principal components out of total 40 

components, we can have 6 scatter plots possible. As used in the earlier 

analysis, we will consider scatter plots between PC1 vs. PC2, PC1 vs. PC3, 

PC1 vs. PC4 and PC3 vs. PC4. 
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Figure 10: Scatter Plot of PC1 vs. PC2 (SPECCPU2000 & SPECJVM98 

combined) 

 

Figure 10 shows the scatter plot between the first two principal components that 

account for 57% of the total variability contained in the data. We can clearly 

see the extent of diversity in the SPECCPU2000 benchmarks with respect to 

SPECJVM98 benchmark programs, while we are studying the data memory 
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behavior. The SPECJVM98 benchmark programs are clustered within a small 

area in the two dimensional space of PC1 and PC2. 

 

As observed in the analysis of SPECCPU2000, here also, we can see that the 

different inputs corresponding to the same benchmark program exhibit similar 

behavior. Of course, perlbmk is an exception, as it is scattered all around the 

space. 

 

The various program-input pairs of bzip2 and gzip can be seen to be closely 

clustered. That means that the two benchmarks are similar in terms of their 

dealings with the data cache. The different input pairs of gcc behave quite 

similar to the mcf benchmark present in the SPECCPU2000 benchmark suite.  

 

As PC1 corresponds to the sensitivity of the benchmarks to data cache 

associativity and size, we can see that all the SPECJVM98 benchmarks perform 

better for increasing cache size and associativities. Amongst the 

SPECCPU2000 benchmarks, vpr, parser, gcc, mcf, twolf, bzip2, gzip and gap 

have positive value of PC1, implying their likings for larger data cache. The 

other programs perform better if the cache size is reduced. 
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Since PC2 reflects the sensitivity of a benchmark while changing from non-

allocate to allocate cache write policy, all the programs having positive value of 

PC2 perform better when write allocate policy is incorporated in the data cache. 

Others behave just the opposite. 
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Figure 11: Scatter Plot of PC1 vs. PC3 (SPECCPU2000 & SPECJVM98 

combined) 

Figure 11 shows the scatter plot between PC1 and PC3. As PC3 corresponds to 

the sensitivity of the benchmarks to increase in block size, all the benchmarks 

having positive value of PC3 are supportive of increasing block size while the 

ones having negative value of PC3 perform better when the block size is 
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decreased. Here also, we can observe the close proximities of the different input 

pairs of the same benchmark. 
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Figure 12: Scatter Plot of PC1 vs. PC4 (SPECCPU2000 & SPECJVM98 

combined) 

 

Figure 12 shows the scatter plot between PC1 and PC4. Since PC4 corresponds 

to the response of a benchmark when the cache replacement algorithm changes 

from LRU to Random, all the benchmarks having positive value of PC4 are 

supportive of Random replacement algorithm while the others perform better 

with LRU algorithm. 
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Figure 13: Scatter Plot of PC3 vs. PC4 (SPECCPU2000 & SPECJVM98 

combined) 

 

PC3 and PC4 account for almost 18% of the variance contained in the data. The 

scatter plot of PC3 vs. PC4 is shown in Figure 13. Here also, we can see the 

clustering of the java benchmarks as well as the clustering of different program 

inputs of the same benchmark program. 

 

4.4 Selecting a subset of benchmarks for studying data memory behavior  

 

SPECJVM98: In order to stress the data cache of a machine using java 

programs, we need not run all the programs of the SPECJVM98 benchmark 
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suite. Based upon the scatter plots obtained using PCA, we would select 

mpegaudio, compress, mtrt and javac. 

 

SPECCPU2000: We observed the similarity in the data memory behavior of 

different inputs of the same program. Perlbmk was an exception in this case as 

it behaved differently for different inputs applied to it. 

 

We also observed that bzip2 and gzip behaved similar to each other and they 

were clustered together in all the scatter plots. So, we could choose either of the 

two with one input set. 

 

We need not run mcf, if are studying the data cache miss rates. Its behavior is 

much similar to that of different program-input pairs of gcc. 

 

Since SPECCPU2000 is a very diversified benchmark suite, we can chose one 

program-input pair for each benchmark program, taking into account the above 

observations. Perlbmk needs to be run with different input combinations as its 

data memory behavior is much dependent upon the input set. 

 



  

56 
 

SPECCPU2000 & SPECJVM98: As we observed from the combined scatter 

plots, SPECCPU2000 is a much more diversified benchmark suite as compared 

to SPECJVM98. When we are studying the data memory behavior of a 

machine, SPECCPU2000 benchmarks cover a much wider area in the 4-

dimensional space of the principal components compared to the SPECJVM98 

benchmarks. Moreover, there are some or other benchmark programs of the 

SPECCPU2000 benchmark suite that are very close in behavior to the 

SPECJVM98 benchmarks. So, we can conclude that SPECCPU2000 

benchmarks are much more diverse as compared to SPECJVM98 programs and 

they are able to measure the same workload characteristics that the java 

benchmarks measure. 

 

The clustering of the Java benchmarks can be attributed to the fact that, here the 

properties of the Java Virtual Machine (JVM) are dominating instead of the 

actual program. The Java compiler converts the Java code into bytecodes and 

puts them into a “.class” file.  This “.class” file can be interpreted on any 

machine that has a Java Virtual Machine on it. The JVM processes each of the 

bytecodes and executes them. When a JIT (Just In Time) compiler is present, it 

takes the bytecodes and compiles them into the native code for the machine that 

we are running the program upon. It can actually be faster to grab the 
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bytecodes, compile them, and run the resulting executable than it is to interpret 

them. So, in the presence of JIT compilation, the properties of the Java Virtual 

Machine dominate and it is actually the behavior of the JVM rather than the 

benchmarks that is reflected, when the different benchmarks are characterized. 

Hence, all the Java benchmarks appear to be closely clustered. 
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5. Conclusion 

 

We studied and analyzed the data memory behavior of the SPECJVM98 and 

SPECCPU2000 benchmark suites using principal components analysis. We 

studied the sensitivity of the benchmark programs of the two suites towards 

changes in the various data cache parameters. 

 

We also studied the effect of different inputs applied to the same benchmark 

program for SPECCPU2000. We performed the analysis for the benchmarks of 

the two benchmark suites taken together to carve out the differences between 

them. 

 

We found that different inputs to the same program behave almost identical, in 

terms of study of the data memory behavior. This helps us to conclude that we 

need not run all the program-input pairs for the same program, when we are 

studying the data cache behavior. We also found out that perlbmk is sensitive to 

input variations and its inputs are very diverse compared to other program-input 

pairs. 
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We also found that certain benchmarks have almost identical sensitivities to 

changes in data cache parameters. Our experiment helped us to find out such 

benchmark pairs. This can help us in eliminating the redundancy existing 

between different benchmark programs and help us chose a minimum number 

of benchmark programs to be run on a machine to explore the entire workload 

space while studying data memory. This can help us considerably in reducing 

the simulation time spent on running the benchmarks and hence the time to 

market. 

 

This analysis also helped us figure out some of the eccentric benchmarks in the 

two benchmark suites. An eccentric benchmark has a significantly different 

behavior with respect to the other benchmarks. They are useful when 

constructing benchmark suites, as it is possible to obtain a large coverage of the 

behavior space with a few eccentric benchmarks. It is important to include them 

whenever we are sub-setting a benchmark suite in order to reduce the 

simulation time. 
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Appendix A 

Data Cache Miss Rates for SPECJVM98 programs for different cache 

configurations. 

 compress jess db javac mpgaudio mtrt jack 
8Kb32s1wt 11.626 21.774 21.146 16.006 11.247 16.004 19.358

8Kb32s2rlruwt 9.014 18.881 19.214 13.552 9.650 14.238 16.530
8Kb32s4rlruwt 8.738 17.972 18.900 12.747 9.334 13.937 15.382
8Kb32s8rlruwt 8.656 17.586 18.567 12.388 9.306 13.396 14.565

        
8Kb32s1wt 11.626 21.774 21.146 16.006 11.247 16.004 19.358

8Kb32s2rrandomwt 9.618 19.624 19.890 14.833 10.124 14.900 17.315
8Kb32s4rrandomwt 9.522 19.051 19.852 14.095 10.021 14.443 16.563
8Kb32s8rrandomwt 9.424 18.751 19.660 13.707 9.812 14.567 16.089

        
32Kb32s1wt 7.969 17.018 18.457 12.133 6.890 11.552 14.110

32Kb32s2rlruwt 7.462 15.268 17.729 10.709 5.959 10.617 12.638
32Kb32s4rlruwt 7.368 14.777 17.346 10.341 5.919 10.219 12.219
32Kb32s8rlruwt 7.346 14.662 17.279 10.232 5.832 9.990 12.113

        
32Kb32s1wt 7.969 17.018 18.457 12.133 6.890 11.552 14.110

32Kb32s2rrandomwt 7.696 15.614 17.982 11.208 6.679 10.816 13.121
32Kb32s4rrandomwt 7.654 15.247 17.916 10.905 6.818 10.623 12.809
32Kb32s8rrandomwt 7.650 15.128 17.821 10.896 6.829 10.141 12.733

        
128Kb32s1wt 5.982 14.263 16.917 9.749 3.240 8.762 12.477

128Kb32s2rlruwt 5.678 13.395 16.551 9.439 3.169 8.129 11.761
128Kb32s4rlruwt 5.641 13.174 16.246 9.332 2.499 7.764 11.648
128Kb32s8rlruwt 5.625 13.102 16.135 9.298 2.322 7.691 11.620

        
128Kb32s1wt 5.982 14.263 16.917 9.749 3.240 8.762 12.477

128Kb32s2rrandomwt 5.780 13.614 16.678 9.603 3.352 8.299 11.945
128Kb32s4rrandomwt 5.774 13.457 16.599 9.549 2.671 8.137 11.885
128Kb32s8rrandomwt 5.789 13.408 16.626 9.561 2.569 7.958 11.861

        
8Kb64s2rlruwt 9.369 17.756 17.213 12.927 7.983 12.124 16.430

8Kb128s2rlruwt 10.020 17.485 17.588 13.399 7.821 11.304 16.579
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32Kb64s2rlruwt 7.530 13.848 15.588 9.316 5.299 8.947 11.447
32Kb128s2rlruwt 7.704 12.201 14.820 8.501 4.648 7.416 10.446

        
128Kb64s2rlruwt 5.672 11.838 14.524 8.032 3.066 6.643 10.209

128Kb128s2rlruwt 5.679 10.281 13.737 7.012 3.026 5.299 8.920
        

32Kb64s1wt 8.116 16.206 16.534 10.945 5.995 10.014 13.273
32Kb64s2rlruwt 7.530 13.848 15.588 9.316 5.299 8.947 11.447
32Kb64s4rlruwt 7.399 12.987 15.250 8.893 5.266 8.622 10.752
32Kb64s8rlruwt 7.362 12.807 15.118 8.753 5.258 8.536 10.562

        
32Kb64s1wt 8.116 16.206 16.534 10.945 5.995 10.014 13.273

32Kb64s2rrandomwt 7.811 14.190 15.947 9.805 5.518 8.943 11.846
32Kb64s4rrandomwt 7.755 13.451 15.841 9.473 5.541 8.693 11.289
32Kb64s8rrandomwt 7.748 13.299 15.761 9.457 5.498 8.474 11.149

        
4Kb32s8rlruwt 9.545 20.110 19.583 14.841 10.961 15.630 19.431

16Kb32s8rlruwt 7.958 15.690 17.848 11.004 6.875 12.121 12.837
64Kb32s8rlruwt 6.607 13.786 16.701 9.738 4.698 8.524 11.822
256Kb32s8rlruwt 4.279 12.601 15.553 8.903 2.091 7.256 11.456

        
4Kb32s8rrandomwt 10.787 22.013 21.572 17.051 12.880 16.954 20.790

16Kb32s8rrandomwt 8.465 16.532 18.662 11.972 7.837 12.519 13.845
64Kb32s8rrandomwt 6.815 14.138 17.171 10.096 4.616 8.828 12.179
256Kb32s8rrandomwt 4.466 12.903 15.957 9.137 2.164 7.544 11.615

        
8Kb64s2rlruwbwa 5.680 7.507 7.658 6.537 2.878 6.974 7.486
8Kb128s2rlruwbwa 6.170 9.039 9.272 7.527 3.443 7.083 9.067

        
32Kb64s2rlruwbwa 3.962 3.198 5.929 2.830 0.643 4.171 2.141

32Kb128s2rlruwbwa 4.173 3.086 5.722 2.700 0.536 3.454 2.301
        

128Kb64s2rlruwbwa 2.224 1.049 4.832 1.463 0.165 1.807 0.756
128Kb128s2rlruwbwa 2.249 0.819 4.350 1.065 0.130 1.422 0.550

        
32Kb32s1wbwa 4.349 4.990 7.748 4.760 1.367 5.904 3.226

32Kb32s2rlruwbwa 3.919 3.367 7.008 3.504 0.943 4.855 2.182
32Kb32s4rlruwbwa 3.828 2.834 6.826 3.119 0.900 4.600 1.732
32Kb32s8rlruwbwa 3.809 2.632 6.772 2.975 0.882 4.511 1.560
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Appendix B 

Data Cache Miss Rates for SPECCPU2000 programs for different cache 

configurations. 

 gap parser twolf vpr.place vpr.route mcf crafty
8Kb32s1wt 3.341 12.857 22.008 19.150 8.549 37.756 12.055

8Kb32s2rlruwt 2.959 10.828 19.194 12.023 5.278 37.381 9.255
8Kb32s4rlruwt 2.850 9.987 17.960 10.288 4.400 37.349 7.242
8Kb32s8rlruwt 2.843 9.810 17.237 9.631 4.213 37.317 6.274

        
8Kb32s1wt 3.341 12.857 22.008 19.150 8.549 37.756 12.055

8Kb32s2rrandomwt 3.141 11.659 21.113 14.278 5.989 37.810 9.955
8Kb32s4rrandomwt 3.085 11.051 20.990 13.329 5.386 38.393 8.710
8Kb32s8rrandomwt 3.058 10.930 20.812 13.224 5.239 38.100 8.318

        
32Kb32s1wt 3.022 8.336 17.095 8.942 4.266 35.322 4.354

32Kb32s2rlruwt 2.846 7.115 15.845 7.596 3.019 35.128 2.238
32Kb32s4rlruwt 2.842 6.818 15.628 7.351 2.818 35.156 1.614
32Kb32s8rlruwt 2.842 6.695 15.506 7.271 2.760 35.371 1.293

        
32Kb32s1wt 3.022 8.336 17.095 8.942 4.266 35.322 4.354

32Kb32s2rrandomwt 2.940 7.463 16.783 8.460 3.343 35.268 2.548
32Kb32s4rrandomwt 2.927 7.235 16.704 8.420 3.223 35.308 2.118
32Kb32s8rrandomwt 2.924 7.154 16.658 8.343 3.197 35.369 2.031

        
128Kb32s1wt 2.888 5.201 13.655 6.211 2.751 32.711 1.605

128Kb32s2rlruwt 2.835 4.656 13.076 5.795 2.254 31.840 1.077
128Kb32s4rlruwt 2.833 4.508 12.906 5.631 2.184 31.457 0.764
128Kb32s8rlruwt 2.830 4.469 12.880 5.587 2.161 31.303 0.740

        
128Kb32s1wt 2.888 5.201 13.655 6.211 2.751 32.711 1.605

128Kb32s2rrandomwt 2.873 4.845 13.422 6.119 2.394 32.286 1.161
128Kb32s4rrandomwt 2.868 4.763 13.386 6.025 2.354 32.104 1.064
128Kb32s8rrandomwt 2.867 4.745 13.390 6.011 2.341 32.068 1.039

        
8Kb64s2rlruwt 2.278 9.328 14.585 13.228 6.428 28.548 12.538

8Kb128s2rlruwt 1.749 9.310 12.630 16.179 9.435 23.521 15.216
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32Kb64s2rlruwt 2.094 5.574 10.989 7.168 2.831 27.195 2.920
32Kb128s2rlruwt 1.298 4.871 8.421 7.357 3.176 22.366 3.909

        
128Kb64s2rlruwt 2.084 3.342 8.739 5.368 1.881 23.972 1.152

128Kb128s2rlruwt 1.276 2.732 6.309 5.145 1.735 20.004 1.292
        

32Kb64s1wt 2.298 6.986 12.341 8.780 4.570 27.462 5.414
32Kb64s2rlruwt 2.094 5.574 10.989 7.168 2.831 27.195 2.920
32Kb64s4rlruwt 2.088 5.268 10.572 6.864 2.509 27.148 2.125
32Kb64s8rlruwt 2.088 5.139 10.525 6.773 2.434 27.053 1.656

        
32Kb64s1wt 2.298 6.986 12.341 8.780 4.570 27.462 5.414

32Kb64s2rrandomwt 2.184 5.929 11.854 8.225 3.208 27.421 3.244
32Kb64s4rrandomwt 2.170 5.671 11.684 8.211 2.988 27.442 2.758
32Kb64s8rrandomwt 2.167 5.581 11.612 8.118 2.934 27.456 2.575

        
4Kb32s8rlruwt 2.852 11.833 22.108 13.611 5.455 37.829 13.527

16Kb32s8rlruwt 2.842 8.091 16.175 8.048 3.312 36.629 2.769
64Kb32s8rlruwt 2.842 5.484 14.538 6.501 2.421 32.286 0.868
256Kb32s8rlruwt 2.828 3.494 10.153 4.354 1.928 30.743 0.673

        
4Kb32s8rrandomwt 3.280 13.744 25.190 18.244 7.484 39.035 15.215

16Kb32s8rrandomwt 2.971 8.793 18.309 10.059 3.966 37.215 4.003
64Kb32s8rrandomwt 2.894 5.813 15.210 7.142 2.697 33.410 1.299
256Kb32s8rrandomwt 2.851 3.812 10.704 4.710 2.040 31.115 0.888

        
8Kb64s2rlruwbwa 0.457 7.553 9.754 9.633 5.945 26.142 9.903
8Kb128s2rlruwbwa 0.500 7.593 9.686 10.970 8.856 18.312 12.989

        
32Kb64s2rlruwbwa 0.268 4.142 7.004 5.780 2.409 25.200 1.743

32Kb128s2rlruwbwa 0.143 3.539 6.037 5.744 2.731 17.452 2.692
        

128Kb64s2rlruwbwa 0.262 2.179 5.350 4.167 1.469 22.718 0.336
128Kb128s2rlruwbwa 0.132 1.642 4.343 3.934 1.307 15.944 0.465

        
32Kb32s1wbwa 0.636 6.537 9.629 7.273 3.821 33.155 2.780

32Kb32s2rlruwbwa 0.529 5.463 8.630 6.261 2.619 33.043 1.168
32Kb32s4rlruwbwa 0.527 5.204 8.489 6.068 2.422 33.214 0.740
32Kb32s8rlruwbwa 0.527 5.099 8.467 5.996 2.364 33.512 0.603
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Data Cache Miss Rates (Contd.) 

 gzip.src gzip.log gzip.gra gzip.rand gzip.prog
8Kb32s1wt 11.537 7.249 15.114 18.848 13.300 

8Kb32s2rlruwt 9.894 6.404 13.809 16.590 11.291 
8Kb32s4rlruwt 9.636 6.288 13.622 16.449 10.874 
8Kb32s8rlruwt 9.577 6.254 13.581 16.383 10.783 

      
8Kb32s1wt 11.537 7.249 15.114 18.848 13.300 

8Kb32s2rrandomwt 10.329 6.645 14.222 18.409 11.852 
8Kb32s4rrandomwt 10.152 6.562 14.105 18.285 11.561 
8Kb32s8rrandomwt 10.120 6.536 14.071 18.251 11.479 

      
32Kb32s1wt 8.269 5.493 12.300 14.705 9.463 

32Kb32s2rlruwt 7.342 5.144 11.501 13.732 8.393 
32Kb32s4rlruwt 7.256 5.148 11.526 13.714 8.216 
32Kb32s8rlruwt 7.252 5.154 11.546 13.722 8.174 

      
32Kb32s1wt 8.269 5.493 12.300 14.705 9.463 

32Kb32s2rrandomwt 7.760 5.388 11.852 14.708 8.796 
32Kb32s4rrandomwt 7.746 5.404 11.897 14.537 8.779 
32Kb32s8rrandomwt 7.732 5.394 11.901 14.682 8.724 

      
128Kb32s1wt 4.900 3.372 6.357 7.421 5.353 

128Kb32s2rlruwt 4.411 3.399 5.953 7.066 4.826 
128Kb32s4rlruwt 4.594 3.562 6.370 7.468 5.018 
128Kb32s8rlruwt 4.702 3.620 6.430 7.496 5.128 

      
128Kb32s1wt 4.900 3.372 6.357 7.421 5.353 

128Kb32s2rrandomwt 4.617 3.423 6.202 7.391 5.056 
128Kb32s4rrandomwt 4.696 3.450 6.578 7.699 5.153 
128Kb32s8rrandomwt 4.714 3.466 6.663 7.754 5.201 

      
8Kb64s2rlruwt 9.775 5.750 13.608 16.312 11.227 
8Kb128s2rlruwt 9.908 5.476 13.761 16.206 11.521 

      
32Kb64s2rlruwt 6.417 4.041 10.536 12.586 7.429 

32Kb128s2rlruwt 6.189 3.629 10.410 12.466 6.989 
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128Kb64s2rlruwt 3.462 2.612 4.771 5.777 3.798 
128Kb128s2rlruwt 3.072 2.243 4.526 5.556 3.372 

32Kb64s1wt 7.586 4.567 11.645 13.750 8.668 
32Kb64s2rlruwt 6.417 4.041 10.536 12.586 7.429 
32Kb64s4rlruwt 6.343 4.056 10.586 12.577 7.211 
32Kb64s8rlruwt 6.385 4.077 10.590 12.595 7.206 

      
32Kb64s1wt 7.586 4.567 11.645 13.750 8.668 

32Kb64s2rrandomwt 6.941 4.379 11.055 13.560 7.884 
32Kb64s4rrandomwt 6.951 4.416 11.168 13.707 7.925 
32Kb64s8rrandomwt 6.949 4.418 11.198 13.854 7.886 

      
4Kb32s8rlruwt 10.399 6.619 13.983 17.216 11.851 
16Kb32s8rlruwt 8.709 5.900 13.087 15.657 9.756 
64Kb32s8rlruwt 6.020 4.561 9.717 11.571 6.769 

256Kb32s8rlruwt 2.316 1.603 2.592 3.737 2.466 
      

4Kb32s8rrandomwt 11.361 7.161 14.979 20.007 13.033 
16Kb32s8rrandomwt 8.971 5.996 13.158 16.644 10.134 
64Kb32s8rrandomwt 6.405 4.664 9.954 11.947 7.185 

256Kb32s8rrandomwt 2.575 1.929 2.603 4.083 2.627 
      

8Kb64s2rlruwbwa 5.707 3.357 7.227 8.638 6.612 
8Kb128s2rlruwbwa 6.107 3.051 7.678 8.801 7.440 

      
32Kb64s2rlruwbwa 3.276 2.371 5.524 6.719 3.674 
32Kb128s2rlruwbwa 3.004 1.750 5.307 6.480 3.479 

      
128Kb64s2rlruwbwa 1.259 1.254 1.927 2.216 1.305 

128Kb128s2rlruwbwa 0.892 0.755 1.624 1.929 0.995 
      

32Kb32s1wbwa 4.619 3.459 6.644 7.566 5.200 
32Kb32s2rlruwbwa 3.750 3.164 5.937 7.133 4.053 
32Kb32s4rlruwbwa 3.626 3.130 5.904 7.090 3.880 
32Kb32s8rlruwbwa 3.588 3.114 5.903 7.089 3.805 
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Data Cache Miss Rates (Contd.) 

 gcc.166 gcc.200 gcc.expr gcc.integ gcc.scilab 
8Kb32s1wt 51.071 18.460 23.917 38.099 21.032 

8Kb32s2rlruwt 49.064 15.788 21.420 35.901 18.883 
8Kb32s4rlruwt 48.510 14.902 20.332 34.974 18.199 
8Kb32s8rlruwt 48.319 14.631 19.946 34.690 18.126 

      
8Kb32s1wt 51.071 18.460 23.917 38.099 21.032 

8Kb32s2rrandomwt 49.594 16.508 22.121 36.557 19.514 
8Kb32s4rrandomwt 49.220 16.013 21.417 35.909 19.272 
8Kb32s8rrandomwt 49.136 15.860 21.183 35.755 19.208 

      
32Kb32s1wt 47.974 13.158 18.971 34.536 17.190 

32Kb32s2rlruwt 47.076 12.019 18.028 33.592 16.035 
32Kb32s4rlruwt 46.891 11.592 17.605 33.346 15.880 
32Kb32s8rlruwt 46.839 11.466 17.460 33.290 15.850 

      
32Kb32s1wt 47.974 13.158 18.971 34.536 17.190 

32Kb32s2rrandomwt 47.263 12.119 17.627 33.809 16.221 
32Kb32s4rrandomwt 47.142 11.732 17.225 33.622 16.062 
32Kb32s8rrandomwt 47.104 11.621 17.074 33.563 16.841 

      
128Kb32s1wt 47.343 8.683 12.075 27.843 11.992 

128Kb32s2rlruwt 46.799 8.225 11.139 30.072 11.892 
128Kb32s4rlruwt 46.767 8.046 10.342 32.957 12.033 
128Kb32s8rlruwt 46.763 8.038 10.164 32.944 12.413 

      
128Kb32s1wt 47.343 8.683 12.075 27.843 11.992 

128Kb32s2rrandomwt 45.821 8.231 11.573 27.627 11.721 
128Kb32s4rrandomwt 45.438 8.160 11.464 27.461 11.697 
128Kb32s8rrandomwt 45.266 8.127 11.418 27.313 11.733 

      
8Kb64s2rlruwt 49.127 15.960 21.373 35.903 18.441 
8Kb128s2rlruwt 40.971 15.103 19.285 31.163 16.712 

      
32Kb64s2rlruwt 47.006 11.660 17.375 33.617 15.270 

32Kb128s2rlruwt 37.728 9.882 14.089 26.922 12.678 
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128Kb64s2rlruwt 46.609 7.771 10.434 30.111 11.291 
128Kb128s2rlruwt 37.238 6.956 9.618 25.070 10.379 

      
32Kb64s1wt 47.867 12.864 18.556 34.441 16.568 

32Kb64s2rlruwt 47.006 11.660 17.375 33.617 15.270 
32Kb64s4rlruwt 46.676 11.100 16.975 33.145 15.107 
32Kb64s8rlruwt 46.652 10.959 16.865 33.114 15.064 

      
32Kb64s1wt 47.867 12.864 18.556 34.441 15.568 

32Kb64s2rrandomwt 47.168 11.769 17.050 33.765 15.486 
32Kb64s4rrandomwt 46.962 11.274 16.599 33.431 15.317 
32Kb64s8rrandomwt 46.932 11.149 16.436 33.401 15.249 

      
4Kb32s8rlruwt 50.352 20.678 22.638 37.259 23.397 
16Kb32s8rlruwt 47.123 12.315 18.453 33.548 16.060 
64Kb32s8rlruwt 46.795 10.104 13.336 33.158 14.796 

256Kb32s8rlruwt 46.676 5.660 8.595 18.642 8.219 
      

4Kb32s8rrandomwt 51.667 21.504 24.465 38.809 23.802 
16Kb32s8rrandomwt 47.585 13.104 19.113 34.164 16.966 
64Kb32s8rrandomwt 46.774 9.976 13.552 32.490 14.396 

256Kb32s8rrandomwt 36.569 7.092 10.441 20.328 9.944 
      

8Kb64s2rlruwbwa 47.501 13.588 18.661 34.432 16.039 
8Kb128s2rlruwbwa 26.072 9.869 12.504 20.007 9.506 

      
32Kb64s2rlruwbwa 45.609 10.326 15.442 32.003 14.316 
32Kb128s2rlruwbwa 23.289 6.048 8.414 16.628 7.533 

      
128Kb64s2rlruwbwa 45.208 6.853 6.239 30.414 10.985 

128Kb128s2rlruwbwa 22.859 3.677 3.394 15.498 5.693 
      

32Kb32s1wbwa 46.444 11.729 16.661 32.962 15.771 
32Kb32s2rlruwbwa 45.845 10.653 15.755 32.185 15.067 
32Kb32s4rlruwbwa 45.747 10.360 15.523 32.041 14.969 
32Kb32s8rlruwbwa 45.720 10.270 15.467 32.014 14.942 
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Data Cache Miss Rates (Contd.) 

 vortex.in1 vortex.in2 vortex.in3 bzip2.src bzip2.gra 
8Kb32s1wt 14.734 18.027 16.990 8.760 7.013 

8Kb32s2rlruwt 10.725 10.865 10.768 7.745 6.299 
8Kb32s4rlruwt 9.622 9.701 9.606 7.530 6.104 
8Kb32s8rlruwt 9.247 9.395 9.165 7.444 6.078 

      
8Kb32s1wt 14.734 18.027 16.990 8.760 7.013 

8Kb32s2rrandomwt 12.167 13.206 13.516 8.027 6.581 
8Kb32s4rrandomwt 11.481 12.196 12.141 7.855 6.376 
8Kb32s8rrandomwt 11.528 12.048 11.747 7.801 6.358 

      
32Kb32s1wt 7.572 10.244 7.447 6.786 5.777 

32Kb32s2rlruwt 3.653 3.766 3.810 6.334 5.567 
32Kb32s4rlruwt 2.636 2.781 2.695 6.228 5.559 
32Kb32s8rlruwt 2.188 2.234 2.406 6.189 5.562 

      
32Kb32s1wt 7.572 10.244 7.447 6.786 5.777 

32Kb32s2rrandomwt 4.143 4.369 4.341 6.467 5.651 
32Kb32s4rrandomwt 3.366 3.621 3.560 6.407 5.655 
32Kb32s8rrandomwt 3.113 3.183 3.296 6.394 5.660 

      
128Kb32s1wt 4.337 3.806 3.650 5.756 4.899 

128Kb32s2rlruwt 1.558 1.445 1.818 5.569 4.747 
128Kb32s4rlruwt 1.103 1.103 1.092 5.519 4.699 
128Kb32s8rlruwt 1.025 1.030 1.028 5.499 4.671 

      
128Kb32s1wt 4.337 3.806 3.650 5.756 4.899 

128Kb32s2rrandomwt 1.790 1.661 1.984 5.632 4.813 
128Kb32s4rrandomwt 1.307 1.319 1.320 5.606 4.809 
128Kb32s8rrandomwt 1.262 1.257 1.258 5.599 4.814 

      
8Kb64s2rlruwt 11.295 11.598 11.639 7.711 6.121 

8Kb128s2rlruwt 12.595 12.731 12.789 8.312 6.691 
      

32Kb64s2rlruwt 4.321 4.561 4.410 6.095 5.220 
32Kb128s2rlruwt 4.902 5.157 5.172 5.799 4.992 
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128Kb64s2rlruwt 1.697 1.456 2.002 5.297 4.485 
128Kb128s2rlruwt 1.748 1.640 2.202 4.910 4.291 

      

32Kb64s1wt 9.299 11.607 8.915 6.716 5.553 
32Kb64s2rlruwt 4.321 4.561 4.410 6.095 5.220 
32Kb64s4rlruwt 3.345 3.400 3.346 5.975 5.194 
32Kb64s8rlruwt 3.134 3.201 3.230 5.931 5.187 

      
32Kb64s1wt 9.299 11.607 8.915 6.716 5.553 

32Kb64s2rrandomwt 5.003 5.301 5.208 6.238 5.328 
32Kb64s4rrandomwt 4.206 4.519 4.824 6.161 5.325 
32Kb64s8rrandomwt 3.991 4.201 4.352 6.142 5.328 

      
4Kb32s8rlruwt 13.098 13.373 13.345 8.026 6.300 

16Kb32s8rlruwt 5.753 5.651 5.712 6.699 5.811 
64Kb32s8rlruwt 1.209 1.204 1.191 5.838 5.185 
256Kb32s8rlruwt 0.961 0.957 0.961 5.025 4.347 

      
4Kb32s8rrandomwt 17.433 18.022 17.910 8.566 6.774 

16Kb32s8rrandomwt 6.954 7.198 7.189 6.983 5.994 
64Kb32s8rrandomwt 1.651 1.655 1.648 5.981 5.256 
256Kb32s8rrandomwt 1.087 1.083 1.090 5.040 4.442 

      
8Kb64s2rlruwbwa 6.775 7.163 7.020 4.886 3.613 
8Kb128s2rlruwbwa 8.250 8.442 8.308 5.848 4.451 

      
32Kb64s2rlruwbwa 2.551 2.687 2.603 3.058 2.651 

32Kb128s2rlruwbwa 3.045 3.132 2.949 3.019 2.523 
      

128Kb64s2rlruwbwa 0.721 0.646 0.927 2.102 2.017 
128Kb128s2rlruwbwa 0.909 0.816 1.105 1.876 1.828 

      
32Kb32s1wbwa 4.120 4.576 4.200 3.840 3.283 

32Kb32s2rlruwbwa 1.969 2.028 2.134 3.330 3.031 
32Kb32s4rlruwbwa 1.507 1.663 1.645 3.197 3.010 
32Kb32s8rlruwbwa 1.251 1.306 1.421 3.147 3.003 
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Data Cache Miss Rates (Contd.) 

 bzip2.prog eon.cook eon.rush eon.kajiya perlbmk.diff
8Kb32s1wt 7.215 9.746 15.349 12.753 18.568 

8Kb32s2rlruwt 6.308 7.302 10.860 9.785 15.267 
8Kb32s4rlruwt 6.027 6.890 11.576 9.773 15.107 
8Kb32s8rlruwt 5.965 6.158 11.118 9.772 15.237 

      
8Kb32s1wt 7.215 9.746 15.349 12.753 18.568 

8Kb32s2rrandomwt 6.630 8.283 12.147 10.557 15.526 
8Kb32s4rrandomwt 6.375 7.676 13.429 11.151 15.028 
8Kb32s8rrandomwt 6.341 6.544 12.160 11.364 14.840 

      
32Kb32s1wt 5.638 3.524 6.682 2.416 9.936 

32Kb32s2rlruwt 5.273 2.216 3.175 0.956 8.424 
32Kb32s4rlruwt 5.202 1.153 1.262 0.186 8.341 
32Kb32s8rlruwt 5.167 0.954 0.739 0.135 7.421 

      
32Kb32s1wt 5.638 3.524 6.682 2.416 9.936 

32Kb32s2rrandomwt 5.400 2.498 4.029 1.118 8.661 
32Kb32s4rrandomwt 5.365 1.267 1.873 0.300 8.429 
32Kb32s8rrandomwt 5.345 1.213 1.611 0.195 7.909 

      
128Kb32s1wt 4.746 1.422 4.806 1.120 7.161 

128Kb32s2rlruwt 4.561 0.757 0.426 0.043 6.189 
128Kb32s4rlruwt 4.502 0.744 0.118 0.013 5.980 
128Kb32s8rlruwt 4.476 0.744 0.118 0.013 5.884 

      
128Kb32s1wt 4.746 1.422 4.806 1.120 7.161 

128Kb32s2rrandomwt 4.637 0.759 0.791 0.064 6.400 
128Kb32s4rrandomwt 4.613 0.744 0.119 0.013 6.235 
128Kb32s8rrandomwt 4.606 0.744 0.118 0.013 6.252 

      
8Kb64s2rlruwt 6.130 9.168 10.658 8.481 15.334 

8Kb128s2rlruwt 6.633 8.205 11.492 7.693 15.576 
      

32Kb64s2rlruwt 4.967 2.818 1.983 1.174 8.704 
32Kb128s2rlruwt 4.759 2.715 2.428 1.336 9.151 
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128Kb64s2rlruwt 4.239 0.601 0.153 0.050 6.268 
128Kb128s2rlruwt 3.992 0.393 0.172 0.060 6.205 

      
32Kb64s1wt 5.457 3.809 5.808 2.788 10.089 

32Kb64s2rlruwt 4.967 2.818 1.983 1.174 8.704 
32Kb64s4rlruwt 4.889 1.414 0.674 0.345 8.824 
32Kb64s8rlruwt 4.852 1.035 0.367 0.166 7.553 

      
32Kb64s1wt 5.457 3.809 5.808 2.788 10.089 

32Kb64s2rrandomwt 5.101 2.832 2.591 1.385 9.003 
32Kb64s4rrandomwt 5.053 1.429 0.758 0.470 8.874 
32Kb64s8rrandomwt 5.030 1.398 0.462 0.233 8.074 

      
4Kb32s8rlruwt 6.516 17.217 20.791 17.215 17.439 

16Kb32s8rlruwt 5.524 1.837 3.433 1.272 9.424 
64Kb32s8rlruwt 4.819 0.744 0.124 0.016 6.501 
256Kb32s8rlruwt 4.130 0.744 0.118 0.013 5.748 

      
4Kb32s8rrandomwt 7.126 18.333 24.476 20.310 18.844 

16Kb32s8rrandomwt 5.769 2.283 4.164 1.938 9.847 
64Kb32s8rrandomwt 4.968 0.746 0.385 0.019 6.853 
256Kb32s8rrandomwt 4.228 0.744 0.118 0.013 5.948 

      
8Kb64s2rlruwbwa 3.830 2.887 2.967 2.675 4.673 
8Kb128s2rlruwbwa 4.520 3.048 2.916 2.929 5.041 

      
32Kb64s2rlruwbwa 2.584 0.548 0.683 0.476 1.590 

32Kb128s2rlruwbwa 2.447 0.663 0.788 0.580 1.888 
      

128Kb64s2rlruwbwa 1.818 0.026 0.026 0.014 0.378 
128Kb128s2rlruwbwa 1.601 0.030 0.031 0.015 0.397 

      
32Kb32s1wbwa 3.345 1.021 1.333 0.792 2.476 

32Kb32s2rlruwbwa 2.946 0.480 0.664 0.386 1.588 
32Kb32s4rlruwbwa 2.867 0.101 0.105 0.076 1.209 
32Kb32s8rlruwbwa 2.829 0.050 0.068 0.042 0.843 
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Data Cache Miss Rates (Contd.) 

 pbmk.mr pbmk.perf pbmk.s1 pbmk.s2 pbmk.s3 pbmk.s4
8Kb32s1wt 8.453 14.740 17.795 17.939 18.587 17.919 

8Kb32s2rlruwt 3.824 11.661 16.599 16.962 17.395 16.960 
8Kb32s4rlruwt 3.287 9.765 17.383 17.570 16.206 17.640 
8Kb32s8rlruwt 3.274 9.208 18.223 18.098 18.421 18.155 

       
8Kb32s1wt 8.453 14.740 17.795 17.939 18.587 17.919 

8Kb32s2rrandomwt 4.153 12.957 16.839 17.446 17.273 17.443 
8Kb32s4rrandomwt 4.141 11.625 16.128 16.523 14.760 16.483 
8Kb32s8rrandomwt 4.154 11.445 15.806 15.847 15.408 15.786 

       
32Kb32s1wt 3.621 6.513 7.574 8.378 8.386 8.386 

32Kb32s2rlruwt 3.270 4.921 4.664 5.490 4.613 5.479 
32Kb32s4rlruwt 3.265 3.847 3.269 3.176 3.180 3.151 
32Kb32s8rlruwt 3.268 3.573 2.964 3.004 2.990 2.984 

       
32Kb32s1wt 3.621 6.513 7.574 8.378 8.386 8.386 

32Kb32s2rrandomwt 3.645 5.609 5.466 5.947 5.385 5.961 
32Kb32s4rrandomwt 3.595 4.664 4.250 4.142 4.144 4.133 
32Kb32s8rrandomwt 3.622 4.472 4.045 4.023 4.019 4.018 

       
128Kb32s1wt 3.318 1.801 3.795 3.617 3.735 3.683 

128Kb32s2rlruwt 3.222 0.641 2.975 2.922 2.930 2.930 
128Kb32s4rlruwt 3.088 0.254 2.853 2.815 2.837 2.824 
128Kb32s8rlruwt 3.064 0.194 2.851 2.811 2.836 2.821 

       
128Kb32s1wt 3.318 1.801 3.795 3.617 3.735 3.683 

128Kb32s2rrandomwt 3.310 0.742 3.467 3.300 3.367 3.348 
128Kb32s4rrandomwt 3.239 0.323 3.422 3.223 3.296 3.287 
128Kb32s8rrandomwt 3.179 0.187 3.435 3.200 3.313 3.262 

       
8Kb64s2rlruwt 2.179 11.570 17.156 16.957 16.909 16.985 

8Kb128s2rlruwt 7.777 12.152 16.798 16.758 15.646 16.772 
       

32Kb64s2rlruwt 1.237 4.918 3.955 5.655 3.952 5.628 
32Kb128s2rlruwt 1.235 4.630 3.694 6.217 5.543 6.185 
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128Kb64s2rlruwt 1.195 0.610 1.841 1.869 1.818 1.841 
128Kb128s2rlruwt 1.211 0.582 0.754 1.609 0.819 1.569 

       
32Kb64s1wt 2.903 6.392 6.704 8.323 7.561 8.315 

32Kb64s2rlruwt 1.237 4.918 3.955 5.655 3.952 5.628 
32Kb64s4rlruwt 1.227 3.478 2.478 2.522 3.504 2.423 
32Kb64s8rlruwt 1.227 3.050 1.866 1.959 1.930 1.931 

       
32Kb64s1wt 2.903 6.392 6.704 8.323 7.561 8.315 

32Kb64s2rrandomwt 2.190 5.664 4.393 5.532 4.403 5.502 
32Kb64s4rrandomwt 2.136 4.462 2.951 3.000 3.441 2.912 
32Kb64s8rrandomwt 2.109 4.196 2.580 2.702 2.685 2.649 

       
4Kb32s8rlruwt 3.639 13.146 22.842 22.613 22.704 22.698 

16Kb32s8rlruwt 3.273 5.606 4.568 5.260 4.045 5.125 
64Kb32s8rlruwt 3.209 1.548 2.872 2.864 2.874 2.856 
256Kb32s8rlruwt 3.064 0.165 2.829 2.742 2.792 2.774 

       
4Kb32s8rrandomwt 4.645 16.350 25.157 25.056 25.239 25.117 

16Kb32s8rrandomwt 3.875 7.324 5.657 5.942 5.308 5.828 
64Kb32s8rrandomwt 3.346 1.606 3.666 3.543 3.599 3.557 
256Kb32s8rrandomwt 3.141 0.165 3.229 2.988 3.058 3.075 

       
8Kb64s2rlruwbwa 2.715 7.113 7.650 7.673 7.522 7.650 
8Kb128s2rlruwbwa 5.728 7.910 8.574 8.689 8.608 8.675 

       
32Kb64s2rlruwbwa 0.319 2.800 1.804 1.860 1.790 1.834 

32Kb128s2rlruwbwa 0.323 2.457 2.563 2.691 2.660 2.667 
       

128Kb64s2rlruwbwa 0.300 0.445 0.316 0.338 0.322 0.327 
128Kb128s2rlruwbwa 0.305 0.414 0.287 0.390 0.297 0.381 

       
32Kb32s1wbwa 0.331 4.069 3.636 3.687 3.714 3.674 

32Kb32s2rlruwbwa 0.319 3.125 1.457 1.537 1.495 1.498 
32Kb32s4rlruwbwa 0.316 2.671 0.601 0.585 0.557 0.555 
32Kb32s8rlruwbwa 0.317 2.558 0.439 0.495 0.468 0.473 
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