
Improving Server Performance on Transaction Processing Workloads by
Enhanced Data Placement

Juan Rubio Charles Lefurgy Lizy K. John
Lab. for Computer Architecture IBM Austin Research Lab Lab. for Computer Architecture

The University of Texas at Austin The University of Texas at Austin
Austin, TX 78712 Austin, TX 78758 Austin, TX 78712

jrubio@ece.utexas.edu lefurgy@us.ibm.com ljohn@ece.utexas.edu

Abstract

Modern servers access large volumes of data while run-
ning commercial workloads. The data is typically spread
among several storage devices (e.g. disks). Carefully plac-
ing the data across the storage devices can minimize costly
remote accesses and improve performance.

We propose the use of simulated annealing to arrive at an
effective layout of data on disk. The proposed technique con-
siders the configuration of the system and the cost of data
movement. An initial layout globally optimized across all
queries, shows speedups of up to 13% for a group of DSS
queries and up to 6% for selected OLTP queries.

This technique can be re-applied at run-time to further im-
prove performance beyond the initial, globally optimized data
layout. This scheme monitors architecture parameters to pre-
vent optimizations of multiple operations to conflict with each
other. Such a dynamic reorganization results in speedups of
up to 23% for the DSS queries and up to 10% for the OLTP
queries.

1. Introduction

Modern servers access large volumes of data while execut-
ing emerging commercial workloads. Servers typically have
multiple processing elements, whether clusters of comput-
ers or tightly coupled multiprocessors. The storage devices,
which may be located in different nodes within the system,
are not all equally accessible by the processing elements. Lo-
cal accesses are usually fast; however, remote accesses incur
an extra access latency due to (i) the communication hard-
ware and (ii) contentions in the global interconnect.

To improve the performance of servers on emerging work-
loads, the latency for data accesses must be reduced. Com-
mercial workloads have a large data footprint, and operations
commonly require data that is not memory resident. Hence,
one important factor to consider is the placement of data on
disk; an efficient placement minimizes remote data transfers
at run-time.

This paper formulates data placement as a combinatorial
optimization problem and uses simulated annealing to arrive
at a good solution. Combinatorial optimizations are used in
many branches of sciences to find the best arrangement of ob-
jects for a given constraint. For example, they are used in the
context of VLSI and Electronic Design Automation to solve
placement and route problems [18, 19].

The paper is organized as follows. Section 2 introduces
the simulated annealing technique. Section 3 explains how
the data placement problem can be formulated as a graph and
how simulated annealing can be applied to find a good ini-
tial placement. Section 4 presents the run-time data reorgani-
zation technique. Section 5 describes our performance evalu-
ation methodology. Section 6 analyzes the results of the pro-
posed technique. Section 7 compares our approach to previ-
ous work. Section 8 presents our conclusions.

2. Simulated Annealing

This paper addresses the placement of data across the
nodes of a server. Our main goal is to reduce the number of re-
mote data accesses. Selecting the optimal placement has been
shown to be NP-complete for general graphs [6], so most sys-
tems use heuristics to approximate a solution.

Simulated Annealing (SA) [12, 1] is an algorithm that
quickly and effectively optimizes a solution over a large state
space. It does not guarantee the optimal solution, but can pro-
duce a solution close to the global minimum in much less
time than an exhaustive search. SA starts with a configuration
and searches for better solutions by making random modifica-
tions (permutations). Permutations resulting in improved per-
formance are applied to the system. However, to escape local
minima, the SA algorithm accepts some solutions that do not
perform well. The probability of accepting a harmful change
decreases as the algorithm progresses.

The acceptance probability is determined by the cost of the
change and the temperature

�
, an artificial parameter repre-

senting the algorithm’s progress.

���������
	���
 ��������� ����� 	��� � �
(1)



1. Set the initial solution; � � ���
2. Set the initial temperature;

��� � �
3. Repeat while

��� ���
:

(a) For each permutation at this temperature step:

i. Produce a new solution ���	��
 by a random
permutation of �

ii. Calculate the cost differential 	�� between� and ���	��

iii. Set � to ���	��
 if:
 	������ or
���� ��� �����
	���
 � � for a random num-

ber � , ���������
(b) Move to the next temperature step by reducing�

according to the cooling schedule

Figure 1. Simulated annealing algorithm.

3e+09

3.5e+09

4e+09

4.5e+09

5e+09

5.5e+09

0 5 10 15 20 25 30 35 40 45 50

C
os

t

Temperature step

SA
II

Figure 2. Cost function for the simulated annealing
(SA) and the Iterative Improvement (II) algorithms.

The algorithm starts at a high temperature,
� � , and reduces

the temperature at each iteration. The first iteration begins
with a feasible (i.e., legal but not necessarily optimal) solu-
tion with cost � � . When the temperature reaches zero, the
probability of accepting worse solutions is zero and the algo-
rithm halts. Figure 1 summarizes the general algorithm used
for this study.

Figure 2 shows the cost obtained by only accepting solu-
tions that reduce the energy (Iterative Improvement – II) ver-
sus the SA algorithm. The II technique is more likely to settle
on a local minimum.

When applying SA to data placement, � becomes the ef-
fectiveness of using a particular data placement. Example
functions are the amount of inter-node data traffic or the time
to complete the workload. The values for

�
and

� � are dis-
cussed in sections 3.3 and 4.2. The reduction of temperature
on each iteration is determined by the temperature cooling
schedule, which is described in Section 5.

3. Static Data Placement

In this section, we evaluate the benefit of performing an
initial data placement before the workload is executed.

3.1. Solution State

The solution state used in the SA algorithm describes the
location of data in the server system. A data element could be
a file or a database table. Whenever possible, we divide the
data elements into smaller, fixed-sized chunks, which allows
a more balance distribution of data across the disk of the sys-
tem. For our workloads, a chunk consists of multiple rows in
a database table. Each chunk is represented by a pair ��� 
�� � ,
which indicates the identity the block of data and its loca-
tion in the system. A solution state is a list of all the tuples in
the server system.

The initial solution state of the system is found by allocat-
ing the chunks sequentially across the storage elements in the
system. The solution state is permuted by selecting a chunk
and moving it to a different node in the server.

3.2. Objective Function

The goal of the data placement technique could be to im-
prove the execution time, throughput, scalability, fault toler-
ance, or even power consumption of the server. The SA ob-
jective function must be selected to match this goal. In this
paper we use inter-node data traffic and execution time as ob-
jective functions.

3.2.1. Inter-node Data Traffic Lovett et al. [13] showed
that remote data accesses are one of the biggest performance
bottlenecks in the execution of server workloads. Perfor-
mance can be improved by a data layout that reduces the
number of inter-node transfers. Therefore, we consider us-
ing inter-node data traffic as an objective function.

Data traffic in the system can be represented by a graph.
The nodes in the graph represent the data storage and compu-
tation elements in the system, and arcs represent the transfer
of data. Figure 3 shows the graphic representation of a sam-
ple problem. Computation is represented by � and data by� . Dotted lines represent node boundaries. The amounts of
data transfer needed for each computation may differ. That
information can be incorporated into the graph by assigning a
weight to each of the arcs. The objective function is the sum
of the weight of all arcs which cross the boundaries of a node,
as expressed by the formula:

� � �"! ��# $&%('*)+%,'
(2)

where $ %(' �.- �0/21�3 �54 �6%�� 3 �54 �*'� �6!87 � � ) /2� � (3)

3.2.2. Time We also consider an objective function ex-
pressed in units of time to run the workload. This func-
tion yields higher quality solutions, but the algorithm has a
longer running time than the objective function based on re-
mote data accesses. Cascaval et al. [4] have shown good



P1 D1

P2

P3

D2

D3P4

w1
w2

w3

w4

w5

w6

w8
w7

Figure 3. Data partition graph. The data is arranged
between 2 nodes, resulting in a remote transfer cost���������	��


.

results when estimating the time of scientific applications us-
ing a model of the form:!
��������� � !�������� !�� � ��� !��
������� ! % � � (4)

The CPU time is obtained using the number of instructions
and estimated hardware costs. The memory time is obtained
using a stack distance model [3]. The communication and I/O
times are obtained from the amount of data that is transferred
across the system’s nodes or from the I/O devices. Equation 4
does not consider the overlap between these components, but
it is sufficiently accurate for the purpose of this study.

3.3. Temperature Schedule for Static Placement

For all experiments, we reduce the temperature linearly.
We use 50 temperature steps for the initial data placement.
For each temperature step, 20 permutations to the solution are
evaluated. Since our application of simulated annealing does
not correspond to any real physical phenomenon, we can sub-
stitute

� � � in Equation 1. We find the value for
� � by using

an initial uphill acceptance probability of 0.8 [11] and solv-
ing Equation 1 for

�
.

� � � � � �! 3 ���#" $ � (5)

4. Dynamic Data Reorganization

Different stages of a workload can use data differently. For
example, in a commercial environment such as an on-line
store, user behavior varies during the day [15]. The chang-
ing popularity of store merchandise can have a longer term
impact, moving the hot-spots in the data from one node to an-
other. In this type of situation, system performance can ben-
efit by re-optimizing the data placement during workload ex-
ecution. This section presents modifications to allow for dy-
namic data placement.

4.1. Description

We periodically assess the state of the data organization
and look for possible layouts that would reduce the execu-
tion time. At run-time we perform a quick simulated anneal-

ing search using a sample of previous and pending queries as
the training set.

Since dynamic reorganization competes for the same re-
sources as the main computation, it can hurt performance. To
prevent this, we shorten the search time by reducing the tem-
perature cooling schedule to 10 steps. When the system has a
heavy load, selecting a lower initial temperature reduces the
number of data chunks transferred to implement the new lay-
out. Finally, data is only reorganized if the new layout is ex-
pected to significantly improve performance.

4.2. Temperature Schedule for Dynamic Placement

Equation 6 shows the expression used to estimate the value
of the initial temperature

�&%� . When the system is at high uti-
lization, the initial temperature is lower to decrease the prob-
ability of transfer-intensive solutions. When the system is ex-
periencing a large number of remote data accesses, the ini-
tial temperature is higher to encourage SA to find better solu-
tions.

� %� � �(' � � )+*
, �.-	/10 (6)

The variables are:
 � � : from equation 5.
 RA (remote accesses): This is the ratio of remote access
to all data accesses. A high number of remote data ac-
cesses is an indication that the data layout might not be
adequate for the workload. In this case, a higher temper-
ature is obtained, allowing greater freedom to find a bet-
ter configuration.
 OP (operations): This is the number of concurrent oper-
ations in the system. If this number is high, then the ini-
tial temperature is low. This reduces the impact of the
variability of multiple operations.
 IU (interconnect utilization): This is a ratio expressing
the utilization of the interconnect. Since a reorganiza-
tion is going to require the use of the interconnect, a high
IU reduces the temperature, preventing interference with
existing traffic.
 � '

: This value is selected so that
�&%� approaches

� � ,
i.e., to maximize the temperature, when the system is
underutilized. In the experiments, we use

� ' � �2$ .

4.3. Look-ahead Block Selection (LABS)

At run-time we have information about the operations that
have been performed in the past and the data they accessed.
Given the nature of the workload, we may also have infor-
mation about pending operations. It is then possible to esti-
mate which chunks of data are most likely to be used. We use
this estimate during simulated annealing to compute new so-
lutions. Instead of randomly picking a data chunk from the



collection of all chunks, we select a chunk only from the sub-
set that are likely to be used. This look-ahead block selection
is useful as it reduces the search space, shortening the search
for an effective arrangement.

4.4. Simulated Annealing Migration (SAM)

Some workloads are characterized by short opera-
tions, such as in on-line transaction processing (OLTP).
For these workloads, the cost of data reorganization is rela-
tively high compared to the cost of performing an operation.
This severely limits the frequency at which reorganiza-
tions could be performed. In this case, we adapt the data re-
organization technique to take advantage of the remote
data accesses of ongoing operations. Instead of transfer-
ring data chunks based on LABS, the SA algorithm de-
cides if a chunk of data being accessed remotely should be
made local to the accessing node. If so, the chunk is deallo-
cated from its initial location and stored in a disk belonging
to the new node.

5. Evaluation Methodology

In this section, we discuss the simulation model, the work-
loads, and the computation of the cost function.

5.1. Computing Platform

We simulate a DSM server with a system architecture sim-
ilar to the AlphaServer GS320 [7]. The simulated DSM server
has 4 clusters, each with 4 processors for a total of 16 proces-
sors. A DSM server has the advantage of providing a single,
global address space. A single address space allows applica-
tions that are designed for a uniprocessor or symmetric multi-
processor system (SMP) to run without modification. Our ex-
periments are based on a tuned PowerPC system running AIX
4.3. The database system is IBM DB2 version 6.1. We con-
duct these experiments using a full system simulator (SimOS
ported to the PowerPC ISA [8]).

The DSM system has four identical nodes; each is a 4-
way SMP node with 512 MB of memory and 7 disks. Table 1
shows the configuration of each of the nodes. The system has
a total of 2 GB of memory and 28 disks. The latency across
the network is 100 ns [16].

5.2. DSS Workload

We use a group of decision support system (DSS) queries
similar to the TPC-H [21] benchmark. The database schema
is similar to the schema specified by the benchmark and the
tables are populated using a scale factor of 1. Table 2 shows
a list of the queries used in our experiments. They are picked
to include operations with different levels of complexity. Se-
quential scan, indexed scan, and merge join operations are in-

Processors 4 CPUs, 1 GHz, assume 1 IPC
L1-I 128 KB, 64 B block, 2-way
L1-D 128 KB, 64 B block, 2-way
L2 4 MB, 128 B block, 4-way
Memory 512 MB, 100 ns, 4 banks
System bus 128 bits, 200 MHz, pipelined,

split transaction
I/O bus 64 bits, 66 MHz, PCI
Disk bus 160 MB/s, Ultra160 SCSI
Disk I/O controller 2
Disk units 9.1 GB, 3 ms latency, 7 disks

Table 1. Configuration of the nodes.

cluded. The tables vary in size from Region (1 KB), the small-
est, to LineItem (813 MB), the largest.

5.3. OLTP Workload

We also use a group of queries produced by 4 web inter-
actions based on the TPC-W benchmark [22]. To generate
the workload we use a real system – not simulated. The sys-
tem is populated with 10,000 items and supports 280 emu-
lated browsers. We apply a stream of 10 interactions of the
same type to our system and create a trace of the queries per-
formed by the database. We then use this sequence of queries
as our workload. Table 3 describes the interactions used in
our experiments. The shopping cart and buy confirm interac-
tions involve reading and modifying data, whereas best seller
and product description only read data. The first two queries
provide test cases for dynamically changing data.

6. Results

Here we present the results of the simulated annealing
method applied to the tasks of static data placement and dy-
namic data reorganization. We then examine the factors that
affect the effectiveness of the technique.

6.1. Performance of DSS queries

The system starts with a database layout designed to ex-
ploit intra-partition parallelism. This base layout spreads the
data for each table equally among the data disks of the nodes
using chunks of 1 MB. The SA optimized layout uses 50 steps
and data chunks of 16 MB and uses the technique described in
Section 3. Our global training method uses information on all
the queries to produce a single layout for the system; the ob-
jective function is the sum of the inter-node data traffic for the
5 queries. Conversely, local training produces a layout opti-
mized for a single query. The first two bars of Figure 4 show
the speedups of both SA layouts over the base layout.

We observe that SA produces layouts that effectively re-
duce the execution time of all the queries. The more practi-
cal global training produces speedups of up to 13%. The per-



Query Name Data set size Duration Implementation
Q1 Pricing Summary Report 1.1 GB 1.1511 s A sequential scan of table LineItem. It generates a large

number of aggregate values.
Q3 Shipping Priority 2.8 GB 10.6040 s A merge join of tables Customer and Order and a

subsequent merge join of the result with table LineItem.
Q6 Forecasting Revenue Change 585 MB 1.3162 s An indexed scan of table LineItem.
Q14 Promotion Effect 686 MB 3.2236 s An indexed scan of table LineItem and a subsequent

merge join with table Part.
Q19 Discounted Revenue 902 MB 13.5045 s A merge join of tables Part and LineItem.

Interaction Name Data set size Duration Description
I.Shop.Cart Shopping cart 55.4 MB 0.6955 s Reads the customer, item and shopping cart tables, and

sometimes stores a new item in the shopping cart.
I.Buy.Conf. Buy confirm 160.6 MB 0.7589 s Reads the customer, address and shopping cart information.

It creates a new order
I.Best.Sell Best sellers 258.0 MB 0.6324 s Obtains the top selling items after looking at the mostrecent

orders, it also includes the author information for those items.
I.Prod.Desc Product description 9.7 MB 0.3574 s Displays the author and details of a given item.

Q1 Q3 Q6 Q14 Q19

1.0

1.1

1.2

Sp
ee

du
p 

ov
er

 b
as

e

static (global)
static (local)
dynamic LABS

Figure 4. Performance of the SA initial and run-time
data reorganization for DSS queries.

formance of all queries improve further with local training,
where we obtain speedups of up to 22%.

Unfortunately using local training is not always possible.
Our alternative solution is to use global training to generate
a layout for the system, paired with a SA run-time data reor-
ganization to dynamically adapt the layout. In this scheme,
dynamic reorganization occurs after every operation. The
third bar of Figure 4 shows the speedups obtained from this
scheme. We observe that the speedups of the dynamic tech-
nique approach the speedups of local training static layouts.
It is interesting to note that it actually produces better results
for queries Q3 and Q19, the 2 longest running queries. This
is due to the fact that the static layout was produced based
on the whole query. Given the length of these queries, the
run-time optimization can adapt the data for the different op-
erations of the queries.

6.2. Performance of OLTP queries

Next, we study the use of the SA data placement technique
for an OLTP workload. We start with a similar base layout,
which exploits intra-partition parallelism. As with the static
layouts produced for the DSS workload, we use 50 steps, data
chunks of 16 MB, and inter-node data traffic as the cost func-
tion for the SA process. The globally-optimized layout is ob-
tained using a training set of queries from the four types of in-

I.Shop.Cart I.Buy.Conf I.Best.Sell I.Prod.Desc.

1.00

1.05

1.10

Sp
ee

du
p 

ov
er

 b
as

e
static (global)
static (local)
dynamic SAM

Figure 5. Performance of the SA initial and run-time
data reorganization for OLTP queries.

teractions in Table 3. The locally-optimized layout only uses
one type of interaction.

Figure 5 shows that the global training static layout only
improves the performance of the OLTP interactions by up to
6.6%. Local training is more useful for this workload, produc-
ing speedups of up to 10%. However, due to the complexity of
the first two interactions (I.Shop.Cart and I.Buy.Conf.), the
performance of the local training layouts does not improve
on that achieved with global training. The third interaction
(I.Best.Sell) performs a join of 2 tables, similar to query Q19
of the DSS workload; thus it benefits greatly from a static lo-
cal layout.

The run-time data reorganization improves the perfor-
mance of most of the interactions, producing speedups of up
to 10% over the base layout. The I.Prod.Desc. interaction is
an exception. Due to its short duration, not enough data reor-
ganizations can be completed to achieve the performance of
a static local layout.

6.3. Sensitivity Analysis

In this section we analyze the factors that affect the perfor-
mance of the SA data placement techniques.

6.3.1. Static Data Placement Steps. The number of steps
in the temperature cooling schedule greatly affects the quality



Q1 Q3 Q6 Q14 Q19

1.00

1.05

1.10

Sp
ee

du
p 

ov
er

 b
as

e

10
20
50
70

Figure 6. Impact of the number of steps over the SA
static data placement.

Q1 Q3 Q6 Q14 Q19

1.00

1.05

1.10

Sp
ee

du
p 

ov
er

 b
as

e

4MB
16 MB
32 MB

Figure 7. Impact of the chunk size over the SA static
data placement.

of the resulting layout. The time it takes to generate each of
these layouts is proportional to the number of steps used. The
think time for a 50 step SA takes about 0.87 seconds of time
on one processor. This experiment shows the performance for
10, 20, 50 and 70 steps.

Figure 6 shows the results of this experiment. We observe
that increasing the number of steps improves the effective-
ness of the layout. We do not see a significant improvement
between 50 and 70 steps.

Chunk size. We also test the size of the chunks moved
for each of the combinations. Using 50 steps and a process
similar to the one described above, we change the size of the
chunks from 4 MB to 32 MB. Changing the size of the chunks
in our technique affects the number of elements that are part
of the optimization process. The more elements we have, the
longer it takes to achieve a low energy configuration. Hav-
ing large elements, on the other hand, reduces the flexibility
of the layout. Figure 7 shows our results. We observe that all
queries benefit from an intermediate chunk size. The appro-
priate chunk size needs to be determined for each problem.
Empirically we found that an adequate estimate is given by:

� - � ! � � � - � 7�� 3 � � /�� ��� � $ ! $ � /�� � (7)

for a value � "�� � � �	� . We also observe that join queries
(Q3, Q14 and Q19) can benefit from smaller chunks.

Objective function. In these experiments we test which
objective function is most effective regarding the SA tech-
nique. We use 50 steps and a chunk size of 16 MB. We pick
functions that are related to the bottlenecks in the workload,
so that reducing them will result in improved performance.
These are described in Section 3.2. The first is the amount
of traffic due to remote accesses (inter-node). The second re-
flects the time needed to execute the queries (time). Figure 8

Q1 Q3 Q6 Q14 Q19

1.0

1.1

1.2

Sp
ee

du
p 

ov
er

 b
as

e

inter-node
time

Figure 8. Performance of different objective func-
tions in the SA static data placement.

shows the results of this experiment. We observe that it is ben-
eficial to use a metric that more closely resembles the metric
we shall eventually measure. The time objective function out-
performs the inter-node objective function for all the queries.
The only drawback is the time required to complete the opti-
mization process. Optimizing the static data layout using the
inter-node objective function takes 0.87 seconds. When we
use the time objective function, the system takes 2.13 sec-
onds to generate the layout. Queries Q6, Q14 and Q19 show a
significant improvement when using the time objective func-
tion, due to the computation intensive nature of the queries.
Queries Q1 and Q3 are mostly memory bound, so the inter-
node objective function is sufficient.

6.3.2. Dynamic Data Reorganization We start with a data
layout generated with the static technique using the time ob-
jective function, 50 steps, data chunks of 16 MB and global
training. Our base model is a system with this data layout and
no dynamic data reorganization. Since the dynamic reorga-
nization might require some time to produce a layout ade-
quate for the queries it runs, we experiment with 3 queries of
the same type. The first is used to warm up the system. We
average the execution times of the second and third queries.
Once we start to execute the queries, the system reorganizes
the data after every operation. In each invocation, the SA al-
gorithm performs only 10 steps, which execute in approxi-
mately 0.082 seconds in the targeted architecture. We note
that this duration is not comparable to the times reported in
the static data placement. There we use all the queries as the
workload to drive the optimization process. Here we use a
smaller group of operations, which includes the last 5 opera-
tions and (when available) the next 5 operations.

Steps. Figure 9 shows the effect that the number of steps
has on the execution time. The number of steps has an im-
pact on the quality of the layout and hence in the execution
time. In this experiment we show that the length of the opti-
mization also plays a role on performance. As mentioned ear-
lier, performing 10 steps takes approximately 0.082 seconds.
For this experiment we also use 5 and 15 steps, which take ap-
proximately 0.051 seconds and 0.123 seconds.

Objective Function. We observed earlier that using time
as the objective function generates a better layout for the
static data placement. In the run-time data reorganization we
have the additional constraint that any optimization has to be



Q1 Q3 Q6 Q14 Q19

1.00

1.05

Sp
ee

du
p 

ov
er

 s
ta

ti
c

5
10
15

Figure 9. Impact of the number of steps over the SA
dynamic data reorganization.

Q1 Q3 Q6 Q14 Q19

1.00

1.05

Sp
ee

du
p 

ov
er

 s
ta

ti
c

inter-node
time

Figure 10. Impact of the objective function over the
SA dynamic data reorganization.

performed quickly. Figure 10 shows that the additional time
needed to use that objective function results in a smaller re-
turn than the use of the inter-node data transfer objective func-
tion.

Selection Policy. In the previous experiments we observe
that the duration of the optimization stage can impose a toll
on the result. This can be because the system does not have
enough time to find a more effective layout, or because by the
time the system finds it, the situation has already changed.
To handle this, we can make use of the locality of data ref-
erences. In these experiments we test the look-ahead block
select described in Section 4.3. We compare it with the ran-
dom block select. Figure 11 shows the speedups obtained by
both selection policies.

7. Related Work

Combinatorial optimizations, including simulated anneal-
ing, have been used in the context of VLSI and Electronic De-
sign Automation to solve placement and route problems [18,
19]. In the field of computer architecture, the uses of com-
binatorial optimizations have been limited mostly to genetic
algorithms used to explore the design space of microproces-
sor components [20, 5, 2]. Simulated annealing has also been
used to cluster data when performing pattern recognition [10],
and to produce optimized query plans [9].

Work by Tsangaris et al. looked at stochastic techniques
for clustering objects [23]. Additional work shows that ran-
domizing algorithms produce the best clustering, but the cost
involved is too high for their application [24].

A study by McErlean et al. shows that simulated annealing
can also be used to cluster data in a database [14]. Their work
used real runs in a database instead of a cost function. There-

Q1 Q3 Q6 Q14 Q19

1.0

1.1

Sp
ee

du
p 

ov
er

 s
ta

ti
c

random
LABS

Figure 11. Impact of the selection heuristic over the
SA dynamic data reorganization.

fore it required many hours to generate a single layout. Our
work shows that picking an adequate cost function can pro-
duce a layout in less than a second.

Work by Rao et al. uses genetic algorithms to find a good
partition for a group of queries in a shared-nothing database
cluster [17]. A partition is a description of the logical group of
nodes (nodegroup) over which tables and indices are evenly
allocated. Our approach is similar to theirs if we think of a
single node of our CC-NUMA system as a nodegroup. How-
ever, we opt for a finer grained approach that allows small
chunks of data to be allocated unevenly across the different
disks of the system instead of evenly splitting tables across
each nodegroup. Additionally, their work considers partition-
ing as a part of query optimization. We look at data reorgani-
zation as a way to optimize the layout further for an existing
set of query plans.

8. Conclusions

Commercial applications access large volumes of data.
Because this data is spread over multiple storage locations,
operations commonly perform a large amount of remote data
accesses. A poor data layout can hurt the performance of the
system.

We propose using the Simulated Annealing technique to
efficiently place the data in a server and to reorganize the data
to adapt to the needs of the workload. We demonstrate the
feasibility and effectiveness of this approach on DSM servers
running DSS and OLTP queries from the TPC-H and TPC-
W benchmarks. Our work can also be applied to other work-
loads, such as web and file serving.

We test the initial data placement and find speedups of
up to 13% when using a global training set. Starting from
the globally optimized data layout, dynamic data reorganiza-
tion produces speedups of up to 23%. The speedups shown
approximate those seen with the local training mode, which
shows the merit of the SA technique in providing an efficient
run-time reorganization.

By dynamically tuning the data layout, we can adapt it to
the different phases of the workload. When the current phase
is performing local accesses, the SA technique uses informa-
tion about the pending operations to prefetch remote chunks
of data that might later be used in another phase. This opera-



tion reduces the access latency of future accesses and the po-
tential for contention in the global interconnect.

Our technique monitors the state of the hardware to de-
cide if reorganization is worth the effort. This aspect of the
dynamic reorganization is especially useful in an OLTP sce-
nario, where multiple queries are running at once, greatly
complicating the decision of what chunks of data to trans-
fer. The use of hardware information makes this SA technique
adaptable and effective for a server running complex opera-
tions like the ones seen in commercial workloads.

Acknowledgments

We want to thank Madhavi Valluri, Karthick Rajamani and
the anonymous reviewers for their suggestions to help im-
prove the quality of this paper. This research is supported by
the Defense Advanced Research Projects Agency under con-
tract F33615-01-C-1892, NSF grant ECS-0113105, an IBM
SUR grant, and by Tivoli, Intel and IBM.

References

[1] E. H. L. Aarts and P. J. M. van Laarhoven. Statistical cool-
ing: A general approach to combinatorial optimization prob-
lems. Philips Journal of Research, 40:193–226, 1985.

[2] D. H. Albonesi and I. Koren. STATS: A framework for micro-
processor and system-level design space exploration. Journal
of Systems Architecture, 45(12-13):1097–1110, June 1999.

[3] C. Cascaval. Estimating cache misses and locality using stack
distances. In Proceedings of the 17th Annual ACM Inter-
national Conference on Supercomputing, San Francisco, CA,
USA, June 23–26 2003.

[4] C. Cascaval, L. D. Rose, D. A. Padua, and D. A. Reed.
Compile-time based performance prediction. In Proceedings
of the 12th International Workshop on Languages and Com-
pilers for Parallel Computing, pages 365–379, La Joya, CA,
USA, Aug. 1999.

[5] J. Emer and N. Gloy. A language for describing predictors and
its application to automatic synthesis. In Proceedings of the
24th Annual International Symposium on Computer Architec-
ture (ISCA-97), pages 304–314, Denver, CO, USA, June 2–4
1997.

[6] F. Gavril. Some NP-complete problems on graphs. In Pro-
ceedings of the 11th Conference on Information Sciences and
Systems, pages 91–95, 1977.

[7] K. Gharachorloo, M. Sharma, S. Steely, and S. V. Doren. Ar-
chitecture and design of AlphaServer GS320. In Proceedings
of the 9th International Conference on Architectural Support
for Programming Languages and Operating Systems, pages
13–24, Boston, MA, USA, Nov. 13–15 2000.

[8] IBM Corporation. SimOS PowerPC.
http://www.research.ibm.com/arl/projects/SimOSppc.html.

[9] Y. E. Ioannidis and E. Wong. Query optimization by simulated
annealing. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD-87), pages 9–
22, San Francisco, CA, USA, May 27–29 1987.

[10] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A re-
view. ACM Computing Surveys (CSUR), 31(3):264–323, Sept.
1999.

[11] S. Kirkpatrick. Optimization by simulated annealing - quan-
titative studies. Journal of Statistical Physics, 34:975–986,
1984.

[12] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization
by simulated annealing. Science, 220(4598):671–680, May 13
1983.

[13] T. Lovett and R. Clapp. STiNG: A CC-NUMA computer
system for the commercial marketplace. In Proceedings of
the 23rd Annual International Symposium on Computer Ar-
chitecture (ISCA-96), pages 308–317, Philadelphia, PA, USA,
May 22–24 1996.

[14] F. J. McErlean, D. A. Bell, and S. I. McClean. The use of sim-
ulated annealing for clustering data in databases. Information
Systems, 15(2):233–245, 1990.

[15] D. A. Menasce and V. Akula. Towards workload characteriza-
tion of auction sites. In 6th Annual IEEE Workshop on Work-
load Characterization (WWC-6), Oct. 2003.

[16] M. M. Michael, A. K. Nanda, B.-H. Lim, and M. L. Scott.
Coherence controller architectures for SMP-based CC-NUMA
multiprocessors. In Proceedings of the 24th Annual Interna-
tional Symposium on Computer Architecture (ISCA-97), pages
133–143, Denver, CO, USA, June 2–4 1997.

[17] J. Rao, C. Zhang, G. Lohman, and N. Megiddo. Automating
physical database design in a parallel database. In Proceed-
ings of the ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD-2002), pages 558–569, Madison,
WI, USA, June 4–6 2002.

[18] D. M. Schuler and E. G. Ulrich. Clustering and linear place-
ment. In Proceedings of the 9th ACM/IEEE Design Automa-
tion Conference, pages 50–56, 1972.

[19] K. Shahookar and P. Mazumder. VLSI cell placement tech-
niques. ACM Computing Surveys (CSUR), 23(2):143–220,
June 1991.

[20] T. J. Stanley and T. Mudge. Systematic objective-driven com-
puter architecture optimization. In Proceedings of the 16th
Conference on Advanced Research in VLSI, pages 286–300,
Mar. 27–29 1995.

[21] Transaction Processing Council. The TPC-H benchmark spec-
ification.
http://www.tpc.org/tpch.

[22] Transaction Processing Council. The TPC-W benchmark spec-
ification.
http://www.tpc.org/wspec.html.

[23] M. M. Tsangaris and J. F. Naughton. A stochastic aproach
for clustering in object stores. In Proceedings of the ACM
SIGMOD International Conference on Management of Data
(SIGMOD-91), pages 12–21, Denver, CO, USA, May 29–31
1991.

[24] M. M. Tsangaris and J. F. Naughton. On the performance
of object clustering techniques. In Proceedings of the ACM
SIGMOD International Conference on Management of Data
(SIGMOD-92), pages 144–153, San Diego, CA, USA, June
1992.


