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Abstract

This paper presents an operating system managed die-
stacked DRAM called i-MIRROR that mirrors high locality
pages from the off-chip DRAM. Optimizing the problems of
reducing cache tag area, reducing transfer bandwidth and
improving hit latency altogether while using the die-stacked
DRAM as hardware cache is extremely challenging. In this
paper, we show that performance and energy efficiency can be
obtained by software management of the die-stacked DRAM,
which eliminates the need for tags, the source of aforemen-
tioned problems.

In the proposed scheme, the operating system loads pages
from disks to the die-stacked DRAM on a page fault at the same
time as they are loaded to the off-chip DRAM. Our scheme
maintains the pages in the off-chip and the die-stacked DRAM
in a synchronized/mirrored state by exploiting the parallel
loading capability to the die-stacked and off-chip DRAM from
the disk. This eliminates the need for physical page move-
ment to the slower off-chip DRAM upon eviction from the
die-stacked DRAM. Requests for pages that got evicted from
the die-stacked DRAM are simply serviced by the slower off-
chip DRAM to prevent frequent data movements of large pages
and thrashing between conflicting pages. The operating sys-
tem periodically monitors the usage of the pages in the off-chip
DRAM and promotes high locality pages to the die-stacked
DRAM. Our evaluations show that the proposed hardware-
assisted software-managed i-MIRROR scheme achieves an
IPC improvement of 13% while consuming 6% less energy
than prior state-of-the-art die-stacked caching schemes and
79% improvement in terms of IPC and 72% in terms of energy
savings over systems without die-stacked DRAM support.

1. Introduction
Multicore processors have enjoyed performance benefits

from exploiting the high level of parallelism, yet having more
cores places more pressure on the off-chip memory bus as the
bandwidth demand of the system now is much higher with
concurrently running applications. The story gets worse with
DRAM latency which has improved relatively little over a
decade [1]. Die-stacked DRAM (DSD) rises as an emerging
solution to address the problems in today’s off-chip memory
bandwidth. With a large number of banks, this technology
can deliver much higher bandwidth than the off-chip DRAM.
Since the DSD sits on the same silicon interposer as the cores,
the physical proximity to the cores lowers the latency [2].
Therefore, this technology can offer higher bandwidth and

lower latency than the off-chip DRAM [3]. One popular ap-
proach to leverage the DSD is to use it as a level of storage
device between Last Level Cache (LLC) and the off-chip
DRAM. But the DSD is still fundamentally DRAM, and thus,
it presents numerous challenges in terms of design constraints-
Many prior hardware solutions use the DSD as another level
of cache [4–12] attempting to achieve the optimal tag manage-
ment schemes while keeping the latency low. The software
solution uses the Operating System (OS) and explicitly remaps
pages between two memories [13–15].

Although prior hardware managed caches such as the Alloy
Cache [6] and the Footprint Cache [7] devised techniques to
reduce the cache tag area, transfer bandwidth and hit latency,
they still have to access tags, which involve complex hardware
units and prediction mechanisms. In this paper, we propose
an OS approach with a minimal amount of architectural
support to achieve a tagless read access. The OS initiates
filling the DSD by directly controlling the data movement
between the disk and two DRAM memories during page fault.
Unlike hardware approaches, our approach treats the DSD
present at the same level of memory hierarchy as the off-chip
DRAM while acting as a mirror of selected regions of the
off-chip DRAM. This technique, which we name i-MIRROR,
ensures that evicted pages are only serviced from the off-chip
DRAM and are not moved into the DSD until later by an OS
service routine. A small hardware unit, Reverse Promotion
Table (RPT), constantly monitors the usage statistics of the
highly used off-chip DRAM pages. When the OS interrupts
periodically, it then promotes highly used pages to the DSD.
Unlike hardware schemes that move data on every cache
miss, i-MIRROR only performs such operation during the OS
intervention, namely a page fault/service interrupt. Similarly,
the i-MIRROR Address Translator (iMAT) collects statistics
of least recently used pages in the DSD as well as keeps
track of mirrored pages in the DSD and off-chip DRAM. The
two structures help to minimize the detrimental effects of
costly page remapping and allow our scheme to overcome the
challenges typically associated with software schemes. In
summary, our work makes the following contributions:

1. We propose a software-managed DSD solution where the
OS is responsible for managing pages from the disk and the
off-chip DRAM to the DSD with the assistance of hardware
structures that provide fine granularity monitoring statistics.
Our scheme provides a tagless access to the DSD solving
many problems in prior hardware DSD caching schemes.

2. We present an innovative mechanism to evict pages from

1



System Board 

Processor Package 

Die-stacked 

DRAM 

System Information (OS Visible) 

PTE 
Die-stacked DRAM 

Free Page List 

0, 2, 3, 4, 5, 6, … 

Conventional DRAM 

Free Page List 

65537, 65539, … 

Off-chip 

DRAM 

Disk 

PFN DATA 

65536 A 

65537 

65538 B 

65539 

… 

DFN DATA 

0 

1 A 

2 

… 

Core 

Cache 

Core 

Cache 

VA PA 

A 1 

B 65538 

Legend 

Data in Sync State 

i-MIRROR Hit (Read) 

RPT 

i-MIRROR Hit (Write) 

i-MIRROR Miss 

iMAT 

System 

Controller 

LLC 

I/O 

Controller 
DRAM 

MC 

DSD 

MC 

Figure 1: Hit and Miss Path

the DSD to the off-chip DRAM without physically moving
pages. By maintaining the DSD in a synchronized state,
the i-MIRROR accomplishes data-movement-free page
eviction.

3. We present an architectural support mechanism, RPT, to
assist the OS to perform periodic selective page promo-
tion efficiently. This avoids the large page movement at
every DSD miss typical of hardware caching schemes.
The architectural support from the RPT can enable the
OS to identify hot pages and to perform page promotion
opportunistically.

We begin with the architectural details of the proposed scheme
in Section 2. Our experimental setup and evaluation are pre-
sented in Section 3 and Section 4 respectively. Section 5
presents related work done in the field. Finally, we conclude
the paper in Section 6.

2. The i-MIRROR Scheme

Figure 1 shows a system overview of our proposed i-
MIRROR scheme. DSD and DRAM have its own Memory
Controller (DSD MC and DRAM MC). The i-MIRROR Ad-
dress Translator (iMAT) and Reverse Promotion Table (RPT)
are auxiliary structures to guide our scheme. The DSD and
off-chip DRAM are part of the same physical address space.
In this work, we assign the low physical address space to the
DSD, so after a certain page frame number (PFN), the address
automatically gets assigned to the off-chip DRAM space. We
call page frame numbers assigned to the DSD Die-stacked
DRAM Frame Number (DFN). We assume that PFN and DFN
are exclusive to each other, and separate free lists are kept for
PFN and DFN.
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Figure 2: i-Mirror Flow Chart

2.1. Operation of the i-MIRROR

In a read hit scenario for Data A, the Physical Address (PA)
read from the Page Table Entry (PTE) is 1, so the request is
directly forwarded to the DSD. The request is serviced solely
by the DSD with the ideal hit latency. This path is shown by
the solid line in Figure 1. In a write hit scenario for Data A, a
request reaches the system controller. Since the PTE contains
a DFN, the write request is sent to the DSD. However, A’s
updated data should be synced with the data in the off-chip
DRAM in order to keep the mirrored state. Therefore, the
corresponding PFN for Data A needs to be found. The iMAT
structure keeps track of the DFN and PFN pairing information.
In our case, the DFN 1 is a mirrored copy of the page with
the PFN 65,536. The number of iMAT entries is equal to the
number of page entries in the DSD, so the iMAT is directly
indexed with the DFN. For writing Data A to the PFN 65,536,
a separate request is generated from the system controller,
and is sent to the off-chip DRAM as denoted by a dotted line.
This additional request does not have any effect on the correct
execution of the program as the processor is oblivious to the
the existence of the mirrored page in the off-chip DRAM
(only the OS is aware). This redundant request is generated
in order to maintain the sync state of the DFN 1 and PFN
65,536. We assume that modern processors have sufficient
memory controller write buffers, so that this does not stall the
execution.

Since the DSD capacity is limited, not all pages can be
resident in the DSD. Pages not in sync state are only resident
in the off-chip DRAM. Consequently, their PA entry in the
PTE contains a PFN instead of a DFN. Data B in Figure 1
is an example of such a page, which is not resident in DSD.
Any request regardless of a read or a write for B performs
the identical operation as a system without DSD. Since the
PA entry already returns the PFN, the system knows that the
data is only resident in the off-chip DRAM. This bypasses
the iMAT and achieves the ideal miss latency. We call this
path the miss path since the data is serviced solely by the
off-chip DRAM. Note that no operation to retrieve the DSD
residency information such as the tag lookup is performed

2



PTE 

Die-stacked DRAM 

Free Page List 

2, 3, 4, 5, 6, … 

Conventional DRAM 

Free Page List 

VA PA 

A 1 

B 0 

C 65537 

… … 

65539, 65540, … 

DFN DATA 

0 B 

1 A 

2 

… … 

PFN DATA 

65536 A 

65537 C 

65538 B 

65539 

65540 

… … 

DATA Counter 

C 14 

E 2 

F 4 

G 1 

H 7 

… … 

DSD 

RPT DRAM 

DFN PFN NRU 

0 65538 0 

1 65536 1 

… … 

iMAT 

PTE 

Die-stacked DRAM 

Free Page List 

2, 3, 4, 5, 6, … 

Conventional DRAM 

Free Page List 

VA PA 

A 1 

B 0 

C 65537 

K 2 

… … 

65539, 65540, … 

DFN DATA 

0 B 

1 A 

2 K 

… … 

PFN DATA 

65536 A 

65537 C 

65538 B 

65539 K 

65540 

… … 

DATA Counter 

C 14 

E 2 

F 4 

G 1 

H 7 

… … 

DSD 

RPT DRAM 

DFN PFN NRU 

0 65538 0 

1 65536 1 

2 65539 0 

… … 

iMAT 

PTE 

Die-stacked DRAM 

Free Page List 

Conventional DRAM 

Free Page List 

VA PA 

A 1 

B 0 

C 65537 

K 2 

… … 

65540, 65541, … 

DFN DATA 

0 B 

1 A 

2 K 

… … 

PFN DATA 

65536 A 

65537 C 

65538 B 

65539 K 

65540 

… … 

DATA Counter 

C 14 

E 2 

F 4 

G 1 

H 7 

… … 

DSD 

RPT DRAM 

DFN PFN NRU 

0 65538 0 

1 65536 1 

2 65539 1 

… … 

iMAT 

PTE 

Die-stacked DRAM 

Free Page List 

Conventional DRAM 

Free Page List 

VA PA 

A 1 

B 65538 

C 65537 

K 2 

L 0 

… … 

65540, 65541, … 

DFN DATA 

0 L 

1 A 

2 K 

… … 

PFN DATA 

65536 A 

65537 C 

65538 B 

65539 K 

65540 L 

… … 

DATA Counter 

C 14 

E 2 

F 4 

G 1 

H 7 

… … 

DSD 

RPT DRAM 

DFN PFN NRU 

0 65540 3 

1 65536 1 

2 65539 1 

… … 

iMAT 

10 

(a) Pre-page Loading State (b) Page Loading 

(c) Pre-eviction State (d) Page Eviction 

PTE 

Die-stacked DRAM 

Free Page List 

Conventional DRAM 

Free Page List 

VA PA 

A 1 

B 0 

C 65537 

K 65539 

L 2 

… … 

65541, … 

DFN DATA 

0 B 

1 A 

2 L 

… … 

PFN DATA 

65536 A 

65537 C 

65538 B 

65539 K 

65540 L 

… … 

DATA Counter 

C 14 

E 2 

F 4 

G 1 

H 7 

… … 

RPT DRAM 

DFN PFN NRU 

0 65538 1 

1 65536 0 

2 65540 1 

… … 

(e) Pre-reverse-promotion State 

PTE 

Die-stacked DRAM 

Free Page List 

Conventional DRAM 

Free Page List 

VA PA 

A 65536 

B 65538 

C 1 

K 65539 

L 0 

… … 

65541, … 

DFN DATA 

0 L 

1 C 

2 K 

… … 

PFN DATA 

65536 A 

65537 C 

65538 B 

65539 K 

65540 L 

… … 

DATA Counter 

E 2 

F 4 

G 1 

H 7 

… … 

RPT DRAM 

DFN PFN NRU 

0 65540 1 

1 65537 0 

2 65539 1 

… … 

(f) Reverse Promotion 

1 

2 

3 

4 
5 

6 

7 
8 

9 

11 12 

13 

14 15 16 

20 17 

19 

18 

Figure 3: Various i-Mirror Operations

here. However, for such data, which does not reside in the
DSD, the access requests are also sent to an RPT structure as
in Figure 1. It keeps track of heavily used pages that are not in
sync state, which later helps the OS to identify hot pages that
are not resident in the DSD. Note that this is not on the critical
path, and thus, does not affect performance. A flow chart
summary of those three scenarios is presented in Figure 2.

2.2. i-MIRROR During Page Fault

We have so far discussed the operation of the i-MIRROR
scheme in relation to normal program execution. The data
movement between the two DRAM systems was not discussed
as no data is moved without OS intervention in our scheme.
Here, we will explain three scenarios where data is moved
between the two DRAM devices.

Our system has data in sync state, which requires data to be
resident in both the DSD and the off-chip DRAM. This begins
during a page fault. Figure 3(a) shows the initial system state.
At this time, a request is made for Data K, which invokes the
OS to fill a page. Figure 3(b) explains the detailed process.
At first in 1 , the OS finds a free page from the DSD free
page list. In our example, the DFN 2 is chosen. Since we

need a mirrored copy, we also need a PFN from the DRAM
free page list. The system selects 65,539 as in 2 . Now,
the OS populates the PTE with the selected DFN. In 3 , the
corresponding PA for Data K is 2. At the same time, since the
mirrored copy for Data K will be resident in the PFN 65,539,
we populate an iMAT entry as well in 4 . The iMAT can have
dedicated memory addresses just like conventional I/O devices,
so that the OS can directly write/retrieve required information.
Now, all tables are populated, so the OS fetches Data K into
both the DSD and the off-chip DRAM as in 5 and 6 . Since
we have a separate MC for the DSD and the off-chip DRAM,
operations 5 and 6 are done simultaneously. The DSD
page loading finishes earlier than or at the same time as the
off-chip DRAM loading due to DSD’s lower latency. Hence,
this operation has no detrimental effects on overall latency as a
system without DSD will incur a page fault latency regardless
of our implementation. The page fault operation terminates
once the transfer is over. Now, Data K is in sync state as
denoted by K . The normal execution resumes as discussed in
Section 2.1.

Soon, the system will have the DSD filled with new pages
and the DSD free page list will become empty as shown in
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Figure 3(c). Here, we will explain what happens when another
page fault occurs for Data L as shown in Figure 3(d). We
find the eviction candidate (Data B in our example) in the
iMAT. Finding an eviction candidate is the same process as
the modern OS where the system looks for unreferenced pages.
Since the iMAT contains the PFN for Data K, we update the
PTE with the PFN 65,538 as in 7 . Although Data B is
still resident in the DSD, it lost its only reference, which is
the DFN in the iMAT. The only reference corresponding to
Data B is PFN 65,538, which is written in the PTE. From
this point, all requests for Data K will be serviced by the off-
chip DRAM as in 8 . Although our system has not moved
any data physically, the operation had the same effects as if
Data K moved from the DSD to the off-chip DRAM. In other
word, we virtually moved a page from the DSD to the off-chip
DRAM without incurring any latency or bandwidth penalty.
The reason why data in sync state is enforced in our scheme
is to allow this novel eviction technique. At this point, the
OS has not finished the service request yet as it still needs to
allocate a page for Data L. It is a newly allocated page, so we
need another set of the DFN and PFN. Since we just freed
one DSD page, the system will reuse the DFN 0. The OS
uses another free PFN in 9 . Now, a pair of the DFN and
PFN is ready, so the OS populates the PTE with the DFN as
shown in 10 . The iMAT is also updated such that the mirrored
page of the DFN 0 is now the PFN 65,540 ( 11 ). Just like in
Figure 3(d), we finally move Data L from the disk to both
the DSD and the off-chip DRAM as shown by 12 and 13
simultaneously.

2.3. i-MIRROR During OS Interrupts

The OS interrupts the execution periodically for various rea-
sons such as thread scheduling and memory coalescing [16].
We take advantage of this fact and perform an operation called
a reverse promotion during the interrupt period. The motiva-
tion behind this technique is that as a program enters different
execution phases, what used to be cold pages can become hot
pages in a new phase. In this case, we need a mechanism to
bring those pages back into DSD as well as to maintain them
again data in sync state. The reverse promotion is a technique
that achieves this. Unlike other hardware schemes where data
movement from the off-chip DRAM to DSD occurs on every
DSD miss, our reverse promotion occurs independent of a hit
or a miss event.

Figure 3(e) shows the system state in the beginning of the
OS interrupt. In Figure 3(f), the OS first looks through the
RPT entries as the RPT tracks the access counts of heavily
used pages that are not in sync state. The RPT incurs small
overheads since it only tracks a small number of pages as our
goal is to identify only a few hot pages that are not resident in
the DSD. The promotion candidate is chosen based on access
count. Similar to the iMAT, the RPT is also memory mapped
and can be directly accessed by the OS. In our example, Data

Processor Values
Number of Cores 8
Core Frequency 4.0 GHz
Width 1 IPC

Cache (Block Size: 64B) Values
L1 I-Cache (private) 32KB, 4 way, 2 cycles
L1 D-Cache (private) 32KB, 4 way, 2 cycles
L2 Cache (unified) 4MB, 16 way, 10 cycles
DRAM Values
Bus Frequency 800 MHz (DDR 1.6 GHz)
Channels 2 (64 bits per channel)
Banks 8 Banks per Channel
Maximum Bandwidth / Channel 12.8GB/s
Row Buffer Size 4KB
tCAS-tRCD-tRP-tRAS 12-12-12-45
Die-stacked DRAM Values
Bus Frequency 1600 MHz (DDR 3.2 GHz)
Channels 4 (128 bits per channel)
Banks 16 Banks per Channel
Row Buffer Size 4KB
tCAS-tRCD-tRP-tRAS 8-8-8-11

Table 1: Experimental Parameters

C has the highest counter value, so it is chosen as a reverse
promotion candidate. First, the OS removes the entry from
the RPT as in 14 . Since our DSD free page list is empty,
our system needs to evict a page from DSD. Using the same
algorithm as used in Section 2.2, Data A is chosen as an
eviction candidate. The system updates the PTE for Data A
with the PFN 65,536 as shown in 15 . 16 shows that Data A
is not in sync state anymore. Now, we physically copy Data
C from the off-chip DRAM to the DSD. Once this process
completes, Data C is in sync state as shown by 17 18 . At the
same time, the OS needs to update the corresponding iMAT
and PTE entry for Data C, so the operation is performed by
19 and 20 . Now, the interrupt is over and the execution
continues.

3. Experimental Setup

3.1. Workloads

In this paper, we have used a subset of workloads from
SPEC CPU2006 benchmark suite [17] to evaluate the i-
MIRROR scheme. Our DSD and off-chip DRAM capacity is
256MB and 8GB respectively. We carefully chose the bench-
marks that experience high off-chip bandwidth usage. We run
these benchmarks where 8 separate instances of the SPEC
CPU2006 workloads execute on each core. We ran the simula-
tion for the total of 1 billion instructions per core.

3.2. Simulation

We use the Flexus architectural timing simulation infras-
tructure [18], which uses Virtutech SIMICS [19]. It supports
the SPARC ISA, and our benchmarks are compiled using com-
piler suites available in Oracle Solaris Studio 11 [20]. Solaris
10 [21] is the underlying OS platform. Table 1 shows the
simulation parameters to model the our simulation [22]. The
simulator contains the detailed DRAM timing module based
on DRAMSim2 [23]. We modeled the 256MB DSD module
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Figure 4: Performance Improvement over no DSD Cache

based on publicly available data [24] [25]. Overheads are
calculated using CACTI 5.3 [26] and 32nm technology.

4. Evaluation
In the rest of this paper, we compare the proposed i-

MIRROR scheme against two state-of-the-art die-stacked
DRAM caching schemes, the Alloy Cache [6] and the Foot-
print Cache [7]. We faithfully modeled these state-of-art
schemes to the best of our knowledge. A generic 4-way set-
associative with 4KB page size is also presented as sram_sa.

4.1. Performance Evaluation

Figure 4 shows the performance improvement of various
DSD schemes over the baseline system without DSD. The
performance metric is the IPC speedup over the baseline. The
sram_sa scheme suffers in performance as it naively moves a
large page. This scheme suffers more for workloads that have
lower hit rate such as milc, which is shown in Figure 5. As
noticed, sram_sa requires a very high hit rate (close to 1) in
order to see performance improvement. Otherwise, it suffers
from high miss latency and off-chip bandwidth usage. Fig-
ure 6 shows the relative off-chip bandwidth usage of various
schemes, and as expected, the sram_sa scheme stands out.

The Alloy Cache performs well overall across all bench-
marks. Since a small block does not take advantage of spatial
locality of a large page, the hit rate is relatively lower. How-
ever, a small block lowers the bandwidth usage as shown in
Figure 6. The hit/miss access latency is also low as it fetch-
es/evicts only the 64B worth of data, so the scheme performs
well overall by achieving 58% performance improvement over
the baseline. We implemented the MAPI scheme presented in
[6], the prediction mechanism where a request is sent to either
the off-chip DRAM or the DSD only until the tag check result
is available. This speculation unit achieves 93% accurancy on
average across our benchmarks. Since the Alloy Cache needs
to bring less amount of data on a miss, it has the lower miss
latency.

The Footprint Cache is a subblocking scheme that takes
advantage of a page based design. It achieves a high hit rate
just like the page based scheme. Yet, moving only selected
subblocks (64B blocks) from the off-chip DRAM to the DSD
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significantly reduces the overall bandwidth usage unlike other
page based schemes. Figure 6 shows that this scheme saves
more than 80% of the baseline bandwidth. The Footprint
Cache effectively enjoys the high hit rate of a page based
design while significantly reducing the off-chip bandwidth
usage. This is reflected in Figure 4 as this caching scheme
achieves 67% higher performance than the baseline.

Unlike other page based designs such as sram_sa and the
Footprint Cache, the i-MIRROR does not always achieve a
high hit rate in all benchmarks. A high hit rate in a page based
design is achieved by aggressively fetching a large amount of
data into the DSD. In hardware based schemes, this movement
is triggered by a DSD miss. Yet, in our case, the triggering
point is an OS interrupt, so the frequency of this movement is
much lower. Not fetching a large page on every miss reduces
the hit rate in some benchmarks. Yet, the design choice of not
fetching a page on a miss significantly reduces the off-chip
bandwidth as shown in Figure 6. The i-MIRROR completely
eliminates the SRAM tag lookups on the critical path of a DSD
hit or miss, so our scheme benefits significantly from achiev-
ing the ideal access latency, compensating for the lower hit
rate. For those benchmarks where the i-MIRROR achieves a
high hit rate, the improvement is significant as the i-MIRROR
provides the ideal hit latency. On the other end where the
i-MIRROR hit rate is low, our scheme still performs relatively
well by restricting the data movement at the OS interval. This
lowers the huge latency/bandwidth overheads associated with
moving a large page. Although our miss rate is higher in this
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Figure 7: Memory System Energy Breakdown

case, our miss latency is the same as the ideal case, so the miss
access latency is not any longer than the baseline case without
the DSD. In other words, hits still provide the performance im-
provement without paying any latency penalty for misses. In
other schemes, the miss always deteriorates the performance
due to tag checks or a large amount of data transferred. The
i-MIRROR improves the performance by 79% over the base-
line. Out scheme performs more than 21% and 13% better on
average than the Alloy and Footprint Cache respectively.

Until now, we have focused on the performance, bandwidth
and latency aspect of the i-MIRROR. However, the DSD also
offers much lower energy per access in comparison to the off-
chip DRAM [24]. Here, we analyze the total memory system
energy consumption and its breakdown in Figure 7. Here,
we only show the dynamic energy breakdown. The off-chip
DRAM energy consumption in the sram_sa case is dominated
by the large amount of data that needs to be fetched on a miss.
In some cases such as mcf, the energy consumption is almost
3.07 times higher than the baseline. Even worse, the off-chip
DRAM component itself is higher than the baseline without
the DSD. In the Alloy case, the higher miss rate makes the
system to spend 40% of the baseline energy on the off-chip
DRAM accesses. In a page based scheme such as the Footprint
Cache, a group of consecutive blocks are read out from the
same off-chip DRAM row, so no activation of a new row is
necessary. However, this is not necessarily true in the Alloy
Cache since consecutive accesses can open two different rows
or conflict each other in terms of row buffer hits. Also, the
MAPI generates some misspeculated requests to the off-chip
DRAM. The Footprint Cache saves energy as it only fetches
a small subset of a page, thereby significantly more energy
efficient than the sram_sa scheme. On average, it consumes
80% less off-chip DRAM energy than the baseline. Accesses
to the energy efficient DSD adds only 18% more energy, so
overall this scheme saves more than 60% energy compared
to the baseline. However, in some benchmarks that show
high spatial locality within a page and a large hot working
set such as bwaves, the Footprint Cache energy consumption
does not benefit significantly from subblocking. In this case,
this scheme has to fetch a large amount of data, or many
subblocks, just like the sram_sa case. The i-MIRROR has

sram_sa alloy footprint i-MIRROR

SRAM Tag 320 KB – 1368 KB 416 KB
DSD Tag – 19 MB – –

Miss-Predictor – 768 B – –
Footprint

History Table – – 144 KB –

Singleton Table – – 3 KB –
RPT – – – 832 B

Table 2: Overheads of Different Schemes (256MB of DSD)

significant energy advantages as it does not move data from
the off-chip DRAM to the DSD frequently as in other schemes.
In high spatial locality workloads, the i-MIRROR scheme has
a very few accesses to the off-chip DRAM. In low spatial
locality workloads, the i-MIRROR reduces the number of
large data fetching from the off-chip DRAM to the DSD by
only performing such operation at the OS interrupt times.
Therefore, the DRAM energy consumption alone is saved by
more than 90% compared to the baseline. With added energy
from the DSD, the i-MIRROR scheme consumes 29% of the
baseline energy consumption.

4.2. Hardware Overheads

All schemes we have used throughout the paper use the
SRAM/DSD to store bookkeeping information. Table 2 sum-
marizes overheads associated with each scheme. The sram_sa
scheme is the simplest with only requiring 320KB of SRAM
to store tags. The Alloy Cache uses 19MB of the DSD space
in order to store the tag. In addition, additional SRAM stor-
age is used for the predictor. The Footprint Cache uses a
larger SRAM overheads as it contains bit vectors required for
subblocking, so it uses the largest amount of SRAM among
schemes used in this paper. The i-MIRROR’s SRAM Tag is
the iMAT overheads. It is relatively small, but little larger than
the sram_sa since our scheme stores more tag and replacement
bits (5 more bits). Scheme specific SRAM overheads such as
Singleton Table and RPT use negligible area and do not grow
with the DSD capacity. Overall, the i-MIRROR provides per-
formance benefits with smaller overheads than those recently
proposed Alloy and Footprint Cache

6



4.3. Software Overheads

The i-MIRROR requires the OS support and the OS context
switch overheads are not negligible. Our system requires
the OS in two scenarios. First, when a page gets initially
loaded into the DSD, the OS updates the corresponding iMAT
and PTE. However, updating the PTE is a required operation
during a page fault regardless of our scheme. We are updating
one more PTE than what the current OS performs. Since this
operation only occurs when the OS is already in the system
due to a page fault, we do not pay any extra performance
to get the OS into the system. An additional overhead is to
modify the iMAT. The latency is much lower as it is an SRAM
operation, and also, negligible in comparison to other page
fault activities such as accessing the off-chip DRAM to read
the PTE. The page transfer from the disk to the DSD occurs
at the same time as to the off-chip DRAM. It does not use
any extra disk bandwidth as the data is only duplicated at the
system controller.

Second, in order to perform the reverse promotion, the OS
has to come into the system periodically. The current OS al-
ready performs some background jobs periodically [27]. The
memory page coalescing is an ideal OS service routine where
we can piggyback our reverse promotion scheme to [16, 28].
The memory coalescing service routine walks down the page
tables to find the coalescing candidates. Similarly in our
scheme, the OS looks through the iMAT and RPT to find
the replacement candidate. The memory coalescing service
routine moves multiple small size (∼4KB) pages and coalesce
them into a super page (∼1MB). Likewise, the reverse promo-
tion performs similar operations as it moves several pages and
updates a PTE. Hence, our scheme can be piggybacked to this
existing OS service, which already performs similar opera-
tions. In both scenarios, the i-MIRROR adds a few inexpensive
operations such as updating an iMAT, yet no additional OS
context switch overheads are added by appending our proposal
to existing OS service routines.

4.4. TLB Shootdown Overheads

The i-MIRROR mechanism involves many PTE updates.
Whenever there is a PTE update, the corresponding entry in
TLB has to be invalidated. A TLB is private to each core in
modern systems, so in multicore platforms, the corresponding
entries in TLBs have to be invalidated. During this period,
the TLB will be unavailable, the execution is stalled, and this
phenomenom is called the TLB shootdown [29]. In modern
OS, the TLB shootdown only stalls threads that issue memory
requests to the page whose PTE is being updated. This is
done by mutexing the PTE being updated and performing the
cross-calls to all TLBs for invalidation [28, 30]. Although the
likelihood of multiple threads requesting the same page during
the PTE update is rare, we have modeled the TLB shootdown
faithfully, so whenever there is any memory access to the page
whose PTE is being updated, we have stalled the execution

fully until the PTE update is done.

5. Related Work

A plenthora of work in hardware DSD caching schemes
has been done. CHOP is a large page caching scheme with
reasonable SRAM overheads that filters pages from being in-
serted into the DSD based on access count [4]. MissMap is
a proposal that quickly identifies misses by keeping the DSD
resident bit vectors [5]. Sim, J. et al. use address based specu-
lation units to eliminate the MissMap’s SRAM overheads [8].
The Alloy Cache solves the large tag area overheads associated
with small block caches by placing the tag next to the data in
the DSD [6]. The Footprint Cache solves the high bandwidth
usage associated with page based caches by subblocking [7].
As the DSD capacity increases to multi-gigabytes over years,
the SRAM tags face scaling problem. The Unison Cache
solves this issue by placing the tag and other bookkeeping
information used in the Footprint Cache in the DSD [9]. Sim,
J. et al. use a small SRAM cache in the memory controller
that temporarily stores the large pages that are being swapped
between two DRAM devices, so it does not stall any execu-
tion [11]. The Bimodal Cache uses a different approach in
that rather than having one fixed cacheline size, the DSD can
have a few cacheline sizes, so the capacity utilization and the
hit rate can both improve [10]. CAMEO manages a group of
blocks together and swaps blocks only within the group. This
scheme uses the DSDE to store the block location information
within the group [12]. Tag tables scheme manage tags in hi-
erarchical manner as in multilevel page tables and prefetches
them to save the tag lookup latency [31].

There also has been a large amount of work done in using
software to manage the DSD. Dong, X. et al. propose that the
OS constantly remaps multi-megabyte pages between the DSD
and the off-chip DRAM, thereby achieving a fully software
approach [14]. Loh, G. et al appended additional bits to the
TLB in order to better identify hot pages for the OS, such that
the OS can remap pages with higher accuracy [13]. Meswani,
M. et al. performed an analysis on different page replacement
policies to the DSD that can be used by the OS and proposed a
history based policy that has minimal hardware changes [15].

6. Conclusion

The die-stacked DRAM is a promising next generation
memory technology as an intermediate memory hierarchy
layer in modern many core systems, but requires a very careful
design and a lot of empirical analysis to get past different
challenges including the SRAM tag storage overheads, the ex-
cessive off-chip bandwidth usage and the high hit/miss access
latency. In this paper, we have proposed the i-MIRROR, a
novel hardware assisted software managed DSD that is used
as a part of the OS managed physical address space. Our
solution enables an access to the DSD without accessing any
tags, either in SRAM or DSD by simultaneously loading to
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the DSD and the off-chip DRAM at page fault to create initial
data in sync state. It maintains the sync state with all pages
in the DSD, eliminating the need for costly writing back the
pages at eviction time. Our scheme utilizes hardware aids in
order to identify high locality pages and to capture the hot
pages in the DSD. Thus, it combines the best of the hardware
caching and software-only methods in an elegant manner.

The i-MIRROR proposal achieves higher performance than
hardware-only mechanisms while providing lower on-chip
area overheads, memory bus bandwidth utilization, and en-
ergy. On average, the i-MIRROR with a 256MB DSD achieves
performance improvement of 13% while consuming 6% less
average energy than recent DSD caching schemes. We com-
pare the performance of the i-MIRROR to those of the state-of-
the-art techniques such as the Alloy Cache and the Footprint
Cache. We show that the i-MIRROR achieves the best im-
provement in terms of performance and energy while using
the least extra hardware.
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