
Copyright

by

Shuang Song

2020

The Dissertation Committee for Shuang Song
certifies that this is the approved version of the following dissertation:

Improving Distributed Graph Processing by Load Balancing

and Redundancy Reduction

Committee:

Lizy K John, Supervisor

Xu Liu

Vijay K Garg

Andreas M Gerstlauer

Earl E Swartzlander

Improving Distributed Graph Processing by Load Balancing

and Redundancy Reduction

by

Shuang Song

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2020

Acknowledgments

First, I would like to thank my advisor, Professor Lizy K. John, for her

guidance and support throughout my time in graduate school. Professor John taught

me the fundamentals of computer architecture and performance evaluation during

my early coursework. In my later years, she motivated me to continue hard work

and provided invaluable guidance on my research. Other than work, Professor John

has always been very supportive and provided me with much advice throughout my

hard times.

I would like to thank my Ph.D. committee for their feedback at my qual-

ifying exam and defense. Their constructive criticism helped the quality of this

dissertation. I would like to give special thanks to Professor Andreas Gerstlauer

and Professor Xu Liu. They have collaborated with me on many of my research

projects. Their insightful advice improved the quality of my research.

I was blessed to meet all of the members of the LCA research group. While

there are too many names to mention, I would like to specifically acknowledge Jee

Ho Ryoo, Michael LeBeane, Reena Panda, Jiajun Wang, Qinzhe Wu, Zhigang Wei,

and Ruihao Li. They have accompanied me and supported me throughout my time

in graduate school. I do not know if I would have made it without their friendship

and support.

I would also like to thank the organizations that supported me financially

iv

during my Ph.D. studies. National Science Foundation (NSF), Semiconductor Re-

search Corporation (SRC), Samsung Austin Research and Development Center

(SARC), and the University of Texas at Austin provided grants for my research.

I am very grateful to my parents for their emotional support throughout my

Ph.D. program. They have always been a great source of encouragement towards

this degree. I never would have made it without them.

Lastly, I would like to thank myself for not giving up in this lengthy Ph.D.

program. Many people came and left throughout my Ph.D. time. These hard times

made me become a stronger person. I am truly thankful for the past and all the

things I have at this moment. I am looking forward to the future.

v

Improving Distributed Graph Processing by Load Balancing

and Redundancy Reduction

Shuang Song, Ph.D.

The University of Texas at Austin, 2020

Supervisor: Lizy K John

The amount of data generated every day is growing exponentially in the big

data era. A significant portion of this data is stored as graphs in various domains,

such as online retail and social networks. Analyzing large-scale graphs provides

important insights that are highly utilized in many areas, such as recommendation

systems, banking systems, and medical diagnosis. To accommodate analysis on

large-scale graphs, developers from industry and academia design the distributed

graph processing systems.

However, processing graphs in a distributed manner suffers performance

inefficiencies caused by workload imbalance and redundant computations. For in-

stance, while data centers are trending towards a large amount of heterogeneous

processing machines, graph partitioners still operate under the assumption of uni-

form computing resources. This leads to load imbalance that degrades the overall

performance. Even with a balanced data distribution, the irregularity of graph ap-

plications can result in different amounts of dynamic operations on each machine

vi

in the cluster. Such imbalanced work distribution slows down the execution speed.

Besides these, redundancy also impacts the performance of distributed graph anal-

ysis. To utilize the available parallelism of computing clusters, distributed graph

systems deploy the repeated-relaxing computation model (e.g., Bellman-Ford al-

gorithm variants) rather than in a sequential but work-optimal order. Studies per-

formed in this dissertation show that redundant computations pervasively exist and

significantly impact the performance efficiency of distributed graph processing.

This dissertation explores novel techniques to reduce the workload imbal-

ance and redundant computations of analyzing large-scale graphs in a distributed

setup. It evaluates proposed techniques on both pre-processing and execution mod-

ules to enable fair data distribution, lightweight workload balancing, and redun-

dancy optimization for future distributed graph processing systems.

The first contribution of this dissertation is the Heterogeneity-aware Parti-

tioning (HAP) that aims to balance load distribution of distributed graph processing

in heterogeneous clusters. HAP proposes a number of methodologies to estimate

various machines’ computational power on graph analytics. It also extends several

state-of-the-art partitioning algorithms for heterogeneity-aware data distribution.

Utilizing the estimation of machines’ graph processing capability to guide extended

partitioning algorithms can reduce load imbalance when processing a large-scale

graph in heterogeneous clusters. This results in significant performance improve-

ment.

Another contribution of the dissertation is the Hula, which optimizes the

workload balance of distributed graph analytics on the fly. Hula offers a hybrid

vii

graph partitioning algorithm to split a large-scale graph in a locality-friendly man-

ner and generate metadata for lightweight dynamic workload balancing. To track

machines’ work intensity, Hula inserts hardware timers to count the time spent on

the important operations (e.g., computational operations and atomic operations).

This information can guide Hula’s workload scheduler to arrange work migration.

With the support of metadata generated by the hybrid partitioner, Hula’s migration

scheme only requires a minimal amount of data to transfer work between machines

in the cluster. Hula’s workload balancing design achieves a lightweight imbalance

reduction on the fly.

Finally, this dissertation focuses on improving the computational efficiency

of distributed graph processing. To do so, it reveals the root cause and the amount

of redundant computations in distributed graph processing. SLFE is proposed as a

system solution to reduce these redundant operations. SLFE develops a lightweight

pre-processing technique to obtain the maximum propagation order of each vertex

in a given graph. This information is defined as Redundancy Reduction Guidance

(RRG) and is utilized by SLFE’s Redundancy Reduction (RR)-aware computing

model to prune redundant operations on the fly. Moreover, SLFE provides RR-

aware APIs to maintain high promgrammablity. These techniques allow the redun-

dancy optimizations of distributed graph processing to become transparent to users.

viii

Table of Contents

Acknowledgments iv

Abstract vi

List of Tables xiii

List of Figures xiv

Chapter 1. Introduction 1
1.1 Problem Description . 2
1.2 Contributions . 7
1.3 Thesis Statement . 8
1.4 Dissertation Organization . 8

Chapter 2. Background and Related Work 10
2.1 Graph Partitioning . 10

2.1.1 Offline vs Online Partitioning 10
2.1.2 Edge vs Vertex Cuts . 12

2.2 Model of Computation . 14
2.2.1 Vertex-Centric Computation 14
2.2.2 Edge-Centric Computation 16

2.3 Computational Redundancy . 16
2.4 Related Work . 20

2.4.1 Graph Processing Systems 20
2.4.2 Load Balancing for Graph Processing 21

2.4.2.1 Balancing via Static Graph Partitioning 22
2.4.2.2 Balancing via Dynamic Graph Partitioning 23

2.4.3 Redundancy Optimizations for Graph Processing 24
2.4.4 Other Related Optimizations for Graph Processing 24

ix

Chapter 3. Methodology 26
3.1 Distributed Cluster . 26
3.2 Graph Workloads . 27
3.3 Graph Data Sets . 29
3.4 Performance Metrics and Measurement Tools 30

Chapter 4. HAP: Heterogeneous-aware Partitioning for Distributed Graph
Processing 32

4.1 Estimating Heterogeneity in a Cluster 35
4.1.1 Thread-based Estimation . 36
4.1.2 Profiling-based Estimation 36

4.2 Problem Formulation . 39
4.3 Heterogeneity-aware Partitioning Algorithms 40

4.3.1 Heterogeneity-aware Random Hash 41
4.3.2 Heterogeneity-aware Oblivious 42
4.3.3 Heterogeneity-aware Grid 43

4.4 Evaluation . 48
4.4.1 End-to-end Performance Evaluation 49
4.4.2 Load Balance . 51
4.4.3 Thread-based vs Profiling-based HAP 52
4.4.4 Cost Efficiency Projection 55

4.5 Summary . 56

Chapter 5. Hula: Auto-balancing Distributed Graph Processing On the
Fly 58

5.1 Design of Hula . 61
5.1.1 Methodology Overview . 62
5.1.2 Hybrid Partitioner . 62
5.1.3 Workload Monitoring . 65
5.1.4 Dynamic Load Balancing 66

5.1.4.1 Workload Scheduling 67
5.1.4.2 Workload Migration 69

5.2 Implementation Details of Hula . 70

x

5.2.1 Graph Computation Model 70
5.2.2 Programming with Hula . 72
5.2.3 Intra-machine Balance . 73

5.3 Evaluation . 74
5.3.1 Overall Performance . 76
5.3.2 Scalability . 78
5.3.3 Further Discussions . 79

5.4 Summary . 84

Chapter 6. SLFE: A Distributed Graph Processing System with Redun-
dancy Reduction 85

6.1 System Design of SLFE—Start Late or Finish Early 88
6.1.1 SLFE Methodology and System Overview 89
6.1.2 Chunking Partitioner . 90
6.1.3 Redundancy Reduction Guidance 91
6.1.4 RR-aware Runtime Functions 94
6.1.5 RR-APIs . 98
6.1.6 Programming with SLFE 98

6.1.6.1 Single Source Shortest Path 99
6.1.6.2 PageRank . 101

6.1.7 Work Stealing . 102
6.1.8 Correctness . 102
6.1.9 SLFE’s Generality . 104

6.2 Evaluation . 105
6.2.1 End-to-end Performance Evaluation 107
6.2.2 Scalability Evaluation . 109

6.2.2.1 Intra-machine Scalability 109
6.2.2.2 Inter-machine Scalability 111

6.2.3 Further Discussions . 114
6.2.3.1 Number of Computations 114
6.2.3.2 Hardware and System Metrics 117

6.3 Limitations . 118
6.4 Summary . 119

xi

Chapter 7. Conclusion 120
7.1 Summary . 120
7.2 Future Work . 122

Bibliography 125

xii

List of Tables

1.1 Percentage of being the “slowest” machine executing PageRank
and SSSP applications with friendster graph on a 8-machine cluster. 4

1.2 Updates per vertex of SSSP in PowerLyra [32] and Gemini [132]
on a single machine. Details of the graphs (orkut-friendster) are
shown in Table 3.2. “-” indicates failed execution due to exceeding
memory capacity. 5

2.1 A list of graph analytical applications with two different aggrega-
tion functions [113]. 17

3.1 Machine configurations of Amazon EC2 cluster, local cluster, and
TACC Stampede2 Xeon-Phi cluster. 27

3.2 The graph Data Sets [63, 65, 70] used in experiments 30

4.1 Amazon c4-type virtual node configurations. 35

5.1 Pre-processing cost (seconds) comparison of partitioning four real-
world graphs on 16-machine cluster. Random, Grid, Oblivious
are implemented atop PowerGraph [45]. Hybrid and Ginger are
implemented on top of PowerLyra [32]. Chunk is deployed by
Gemini [132]. Compared to most of state-of-the-art pre-processing
schemes, Hula-Hybrid has a lower cost. 83

5.2 Memory footprint (GB) comparison of PowerLyra, Gemini, and
Hula on a 16-machine cluster. 83

6.1 RR APIs provided by SLFE. 98
6.2 8-machine end-to-end runtime and improvement over the state-of-

the-art distributed systems. 106
6.3 SLFE’s reductions in terms of memory accesses. 117

xiii

List of Figures

1.1 Workload imbalance due to even data partition in a heterogeneous
computing cluster. The fast node is waiting at a barrier for a slower
straggler node to finish computing. 2

1.2 The normalized runtime of PageRank (10 iterations) and SSSP (41
iterations till convergence) executing friendster graph on a 8-machine
cluster. Note that M0 stands for machine 0. The “slowest” machine
(e.g., M7 in PageRank) bounds the overall performance. 3

1.3 Percentage of seven real-world graphs’ early-converged vertices in
PageRank. 6

2.1 Offline vs streaming graph partitioning. 11
2.2 Edge vs vertex cuts. 12
2.3 GAS and Dual Update computation models. 13
2.4 Example of SSSP computations. 18

4.1 Thread-based estimation vs. profiling-based estimation (PageRank,
Triangle Count, and Connected Components are estimated by the
profiling method. 37

4.2 Random Hash vs. heterogeneity-aware Random Hash. 41
4.3 Illustration of Machine Grid and Shards 44
4.4 Runtime analysis for graph applications and data sets under thread-

based HAP and default partitionings (Heterogeneous cluster is formed
by Amazon EC2 c4.xlarge, c4.2xlarge, c4.4xlarge, and c4.8xlarge).
The thread-based HAP decreases application runtime by as much
as 69%, and on average 31%. 47

4.5 Overhead of the ingress partitioning techniques. HAP incurs ap-
proximately 20% ingress overhead, which will amortize over the
execution of most non-trivial applications. 50

4.6 Relative distribution of edges to nodes for graphs data sets. 51
4.7 Performance comparison of partitioning algorithms guided by thread-

based and profiling-based estimations on a heterogeneous cluster
formed by Amazon EC2 c4.2xlarge and m4.2xlarge machines. Base-
line system uses the default partitioning. 53

xiv

4.8 Performance and energy improvements of thread-based and profiling-
based HAP on Dell PowerEdge R320 clusters. Baseline system uses
the default partitioning. 54

4.9 Cost and performance pareto graph of different computing nodes
and different graph applications. 55

5.1 Overview of Hula’s workload balancing methodology. Note that
M0 and M3 are used as examples to show the workload migration
process. 61

5.2 Example of Hula’s hybrid graph partitioning scheme for a 4-machine
cluster. 63

5.3 Hula’s workload monitoring system. 65
5.4 Hula’s workflow with the workload scheduling and migration support. 66
5.5 Examples of Hula’s workload migration between M3 and M0. . . . 69
5.6 Hula’s computation model (Eactive represents the number of active

edges and T stands for the threshold used to switch between two
models.) . 71

5.7 16-machine runtime comparison of PageRank, SSSP, TunkRank,
and ConnComp implemented atop PowerLyra, Gemini and Hula.
Note that runtime is in log-scale and PowerLyra (uses Ginger par-
titioner to offer the best performance [32]) failed to process twitter
graph [51, 96, 128, 132]. 75

5.8 Inter-machine scalability of the application execution of Power-
Lyra [32], Gemini [132] and Hula (1-16 machines) on three syn-
thetic RMAT graphs. Note: missing points are due to the failure of
exceeding memory capacity. 77

5.9 Sensitivity study on the size of Shared Vertex Subset. The size of
Shared Vertex Subset is represented by α and α10 denotes α =10%. 80

5.10 The comparison between baseline (Hula with dynamic workload
balancing disabled) and Hula in terms of CB (balance of a cluster)
metric on 16-machine cluster. 81

6.1 System overview of SLFE. 88
6.2 Example of the chunking partitioning. 90
6.3 RRG for the example graph shown in Figure 6.2. 91
6.4 SSSP and CC execution time breakdown of pull and push mode,

which are measured in 1-machine and 8-machine setup with pokec
(PK), liveJournal (LJ), and friendster (FS) graphs. 94

xv

6.5 SLFE’s time of execution phase and RRG generation time normal-
ized to Gemini [132] on a 8-machine cluster. 108

6.6 Intra-machine scalability (1-68 cores) of SLFE, GraphChi [68], and
Ligra [99] on a single-machine setup (average of seven real world
graphs). 110

6.7 Inter-machine scalability of the pre-processing phase of PowerGraph [45],
PowerLyra [32], and SLFE on three synthetic graphs. SLFE and
Gemini [132] use the same pre-processing methodology except for
the RRG generation. PowerGraph and PowerLyra can only exe-
cute the smallest RMAT1 graph in a 8-machine setup because of
their inefficient memory usage [51, 96, 128, 132], while SLFE fails
to process RMAT3 in a single machine. For all the cases, RRG
generation is invisible because it incurs very small overhead. 111

6.8 Inter-machine scalability of the execution phase of Gemini [132],
PowerGraph [45], PowerLyra [32], and SLFE (1-8 machines) on
three synthetic RMAT graphs. Note: missing points are due to the
failure of exceeding memory capacity. 112

6.9 Trend-line analysis of SLFE’s execution phase (1-8 machines with
16, 32, 64, and 68 cores per machine) on three synthetic RMAT
graphs. Note: missing points are due to the failure of exceeding
memory capacity. 113

6.10 SLFE’s no. of computations per iteration. 115
6.11 SLFE’s reductions on the number of instructions. 116
6.12 SLFE’s network traffic reduction on a 8-machine cluster. 118

xvi

Chapter 1

Introduction

The growth of the Internet has made the Web graph a popular object for

research and analysis. Other large graphs, like transportation routes, social network

connections, paths of disease outbreaks, or citation relationships among published

research work, have been processed for decades [76]. To extract the insightful

knowledge, algorithms like shortest paths computation, clustering, and connected

components are frequently applied atop these graphs.

However, efficiently processing graph algorithms on a large-scale graph is

very challenging. Graph applications often exhibit high data dependency, irregular

memory access patterns, various amount of work per vertex, and a changing de-

gree of parallelism over the course of execution. Existing platforms (e.g., MapRe-

duce) cannot handle these issues and often lead to a sub-optimal performance and

usability issues in graph processing, as their computation models are designed to

facilitate aggregation and SQL-like queries. Thus, industries and academia have

proposed to design graph processing systems that can provide users a scalable, high

performance, and fault-tolerant infrastructure to easily implement and deploy their

graph applications. For instance, Google provides the Pregel [76] graph processing

system that has already hosts hundreds of users’ graph applications. Facebook im-

1

Communication

Compute

Communication

Fast

Machine Data

Data
Slow

Machine

Barrier

Idle Compute

Communication

Compute

Communication

Time

IdleCompute

Figure 1.1: Workload imbalance due to even data partition in a heterogeneous com-
puting cluster. The fast node is waiting at a barrier for a slower straggler node to
finish computing.

plements and utilizes Giraph [33, 48] to study its growing social network with high

performance (e.g., executing PageRank on 1.39 billion users with over 1 trillion

social connections in less than 3 minutes per iteration with only 200 machines).

1.1 Problem Description

To process large-scale graphs with high performance, graph processing sys-

tems exploit massive computing parallelism and memory capacity using distributed

models. However, distributing the large-scale graph among machines in a cluster in-

troduces the workload imbalance issue that can result in sub-optimal performance.

For instance, data centers are populated with heterogeneous computing units

(from expensive enterprise servers to networks of off-the-shelf commodity parts)

for a variety of economic and performance related reasons. While data centers

are trending towards heterogeneity, distributed graph processing frameworks still

assume that computing resources are uniform. As shown in Figure 1.1, this as-

sumption leads to the workload imbalance issue, causing the fast computing ma-

2

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

N
o

rm
al

iz
e

d
 R

u
n

ti
m

e

Iteration

(a) PageRank

0

10000

20000

30000

1 4 7 10 13 16 19 22 25 28 31 34 37 40N
o

rm
al

iz
e

d
 R

u
n

ti
m

e

Iteration

M2 M1 M0 M3
M4 M5 M6 M7

(b) SSSP

Figure 1.2: The normalized runtime of PageRank (10 iterations) and SSSP (41
iterations till convergence) executing friendster graph on a 8-machine cluster. Note
that M0 stands for machine 0. The “slowest” machine (e.g., M7 in PageRank)
bounds the overall performance.

chine to finish executing its chunk of data sooner than the slow machine. The slow

”stragglers” decrease the overall cluster throughput whenever a synchronization is

required, which results in low average processor occupancy and huge processing

inefficiency. Observation shows that an 8 core machine spends more than 40% of

its execution time waiting at a barrier for a 4 core machine to complete its task [69].

Ideally, for distributed graph processing, computing machines with various process-

ing capability should reach the barrier at approximately the same time for higher

computing efficiency.

Besides heterogeneity existing in data centers, the irregularity of graph an-

alytics can also cause workload imbalance for distributed graph processing. For in-

stance, irregular execution patterns of graph applications result in different amounts

of dynamic operations1. To provide some context, this dissertation profiles multiple

1Dynamic operations in distributed graph processing include memory accesses, atomic opera-
tions, arithmetic operations, network transmissions, etc.

3

Table 1.1: Percentage of being the “slowest” machine executing PageRank and
SSSP applications with friendster graph on a 8-machine cluster.

Application M0 M1 M2 M3 M4 M5 M6 M7

PageRank 0 0 0 0 0 0 0 100

SSSP 17.1 2.4 9.8 9.8 7.3 29.1 4.9 19.5

stationary and non-stationary graph applications [61] executing real-world graphs

on an 8-machine cluster. The real-world graphs are partitioned by the state-of-the-

art vertex-cut algorithm used in many prior approaches [36, 87, 103, 132], where

edges are evenly distributed among machines. Figure 1.2 shows PageRank (station-

ary) and SSSP (non-stationary) executing friendster graph as examples. The largest

runtime difference among 8 machines in one iteration can be as high as ∼5× for

PageRank application and ∼7× for SSSP. As identified by HPCToolkit [16], im-

balance here is mainly caused by the uneven distribution of memory accesses and

atomic operations.

More severely, an industry-level graph application [129] often consists of

multiple graph mining kernels that perform both stationary and non-stationary com-

putation. For example, applying PageRank and SSSP to an input graph in one

application further complicates the load balance; as Table 1.1 shows, PageRank

and SSSP have different workload imbalance patterns. Existing distributed graph

processing systems [32, 36, 45, 48, 71, 76, 103, 128, 132, 133] rely on various graph

partitioning schemes to distribute workloads at the pre-processing stage. How-

ever, it is difficult to design a common static partitioning algorithm that avoids

imbalance for any given graph and application. Thus, dynamic load balancing

4

Table 1.2: Updates per vertex of SSSP in PowerLyra [32] and Gemini [132] on a
single machine. Details of the graphs (orkut-friendster) are shown in Table 3.2. “-”
indicates failed execution due to exceeding memory capacity.

orkut liveJournal wiki delicious pokec s-twitter friendster

PowerL 12.4 8.75 10.3 6.75 9.25 7.57 -

Gemini 9.91 7.66 7.28 5.6 9.42 4.51 8.18

schemes [61, 93] are adopted to alleviate this imbalance issue. However, similar

to other big data frameworks [17], the large overhead of balancing workloads on

the fly can easily surpass the performance gains for distributed graph analytics.

Other than workload imbalance, processing graphs in a distributed man-

ner also introduces a trade-off between parallelism and redundant computations.

Distributed graph processing analyzes a graph in a repeated-relaxing manner (e.g.,

using Bellman-Ford algorithm variants to iteratively process a vertex with its ac-

tive neighbors) rather than in a sequential work-optimal order to enjoy the benefits

provided by a distributed cluster. More interestingly, the root causes of computa-

tional redundancies in graph analytics vary across applications, which is due to the

nature (i.e., the core aggregation function) of different graph algorithms. For ex-

ample, applications such as Single Source Shortest Path (SSSP) employ min() as

their core aggregation function. In each iteration, the values of active neighboring

vertices are fed into the min() aggregation function, and the result is assigned to

the destination vertex. Typically, a vertex needs multiple value updates in different

iterations because the value updates in any source vertex require recomputing the

destination vertex’s property. However, only one minimum or maximum value is

needed in the end. Table 1.2 summarizes the number of computations per vertex of

5

0%

20%

40%

60%

80%

100%

%
 o

f
e

ar
ly

-c
o

n
ve

rg
e

d
 v

e
rt

ic
e

s

Figure 1.3: Percentage of seven real-world graphs’ early-converged vertices in
PageRank.

SSSP in two state-of-the-art distributed graph processing systems – PowerLyra and

Gemini. Both systems have a high number of per-vertex computations. Note that

ideally this number is 1 if no redundant computation exists.

In contrast, some other graph applications (e.g., PageRank) utilize the arith-

metic operations (e.g., sum()) to accumulate the values of neighboring vertices iter-

atively until no vertex has further changes (a.k.a final convergence). For algorithms

of this kind, there are no computational redundancies caused by intermediate up-

dates. However, analysis in Figure 1.3 shows that 83% of vertices across seven real-

world graphs are early-converged (the vertex’s value is stabilized) before a graph’s

final convergence. Hence, the following computations on these early-converged

vertices are redundant and waste computational power. Providing a system solution

to squeeze out redundant operations can help improve the computational efficiency

of distributed graph processing.

6

1.2 Contributions

This dissertation proposes novel techniques to improve workload balance

and computational efficiency of distributed graph processing. The primary contri-

butions can be broken down into the following three topics:

1. Heterogeneity-aware Partitioning for Distributed Graph Processing (HAP):

HAP [58, 69, 100] proposes two lightweight methodologies to estimate a clus-

ter’s heterogeneity (defined as skew factor). In addition, it also offers a num-

ber of static graph partitioning strategies to utilize the skew factor for a bet-

ter data distribution and load balance in a heterogeneous environment. Dis-

tributed graph processing systems can deploy HAP to achieve heterogeneity-

aware data distribution.

2. Auto-balancing Distributed Graph Processing On the Fly (Hula): Hula

develops a hybrid partitioning scheme to maintain a graph’s natural locality

and generate metadata for lightweight online workload migrations. Mean-

while, it utilizes hardware timers to monitor balance status and support the

workload scheduler on arranging work migration. The migration scheme

proposed by Hula incurs minimal data movement during work migration.

Finally, Hula integrates its lightweight workload balancing strategy with var-

ious state-of-the-art techniques to reduce workload imbalance on the fly for

graph analytics in a distributed setup.

3. A Distributed Graph Processing System with Redundancy Reduction

(SLFE): SLFE [103] creates a novel and lightweight pre-processing tech-

7

nique to capture the maximum propagation level of each vertex in a given

graph. Such information, defined as Redundancy Reduction Guidance (RRG),

is used by SLFE’s Redundancy Reduction (RR)-aware runtime functions for

redundancy optimizations during execution. To achieve a high programma-

bility, SLFE implements RR-aware APIs so that redundancy optimizations

are transparent to users. SLFE provides a system solution to reduce redun-

dant operations for distributed graph processing.

1.3 Thesis Statement

The performance of analyzing large-scale graphs in a distributed environ-

ment can be optimized by heterogeneity-aware data partitioning, lightweight work-

load balancing, and redundancy reduction. These optimisations are achieved via

system components (e.g., workload scheduler, runtime functions, etc.) that uti-

lizes the guidance and metadata generated through lightweight pre-processing tech-

niques.

1.4 Dissertation Organization

The organization of this dissertation is as follows. Chapter 2 describes the

relevant background information on graph partitioning methodologies, computa-

tional model, and computational redundancy. Moreover, it also summarizes the

prior art of load balancing and redundancy optimizations in the graph processing

domain. Chapter 3 describes the distributed cluster setup, workloads, graph data

sets and tools used to produce data throughout the dissertation. Chapter 4 describes

8

the static data partitioning strategies for graph workloads on heterogeneous clusters.

Chapter 5 presents Hula, where a systematic solution has been proposed to dynam-

ically achieve load balance in a distributed format. Chapter 6 explores a mechanism

for the distributed graph processing system to reduce redundant computations. Fi-

nally, Chapter 7 concludes the dissertation and suggests the future work in the area.

9

Chapter 2

Background and Related Work

This chapter discusses relevant background information on graph partition-

ing methodologies, graph computational model, and computational redundancy.

Moreover, it also summarizes the prior art of load balancing and redundancy op-

timizations for graph processing.

2.1 Graph Partitioning

Graph processing system generally consists of a pre-processing module and

an application execution module. In the pre-processing module, a given graph will

be partitioned and distributed across computing units. The quality of the parti-

tioning process has a large impact on data duplication, communication overhead,

and load balance. Many optimization methodologies in this dissertation build upon

graph partitioning. Thus, this section will provide the fundamental background in-

formation of graph partitionings.

2.1.1 Offline vs Online Partitioning

Graphs can be partitioned using what are referred to as offline or online tech-

niques [69]. Figure 2.1 illustrates the differences between offline and online graph

10

1

2

(a) Offline partitioning

1

1

2

2
1

2

12
1

1

(b) Online partitioning

Figure 2.1: Offline vs streaming graph partitioning.

partitioning. Offline graph partitioning is the traditional best-cut problem. These

partitioning strategies typically assume a global view of the graph and perform nu-

merous iterations through the entire graph structure to achieve a high quality cut

that balances the number of nodes and edges allocated to each partition while min-

imizing the number of edges that cross between partitions. A good example of a

typical offline cut algorithm is the highly popular and successful METIS [60] algo-

rithm. While offline cuts are generally of high quality, they are often unsuitable for

the billion edge graphs common in big data analytics. The computational complex-

ity of data ingress would be extremely large and would not typically amortize over

the time of running the actual application of interest.

Online graph cutting algorithms, however, do not generally assume global

knowledge of the graph structure and perform very few iterations through the graph.

Instead, vertices and edges are streamed into an algorithm which makes an imme-

diate decision on where to assign it. Online cuts run quickly, but are frequently

subject to low quality, highly fragmented cuts, which can degrade the performance

11

Machine X Machine Y

(a) Vertex Cut

(b) Edge Cut

Master

Ghost

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

1 2

3 4

Figure 2.2: Edge vs vertex cuts.

of the application. More complicated online algorithms can be implemented, but

the gains in running the actual algorithm of interest must outweigh the extra time

added by a more complicated partitioner.

2.1.2 Edge vs Vertex Cuts

Whenever a graph is cut and split between two computing nodes, local

copies of the elements that were assigned to a remote node are made. These copies,

called ghosts or mirrors, are used to synchronize changes across the network and

largely define the communication overhead of a graph processing framework [69].

In general, a graph partitioning algorithm has the choice of cutting a graph accord-

ing to its edges or its vertices, as illustrated in Figure 2.2. An edge cut assigns

vertices to partitions, and a vertex cut assigns edges to partitions. The optimal strat-

egy largely depends upon the graph structure. Graphs with a large number of small

degree vertices without major outliers perform better using edge cuts, since all the

12

Gather Apply Scatter

0F()0

3

4

0

1

2

(a) Gather-Apply-Scatter

1

2

00

1

2

00

Push Pull

mirror master

(b) Dual Update (Push/Pull)

Figure 2.3: GAS and Dual Update computation models.

edges attached to a given vertex are all owned by the same node. However, many

real-world natural graphs follow what is known as a power-law distribution. Under

a power-law degree distribution the probability that a vertex has degree d is given

by:

P(d) ∝ d−α (2.1)

where the exponent α is a positive constant that controls the skewness of the de-

gree distribution. Essentially, small values of α lead to high graph density where

a small number of vertices have an extremely high degree. For these extremely

high degree vertices, vertex cuts are preferred in order to improve load balance in

partitions. However, vertex cuts suffer from the drawback that assigning edges to

partitions can cause an excessive amount of network communication. This over-

head occurs because the edges for a given vertex can easily be split across several

nodes, requiring synchronization between every execution iteration.

13

2.2 Model of Computation

Once a given graph is partitioned and distributed in pre-processing, the exe-

cution of a graph application will begin. Applications implemented atop advanced

graph processing systems are implemented and executed either in a vertex-centric

manner or an edge-centric one. This section will discuss the state-of-the-art com-

putation models in graph processing domain.

2.2.1 Vertex-Centric Computation

Vertex-centric graph computation employs the“think like a vertex” idiom to

express graph applications. Many modern graph processing systems [18, 32, 45, 48,

68, 71, 99, 103, 128, 132] are implemented based on this, as it provides a flexible

and intuitive programming method for users. Among all the vertex-centric com-

putation models, bulk synchronous parallel (BSP), gather/apply/scatter (GAS) and

dual update propagation are the most popular models of graph computations.

Bulk Synchronous Parallel BSP model is the first graph computational abstrac-

tion introduced in Pregel [76]. This allows all vertex-programs run simultaneously

in a sequence of super-steps. With in a super-step, a program instance will re-

ceive the messages from last super-step. After processing the incoming messages,

this program instance will compute outgoing messages. These will be sent to its

out-neighbors. A synchronous barrier is placed between super-steps to maintain

atomicity. The program will be terminated when there are no active message re-

maining.

14

Gather-Apply-Scatter Other than BSP, systems like [32, 45] employs GAS com-

putation model. Logically, each vertex runs through the three phases of a vertex

program independently of each other with barriers to enforce synchronization and

correctness. Figure 2.3a illustrates the GAS computational paradigm on a set of

vertices. During the gather phase of a vertex, the graph system performs a user

defined map/reduce operation on the edges and vertices adjacent to a vertex v. The

reduction from the gather phase is then passed on to the apply operation, which uses

the current value in v and the reduced gather output to compute a new value for v.

Finally, the new vertex state from the apply function is passed to the scatter stage,

which makes the new value of v visible to neighboring vertices and edges during

the next GAS operation. This sequence of events is repeated until a user defined

stopping condition or the other convergence criteria has been reached.

Dual Update Propagation As graph system design advances, researchers real-

ize that the number of active edges varies dramatically during graph processing.

For instance, the active edge set of the Connected Components (CC) application

is dense (i.e., has a large amount of active edges) in the first few iterations, and

gets increasingly sparse (i.e., has a small amount of active edges) as more vertices

receive their final labels. Based on such observation, state-of-the-art graph pro-

cessing systems [22, 99, 103, 125, 132] have proposed direction-aware dual update

propagation model. As Figure 2.3b shows, sparse active edge set prefers the push

model (where updates are passed to neighboring vertices via outgoing edges), as

the system only traverses outgoing edges of active vertices where new updates are

15

generated. In contrast, dense active edge set benefits more from the pull model

(shown in Figure 2.3b, where each vertex’s update is done by collecting states of

neighboring vertices along incoming edges), as this significantly reduces the con-

tention in communication and synchronization.

2.2.2 Edge-Centric Computation

Vertex-centric graph computation involves random vertex access based on

the activeness of vertices. After locating a vertex, the connected edges will be se-

quentially accessed. Compared to this, edge-centric computation streams a large

number of edges and picking up the edges connected to active vertices to be pro-

cessed. This trade-offs the data utilization (i.e., loading edges connected to a in-

active vertex will lower the utilization rate of loaded data) to a sequential data ac-

cess. Xstream [89] implements the edge-centric gather-scatter computation model

to achieve a sequential access on slow storage (e.g., magnetic disk). In edge-centric

scatter, edges will be sequentially read from storage and writes the updates. In

gather, the updates will be sequentially read and applied to relevant vertices. This

brings a performance improvement for out-of-core graph computations, where the

sequential accesses on disks provides 500 times higher bandwidth compared to ran-

dom accesses.

2.3 Computational Redundancy

Most popular graph applications can be classified into two categories based

on their aggregation functions of either arithmetic operations or min/max compar-

16

Table 2.1: A list of graph analytical applications with two different aggregation
functions [113].

Graph Analytical Applications Aggregation Function

PageRank, NumPaths, SpMV,

TriangleCounting, BeliefPropagation, Arithmetic

HeatSimulation, TunkRank (sum or product)

SingleSourceShortestPath, MinimalSpanningTree,

ConnectedComponents, WidestPath, Comparsion

ApproximateDiameter, Clique (min or max)

isons. This dissertation analyzes graph applications implemented atop several sys-

tems [32, 45, 46, 68, 71, 76, 89, 99] and summarizes the findings in Table 2.1. It is

also worth noting that some graph applications do not employ any aggregation func-

tion, e.g., BFS visits each vertex only once. This kind of graph applications seldom

introduces redundant computations, which is not the focus of this dissertation. To

further explain the provenance of computational redundancies in graph analytics,

this dissertation chooses Single Source Shortest Path (comparison) and PageRank

(arithmetic) to represent the applications from each category.

The state-of-the-art graph processing systems prefer to execute graph ap-

plications in a Bellman-Ford [23] way to utilize the massive parallelism available

in hardware. Such implementations often introduce computational redundancies to

graph applications with heavyweight min/max or arithmetic operations.

Figure 2.4 shows an example of Single Source Shortest Path (SSSP) execu-

tion (using min() as the core computing operation) in modern graph systems. To

simplify the explanation, vertex 0 is denoted as V0, and an edge from vertex 0 to 1

17

0

1

2
4

3

0 ∞ ∞ ∞ ∞ ∞dist
V0 V5

1

2

2

1
1 5

1

(a) An example graph

Iter1 Iter2 Iter3 Iter4

V0 0 0 0 0

V1 1 1 1 1

V2 ∞ 2 2 2

V3 2 2 2 2

V4 ∞ 4 3 3

V5 ∞ ∞ 5 4

(b) SSSP’s iteration plot

Figure 2.4: Example of SSSP computations.

is denoted as E01. Updates on V4 and V5 are used to demonstrate the provenance

of computational redundancy. The vertex property dist[v] is initialized to 0 for V0

and ∞ for other vertices. During Iter1, the dist of V1 and V3 are synchronously up-

dated to 1 and 2, respectively (updates are marked in gray). In the next iteration, the

updates of V1 and V3 are propagated via the edges (E12 and E34). Hence, the dist

of V2 and V4 are computed to 2 and 4 correspondingly. Similarly, V4’s property is

replaced by 3 (i.e., minimum dist) in Iter3 and the dist of V5 updates to 5. Due to the

fact that V4’s dist is updated in Iter3, its successor—V5’s dist has to be recomputed

in Iter4 and updated to its minimum distance 4.

This example clearly illustrates that multiple rounds of computations are

needed to calculate the shortest path for V4 and its successor, V5. Such computa-

tions include multiple additions, min comparisons, and synchronous updates - all of

which are time consuming in modern distributed graph systems. Similar behaviors

are observed in other graph algorithms aggregated with min()/max() operations as

well. Such redundancies are due to the repeated-relaxing manner [18, 74, 75], where

18

vertices are involved in computations at multiple propagation levels (e.g., V4 resides

in levels 2 and 3).

Some other applications such as PageRank (PR) use arithmetic sum() func-

tion for an aggregation process. The ranking equation is defined as follows:

PR(u) =
1−d

N
+d ∑

v∈Bu

PR(v)
L(v)

(2.2)

This equation states that the values of all source vertices (denoted as v) in the set

Bu need to be fetched to compute a destination vertex u’s ranking value in each

iteration. The d is a constant damping factor and N is the total number of vertices.

The convergence for this kind of algorithms is defined as the property/values of all

vertices with no further change. There are two reasons that a vertex’s value becomes

stable:

• All the source vertices provide the same inputs as those in the past iteration.

• The precision supported by the underlying hardware cannot reveal the changes,

as float can support 7 decimal digits of precision and double has 15 decimal

digits of precision [4].

For instance, due to the limited hardware precision, even though the ∑PR(v) of

two iterations are different, being divided by the same denominator (number of

links, which is denoted as L(v)) can produce the same result. Generally, dozens to

hundreds of iterations are needed to converge an entire graph.

19

2.4 Related Work

This dissertation aims to improve distributed graph processing via load bal-

ancing and redundancy reduction. Thus, this section first reviews state-of-the-art

graph processing system designs in Section 2.4.1, and then summarizes the prior

works on optimizing load balance and computational redundancy in Section 2.4.2

and Section 2.4.3, respectively.

2.4.1 Graph Processing Systems

As the magnitude of digital data grows exponentially, distributed graph

processing system becomes increasingly important. Pregel [76] is the first one

that proposes a vertex-centric programming model and Bulk Synchronous Process-

ing (BSP) computation model, which have been widely adopted by other graph

systems [32, 45, 68, 71, 93, 119, 132]. Apache Giraph [48] originates as the open-

source counterpart to Pregel, which is highly optimized by Facebook [33] to achieve

high scalability. Some existing works like X-Stream [89] and Chaos [88] de-

velop the edge-centric graph processing engine that sequence memory and I/O

accesses. Other than the innovations on computation model, Powerlyra [32] and

PowerSwitch [119] leverage hybrid partitioning (vertex/edge cut) schemes and hy-

brid processing engines (sync/async) to accelerate graph analytics. Trinity [97]

combines graph processing and databases into a single system. Gemini [132] ob-

serves that the overhead of achieving scalability on prior distributed graph process-

ing frameworks [32, 45] becomes a major limiting factor for efficiency with modern

high-speed interconnection networks. Thus, it provides multiple optimizations tar-

20

geting computation efficiency. With all these efforts, the performance of mining

insightful knowledge on a large-scale graph has been significantly improved.

Other than the distributed solution, GraphChi [68] is a leading graph engine

that analyzes large-scale graphs in a single PC; its parallel sharding window (PSW)

technique efficiently utilizes the secondary storage. Galois [80]’s programming

model and library allow programmers to exploit data parallelism in graph analytics

without having to write explicitly parallel code. Ligra [99] proposes two simple rou-

tines (one for mapping over edges and one for mapping over vertices) to efficiently

process graph applications on a shared-memory machine. Xstream [89] deploys a

novel edge-centric model to serialize data accesses for all storage media. Clip [18]

reduced disk I/O by squeezing out the values of loaded data. GraphQ [114] in-

troduced a query framework to efficiently explore its subgraphs one by one on a

single PC. Compared to distributed graph processing, these prior works provide a

cost-efficient alternative to analyze a large-scale graph.

2.4.2 Load Balancing for Graph Processing

In order to achieve a better performance in a distributed environment, dis-

tributed graph processing systems leverage both static and dynamic load balancing

schemes to minimize the idle/waiting time of each computing unit. Static tech-

niques aim to achieve a better data distribution before the execution, while dynamic

schemes balance the workload by migrating graph data on the fly. Prior works from

these two optimization areas will be reviewed separately in the following sections.

21

2.4.2.1 Balancing via Static Graph Partitioning

To evenly partition graph in a distributed setup, [60] provides a set of offline

programs to cut data set with a high quality. However, these programs are often un-

suitable for the billion edge graphs common in graph analytic, as its computational

complexity cannot be easily amortized over the running time of actual application of

interest. Compared to these offline partitioning schemes, online graph partitioning

algorithms can split the data set quickly with a reasonable partitioning quality. Gon-

zalez et al. implement online random and greedy vertex-cut partitioners to minimize

communications as well as ensure work balance for real world graphs following the

power-law distribution [45]. Chen et al. develop a new distributed greedy heuristic

hybrid-cut (vertex cut with edge cut) partitioning algorithm to mitigate poor data lo-

cality during communication [32]. Such brings a large speedup in graph workload

execution time with a small increase of graph ingress time. HDRF [85] provides a

stream-based partition to evenly distribute graph data and minimize the replication

factor for real-world graphs. [104] and [107] splits a graph in a one-pass streaming

manner, and achieves an even data distribution with a few number of cuts. How-

ever, none of these prior techniques aim to balance the data distribution in the het-

erogeneous environment. This dissertation provides a set of heterogeneity-aware

methodologies to proportionally partition graph data among computing machines

in a heterogeneous cluster.

22

2.4.2.2 Balancing via Dynamic Graph Partitioning

Even though the graph components can be distributed evenly in a homo-

geneous computing environment, load imbalance still exists in distributed graph

analytcis [61, 93]. Aforementioned static graph partitioning algorithms can han-

dle the imbalance incurred by an uneven data distribution [69, 100], they cannot

alleviate the imbalance caused by the unpredictable behaviors existing in graph

applications. Thus, Mizan [61] and GPS [93] attempt to eliminate the workload

imbalance problem existing in distributed graph processing via dynamic load bal-

ancing methods. The common workflow of these prior works can be summarized

as 1) They identify the provenance of load imbalance at the machine level, and then

pinpoint problematic vertices; 2) they migrate vertices and their attributes (e.g.,

state, data, adjacency list, and related messages) with a decentralized strategy; 3)

after migration, the ownership of a moved vertex needs to be updated in the clus-

ter to guarantee the correctness of future computations. Executing such procedure

between two computing iterations exhibits impact on the performance and resource

usage. For example, recording the activity of each vertex incurs a larger memory

footprint. Migrating a vertex with a large amount of associated information can

significantly exacerbate the communication overhead in the distributed setup. Like

other big data frameworks, these overheads are rarely amortized over the execution

time of an application program [17, 69]. Compared to these prior works, this disser-

tation proposes to leverage a novel partitioning method to evenly distribute data as

well as to prepare metadata for online load balancing. During execution, with the

support of these metadata, load balance can be achieved with a negligible overhead.

23

2.4.3 Redundancy Optimizations for Graph Processing

Compared to other topics, redundancy optimization is a relatively new one

for graph processing. Thus, there are fewer prior art focusing on reducing re-

dundancies. Vora et al. [113] optimized GraphChi [68] to only load edges with

new values. This optimization relies on the particular re-sharding technique of

disk-based systems, which is not applicable to systems with entire graphs stored

in the shared memory environment. Kusum et al. [66] proposed a graph reduc-

tion method to improve computational efficiency of Galois [80]. Such method

performs iterative graph algorithms in a two-phase manner, which incurs an ex-

tra round of graph partitioning. This cannot be applied to the distributed systems,

because the pre-processing is the most expensive process in the distributed sys-

tems [72, 105, 110, 132]. Other than these, Wang et al. [115] leverages articulation

points to split the graph into subgraphs and optimize the betweenness centrality

(BC) application to avoid redundant computations on the same subgraph. By con-

trast, solution proposed in this dissertation does not rely on any specific partitioning

strategies or incur any extra partitioning effort, which is a system-level optimization

for most graph applications in the distributed setup.

2.4.4 Other Related Optimizations for Graph Processing

Orthogonal to the load balance and redundancy optimization, graph library,

algorithm, and language designs are another related approaches. CombBLAS [26]

offers a distributed parallel graph library with a set of linear algebra primitives. Par-

allel Boost Graph Library (PBGL) [5] provides graph data structures and message

24

passing mechanisms (MPI) to parallelize applications. These distributed libraries

can deploy the techniques proposed in this dissertation to improve load balance as

well as computation efficiency. As for the graph domain-specific languages (DSL),

Green-Marl [53] allows developers to describe graph algorithms intuitively and ex-

pose the data-level parallelism inherent in the algorithms. Sevenich et al. [95] adopt

two DSLs to enable high-level optimizations from the compiler and skip the API

invocation overheads. Optimization techniques proposed in this dissertation are

orthogonal to these works.

25

Chapter 3

Methodology

This chapter provides an outline of distributed computing clusters that are

used to study the state-of-the-art graph processing systems as well as to perform

the evaluations of proposed schemes of this dissertation. Moreover, this chapter

also descripes the graph workloads, graph data sets, performance metrics and cor-

responding measurement tools used for this dissertation.

3.1 Distributed Cluster

Table 3.1 illustrates the machine configurations of computing clusters used

in the dissertation to evaluate proposed techniques. The Amazon EC2 machines

form the heterogeneous environment described in Chapter 4. However, such virtual

machines provide a limited number of ”manipulating knobs” and do not support

the energy measurement. Hence, the local Dell PowerEdge R320 servers are uti-

lized to form a local physical cluster in the evaluation. Since the grant on Amazon

EC2 expires and the Dell PowerEdge R320 servers are not up-to-the-minute any-

more, the experiments in Chapter 5 and Chapter 6 are performed on TACC Stam-

pede2 cluster. Experiments of Chapter 6 are performed before the work proposed

in Chapter 5, thus, these experiments are evaluated on the Stampede2 Xeon-Phi

26

Table 3.1: Machine configurations of Amazon EC2 cluster, local cluster, and TACC
Stampede2 Xeon-Phi cluster.

Amazon EC2 Cluster
Name HW Threads Memory Network
c4.xlarge 4 7.5GB 100 Mbps to 1.86 Gbps
c4.2xlarge 8 15GB 100 Mbps to 1.86 Gbps
m4.2xlarge 8 32GB 100 Mbps to 1.86 Gbps
c4.4xlarge 16 30GB 100 Mbps to 1.86 Gbps
c4.8xlarge 36 60GB up to 8.86Gbps

Dell PowerEdge R320 Cluster
Name HW Threads Memory Network
Xeon Sever S 4 64GB up to 10Mbps
Xeon Sever L 12 64GB up to 10Mbps

TACC Stampede2 Cluster
Name HW Threads Memory Network
Xeon-Phi 68 96GB of DDR4 RAM + 16GB MCDRAM up to 100Gbps
Xeon-Skylake 48 192GB of DDR4 RAM up to 100Gbps

cluster (only Xeon-Phi cluster is available at the moment). Later, the Stampede2

cluster equips the powerful Xeon-Skylake server with a high DRAM capacity and a

high network bandwidth. Therefore, evaluations in Chapter 5 are moved to the Sky-

lake server cluster. To sum up, the philosophy of forming experimental computer

clusters is to use state-of-the-art machines at the moment.

3.2 Graph Workloads

The techniques presented in this dissertation are evaluated across a number

of graph processing workloads. These graph applications are implemented atop the

graph processing system. This section provides a basic overview of these selected

algorithms.

PageRank (PR): The PageRank algorithm [83] computes the relative rating

27

of a node based on the weights of all the connected nodes. It’s main use is in ranking

the importance of web pages on the internet and is defined as follows:

PR(u) =
1−d

N
+d ∑

v∈Bu

PR(v)
L(v)

(3.1)

This equation states that the PageRank for a page u depends on the ranking values

for each page v contained in the set Bu, the set containing all the pages linking

to v divided by the number of links from page v. The damping factor, d, reduces

the impact of any one page on another page’s rank. The total number of pages is

represented by N.

TunkRank (TR): TunkRank [116] extends PageRank algorithm and is used

to calculate the influence of twitterer recursively as:

In f luence(X) = ∑
Y∈Followers(X)

1+ p+ In f luence(Y)
Friends(Y)

, (3.2)

where p is the constant probability that twitterers retweet a tweet. TunkRank mea-

sures twitterer X’s influence as the expected number of twitterers who will read a

tweet that he/she publishes.

Single-Source-Shortest-Path (SSSP): Given a graph and a root vertex,

Single-Source-Shortest-Path algorithm can find the shorest paths from root to all

vertices in the graph. The distance of each vertices (except root) are initialized to

∞, while the root is initialized to 0. The implementation of this algorithm follows

the propagation manner, where the updated value of all active vertices are iteratively

sent to neighboring vertices until no active vertex exists anymore.

Single-Source-Widest-Path (WP): Similar to SSSP, Single-Source-Widest-

Path algorithm attempts to find the widest path between a give root vertex and other

28

vertex in the graph. Different, the edge weight of a given graph is considered as the

width rather than the distance used in SSSP.

Connected Components (CC): The connected components algorithm at-

tempts to determine the number of components that are connected in a graph and

the number of vertices and edges in each connected component. CC is implemented

as a simple label propagation algorithm that iterates until the vertex label identifiers

are no longer changing.

Triangle Count (TC): Triangle count counts the total number of triangles

in a graph, and also counts the number of triangles associated with each vertex. For

every edge (u,v) in the graph, this application [94] counts the number of intersec-

tions of the neighbor set on u and the neighbor set on v. This counts every triangle

3 times, so the final answer can be obtained by summing across all the edges and

dividing by 3.

3.3 Graph Data Sets

Table 3.2 shows a number of different real-world graph and large-scale syn-

thetic data sets used in experiments. The data sets range in size from a few million

edges (e.g., amazon) to 10 billions (e.g., RMAT3). The algorithms applied on these

graphs are listed in the last column of Table 3.2. Since the computer cluster size

used in Chapter 4 is relatively small, only four data sets (i.e., amazon, s-wiki, ci-

tation, and livejournal) are used in the experiments. The experiments of Chapter 5

utilizes four real-world graphs (i.e. from livejournal to twitter) and three large-

scale synthetic graphs (i.e., RMAT1-RMAT3) in the evaluation. The experiments

29

Table 3.2: The graph Data Sets [63, 65, 70] used in experiments

Real graph Vertices Edges Size Algorithms
amazon 403,394 3,387,388 46MB PR,CC,TC
s-wiki 2,394,385 5,021,410 64MB PR,CC,TC
citation 3,774,768 16,518,948 268MB PR,CC,TC
pokec 1,632,803 30,622,564 405MB PR,TR,CC,SSSP,WP
orkut 3,072,411 117,184,899 1.7GB PR,TR,CC,SSSP,WP
delicious 33,801,712 301,183,605 3.7GB PR,TR,CC,SSSP,WP
wiki 12,150,976 378,142,420 5.8GB PR,TR,CC,SSSP,WP
s-twitter 11,316,812 85,331,845 1.3GB PR,TR,CC,SSSP,WP
livejournal 4,847,571 68,993,773 1.1GB PR,TR,CC,TC,SSSP,WP
friendster 65,608,366 1,806,067,135 31GB PR,TR,CC,SSSP,WP
weibo 58,655,849 261,321,071 3.8GB PR,TR,CC,SSSP
twitter 52,579,682 1,963,263,823 28GB PR,TR,CC,SSSP
Synthetic graph Vertices Edges Size Algorithms
RMAT1 100,000,000 2,000,000,000 33GB PR,TR,CC,SSSP,WP
RMAT2 300,000,000 6,000,000,000 104GB PR,TR,CC,SSSP,WP
RMAT3 500,000,000 10,000,000,000 150GB PR,TR,CC,SSSP,WP

of Chapter 6 includes seven real-world graphs (i.e., from pokec to friendster) and

three large-scale synthetic graphs (i.e., RMAT1-RMAT3).

3.4 Performance Metrics and Measurement Tools

Runtime and Energy Runtime is the main performance metric of a distributed

graph processing system. In this dissertation, the runtime of graph pre-processing

phase and graph workload execution phase are reported to demonstrate the effec-

tiveness and overhead of proposed solutions. The runtime metric in the experiments

is measured by gettimeofday() system function. The unit of this metric is generally

Second. Other than the runtime metric, energy is also measured as a metric to com-

pare proposed solutions with prior works. This metric is measured via Intel RAPL

30

counters [6], and the unit is Joule.

Hardware Metrics Hardware metrics are deployed in this dissertation to further

study and understand the performance gain brought by proposed schemes. Among

all the hardware metrics, the number of instructions and memory accesses are se-

lected to be profiled by Perf [11]. Since the experiments are performed in a dis-

tributed cluster, ibrun was utilized to launch the Perf measurement along with ex-

periments on each machine. With the same graph algorithm and data set, a lower

number of instructions indicates the proposed solution accomplish the job in a more

efficient manner. Due to the fact that most graph algorithms are memory intensive,

less memory accesses generally leads to a higher performance.

System Metrics Other than the metrics discussed above, some system metrics

are also recorded in the experiments. Network traffic is one of the most important

metrics that can heavily affect the performance of a distributed system. To quantify

this, the number of bytes that have been sent/received are measured. In addition,

memory footprint is profiled via the Valgrind tool [79] to indicate the peak memory

usage of the system. In order to examine the load balance situation, [16] is utilized

to record and visualize the detailed execution procedure of each machine. The vi-

sualized idle time of each machine before the synchronization barrier is considered

as the wasted time due to workload imbalance.

31

Chapter 4

HAP: Heterogeneous-aware Partitioning for
Distributed Graph Processing2 3

Large-scale distributed graph processing is an increasingly important com-

putational problem, spurred on by the popularity of cloud and big data computing.

The ever reducing price of storage has enabled servers and data farms to collect

and retain massive data sets, much of which can be expressed as graphs. As such,

researchers have developed many computational frameworks to address the specific

needs of distributed graph algorithms, such as GraphLab [71], PowerGraph [45],

Pregel [76], Giraph [48], and Gemini [132].

Novel computational frameworks, however, are not the only change induced

by big data and cloud computing. To cheaply provide scale-out performance, data

2M. LeBeane, S. Song, R. Panda, J. Ryoo, and L. K. John, “Data Partitioning Strategies for
Graph Workloads on Heterogeneous Clusters”, in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2015. Shuang Song contributed
to the idea development and implementation. Michael LeBeane was involved in implementation.
Reena Panda and Jee Ho Ryoo were involved in experimental setup. Lizy K. John supervised the
overall project.

3S. Song, M. Li, X. Zheng, J. Ryoo, R. Panda, M. LeBeane, A. Gerstlauer, and L. K. John,
“Proxy-Guided Load Balancing of Graph Processing Workloads on Heterogeneous Clusters”, in
Proceedings of 45th International Conference on Parallel Processing, 2016. Shuang Song con-
tributed to the idea development and implementation. Meng Li, Xinnian Zheng, Reena Panda, and
Jee Ho Ryoo were involved in performance evaluation and technical writing. Andreas Gerstlauer
and Lizy K. John supervised the overall project.

32

centers are evolving from expensive enterprise servers to networks of off-the-shelf

commodity parts. This trend has opened the door to data centers populated with

heterogeneous compute units for a variety of economic and performance related

reasons. For example, many data centers with commodity components will upgrade

in a piecemeal fashion according to their needs, leaving a variety of compute units

available. Heterogeneity can also be deliberately introduced to service the needs of

different types of workloads. Most data centers serve the needs of a variety of users

and clients, and will provide different system configurations to target various perfor-

mance and power points [34][44]. Virtualized environments (e.g. Amazon EC2 [1])

can also impose heterogeneity by partitioning clusters of homogeneous machines

into a variety of configurations. Such partitionings of otherwise homogeneous ma-

chines resemble actual physical heterogeneous clusters. Virtualization also inadver-

tently introduces heterogeneous performance due to shared multi-tenancy nodes.

Finally, heterogeneity can be introduced by means of attaching accelerators (e.g.

GPGPUs or Intel Phi [2] accelerators) to existing CPU clusters, although dedicated

accelerators are beyond the scope of the current work.

Despite the ever growing prevalence of heterogeneous clusters, most graph

analytics frameworks operate under the assumption that all compute nodes are bal-

anced in performance. As discussed in Section 1.1, this assumption leads to an

imbalance of data distribution. For graph analytics applications which require syn-

chronization between iterations of an algorithm, the slow nodes result in low aver-

age processor occupancy and huge processing inefficiencies. The motivational data

has shown an 8 core machine spends more than 40% of its execution time waiting

33

at a barrier for a 4 core processor to complete an iteration over its local graph. To

solve this problem, ideally, the graph partitioning algorithm should correctly skew

the data in accordance with the processing capability of the computing nodes so

that all machines reach the barrier at approximately the same time.

This chapter describes Heterogeneity-aware Partitioning (HAP) that aims to

balance the data distribution of distributed graph processing in heterogeneous en-

vironments. HAP enhances several state of the art static partitioning algorithms

to account for the affects of heterogeneous data centers on graph analytics. These

partitioning algorithms are implemented as pluggable edge/vertex cut methods in

PowerGraph’s streaming graph partitioner. These partitioners are guided by a met-

ric that describes the desired data load on each node, which is defined as the skew

factor. HAP also proposes a number of ways that the skew factor of a cluster can be

estimated and used to guide partitioning decisions. Specifically, the contributions

of HAP to the state of the art include the following:

1. HAP proposes a number of simple heterogeneity estimation methodologies.

These estimations are used to develop the skew factor and to guide the graph

splitting decisions offered by the partitioning algorithms.

2. HAP offers a number of graph partitioning strategies to improve data-ingress

on heterogeneous clusters. While dynamic load balancing techniques can

account for data center heterogeneity [61] [93], HAP shows that a simple par-

titioning can perform very well. In addition, the proposed static partitioning

algorithms in HAP are orthogonal to the dynamic load balancing techniques.

34

Table 4.1: Amazon c4-type virtual node configurations.

Amazon EC2 Configuration
Name HW Threads Memory Network [1]
c4.xlarge 4 7.5GB 100 Mbps to 1.86 Gbps
c4.2xlarge 8 15GB 100 Mbps to 1.86 Gbps
c4.4xlarge 16 30GB 100 Mbps to 1.86 Gbps
c4.8xlarge 36 60GB up to 8.86Gbps

3. An in-depth evaluation on heterogeneous clusters built from the Amazon EC2

virtualized cloud environment and local computing machines are performed

to evaluate HAP. Compared to the standard online data partitioning algo-

rithms, HAP improves application execution time over a variety of real-world

data sets and algorithms.

4.1 Estimating Heterogeneity in a Cluster

The main idea in data partitioning for heterogeneous clusters is simple: di-

viding the input data set into shards such that each machine receives an amount of

data in accordance with a metric. The skew factor is defined as the desired data

partitioning ratio of the cluster. In this chapter, the skew factor is always written

relative to other nodes, with the least powerful node receiving the value of 1. This

section provides two simple and tractable methods of representing the skew factor

of a heterogeneous cluster. To ground the discussion, a number of Amazon EC2

machines will be used to demonstrate the calculation of skew factor. Table 4.1

shows the machine configurations.

35

4.1.1 Thread-based Estimation

For graph data sets where the graph can easily fit into the memory of any sin-

gle node, a reasonable proxy of performance among machines in the cluster can be

derived by looking at the relative performance of the CPUs. If the CPU type is the

same and only the number of hardware threads assigned to each node (e.g., virtual

machine) varies across configurations, the number of worker threads can be utilized

to define the skew factor of a heterogeneous cluster. For instance, in PowerGraph,

the number of logical cores reserved for computation (num logical cpus− 2) is

used to calculate relative throughput. Two logical cores are reserved for commu-

nication, hence, not used to compute the skew factor. As shown in Figure 4.1, the

skew factors of c4-type machines estimated based on the number of threads are

1:3:7:17. This estimation method is referred as thread-based method.

4.1.2 Profiling-based Estimation

Besides the thread-based method, a lightweight profiling-based method is

also proposed to develop the skew factor. Figure 4.1 shows, compared to thread-

based estimation, the skew factors of c4-machines guided by profiling behave dif-

ferently and vary across applications. Moreover, profile can cover some cases that

thread-based method is not applicable. For instance, when the heterogeneous ma-

chines in the cluster have same thread count. Thread-based one will not be able to

reveal the heterogeneity. However, profiling-based estimation can still indicate the

difference between machines.

Synthetic proxy graphs are utilized to capture a machine’s computation

36

0

4

8

12

16

20

c4.xlarge c4.2xlarge c4.4xlarge c4.8xlarge

Sk
ew

 f
ac

to
r

Machine Type

Thread-based estimation

PageRank

Triangle Count

Connected Components

Figure 4.1: Thread-based estimation vs. profiling-based estimation (PageRank, Tri-
angle Count, and Connected Components are estimated by the profiling method.

power on a graph workload. To do so, the synthetic graphs with diverse distribu-

tions are generated. Algorithm 1 shows the pseudo-code to generate the synthetic

proxy graphs following the power-law distribution. It takes the number of vertices

N and α parameter as inputs. Based on distribution factor α , the probability of each

vertex is calculated and associated with the number of degrees that will be gener-

ated later. Then, the probability density function (pd f) will be transformed into a

cumulative density function (cd f). The total number of degrees of any vertex is

generated by the cdf function. All the connected vertices are produced by a random

hash. If directional edges are needed, the order of edge(u,v) could be understood as

the graph having an edge from u to v and vice verse. To omit self-loops, a condition

check on vertex u being unequal to vertex v is added in the process, if necessary.

37

Algorithm 1 Synthetitc Graph Generator
1: procedure GRAPH GENERATION

2: for i≤ N do
3: pd f [i] = i−α

4: end for
5: cd f = trans f orm(pd f)
6: hash = constant value
7: for u≤ N do
8: degree = multinomial(cd f)
9: for d ≤ degree do

10: v = (u+hash)mod N
11: out put edge(u,v)
12: end for
13: end for
14: end procedure

The overhead of generating synthetic graphs depends on the graph size and distri-

bution. To cover a broad range of real-world graphs [45], three proxy graphs (with

distribution factor αs ranging from 1.95 to 2.4) are generated. Generating these

deployed proxies took 67 seconds in total.

These generated synthetic graph will be combined with each graph appli-

cation to form an independent profiling set. For a give heterogeneous cluster, ma-

chines are classified into different groups and only one machine from each group

needs to be profiled. After profiling, the obtained performance of each machine is

used to estimate the skew factor for each application on a given cluster. As the mod-

ern cluster’s heterogeneity is increasing (e.g., operating frequency of machine also

varies), profiling can more accurately reflect the heterogeneity. Overall, compared

to the thread-based method, profiling-based estimation incurs a higher overhead

(i.e., proxy graph generation and profiling cost) with more accurate estimation and

38

corner cases covered.

4.2 Problem Formulation

Now that with a method of estimating the skew factor for a given cluster,

the requirements of a graph partitioning algorithm can be formulated as a vertex cut

problem. A similar formulation can be derived for an edge cut objective as well.

Let E and V be the set of all edges and vertices contained in the graph, respectively.

The problem of partitioning edges onto heterogeneous nodes can be expressed as a

n-way vertex-cut that assigns each edge e∈ E to a machine A(e)∈ P where P is the

set of all machines. Each vertex then spans the set of machines A(v)⊆P that contain

its adjacent edges. I also formally define Sk such that Sk(p) = skew f actor(p)
sum(skew f actor) where

the skew factor can be calculated as discussed in Section 4.1. Therefore, Sk(p) is the

relative throughput associated with machine p expressed between [0,1]. Formally,

the vertex cut objective can be expressed similarly to [45]:

min
A

1
|V | ∑v∈V

|A(v)| (4.1)

s.t. ∀p ∈ P,abs(|{e ∈ E : A(e) = p}|−Sk(p)∗ |E|)< λ (4.2)

where λ is defined as the imbalance factor. The number of replicas of a vertex

v is defined as the |A(v)| copies of the vertex v. Therefore, Equation 4.1 attempts

to place edges for a given vertex v on a small number of machines, minimizing the

communication and memory overhead. Equation 4.2, on the other hand, attempts

39

to balance the distribution of edges over all available machines according to the rel-

ative throughput of each node, expressed by Sk. Any partitioning algorithm should

strive to account for both equations to achieve a quality n-way heterogeneous vertex

cut.

Algorithm 2 Heterogeneity-aware Random Hash
1: procedure RANDOM

2: for e ∈ E do
3: s← Src(e) . s is source vertex of edge e
4: d← Dest(e) . d is destination vertex of edge e
5: p← iSk[HashE(s,d)

maxHash] . compute skewed hash
6: e.owner← p . assign owning node for e
7: end for
8: end procedure

4.3 Heterogeneity-aware Partitioning Algorithms

This section presents five online static graph partitioning algorithms [32, 45,

76] that have be modified to support optimized heterogeneous data placement using

the skew factor. These five algorithms (three vertex cut algorithms and two mixed

cut ones) contain a mix of the most commonly used streaming split algorithms, as

well as newly proposed research techniques. The skew factor can be constructed

using either the thread-based or profiling-based approach as illustrated in Section

4.1. For the explanation of the algorithms, the Sk is used as defined in Section

4.2. Additionally, iSk is used and defined as the inverse cumulative density function

of the skew factors. Indexing into iSk with a probability [0,1] returns a node id

based on the cumulative density of the skew factor. The inverse cumulative density

40

Machine	

A

Machine	

B

Machine	

C

Random
hash(edge	
 e)

Machine	

D

25%

25%

25%

25%

Machine	

A

Machine	

B

Machine	

C

Random
hash(edge	
 e)

Machine	

D

40%

15%

15%

30%

maxhash maxhash
Random	
 Hash Heterogeneity-­‐aware	

Random	
 Hash

Figure 4.2: Random Hash vs. heterogeneity-aware Random Hash.

function is trivially constructed from the skew factor or Sk.

4.3.1 Heterogeneity-aware Random Hash

The random vertex cut (Random) was originally proposed in the Power-

Graph [45] framework as a baseline method for extremely fast partitioning. It

attempts to assign an edge to a node based on a random hash of the source and

destination vertices. Algorithm 2 describes the formulation of Random for a het-

erogeneous environment.

The formulation for a heterogeneous environment is quite simple. Skewed

Random is expressed as a probability and now indexes into iSk to produce a weighted

assignment of edges to machines based on the skew factor. The effect of the

weighted edge assignment is shown in Figure 4.2, where the machine with a higher

skew factor value (higher computational power) will receive more edges in the

41

heterogeneity-aware random hash partitioning.

4.3.2 Heterogeneity-aware Oblivious

The oblivious vertex cut algorithm was originally proposed in PowerGraph

[45] as an improvement over the Random algorithm. It attempts to factor locality

into the graph partitioning decision by assigning edges to nodes based on prior

scheduling decisions at the expense of a longer partitioning phase. Algorithm 3

describes the formulation of oblivious for a heterogeneous environment.

Algorithm 3 Heterogeneity-aware Oblivious
1: procedure OBLIVIOUS

2: for e ∈ E do
3: s← Src(e)
4: d← Dest(e)
5: for p ∈ P do
6: srcPresence← (Edges(s, p)> 0)
7: destPresence← (Edges(d, p)> 0)
8: bal← Balance(Sk, p)
9: score[p]← bal + srcPresence+destPresence

10: end for
11: e.owner← argmaxp(score)
12: end for
13: end procedure

The heterogeneous formulation of the algorithm attempts to assign edges

to nodes that already contain either the source or the destination vertices. In the

pseudo-code, the Balance() function assigns a [0−1] score based on how the cur-

rent distribution of edges deviates from the ratio of edges suggested by Sk[p]. Let

u and v be the vertices associated with an edge e, and let A(u) be defined as in Sec-

42

tion 4.2. Heterogeneous-aware Oblivious cut uses the following modified heuristics

from [45], applied in this order:

1. If A(u) and A(v) intersect, then e should be assigned to a machine in the

intersection biased by the skew factor.

2. If A(u) and A(v) are not empty, then e should be assigned to the machine

containing one of the vertices biased by the skew factor.

3. If only one of the two vertices has been assigned to a machine, then choose a

machine for e from the assigned vertex biased by the skew factor.

4. If neither vertex has been assigned, then assign e to the least loaded machine

biased by the skew factor.

Note that since this algorithm is a heuristic, it does not guarantee an exact

balance in accordance with the skew factor, as the Random Hash does.

4.3.3 Heterogeneity-aware Grid

The Grid vertex cut partitioner is designed to limit the communication over-

heads by constraining the number of candidate machines for each assignment. The

number of machines in the cluster has to be a square number, as they are used to

form a square matrix grid as displayed in Figure 4.3. A shard is defined as a row

or column of machines in this context. Similar to the concept of heterogeneous

Random Hash, each shard has its weight, which is determined from the weights

of machines in the shard. Differently, every vertex is hashed to a shard instead of

43

shard

intersection

Figure 4.3: Illustration of Machine Grid and Shards

single machine. For each edge, two selected shards corresponding to the source and

target vertices generate an intersection. Considering the current edge distribution

and the edge placements suggested by skew factor, each machine in the intersec-

tion receives a score. The edge will be allocated to the machine with the maximum

score.

Heterogeneity-aware Hybrid The Hybrid cut algorithm [32] is similar to

Random with one important difference. Hybrid attempts to perform both vertex and

edge cuts depending on the average degree of the vertex in question. It employs a

two pass approach to accomplish this objective. The first approach assigns all edges

to nodes based on a hash of the destination vertex, essentially performing a random

edge cut. More importantly, however, the first pass allows for the easy calculation

of the total degree of each vertex. The second pass finds all the vertices with an

in-degree higher than a threshold and reassigns them similarly to the random hash

44

Algorithm 4 Heterogeneity-aware Hybrid
1: procedure HYBRID

2: for e ∈ E do
3: d← Dest(e)
4: p← iSk[HashV (d)

maxHash]
5: e.owner← p
6: end for
7: for v ∈V do
8: if inDegree(v)> T hreshold then
9: for e ∈ Edges(v) do

10: s← Src(e)
11: p← iSk[HashV (s)

maxHash]
12: e.owner← p
13: end for
14: end if
15: end for
16: end procedure

methodology. Algorithm 4 describes the heterogeneity-aware Hybrid cut algorithm.

Heterogeneity-aware Hybrid modifies both phases of Hybrid cut assignment

in a similar manner as heterogeneity-aware Random. Both random hashes are mod-

ified to index into iSk to produce a weighted assignment of edges to machines based

on the relative throughput of the nodes.

Heterogeneity-aware Ginger The Ginger cut partitioning algorithm [32]

is an extension of Hybrid cut enhanced with a locality heuristic called Fennel [107].

For high degree vertices, it operates like Hybrid cut. For low degree vertices, Gin-

ger minimizes the expected value of the replication factor. Let Vp represent the set

of vertices that are assigned to node p. Formally, a low-degree vertex v is assigned

45

Algorithm 5 Heterogeneity-aware Ginger
1: procedure GINGER

2: for e ∈ E do
3: d← Dest(e)
4: p← iSk[HashV (d)

maxHash]
5: e.owner← p
6: end for
7: for v ∈V do
8: if inDegree(v)> T hreshold then
9: for e ∈ Edges(v) do

10: s← Src(e)
11: p← iSk[HashV (s)

maxHash]
12: e.owner← p
13: end for
14: else
15: for p ∈ P do
16: Vp←Verts(p)
17: cost[p]←

∣∣N(v)∩Vp
∣∣− (1−Sk[p])∗b(p)

18: end for
19: e.owner← argmaxp(cost)
20: end if
21: end for
22: end procedure

to node i such that c(v, p) > c(v, j), f orall j ∈ P, where c(v, p) is the cost function.

The cost function is defined as c(v, p) =
∣∣N(v)∩Vp

∣∣− b(p), where N(v) denotes

the set of neighboring vertices along the in-edges of v. The first term,
∣∣N(v)∩Vp

∣∣
represents the degree of vertex v in the candidate partition p. The balance formula

b(p) represents the marginal balancing cost of adding vertex v to node p and is rep-

resented by a normalized factor considering both the number of edges and vertices

assigned to a node: 1
2(
∣∣Vp

∣∣+ |V ||E| ∗ ∣∣Ep
∣∣). Algorithm 5 describes the formulation of

Ginger cut for a heterogeneous environment.

46

0

20

40

60

80

100

120

140

160

0

2

4

6

8

R
an

d
om

G
re

ed
y

G
ri

d

H
yb

ri
d

G
in

ge
r

R
an

d
om

G
re

ed
y

G
ri

d

H
yb

ri
d

G
in

ge
r

R
an

d
om

G
re

ed
y

G
ri

d

H
yb

ri
d

G
in

ge
r

R
an

d
om

G
re

ed
y

G
ri

d

H
yb

ri
d

G
in

ge
r

livejournal amazon citation s-wiki

R
u

n
ti

m
e

(s
)

R
u

n
ti

m
e

(s
)

Receive Gather Apply Transmit Scatter

(a) Connected Components runtime

0

10

20

30

40

50

60

R
an

d
om

G
re

ed
y

G
ri

d

H
yb

ri
d

G
in

ge
r

R
an

d
om

G
re

ed
y

G
ri

d

H
yb

ri
d

G
in

ge
r

R
an

d
om

G
re

ed
y

G
ri

d

H
yb

ri
d

G
in

ge
r

R
an

d
om

G
re

ed
y

G
ri

d

H
yb

ri
d

G
in

ge
r

livejournal amazon citation s-wiki

R
u

n
ti

m
e

(s
)

Transmit Receive Gather Apply Scatter

Baseline

Thread-based HAP

(b) PageRank runtime

0

5

10

15

20

25

30

35

40

45

50

R
an

d
om

G
re

ed
y

G
ri

d

H
yb

ri
d

G
in

ge
r

R
an

d
om

G
re

ed
y

G
ri

d

H
yb

ri
d

G
in

ge
r

R
an

d
om

G
re

ed
y

G
ri

d

H
yb

ri
d

G
in

ge
r

R
an

d
om

G
re

ed
y

G
ri

d

H
yb

ri
d

G
in

ge
r

livejournal amazon citation s-wiki

R
u

n
ti

m
e

(s
)

Transmit Receive Gather Apply Scatter

(c) Triangle Count runtime

Figure 4.4: Runtime analysis for graph applications and data sets under thread-
based HAP and default partitionings (Heterogeneous cluster is formed by Amazon
EC2 c4.xlarge, c4.2xlarge, c4.4xlarge, and c4.8xlarge). The thread-based HAP de-
creases application runtime by as much as 69%, and on average 31%.

47

The heterogeneity-aware Ginger algorithm modifies the first pass similarly

to Skewed Hybrid by using a weighted hash on the destination vertex to assign an

edge. The second pass for high degree vertices is also the same as Hybrid cut, using

a weighted hash on the source vertex to assign an edge. The primary difference is

for the second pass on low degree vertices, which now uses a modified version

of the Fennel heuristic. The balance heuristic b(p) is multiplied by 1− Sk[p] to

favor node assignments more in line with the relative throughput of each node.

Similarly to the Obilivous cut algorithm, this algorithm employs a heuristic which

can generate partitions that slightly deviate from the requested skew factor.

4.4 Evaluation

The proposed HAP methodologies are evaluated on the heterogeneous clus-

ter formed by Amazon EC2 c4 virtual machines and Dell PowerEdge R320 servers

(detailed machine configuration is shown in Section 3.1). The five proposed heterogeneity-

aware partitioning algorithms are implemented on top of the PowerGraph [45] sys-

tem. Hence, the baseline used in this section is the default performance of Pow-

erGraph. Three popular graph applications (PageRank, Triangle Count, and Con-

nected Components) and four real-world graphs (livejournal, amazon, citation, and

s-wiki) are deployed to comprehensively evaluate HAP.

Experiment Outline Section 4.4.1 compares the performance of thread-based

HAP (skew factor generated by the thread-based estimation) and default partitioning

scheme when applied to three graph applications. Meanwhile, it also presents the

48

overhead of incorporating the heterogeneity-aware principal in the ingress phase.

Section 4.4.2 demonstrates the static edge distribution after applying the HAP al-

gorithms. Section 4.4.3 compares performance of graph applications guided by the

thread-based and profiling-based HAP. Lastly, Section 4.4.4 shows the cost effi-

ciency of various Amazon EC2 machines on graph analytical workloads, which is

the extra benefit brought by profiling the synthetic proxy graphs.

4.4.1 End-to-end Performance Evaluation

Figure 4.4 shows the runtime of each HAP partitioner and the unmodified

version when applied to several graph applications and data sets. The height of the

bar illustrates runtime, which is broken down into the time spent in each phase of

the algorithm. These phases are the gather/apply/scatter phases that compose the

majority of graph computation, and the transmit and receive phases, which represent

the amount of time that the compute threads are putting/getting data into its RX/TX

buffers for the network threads.

The PageRank algorithm illustrated in Figure 4.4b shows an average im-

provement in runtime of 25%, with the Hybrid and Ginger demonstrating the best

performance. The Triangle Count application, presented in Figure 4.4c, has an aver-

age improvement in runtime of 48%. This application also displays a strong amount

of data dependent performance, with the livejournal graph taking much longer than

the others. Livejournal is a power-law graph with a small number of extremely

high degree vertices, which stresses the triangle counting algorithm. Finally, Con-

nected Components (Figure 4.4a) shows an average improvement in runtime of

49

0
5

10
15
20
25
30
35
40

R
a
n

d
o
m

G
r
e
e
d

y

G
r
id

H
y
b

r
id

G
in

g
e
r

R
a
n

d
o
m

G
r
e
e
d

y

G
r
id

H
y
b

r
id

G
in

g
e
r

R
a
n

d
o
m

G
r
e
e
d

y

G
r
id

H
y
b

r
id

G
in

g
e
r

R
a
n

d
o
m

G
r
e
e
d

y

G
r
id

H
y
b

r
id

G
in

g
e
r

livejournal amazon citation s-wiki

I
n

g
r
e
s
s
 T

im
e
 (

s
)

Figure 4.5: Overhead of the ingress partitioning techniques. HAP incurs approxi-
mately 20% ingress overhead, which will amortize over the execution of most non-
trivial applications.

25%. The road map data set takes significantly longer to process due to the unique

nature of road topology, which differs significantly from the other graphs. Overall,

the thread-based HAP algorithms net an improvement of 31% over their respective

baseline across all algorithms and data sets.

Besides the performance improvement, it is also important to measure the

amount of time spending on partitioning/ingressing. Higher quality partitions usu-

ally take more time than naive algorithms. Figure 4.5 shows how data ingress is

affected by heterogeneity across data sets. In general, Random and Grid partition-

ing schemes are the quickest, and Greedy and Ginger are the slowest. Not counting

Ginger, the heterogeneous algorithms increase the data ingress time over their re-

spective baseline by approximately 22%. Almost all of the runtime overhead added

by the heterogeneous variants arises from the cost of computing a weighted hash.

While this is done efficiently in code, the calculation is performed at least once for

50

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

S
R

a
n

d
o

m

S
G

r
e
e
d

y

S
G

r
id

S
H

y
b

r
id

S
G

in
g
e
r

S
R

a
n

d
o

m

S
G

r
e
e
d

y

S
G

r
id

S
H

y
b

r
id

S
G

in
g
e
r

S
R

a
n

d
o

m

S
G

r
e
e
d

y

S
G

r
id

S
H

y
b

r
id

S
G

in
g
e
r

S
R

a
n

d
o

m

S
G

r
e
e
d

y

S
G

r
id

S
H

y
b

r
id

S
G

in
g
e
r

N
o

n
-
S

k
e
w

T
a
r
g
e
t
-
S

k
e
w

livejournal amazon citation s-wiki optimal

R
e
la

t
iv

e
 E

d
g

e
 D

is
t
r
ib

u
t
io

n

c4.xlarge c4.2xlarge c4.4xlarge c4.8xlarge

Figure 4.6: Relative distribution of edges to nodes for graphs data sets.

every new edge processed. The heterogeneous formulation of Ginger, however, has

a relatively high overhead and increases the ingress time by 66%, due to more calls

into the weighted hash function attributed to its multi-pass approach. While these

numbers might seem high, the real cost of data ingress must be measured with re-

spect to the application program. If the application program runtime is greater than

the data ingress phase, then the cost of ingress will be amortized over the appli-

cation program run, and the benefits during application phase from the proposed

approach will exceed the extra computation needed to load the data.

4.4.2 Load Balance

To obtain the optimal benefit in a heterogeneous cluster, it is important that

the partitioning strategies achieve the desired load balance as mentioned in Section

4.1. However, many of these strategies are heuristics and do not guarantee a perfect

51

data distribution. Therefore, it is important to study how the choice of partitioning

algorithm and data set can affect the load balance. Figure 4.6 shows the balance of

edge distributions among different data sets and partitioning strategies when com-

pared to the targeted edge distribution and the default homogeneous partitioning

approaches. The two bars on the right side of the graph illustrate the original ho-

mogeneous load balance objective and the optimal/target load balance objective.

Algorithms that are based on a random hash of the edges (such as Random and Hy-

brid) achieve a near-perfect load balance of edges in accordance with estimation.

Algorithms based on heuristics (such as Greedy, Grid, and Ginger), do not perfectly

achieve the target skew, but still maintain a fairly reasonable load balance. There

is not a significant amount of dependence between the choice of data set and the

load balance, with consistent trends across all data sets. Overall, most algorithms

illustrate good adherence to the estimated heterogeneity.

4.4.3 Thread-based vs Profiling-based HAP

To compare the quality of thread-based and profiling-based HAP, a small

heterogeneous cluster is formed by an Amazon EC2 c4.2xlarge and m4.2xlarge

machine. The Amazon c4.2xlarge and m4.2xlarge have the same thread count,

however, profiling-based estimation indicates that the skew factor of this cluster

is approximately 1:1.21, where m4.2xlarge has a slightly weaker computational

power. Figure 4.7 shows, compared to thread-based HAP, profiling-based partition-

ing results in an average of 1.17× speedup across three applications with four real-

world graphs. Moreover, to mimic a more complex heterogeneous cluster, a small

52

0
5

10
15
20
25
30
35
40
45

Ra
nd

om

Gr
ee

dy

Gr
id

Hy
br
id

Gi
ng
er

Ra
nd

om

Gr
ee

dy

Gr
id

Hy
br
id

Gi
ng
er

Ra
nd

om

Gr
ee

dy

Gr
id

Hy
br
id

Gi
ng
er

Ra
nd

om

Gr
ee

dy

Gr
id

Hy
br
id

Gi
ng
er

amazon citation livejournal s-wiki

Ru
nt
im

e(
s)

Thread-based

Profiling-based

(a) PageRank runtime

0

2

4

6

8

10

12

14

Ra
nd

om

Gr
ee

dy

Gr
id

Hy
br

id

Gi
ng

er

Ra
nd

om

Gr
ee

dy

Gr
id

Hy
br

id

Gi
ng

er

Ra
nd

om

Gr
ee

dy

Gr
id

Hy
br

id

Gi
ng

er

Ra
nd

om

Gr
ee

dy

Gr
id

Hy
br

id

Gi
ng

er

amazon citation livejournal s-wiki

Ru
nt

im
e

(s
)

(b) Connected Components runtime

0
5

10
15
20
25
30
35
40

Ra
nd

om

Gr
ee

dy

Gr
id

Hy
br

id

Gi
ng

er

Ra
nd

om

Gr
ee

dy

Gr
id

Hy
br

id

Gi
ng

er

Ra
nd

om

Gr
ee

dy

Gr
id

Hy
br

id

Gi
ng

er

Ra
nd

om

Gr
ee

dy

Gr
id

Hy
br

id

Gi
ng

er

amazon citation livejournal s-wiki

Ru
nt

im
e

(s
)

(c) Triangle Count runtime

Figure 4.7: Performance comparison of partitioning algorithms guided by thread-
based and profiling-based estimations on a heterogeneous cluster formed by Ama-
zon EC2 c4.2xlarge and m4.2xlarge machines. Baseline system uses the default
partitioning.

53

1

1.2

1.4

1.6

1.8

PageRank Connected
Components

Triangle Count

S
p

e
e

d
u

p

Thread-based

Profiling-based

(a) Performance comparison.

0

10

20

30

40

PageRank Connected
Components

Triangle Count

E
n

e
rg

y
 s

a
v

in
g

s
 (

%
)

Thread-based

Profiling-based

(b) Energy cost comparison.

Figure 4.8: Performance and energy improvements of thread-based and profiling-
based HAP on Dell PowerEdge R320 clusters. Baseline system uses the default
partitioning.

local cluster (configurations are shown as “Dell PowerEdge R320 Cluster” in Ta-

ble 3.1) is formed to measure both the performance and energy cost of thread-based

and profiling-based HAP partitionings (Amazon EC2 clusters do not support energy

measurement and frequency manipulation). The fast machine has 12 cores running

at 2.5Ghz, while the little machine only has 4 cores with a maximum frequency

of 1.8Ghz. Not surprisingly, the profiling-based skew factor estimation changes

substantially. The PageRank and Connect Components become more than 1 : 6.

Different from the significant changes in these two applications, Triangle Count’s

skew factor ratio increases from 1 : 3.1 to 1 : 4.5, and it becomes quite similar to the

partition ratio suggested by thread-based method. Therefore, Figure 4.8 shows that

both the runtime improvement and energy reduction of this application is similar

to what thread-based one achieves. On average, the profiling-based HAP achieves

1.49x speedup and 22.9% energy savings over the default homogeneous partition-

ings. This presents an average of 15% speedup and 14.1% energy reduction over

54

0

0.2

0.4

0.6

0.8

1

1.2

0123456

No
rm

ali
ze
d	
 C

os
t

Speedup

Pagerank	
 c4.xlarge Pagerank	
 c4.2xlarge
Pagerank	
 c4.4xlarge Pagerank	
 c4.8xlarge
Pagerank	
 m4.2xlarge Pagerank	
 r3.2xlarge
Coloring	
 c4.xlarge Coloring	
 c4.2xlarge
Coloring	
 c4.4xlarge Coloring	
 c4.8xlarge
Coloring	
 m4.2xlarge Coloring	
 r3.2xlarge
TC	
 c4.xlarge TC	
 c4.2xlarge
TC	
 c4.4xlarge TC	
 c4.8xlarge
TC	
 m4.2xlarge TC	
 r3.2xlarge
CC	
 c4.xlarge CC	
 c4.2xlarge
CC	
 c4.4xlarge CC	
 c4.8xlarge
CC	
 m4.2xlarge CC	
 r3.2xlarge

Figure 4.9: Cost and performance pareto graph of different computing nodes and
different graph applications.

the thread-based HAP.

4.4.4 Cost Efficiency Projection

For users of cloud computing services, cost is a primary consideration.

Other than the performance and energy improvements achieved in a heterogeneous

cluster, profiling the synthetic graphs can also offer an accurate overview of the

cost efficiency of different machines. Figure 4.9 plots the Pareto space of each indi-

vidual machine’s performance and cost on four applications. All cost and speedup

information is generated by profiling synthetic graphs.

There are many metrics that can be used to evaluate cost efficiency, such

as total cost of ownership (TCO) and cost per throughput/performance. Similarly,

the cost per task is used to define a machine’s efficiency. The cost per task is de-

fined as the product of task runtimes and a machine’s hourly rate (hourly cost is

shown in [1]). As Figure 4.9 shows that machines of similar type are clustered. All

55

2xlarge machines (from three different domains) are grouped together with around

2x around speedup and 0.2x cost, which means none of them demonstrate their

“advertised” specialty for graph applications. Within the computation-optimized

domain, 8xlarge is the most expensive machine for graph workloads. This is a re-

sult of the high charge rate and relatively low performance. The 4xlarge and 2xlarge

saves 60% and 80% cost and provides 4x and 2x speedup, which should be consid-

ered as reasonable candidates for graph applications to satisfy both aspects. Without

profiling using synthetic graphs, users would have no insights about the machines

provided by cloud services or the machines they may have already deployed.

4.5 Summary

Graph analytics workloads have emerged as an extremely important class of

problem during the age of big data. As the amount of heterogeneity in data centers

continue to increase due to virtualization and the explicit introduction of heteroge-

neous compute units, it becomes more and more critical for graph processing frame-

works to evolve as well. Towards this end, this chapter provides a number of graph

partitioning strategies that attempt to account for heterogeneity in the data ingress

phase of the popular PowerGraph framework. Moreover, this chapter shows that the

skew factor derived by thread-based and profiling-based estimations can drive huge

performance wins using heterogeneity-aware partitioning strategies. Experiments

illustrate that HAP reduces application runtime by as much as 64% with an average

of 32% on a small 4-node heterogeneous cluster. Additionally, evaluation shows

that profiling-based HAP can offer an average of 15% speedup and 14.1% energy

56

reduction over the thread-based one across a variety of applications and data sets

with an amortizable profiling overhead.

57

Chapter 5

Hula: Auto-balancing Distributed Graph Processing
On the Fly

The magnitude of data is growing exponentially in the big data era [21, 100].

A significant amount of this data is stored as graphs in many domains, such as social

networks [67, 73], online retail, and bio-informatics [19]. To efficiently process

the large-scale graphs, both academic and industrial communities have invested

significant efforts on designing and optimizing graph processing systems.

Existing graph processing engines employ distributed-memory models to

accelerate the graph computation with massive parallelism available in multi-machine

clusters. However, distributed graph processing suffers performance inefficiencies

due to workload imbalance [32, 61, 69, 93, 100]. This is mainly caused by the ir-

regularity of graph analytics. For instance, irregular execution patterns of graph

algorithms result in different amounts of dynamic operations (e.g., memory ac-

cesses, atomic operations, arithmetic operations, network transmissions, and many

others) on each machine in the cluster. More severely, for non-stationary graph ap-

plications [61] like single source shortest path (SSSP), the workload intensity can

dynamically move among machines. These significantly increase the difficulty of

achieving work balance in distributed graph processing.

58

To balance the workloads, existing graph processing systems rely on vari-

ous graph partitioning schemes [32, 45, 69, 76, 100, 128, 132] which decompose the

workloads at the pre-processing stage. However, it is difficult to design a com-

mon static partitioning algorithm that avoids load imbalance for any given graph

and application due to the unpredictable dynamic behaviors. To alleviate this is-

sue, prior works [61, 93] adopt dynamic load balancing. During the execution,

these approaches identify the source of imbalance at the vertex level and migrate

the “heavy” vertices across machines. Moreover, attributes associated with these

vertices, such as vertex states, properties, and adjacency lists are also migrated.

After migration, a cluster-wide vertex mapping needs to be updated for the compu-

tational correctness. Although these schemes are promising, the large overhead of

balancing workloads and remapping the vertices can easily surpass the performance

gains [17].

This chapter presents Hula, a distributed graph processing system that auto-

balances graph analytics on the fly with low overhead. It is observed that only a few

machines (graph partitions) incur intensive workloads, and these machines are often

surrounded by the ones with light workloads under the chunk-based partitioning

scheme. Based on this key observation, Hula splits a graph into multiple chunks and

contiguously distributes them in the multi-machine cluster (referred to as coarse-

grained partitioning). This transforms a graph into a “hula hoop” shape, which

naturally exposes a neighboring relationship for machines/partitions and preserves

locality existing in real-world graphs [103, 132].

In the “hula hoop”, Hula allocates a subset of vertices to be shared by neigh-

59

boring machines. Hula further splits this subset in a finer-granularity and generates

structural metadata (i.e., connection information) for fine-grained partitions that are

stored on both neighboring machines. This forms Hula’s hybrid partitioner, which

aims to help achieve flexible migrations and reduce the data movement during the

migrations between neighbors. The migrating workload in Hula mimics the action

of rolling a “hula hoop”.

Hula utilizes the lightweight hardware timer to monitor the workload across

machines. Once imbalance is identified, Hula’s decentralized scheduler re-partitions

the vertices and migrates minimum vertex properties (e.g., distance in SSSP). Over-

all, unlike the prior works, Hula 1) reduces the online monitoring overhead for

workload imbalance, 2) lowers the data migration volume, and 3) simplifies the

scheduling, migration, and synchronization logic. The contributions of Hula are

summarized as follows:

1. Hula proposes a novel hybrid partitioning scheme to maintain a graph’s nat-

ural locality as well as generating metadata for lightweight online workload

migrations.

2. Hula utilizes the hardware timer to monitor balance status and support work-

load scheduler to arrange work migration. The proposed migration scheme

incurs minimal data movement to reduce workload imbalance in distributed

graph engines.

3. Hula, a distributed graph processing system, is integrated with the proposed

dynamic workload balancing strategy with various state-of-the-art techniques,

60

M3

M0 M1

M2

(a) Partitions before workload balancing.

M3

M0 M1

M2

(b) Partitions after workload balancing.

Figure 5.1: Overview of Hula’s workload balancing methodology. Note that M0
and M3 are used as examples to show the workload migration process.

such as a hybrid computation model and an intra-machine work-stealing scheme.

With the support of Hula’s APIs, the load balancing process is transparent to

users.

4. Hula is evaluated with extensive experiments and compared with two state-

of-the-art distributed graph processing systems. Experiments of four popular

graph algorithms with four real-world graphs running on a 16-machine cluster

(close to a thousand computing cores) show that Hula outperforms existing

systems, yielding speedups up to 48.7× (4.4× on average).

5.1 Design of Hula

This section first overviews Hula’s load balancing methodology, and then

discusses its key components such as its hybrid partitioner, workload monitor, and

load balancing scheme in detail.

61

5.1.1 Methodology Overview

Like other distributed graph processing frameworks, Hula needs to pre-

process a given graph, and then apply the graph application on it. In the pre-

processing stage, Hula partitions the graph and duplicates some vertices as well

as their connection information (e.g., adjacency list, referred to as metadata) across

neighboring partitions. As shown in Figure 5.1a, multiple vertices and their meta-

data are shared between a pair of neighboring partitions (e.g., the black and red

vertices and associated edges surrounded by dot lines between M0 and M3).

During the execution phase, Hula can migrate work between neighboring

machines for load balance. For instance, as shown in Figure 5.1b, if M3 has more

work than M0, the shared components are migrated from M3 to M0. Since M0

already owns the metadata of the migrated components, only a small amount of

information (e.g., up-to-date vertex properties) needs to be transferred via the net-

work. After the migration, a partitioning boundary between M3 and M0 is re-drawn

to update the ownership of the vertices. As can be seen, Hula restricts the migration

network/topology and utilizes the metadata generated in the pre-processing phase

to achieve lightweight load balancing at runtime.

5.1.2 Hybrid Partitioner

Graph systems typically utilize graph partitioners to reduce communication

overhead and balance workloads. However, as aforementioned, static partitioning

strategies alone cannot eliminate imbalance caused by applications’ unpredictable

activities and dynamic behaviors. Thus, Hula employs a hybrid partitioning scheme

62

Va

Vb

Vc

Vd

M0

M1

M2

M3
M0 M1M3

Shared	Vertex	Subset

VaVd

Vb Vc

Coarse-grained	Graph	Partitioning

Fine-grained	Graph	Partitioning

M0 M1M3
Vb VcVa’

Vd

cutBoundary

Figure 5.2: Example of Hula’s hybrid graph partitioning scheme for a 4-machine
cluster.

that partitions a graph and prepares the metadata for online workload balancing.

In a cluster with p machines, Hula splits the graph to multiple partitions in

an edge-centric manner and contiguously distributes it to each machine. As shown

in Figure 5.2, this scheme naturally exposes a neighboring relationship among ma-

chines (referred to as Coarse-grained Graph Partitioning). After splitting, each

machine owns one partition. Each partition is defined by two cutBoundaries (e.g.,

Va and Vb). For example, a vertex with index ranging in between Va and Vb is

owned by M0. The next chunk ranging from Vb and Vc is owned by the neigh-

bor M1. To roughly balance the workload, all partitions have an equal number of

edges. According to the prior studies [25, 40, 108], graphs often have locality in

adjacent vertices that are likely to be stored close to each other, as most edges con-

nect two vertices with close vertex indices. Hula’s coarse-grained graph partition

scheme can yield good data locality because vertices with close indices are likely

connected with edges.

63

However, similar to prior partitioning schemes [32, 45, 107, 132], the coarse-

grained partitioner is insufficient to balance a graph application’s dynamic work-

load. Thus, Hula implements a second level partitioning to support dynamic load

balancing with minimal cost. As shown in Figure 5.2, Hula selects a subset of ver-

tices that is shared by two neighboring partitions in the “Hula hoop”. This is marked

as a Shared Vertex Subset (e.g., the blue shade between M3 and M0), which con-

sists of α% of edges originally owned by each partition (Section 5.3.3 discusses

how to select an appropriate size of shared vertex subset). Then, each shared vertex

subset is further partitioned at a finer granularity (referred as Fine-grained Graph

Partitioning). Similar to the coarse-grained partitioner, each fine-grained partition

has a similar amount of edges, and edges associated with a vertex reside in one

partition. The number of mini-chunks produced by fine-grained partition is equal

to the number of physical cores on a machine. This utilizes all computing units to

parallelize the pre-processing work. Like the red lines shown in Figure 5.2, moving

the “Hula hoop” transfers the ownership of the fine-grained chunks, which can help

migrate the workload of a machine on the fly.

After the hybrid cutting, Hula generates the desired formats: compressed

sparse row (CSR) and compressed sparse column (CSC) for the push/pull com-

putation. This connection information is generated for both coarse-grained and

fine-grained partitions. Pre-computing these for fine-grained chunks trades off the

pre-preocessing time for light-weight data migration during execution. Moreover,

Hula restricts the amount of data that can be transferred and only allows a migra-

tion to happen between a pair of neighboring machines (like the action of play-

64

Va
Vb Vb

Computation
Unit

Memory Unit

Send Outgoing Messages

Vc
Vc

Receive Incoming Messages

Computation
Unit

Memory Unit

Machine 1 Machine 2

1

2

3 4

1

2

Computational Operations3

Atomic Operations4

Figure 5.3: Hula’s workload monitoring system.

ing a “Hula hoop”). Compared to the fully connected migration topology in prior

works [61, 93], Hula’s design simplifies the migration topology, minimizes the data

movement in migration, and avoids possible network flooding during workload bal-

ancing.

5.1.3 Workload Monitoring

To balance distributed graph processing, Hula needs to monitor machines’

workload intensity in each execution iteration (a.k.a., superstep [76]). As shown in

Figure 5.3, Hula has four types of operations. However, unlike prior works [61, 93],

Hula’s imbalance is mainly caused by the uneven distribution of computational

operations and atomic operations. This is because 1) Hula dedicates one thread to

send outgoing messages, one thread to receive incoming messages, and the rest of

the threads to work on computation and memory access, and 2) Ethernet technology

has been improved (e.g., Infiniband network) and will be further advanced. This

65

Computation
Superstep

Synchronization
Barrier

Imbalanced?
No

Schedule()

Migrate
Vertex Property

Migrate
Active List

Yes

Figure 5.4: Hula’s workflow with the workload scheduling and migration support.

hides the impact of sending and receiving data in graph processing. Hula utilizes

the hardware timer (i.e., rdtsc()) to profile the CPU cycles spent on the computation

unit and the memory unit. Compared to a software timer (e.g., gettimeo f day())

used in prior work [61], this method provides an extremely low overhead, where

each profiling only costs tens of nanoseconds on modern chips [12]. In order to

measure the “true” workload situation, the timers are placed before every lock or

barrier to squeeze out the idle/waiting time across machines. This information is

summarized as a score of balance (later referred as bScore). The usage of bScore is

discussed in the next section.

5.1.4 Dynamic Load Balancing

Leveraging the information recorded by the monitoring system, Hula can

decide the balance situation of a distributed cluster at the moment and take corre-

sponding actions. Figure 5.4 overviews the workflow of Hula to achieve the dy-

66

namic load balancing; the core balancing steps are marked in the red-dotted box.

Within Hula, all machines perform computation supersteps concurrently un-

til reaching a synchronization barrier. After the barrier, the neighboring machines

exchange the balancing information. Workload migration is based on the satisfac-

tion of two conditions. One is the number of active edges, which is equal to the

number of active vertices × associated edges. If the number of active edges is

smaller than 10% of the total number of edges, Hula does not proceed to the migra-

tion procedure. This is because the migration cost can surpass the benefit of balanc-

ing a small amount of workload. The other condition is comparing the balancing

information between neighboring machines. If a machine owns more workloads

than its neighbor without a significant difference (e.g., >5% used in experiments),

no migration occurs. As shown in Figure 5.4, Hula continues to the next round of

computation without the need of load balancing (i.e., the “No” path) in these two

cases.

Otherwise, Hula goes to the load balancing path. Hula utilizes a lightweight

work migration strategy, which consists of workload scheduling and migration. The

design is further discussed in the following sections.

5.1.4.1 Workload Scheduling

When load imbalance between two neighboring machines is detected, they

proceed to the scheduling phase as shown in Figure 5.4. Hula moves the partition

boundaries between a machine and its left neighbor only to migrate workloads,

which reduces synchronization overhead and parallelizes the scheduling process.

67

Algorithm 6 Workload Scheduler.
1: le f tMachine = (machineId - 1 + machines) % machines
2:
3: //if this machine has a heavier workload than its left neighbor
4: le f tOverlapr = 2 × machineId + 1
5: if bScore[machineId] > 2 × bScore[le f tMachine]
6: newCutBoundary[machineId] = overlapCutBoundary[le f tOverlapr]
7: else
8: space = overlapCutBoundary[le f tOverlapr] - CutBoundary[machineId]
9: percent = (bScore[machineId] - bScore[le f tMachine]) / bScore[machineId] / 2
10: move = percent × space / le f tStep[machineId] × le f tStep[machineId]
11: newCutBoundary[machineId] = cutBoundary[machineId] + move
12:
13: //if left neighboring machine has a heavier workload than this machine
14: le f tOverlapl = 2 × machineId
15: if bScore[le f tMachine] > 2 × bScore[machineId]
16: newCutBoundary[machineId] = overlapCutBoundary[le f tOverlapl]
17: else
18: space = cutBoundary[machineId] - overlapCutBoundary[le f tOverlapl]
19: percent = (bScore[le f tMachine] - bScore[machineId]) / bScore[le f tMachine] / 2
20: move = percent × space / le f tStep[machineId] × le f tStep[machineId]
21: newCutBoundary[machineId] = cutBoundary[machineId] - move
22:
23: Synchronize(newCutBoundary)
24: newCutBoundary[machines] = vertices + newCutBoundary[0]

Algorithm 6 describes how to leverage bScore (i.e., balance score) to determine the

new cut/partition boundary for the next computation iteration.

An example is used to illustrate the algorithm with two machines, which

can be generalized to multiple machines in the cluster. Given a machine M1, if its

left neighbor M0’s bScore is smaller than 50% of M1’s, then newCutBoundary be-

tween the two machines will be shifted to the rightmost side (overlapCutBoundary

in line 6). It gives the entire shared vertex subset (shown in Figure 5.2) to M0. Oth-

erwise, the scheduler first calculates the distance between the current partition and

the rightmost boundary (line 8). Based on the difference between the two machines’

bScores, the new boundary then moves to the right side proportionally (line 9-11).

Shifting the partition boundary to the right side helps reduce the workload for M1,

as M1 owns fewer vertices/edges. Migrating work from the left machine (line 13-

68

V0

cutBoundarynewCutBoundary

M3 M0

V0

cutBoundary

M3 M0

Properties	of	a	subset	of	vertices

Figure 5.5: Examples of Hula’s workload migration between M3 and M0.

21) follows the similar strategy. The boundary movement mimics a “Hula hoop”

shifting action. After computing the new left boundary, all machines synchronize

this information and use it to migrate the necessary data before the next-round com-

putation (line 23-25).

5.1.4.2 Workload Migration

After the scheduler calculates the new partition boundaries, the vertex prop-

erty migration is initiated. Hula migrates vertex properties (e.g., a vertex’s distance

and activeness in SSSP algorithm) and updates the partition boundaries for the next

round of computation.

To initiate a workload migration, Hula needs three pieces of information

including starting pointer/address and size of migrating data, and direction of this

migration. All of these are determined by the positions of current and new partition

boundaries. For instance, Figure 5.5 shows the examples of workload migration

69

between machine M0 and its left neighbor M3, where the newCutBoundary is on

the left side of cutBoundary. This indicates the direction of a migration, where M3

needs to transfer work to M0. After confirming the direction, a subset of data in

a vertex property array (starting from index newCutBoundary) is transmitted from

M3 to M0. The size of this transmission is equal to the value difference between

newCutBoundary and cutBoundary.

Although Figure 5.5 shows the example of M0 and its left neighbor, migra-

tion between a machine and its right neighbor follows the same logic. Other than

the vertex property, applications like SSSP need to migrate active list before the

next superstep (as shown in Figure 5.4 in block-dotted box). Migrating the active

list and vertex property follow a similar logic. Differently, the active list is more

condensed data format, as it only uses a single bit to represent a vertex’s activeness.

Compared to the data movements in prior workload balancing schemes [61, 93],

Hula migrates a minimal amount of data to reduce workload imbalance on the fly.

5.2 Implementation Details of Hula

This section elaborates on Hula’s important system implementation details

including the computation model, the programming model, and the intra-machine

work stealing scheme.

5.2.1 Graph Computation Model

During the graph processing, the number of active edges in each iteration

may vary dramatically. As studied in [22], the traditional top-down method (i.e.,

70

Start

Push Pull

Eactive < T

Eactive > T

Eactive < T
Eactive > T

Figure 5.6: Hula’s computation model (Eactive represents the number of active edges
and T stands for the threshold used to switch between two models.)

push) cannot efficiently handle the graph computation all the time. Thus, modern

graph algorithms and systems [22, 99, 103, 132] prefer a hybrid graph computa-

tion model that can be adapted according to the number of active edges. Hula is

inspired to implement such a hybrid model, which combines the top-down compu-

tation manner with the bottom-up one.

As shown in Figure 5.6, there are two key parameters that determine the

computation mode at the beginning of each iteration. Eactive represents the number

of active edges at the moment, and T is the threshold for mode switching. If Eactive

is less than T , the graph vertices in this iteration are executed in a push way, where

an active vertex vsrc and its value are broadcast to the destination machines in the

cluster. Upon receiving this, all vdsts in destination machines are traversed and

updated. If pull mode (a.k.a, bottom-up) is selected, a vdst’s source vertices are

traversed locally, and an intermediate result is generated and sent to the machine

owing vdst . This can dramatically reduce the network traffic.

71

Algorithm 7 PageRank algorithm on Hula.
1: currRank = alloc vertex property¡double¿()
2: nextRank = alloc vertex property¡double¿()
3: //active list records the activeness of each vertex
4: active = alloc active list()
5: active→active all()
6: activeListMigration = f alse
7: // two user-defined utility function
8: commit(v, val)
9: atomic add(&nextRank[v], val)
10: accumulate(val1, val2)
11: return val1 + val2
12: // iterative superstep computation
13: hula→superstep (
14: push(vsrc, outgoingEdges){
15: for vdst ∈ outgoingEdges
16: commit(vdst , currRank[vsrc])
17: }, //spread out vsrc value via outgoing edges
18: pull(vdst , incomingEdges){
19: double sum = 0
20: for vsrc ∈ incomingEdges
21: sum += currRank[vsrc]
22: return sum
23: }, //locally summarize vsrc values for a vdst
24: active, activeListMigration // f alse indicates no need to migrate active list
25:)

5.2.2 Programming with Hula

Hula’s APIs are illustrated with a programming example—PageRank. The

PageRank algorithm [83] iteratively increases the relative rating of a vertex based

on the weights of all connected vertices to rank the importance of each vertex in the

graph. Algorithm 7 demonstrates the PageRank implemented atop Hula. Lines 1-4

leverage Hula’s allocation APIs to allocate the vertex property arrays (currRank

and nextRank) and active list (active). After these, users need to define two func-

tions in lines 8-11. The commit() function helps perform the user-defined atomic

operation on a vertex. The accumulate() function applies a user-defined operation

to accumulate two intermediate results. With this support, PageRank can execute

Hula’s superstep API function to compute vertices’ rankings.

72

In a computation superstep (lines 13-25), users need to provide their own

push and pull functions to traverse edges in either top-down or bottom-up fash-

ion [22]. Upon receiving vsrc, the push function adds its current value to each vdst

via a set of outgoing edges (lines 14-16). The add operation here leverages the

user-defined commit to achieve atomicity. Differently, for a given vdst , pull sum-

marizes vdst’s local sum via its incomingEdges and returns this local result back

to Hula (lines 18-22). The local result is sent to the destination machine owning

vdst . Besides the push and pull functions, the active list and a Boolean value

need to be passed to Hula as well. For PageRank, as all vertices during compu-

tation are active, activeListMigration is set to false to avoid migrating active list.

For other applications such as SSSP, activeListMigration needs to be turned on.

Other than these APIs, Hula, like other program systems [32, 45, 48, 103, 132], also

provides an update vertices() API for an application to apply a certain operation

on all vertices (e.g., PageRank’s ranking equation), which facilitates the algorithm

implementation.

This PageRank example shows that the implementation of graph applica-

tions on Hula is straightforward. Additionally, Hula’s dynamic load balancing phi-

losophy is transparent to users and does not incur heavy programming burdens.

5.2.3 Intra-machine Balance

Other than the imbalance on the inter-machine level, the load imbalance

within a machine can also severely impact the overall performance of distributed

graph processing. To address this, Hula follows the idea proposed in prior ap-

73

proaches [24, 35, 41, 103, 132] to implement a fine-grained work stealing mecha-

nism. Hula splits each partition into multiple chunks (i.e., the number of chunks

equals the number of physical cores). To achieve work stealing, each chunk is fur-

ther cut into multiple mini-chunks. As recommended in [103], each mini-chunk

owns 256 contiguous vertices with associated metadata. Such contiguous vertex

chunks with good access patterns are friendly to the existing hardware prefetcher.

In each execution superstep, all working threads attempt to finish up the as-

signed mini-chunks in order. Once a thread completes its job, it steals the remaining

chunks from other “busy” threads. To avoid multiple threads working on the same

mini-chunk, Hula uses a pointer to keep track of the progress. An atomic operation

(e.g., sync f etch and add) is used to update the progress pointer that is visible to

all threads. With this design, all threads on a machine are “eager” to finish the local

execution to boost the single-machine performance.

5.3 Evaluation

Hula is evaluated on a 16-machine cluster with Intel Xeon Platinum 8160

processors (Skylake) and InfiniBand network switches (up to 100Gb/s). Each ma-

chine has 48 physical cores with 32KB pivate L1 I/D caches, 1MB private L2

caches, and shared 33MB L3 caches. Each machine has 192GB DDR4 DRAM.

Hula is compared with two popular distributed graph processing systems—

PowerLyra [32] and Gemini [132]. Some other prior load balancing work for

distributed graph processing, such as Mizan [61] and GPS [93], cannot be setup

due to the unsupported version of Hadoop (v1.x) and software bugs [32]. Power-

74

0.1

1

10

100

1000

livejournal weibo twitter friendster

R
u

n
ti

m
e

 (
se

co
n

d
s) PowerLyra Gemini Hula

(a) PageRank

0.1

1

10

100

livejournal weibo twitter friendster

R
u

n
ti

m
e

 (
se

co
n

d
s)

(b) SSSP

0.1

1

10

100

1000

livejournal weibo twitter friendster

R
u

n
ti

m
e

 (
se

co
n

d
s)

(c) TunkRank

0.1

1

10

100

livejournal weibo twitter friendster

R
u

n
ti

m
e

 (
se

co
n

d
s)

(d) ConnComp

Figure 5.7: 16-machine runtime comparison of PageRank, SSSP, TunkRank, and
ConnComp implemented atop PowerLyra, Gemini and Hula. Note that runtime is in
log-scale and PowerLyra (uses Ginger partitioner to offer the best performance [32])
failed to process twitter graph [51, 96, 128, 132].

Lyra is chosen as the baseline system, as its hybrid-cut graph partitioning scheme

has already shown a significant performance improvement in [32] over these prior

works. Gemini is a computation-centric distributed graph processing system that

employs chunk partitioning, hybrid computation model, and many other advanced

techniques. Since Gemini and Hula have many similar system components, Gemini

is selected as the baseline to show the performance improvement brought by Hula’s

dynamic workload balancing design. The experiments include four popular graph

applications from both stationary and non-stationary categories (non-stationary:

Single Source Shortest Path (SSSP), Connected Components(ConnComp); station-

75

ary: PageRank and TunkRank) [61]. The average results of three repeated exe-

cutions (standard deviation < 5%) are reported. The input for these applications

include four real-world graphs (i.e., livejournal-twitter) and three large synthetic

RMAT graphs [63] (i.e., RMAT1-RMAT3) with the number of vertices and edges

ranging from 4.8 to 500 million and from 69 million to 10 billion, respectively, as

shown in Table 3.2.

Experiment Outline Section 5.3.1 compares Hula’s performance with Gemini

and PowerLyra on a 16-machine cluster (with close to a thousand computing units).

This experiment uses the real-world graphs as the input to show the performance

in practical usage. Section 5.3.2 uses large synthetic graphs to evaluate Hula’s

inter-machine scalability. Due to the size limit of real-world graphs, the synthetic

(RMAT) graphs are used as the input to make sure each machine and each core

has enough computation under a large scale. Section 5.3.3 further discusses Hula’s

performance on the various parameter settings and demonstrates the key design

trade-offs.

5.3.1 Overall Performance

As Hula aims to improve the distributed graph processing performance via

a lightweight load balancing technique, comparing it to other state-of-the-art dis-

tributed graph processing systems can help quantify Hula’s high performance im-

provement. Figure 5.7 reports the 16-machine performance of PowerLyra, Gemini

and Hula, executing four popular graph applications on four real-world graphs.

76

1

10

100

1000

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

PageRank SSSP TunkRank ConnComp

N
o

r
m

a
li

z
e

d
 r

u
n

t
im

e PowerLyra Gemini Hula

(a) RMAT1

1

10

100

1000

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

PageRank SSSP TunkRank ConnComp
N

o
r
m

a
li

z
e

d
 r

u
n

t
im

e

(b) RMAT2

1

10

100

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

PageRank SSSP TunkRank ConnComp

N
o

r
m

a
li

z
e

d
 r

u
n

t
im

e

(c) RMAT3

Figure 5.8: Inter-machine scalability of the application execution of Power-
Lyra [32], Gemini [132] and Hula (1-16 machines) on three synthetic RMAT
graphs. Note: missing points are due to the failure of exceeding memory capac-
ity.

Runtime is reported in logarithmic scale for readability.

PowerLyra is a general distributed graph platform that provides many op-

tions for researchers to test their ideas. Even though PowerLyra only deploys static

partitioners (e.g., Ginger), it still outperforms many state-of-the-art systems [61, 93]

with a dynamic load balancer [32]. As shown in Figure 5.7, Hula outperforms Pow-

erLyra in all cases significantly (13.7× on average), with up to 48.7× for the Con-

nComp application on the livejournal graph (in Figure 5.7d). For the large-scale

graphs such as twitter and friendster, Hula can yield an average of 24.5× speedup

across four applications. This explicitly indicates Hula’s superior performance in

comparison to prior works on dynamic re-balancing for distributed graph process-

ing.

Unlike PowerLyra, Gemini is a dedicated computation-centric system that

utilizes most of the state-of-the-art optimization techniques. As reported in [132],

77

it outperforms PowerGraph, GraphX, and PowerLyra in the distributed setup, and

provides a competitive (sometimes even better) performance as Galois [80] and

Ligra [99] on a single machine. For PageRank and TunkRank, Figure 5.7a and 5.7c

show that Hula achieves 1.6× speedup on average, while Figure 5.7b and 5.7d in-

dicate that Hula provides an average of 1.4× speedup on SSSP and ConnComp,

respectively. The speedup difference is mainly due to SSSP’s and ConnComp’s

non-stationary runtime behaviors, which incur more workload migrations. Since

Gemini’s chunk partitioner is similar to Hula’s coarse-grained partitioner, the per-

formance improvement is purely brought by Hula’s lightweight dynamic load bal-

ancing design.

5.3.2 Scalability

To demonstrate Hula’s inter-machine scalability, three large-scale synthetic

graphs generated by PaRMAT [63] are used to provide enough work for the 16-

machine cluster. Due to inefficient memory usage [51, 96, 128, 132], PowerLyra

cannot handle the RMAT2 graph with fewer than 4 machines, and it cannot handle

the RMAT3 graph with fewer than 8 machines. However, Gemini and Hula can

operate these RMAT graphs in all cases.

Figure 5.8 demonstrates the inter-machine scalability of the execution phase

of the three systems. For all RMAT graphs, Hula can achieve a significant speedup

(up to 102.2× on ConnComp executing the RMAT1 graph) over PowerLyra in the

scale-out experiments. Among all applications, Hula shows the smallest speedup

over PowerLyra on SSSP (an average of 13.8×). This is because PowerLyra pro-

78

vides relatively better scalability on SSSP compared to the other three graph work-

loads.

Unlike PowerLyra, Gemini has competitive performance and scalability com-

pared to Hula. However, as the number of machines increases, Gemini suffers from

scaling losses because of the workload imbalance and the increasing communica-

tion overhead. More machines in a cluster generally provide more computational

power. Yet, it enlarges the difficulty of balancing the graph workload and introduces

more network costs. This surpasses the benefits obtained from adding more com-

putation resources. Such behavior is clearly observed in Figure 5.8a and 5.8b. With

a worse single-node performance (e.g., SSSP executing RMAT3 in Figure 5.8c),

Hula can increasingly outperform Gemini on four applications for scaling out. On

average, compared to the 1-machine setup, Hula running on a 16-machine clus-

ter yields an average of 6.3× speedup across the four applications with the three

RMAT graphs. Among all the configurations (1 to 16 machines), Hula outperforms

Gemini by up to a 1.8× (1.3× on average) speedup.

5.3.3 Further Discussions

Some micro metrics and key design parameters are analyzed to further eval-

uate Hula.

Shared Vertex Subset In order to achieve lightweight workload migrations, Hula

prepares a Shared Vertex Subset for each pair of neighboring partitions in the

“Hula Hoop”. The size of this subset has a large impact on Hula’s performance,

79

0.5

1

1.5

2

2.5

a10 a20 a30 a40 a10 a20 a30 a40 a10 a20 a30 a40 a10 a20 a30 a40

PageRank SSSP TunkRank ConnComp

N
or
m
al
iz
ed

	ru
nt
im

e livejournal weibo
twitter friendster

Figure 5.9: Sensitivity study on the size of Shared Vertex Subset. The size of
Shared Vertex Subset is represented by α and α10 denotes α =10%.

as it explicitly determines the granularity and total amount of data of workload

migration. Thus, a sensitivity study is performed on the size of the shared subset

on the 16-machine cluster. In this study, α represents the size of a shared subset,

which is the percentage of edges in a partition that belongs to this shared subset.

Hula scales α from 10% to 40%, which means 20% to 80% of edges in a parti-

tion can be transferred to nearby workers (each partition contributes to two shared

vertex subsets with its left and right neighbors). As Figure 5.9 shows, α10 always

provides a sub-optimal performance due to its limited amount of data that can be

migrated. At α20 or α30, Hula reaches the best performance on all applications.

Since the number of partitions of various αs are the same (i.e., equal to the num-

ber of physical cores on a machine), increasing the size of the shared vertex subset

(i.e., α) enlarges the size of each partition. If an individual partition is too large

to resolve a minor workload imbalance (like α40), it leads to continuous occur-

rences of data migrations in remaining computations. This is the main cause of the

80

0

2

4

6

8

10

Baseline Hula Baseline Hula Baseline Hula Baseline Hula

PageRank SSSP TunkRank ConnComp

C
B

livejournal twitter friendster weibo

Figure 5.10: The comparison between baseline (Hula with dynamic workload bal-
ancing disabled) and Hula in terms of CB (balance of a cluster) metric on 16-
machine cluster.

performance inflections in Figure 5.9. Increasing the number of partitions results

in a finer-grained partitioning, which can solve this issue on a large shared subset.

However, it can significantly aggravate the pre-processing cost.

Overall, α20 outperforms other configurations in most cases, as it provides

enough data partitioned at the selected granularity (i.e., number of partitions equals

number of cores) to optimize workload imbalance. Hula uses α20 as the default

setting in the experiments.

Workload Balance To quantify workload balance of processing a graph applica-

tion on a p-machine cluster, Hula defines a metric CB, which stands for the cluster

balance. CB is the average time difference between the “slowest” and “fastest”

81

machines per iteration. Formally, it is defined as follows:

CB =
1
n

n

∑
1

max(bScorei)

min(bScorei)
∀i, (5.1)

In this equation, i stands for a machine in a cluster and n denotes the number of

iterations to finish an application’s execution. Figure 5.10 shows the CB compari-

son between baseline (Hula with dynamic workload balancing disabled) and Hula.

For PageRank and TunkRank applications, Hula can reduce up to 57% (46% on av-

erage) of work imbalance on four real graphs. Workload migration starts between

neighbors at the beginning of these two stationary applications until it reaches the

boundary limits of the shared vertex subset. In contrast, workload migration keeps

happening during the execution of non-stationary applications such as SSSP and

ConnComp due to the dynamic workload changes across iterations. This certainly

increases the difficulty of balancing the workload. Thus, Hula achieves a smaller

imbalance reduction on these applications. On average, Hula’s proposed balancing

scheme is able to reduce the workload imbalance by 43% on four popular graph

applications.

Hybrid Partitioning To achieve lightweight data migration on the fly, Hula lever-

ages the fine-grained partitioning to further split the shared vertex subset and gener-

ate the corresponding metadata. This could increase the pre-processing cost. Hula’s

pre-processing time is compared with six state-of-the-art pre-processing designs to

quantify the overhead of Hula’s hybrid partitioning scheme. As shown in Table 5.1,

Hula’s pre-processing cost is much lower than the average cost of all seven pre-

processing procedures, as Hula outperforms Random-Ginger in most cases. Even

82

Table 5.1: Pre-processing cost (seconds) comparison of partitioning four real-world
graphs on 16-machine cluster. Random, Grid, Oblivious are implemented atop
PowerGraph [45]. Hybrid and Ginger are implemented on top of PowerLyra [32].
Chunk is deployed by Gemini [132]. Compared to most of state-of-the-art pre-
processing schemes, Hula-Hybrid has a lower cost.

Partitioning Algorithm livejournal weibo twitter friendster

Random 5.5 32.6 100.1 93.6

Grid 3.6 25.1 65.1 69.7

Oblivious 9.4 61.8 226.1 244.1

Hybrid 3.9 13.1 85.1 94.9

Ginger 8.2 57.1 186.6 223.8

Chunk 2.5 52.6 52.9 80.1

Hula-Hybrid 2.6 53.4 57.1 88.6

GMEAN 4.6 37.6 95.1 113.3

Table 5.2: Memory footprint (GB) comparison of PowerLyra, Gemini, and Hula on
a 16-machine cluster.

Systems livejournal weibo twitter friendster

PowerLyra 21.0 91.5 351.3 380.5

Gemini 8.2 23.1 67.4 73.5

Hula 9.1 25.1 83.6 87.9

though Hula’s hybrid partitioning algorithm is more complicated as compared to

Chunk, it only incurs an extra 2.5% overhead on average. This is because Hula

parallelizes all the pre-processing work on the available cores. Such negligible pre-

processing overhead can be easily amortized with the repeated usage of metadata

by different applications on the same graph [129].

Memory Footprint After Hula’s pre-processing stage, the graph’s structural in-

formation (e.g., CSR and CSC data structures) is stored, and then utilized in the

execution of graph applications. Other than the data stored for a static partition,

Hula’s hybrid partitioner generates the structural metadata for the shared vertex sub-

83

sets. This could incur a larger memory footprint. This section profiles the memory

footprint of PowerLyra, Gemini and Hula on a 16-machine cluster, and compares

them in Table 5.2. The results shown in Table 5.2 are the average memory footprint

of four applications, where SSSP implemented atop all systems consumes approxi-

mately 10%-20% higher memory usage compared to other applications. This is due

to the storage of edge weights. Compared to PowerLyra, Hula reduces the memory

footprint by an average of 70.1% across four real-world graphs. Compared to Gem-

ini, Hula’s footprint is 14.9% larger on average. It is clear to see that the metadata

generated by Hula’s partitioner trades off a small amount of memory footprint to the

dynamic lightweight workload migration. Since modern data center machines are

trending towards a higher memory capacity to accommodate in-memory systems

(e.g., Spark [10] and RocksDB [13]), such a small footprint increment is tolerable.

5.4 Summary

This chapter presents Hula, a distributed graph processing system that auto-

balances graph computation on the fly. With the support of Hula’s hybrid parti-

tioner, Hula combines the hardware timer and a decentralized scheduler to achieve

lightweight workload balancing, which results in better performance and scalabil-

ity in distributed graph processing. Experimental results on a 16-machine cluster

show that Hula outperforms state-of-the-art distributed graph processing systems,

yielding speedups up to 48.7×.

84

Chapter 6

SLFE: A Distributed Graph Processing System with
Redundancy Reduction 4

To achieve high performance, existing graph systems exploit massive par-

allelism using either distributed [31, 45, 46, 71, 76, 80, 88, 93, 119, 132] or shared

memory models [68, 81, 89, 99]. Such systems process graphs in a repeated-relaxing

manner (e.g., using Bellman-Ford algorithm variants [23] to iteratively process a

vertex with its active neighbors) rather than in a sequential but work-optimal or-

der [18, 74, 75, 132]. This introduces a fundamental trade-off between available

parallelism and redundant computations [74, 75]. Several popular graph processing

systems [32, 45, 132] have been analyzed. This dissertation observed that redundant

computations pervasively exist.

As discussed in Section 2.3, due to the nature (i.e., the core aggregation

function) of different graph algorithms, the root causes of computational redundan-

cies in graph analytics vary across applications. For example, applications such as

Single Source Shortest Path (SSSP) employ min() as their core aggregation func-

4S. Song, X. Liu, Q. Wu, A. Gerstlauer, T. Li, and L. K. John, “Start Late or Finish Early:
A Distributed Graph Processing System with Redundancy Reduction”, in Proceedings of VLDB
Endowment, 2019. Shuang Song contributed to the idea development and implementation. Qinzhe
Wu was involved in performance evaluation. Xu Liu, Andreas Gerstlauer, Tao Li, and Lizy K. John
supervised the overall project.

85

tion. In each iteration, the values of active neighboring vertices are fed into the

min() aggregation function, and the result is assigned to the destination vertex. Typ-

ically, a vertex needs multiple value updates in different iterations because the value

updates in any source vertices require recomputing the destination vertex’s property.

However, only one minimum or maximum value is needed in the end. Therefore,

the redundancies in these applications are definied as the computations triggered by

the updates with intermediate (not final min/max) values. This dissertation proposes

a “start late” approach to bypass such redundant updates.

In contrast, some other graph applications (e.g., PageRank (PR)) utilize the

arithmetic operations (e.g., sum()) to accumulate the values of neighboring vertices

iteratively until no vertex has further changes (a.k.a final convergence). For algo-

rithms of this kind, there are no computational redundancies caused by intermediate

updates. However, the analysis shows that most vertices are early converged (the

vertex’s value is stabilized) before a graph’s final convergence. Hence, following

computations on the early-converged vertices are redundant. A “finish early” ap-

proach is proposed to terminate the subsequent computations on these vertices to

eliminate such redundancies.

SLFE (pronounced as “Selfie”), a distributed graph processing system, re-

duces redundancies to achieve high-performance graph analytics. In contrast to the

prior works that leverage dynamic re-sharding/partitioning [113] or multi-round

partitioning [66] to reduce redundancy in out-of-core graph systems, SLFE has the

following benefits:

86

• SLFE does not incur any extra partitioning effort 5.

• It does not rely on any specific ingress methodology, so it can be easily

adopted by other systems.

• It has extremely low pre-processing overhead, which is suitable for online

optimization.

• SLFE produces guidance that is reusable by various graph algorithms for the

redundancy optimizations.

To balance the communication and computation on the fly, SLFE uses the state-

of-the-art push/pull computation model. The push operation sends the update of

source vertices to their successors, while the pull operation extracts information

from predecessors for a given destination vertex. SLFE deploys a set of redundancy-

reduction aware push/pull functions to make use of guidance produced in pre-

processing. Moreover, SLFE also provides a set of system APIs to enable redun-

dancy reductions as well as programming simplicity/flexibility for different graph

applications.

SLFE is the first distributed graph processing system that is designed with

the redundancy reduction principal. Compared to state-of-the-art graph procesisng

systems (including three state-of-the-art distributed and two shared-memory graph

processing systems), SLFE yields speedups up to 74.8× (16.3× on average) and

5The partitioning phase in distributed graph systems is expensive [72, 105, 110, 132].

87

Loading Partitioning Formatting Generate RRG

Pre-processing phase

Execution phase

Graph
applications

RR APIs

Formatted data
(e.g., CSR)

Redundancy Reduction
Guidance (RRG)

RR-aware
runtime

functions

Figure 6.1: System overview of SLFE.

1644× (56× on average) over existing distributed and shared memory systems,

respectively.

6.1 System Design of SLFE—Start Late or Finish Early

This section first overviews SLFE’s approach and then discusses its key sys-

tem designs in detail.

88

6.1.1 SLFE Methodology and System Overview

SLFE aims to optimize the redundancy in various graph applications writ-

ten with modern distributed graph processing systems. SLFE employs a novel pre-

processing step that generates reusable graph topological information to guide re-

dundancy optimization on the fly. Such information, known as Redundancy Re-

duction Guidance (RRG), captures the maximum propagation level of each vertex

in a given graph. Due to the fact that the same vertex can exist at different propa-

gation levels, each vertex will hold a RRG value—its maximum propagation level.

At runtime, SLFE utilizes RRG to schedule the graph operations for redundancy

reductions. SLFE adopts a system approach to minimize programming efforts and

achieve high performance.

System Overview Modern distributed graph processing systems [45, 71, 76, 132]

typically consist of two phases: pre-processing and execution; SLFE follows the

same design principle. As Figure 6.1 shows, SLFE loads, partitions, formats the en-

tire graph in the pre-processing phase, and then generates the RRG for redundancy

optimization. The subsequent execution phase accepts the pre-processing outputs

(i.e., formatted graph and RRG). Section 6.1.2 and 6.1.3 elaborate on SELF’s parti-

tioner and RRG generation, respectively.

SLFE’s execution phase consists of three components as shown in Fig-

ure 6.1: Redundancy Reduction (RR)-aware runtime functions, Redundancy Re-

duction (RR) APIs, and graph applications. RR-aware runtime functions are an

iterative-relaxing procedure to implement the hybrid push/pull computation model.

89

3

Example Graph

Machine 1

Machine 2

10

2

2

1
3

Master

Mirror

10

2

Figure 6.2: Example of the chunking partitioning.

Meanwhile, these functions also apply RRG to optimize redundant operations at

runtime. SLFE’s RR APIs bridge such computation model with various user-defined

graph applications. From the user perspective, one can program various applica-

tions via SLFE’s RR APIs to transparently benefit from redundancy optimization.

Sections 6.1.4-6.1.6 discuss each component of SLFE’s execution phase.

6.1.2 Chunking Partitioner

At the beginning of SLFE’s pre-processing phase, SLFE loads a graph’s

raw edgelist file as input. Since many large-scale real-world graphs often possess

natural locality, storing adjacent vertices close to each other can preserve such lo-

cality [25, 108] with a minimal partitioning cost. An efficient chunking partitioning

scheme [132] is employed to evenly partition a large-scale graph into contiguous

chunks and assign a chunk to each machine in a cluster. Figure 6.2 shows an ex-

ample of partitioning a graph G = (V,E) for a 2-machine cluster. The vertex set

V is divided into 2 contiguous subsets. To balance the workload across machines,

the chunk-based partitioner allocates an equal amount of edges in each machine.

Like existing approaches [32, 45, 76], some vertices are duplicated across different

90

Iter1 Iter2 Iter3

V0 0 0 0

V1 1 1 3

V2 1 1 1

V3 0 2 2

RRG

0

3

1

2

Figure 6.3: RRG for the example graph shown in Figure 6.2.

machines (e.g., V1 and V2) to reduce remote accesses. After partitioning, V0-V1 are

in “Machine 1”, while the rest are in “Machine 2”. Partitioning graphs according to

either incoming or outgoing edges yields the same results in this example.

After the partitioning, SLFE yields the desired formats: compressed sparse

row (CSR) for the push operation and compressed sparse column (CSC) for the

pull operation. SLFE’s graph partitioning and formatting schemes are not particu-

larly designed for redundancy optimization. Actually, these schemes are commonly

available in many other graph systems [20, 32, 45, 46, 68, 71, 99, 106, 132]. Thus, it

dramatically enhances the applicability of SLFE’s techniques to other graph sys-

tems. The next step of the pre-processing phase is to generate RRG.

6.1.3 Redundancy Reduction Guidance

To guide the redundancy reduction in the graph execution phase, SLFE pro-

poses a novel metric — Redundancy Reduction Guidance (RRG). Generating RRG

follows a propagation manner (e.g., breadth-first search [28]) to record the iteration

number of a vertex’s update. Figure 6.3 shows the RRG generation with an exam-

91

Algorithm 8 Pre-processing to Generate RRG.
1: bool * visited = new bool[NumVerts];
2: uint32 t * RRG = new uint32 t[NumVerts];
3: int Iter = 1; int dist[NumVerts];
4: graph→fill source(dist); //initialize vertices
5: for (int Iter=1; active vertex exists; Iter++)
6: for vdst ∈V
7: for vsrc ∈ vdst .incomingNeighbors
8: if vsrc.active
9: if RRG[vdst]] < Iter

10: RRG[vdst] = Iter;
11: if ! visited[vdst]
12: dist[vdst] = dist[vsrc]+1;
13: visited[vdst] = true;
14: vdst .active = true;

ple graph. In Iter1, V1 and V2 receive an update from root V0; their RRG values are

updated to 1 (i.e., Iter1). V3 is the vertex updated in Iter2. Later in Iter3, due to the

activeness of V3, V1 is revisited and its RRG value gets updated to 3 (i.e., Iter3). The

last column in Figure 6.3 illustrates the final RRG values of vertices in the example

graph. Such RRG information represents a graph’s topology, which can be reused

by many graph applications for the redundancy reduction purpose.

Algorithm 8 shows the pseudo-code of the proposed pre-processing tech-

nique to generate the RRG. The declarations and initializations of the data struc-

tures are declared in line 1-3. The f ill source function in line 4 initializes all roots

to 0 and other vertices to ∞. Starting from line 6, this procedure iterates through

all the destination vertices to check whether it has an update in the current itera-

tion. For all vdst’s neighbors with incoming edges, if a neighbor’s dist is computed

in the past round, it notifies vdst to update its RRG (line 9-10). This update indi-

cates that vdst resides in a new propagation sequence, which occurs later than the

92

cached one. For an acyclic graph, a RRG update will activate vdst . Finally, line

11-14 calculates vdst . The weights of all edges are treated as 1 (line 12), as only

the topological knowledge of the graph needs to be obtained. Moreover, visited is

used to only allow one computation per vertex. This is due to the fact that the first

“visit” updates vdst by its shortest distance, when all the edge weights are identical.

This further minimizes the pre-processing overhead. Once vdst’s dist is updated, it

becomes active to propagate its value to the succeeding vertices.

After Algorithm 8, each vertex maintains a RRG value. Such value indicates

the last propagation level that the vertex receives at least one update from the active

source vertices. Any computation/update to the vertex happens before this point

can be safely ignored for the redundancy reductions (“start late”). In the execution

phase, such information can schedule the beginning of vertex computation for an

application with min()/max() aggregation function. For instance, the V1’s RRG

in Figure 6.3 is 3, all the computations happen before this iteration can be safely

bypassed.

Even though applications with arithmetic operations can leverage the same

RRG data to remove computational redundancies, the intuition behind is different.

Considering the fact that most vertices converge earlier than graph’s global con-

vergence, RRG is used to justify the status of a vertex’s stability. SLFE treats a

vertex’s RRG as the number of iterations needed to receive any new values from

source vertices. If no change occurs on a vertex’s property (e.g., rank in PR) for

x rounds (x ≥ RRG), it is considered as a stabilized/converged vertex. Thus, its

further computations, known as redundancies, are bypassed (“finish early”).

93

0.0

0.2

0.4

0.6

0.8

1.0

PK LJ FS PK LJ FS PK LJ FS PK LJ FS

1-machine 8-machine 1-machine 8-machine

SSSP CCEx
ec

ut
io

n
tim

e
br

ea
kd

ow
n

Pull Push

Figure 6.4: SSSP and CC execution time breakdown of pull and push mode, which
are measured in 1-machine and 8-machine setup with pokec (PK), liveJournal (LJ),
and friendster (FS) graphs.

Overall, the proposed pre-processing technique is an extra step after final-

izing graph partitions, which is generally applicable to any partitioning schemes

and data formats. Thus, other state-of-the-art graph systems [18, 32, 45, 46, 68, 76,

119, 132] can easily adopt it. The overhead of this scheme is low and is thoroughly

evaluated in Section 6.2. The next section discusses how SLFE applies RRG in the

execution phase.

6.1.4 RR-aware Runtime Functions

During graph execution, the number of outgoing/incoming edges of active

vertices in each iteration varies dramatically. Thus, modern graph processing sys-

tems [22, 81, 99, 132] leverage direction-aware propagation model—push and pull

to dynamically balance the communication and computation. This model optimizes

the graph processing procedure on the fly. However, such a model increases the dif-

ficulty in applying redundancy reduction schemes at runtime. For instance, where

94

do the redundant computations happen and how to incorporate the generated RRG

in the model? To answer these questions, the push/pull propagation model is ana-

lyzed.

The execution time of pull/push mode in SSSP and CC 6 is measured with

three natural graphs. The same measurements are performed on a single machine as

well as a distributed cluster of eight machines to demonstrate the increasing effect

of communications. As Figure 6.4 shows, SSSP and CC on a single machine spend

more than 92.8% and 94% of their execution time in the pull mode. When run on

8 machines, the runtime in pull mode still consumes more than 78% and 73% in

SSSP and CC, respectively. The small decrement in pull is due to the communica-

tion overhead (most communications happen in push rather than pull) caused by

the increased cluster size. The advanced InfiniBand network minimizes such com-

munication overhead. Thus, pull still contains most of the computations in the

distributed setup. SLFE mainly optimizes redundancies in pull, while maintains

sufficient parallelism to efficiently utilize all hardware threads [59]. Eliminating re-

dundancies in push is also attempted. However, as the number of push operations

is significantly less than the number of pull operations, the overhead of checking

and removing redundancies surpasses the performance benefit. This insight is also

reported in previous work [7]. Hence, rather than redundancy reductions, SLFE

leverages the push to ensure the application’s correctness.

The computations in pull mode extract the values of source vertices via

6Applications with arithmetic aggregation functions are excluded, as they always execute in the
pull mode to iteratively compute all vertices [7].

95

Algorithm 9 Pull Mode Computation.
1: def pullEdge singleRuler(pullFunc, Ruler){
2: pull = true;
3: for vdst ∈V do
4: if Ruler ≥ RRG[vdst]
5: pullFunc(vdst ,vdst .incomingNeighbors);
6: }
7: def pullEdge multiRuler(pullFunc, RulerS){
8: pull = true;
9: for vdst ∈V do

10: if RulerS[vdst]< RRG[vdst]
11: pullFunc(vdst ,vdst .incomingNeighbors);
12: }

Algorithm 10 Push Mode Computation.
1: def pushEdge(pushFunc){
2: if pull do
3: activateAllVertices();
4: pull = false;
5: for vsrc ∈V do
6: if vsrc.hasOutgoing & vsrc.active do
7: pushFunc(vsrc,vsrc.outgoingNeighbors);
8: }

incoming edges, and then apply a user defined pullFunc on the destination vertex.

Algorithm 9 demonstrates the pull runtime design, which consists of two func-

tions — pullEdge singleRuler and pullEdge multiRuler. At the beginning, the

variable pull is set to true (the usage of this variable is explained with push). In

pullEdge singleRuler function, for all vdst’s, a single Ruler is used to control their

executions (line 4). As aforementioned, the RRG of each vertex is used to optimize

the redundancies. For instance, min/max-based algorithm uses the current iteration

number as the single Ruler. If a vertex vx’s RRG is 4, the beginning of its iterations

96

will be delayed after iteration 3. The pullEdge multiRuler receives a RulerS array

that is transparent to users. Each vertex has its own “Ruler” to follow. For iterative

applications with heavy arithmetic operations, RulerS records each vertex’s num-

ber of iterations that its property is continuously stable. Once Rulers[vx] passes its

RRG, any further computation is eliminated.

In contrast, the push operation propagates a source vertex’s value to all its

neighbors via outgoing edges. Moreover, only one push function is shared by all

applications (Algorithm 10), since push does not employ redundancy optimiza-

tion, but only guarantees the result correctness. The details of Algorithm 10 are

described as follows: In line 2-4, it checks whether the last iteration is in pull or

not. If yes, this function activates all the vertices and sets the pull back to f alse.

The “active list” technique [76] is commonly deployed by modern distributed sys-

tems [32, 45, 71, 80, 119, 132] to improve the communication efficiency. Thus, it

only sends the property of active source vertices (line 6-7). However, due to the

redundancy optimization, some “active” vertices may have been deactivated before

reaching the push mode. Their successors may lose opportunities to check the

properties of these predecessors. Such coincidences can potentially result in cor-

rectness issues. Therefore, all the vertices in the transition phase (i.e., pull→push)

are reactivated. Then, the active vsrc vertices with outgoing edges use user-defined

pushFunc to propagate its information. The next section presents the APIs that are

used to bridge these RR-aware push/pull computation models with graph applica-

tions.

97

Table 6.1: RR APIs provided by SLFE.

min/max: void edgeProc(pushFunc, pullFunc,

activeVerts, Ruler);

arith: void edgeProc(pushFunc, pullFunc);

void vertexUpdate(vertexFunc);

6.1.5 RR-APIs

SLFE defines a set of application programming interfaces (APIs) to trans-

parently optimize redundancy, as shown in Table 6.1. The edgeProc interface func-

tions traverse a graph along the edges, while vertexU pdate applies application-

specific operations to a vertex’s property.

In the min/max API, activeVerts records the number of active vertices in

each iteration and terminates the execution early once no active vertex exists. Ruler

compares with each vertex’s RRG to schedule the computations. This API will

be utilized for applications with min/max aggregation functions such as SSSP. In

contrast, edgeProc for the arith API does not need any redundancy reduction inputs

from the user side. In both edgeProc APIs, the number of active outgoing edges

in the current iteration dynamically drives the decision of using either the push or

pull computation model. The vertexU pdate applies user-defined vertexFunc to

each vertex at the end of each iteration.

6.1.6 Programming with SLFE

This section presents SSSP and PR applications implemented atop SLFE as

examples to show the programmability of SLFE. These examples show that with

98

Algorithm 11 Single Source Shortest Path.
1: float * dist = new float[numV];
2: vroot .active = true; dist[vroot] = 0.0;
3: uint32 t activeVerts = 1; uint32 t iter = 0;
4: pushFunc(vsrc, vsrc.outgoingNeighbors)
5: for vdst ∈ vsrc.outgoingNeighbors
6: float newDist = dist[vsrc] + vdst .edgeData;
7: if newDist < dist[vdst]
8: dist[vdst] = newDist; vdst .active = true;
9: pullFunc(vdst , vdst .incomingNeighbors)

10: float miniDist = MAX;
11: for vsrc ∈ vdst .incomingNeighbors
12: float newDist = dist[vsrc] + vsrc.edgeData;
13: if newDist < miniDist
14: miniDist = newDist;
15: if dist[vdst]> miniDist
16: dist[vdst] = miniDist; vdst .active = true;
17: while (activeVerts)
18: sl f e.edgeProc(pushFunc, pullFunc,
19: activeVerts, iter++); // iter is Ruler

SLFE’s RR APIs, optimizing redundant computation requires minimum program-

ming efforts.

6.1.6.1 Single Source Shortest Path

SSSP follows a relaxation-based algorithm to iteratively compute the short-

est distance from a given root to other vertices. SSSP requires user-defined

pushFunc, pullFunc, activeVerts, and iteration counter (singleRuler for redun-

dancy reduction) for SLFE to process the active vertices along with the connected

edges. Algorithm 11 shows the pseudo-code of SSSP, where a property dist of each

vertex stores its shortest distance. In push mode (line 4-8), each vdst of vsrc will

receive a newDist composed by dist[vsrc] and the weight of a connected edge. To

99

Algorithm 12 PageRank.
1: float* rank = new float[numV];
2: //graph traverse is similar to SSSP shown in Algorithm 4
3: //use the edgeProc(pushFunc, pullFunc)
4: float vOp(vx)
5: rank[vx] = 0.15 + 0.85∗rank[vx];
6: if vx.hasOutgoing > 0
7: rank[vx] /= vx.outEdges;
8: return rank[vx];
9: slfe.vertexUpdate(vOp);

10: //vertexUpdate is a system API to iterate through all V s
11: uint32 t* stableCnt = new uint32 t[numV]; //RulerS
12: float* stableValue = new float[numV];
13: vertexUpdate(vOp)
14: for vx ∈V
15: if stableCnt[vx]< RRG[vx]
16: float rank = vOp(vx);
17: if rank = stableValue[vx] stableCnt[vx]++;
18: else stableCnt[vx] = 0; stableValue[vx] = rank[vx];

trigger such a computation, vsrc needs to be active in this iteration. If the newDist

is smaller than the current dist of vdst , vdst will be updated with this smaller value.

Similarly, pull mode (line 9-16) iterates through a vdst’s source vertices locally,

and summarizes to get a local miniDist. If miniDist is smaller than dist[vdst], then

it will be sent to the machine owning vdst via message passing interface (MPI) [43].

Vertices with dist updates will be activated for the next round. Once there is no

active vertex anymore, the process will terminate. Clearly, compared to the SSSP

implementations on other systems, SLFE’s SSSP does not incur any extra effort

from the programming perspective.

100

6.1.6.2 PageRank

PageRank algorithm iteratively increases the relative rating of a vertex based

on the weights of all connected vertices to rank the importance of each vertex in the

graph. The propagation process (i.e., pushFunc and pullFunc) in PageRank is

similar to the SSSP example shown above, hence, only the difference is demon-

strated here. Algorithm 12 shows the implementation of PR application in SLFE.

The rank array stores the properties of all vertices. Differing from SSSP, PR has

to apply an extra user-defined function (line 4-8) on vertices’ aggregated proper-

ties (rank) after each iterative propagation process. PR provides such function to

SLFE’s vertexU pdate API. The pseudo-code of vertexU pdate is also shown in

Algorithm 12 (line 11-18) to help understand how SLFE achieves redundancy min-

imizations for PR like applications. The vertex’s status monitoring process happens

in this function with the idea of tracking the number of continuous iterations that

a vertex’s rank has not been changed. Such a stable iteration will increase the

stableCnt by 1 (line 17). If vx has a new rank, its stableCnt will be erased and

stableValue will cache this new value (line 18). Once vx’s total number of stabi-

lized iterations exceeds its RRG, it is considered as a early-converged vertex (line

15). Any further computation on it will be replaced by loading the cached rank

from stableValue.

These two examples show that the implementation of graph applications on

SLFE is very straightforward. Additionally, SLFE’s redundancy reduction philoso-

phy does not incur any heavy modification on the manner that the graph application

used to be coded.

101

6.1.7 Work Stealing

The workload balance of graph processing depends on many factors such as

the initial partitioning quality, the density of active vertices on-the-fly, and so on.

To overcome the load imbalances arising from the uneven redundancy reductions,

the idea of [24, 35, 41, 132] is utilized to implement a fine-grained work stealing

mechanism in SLFE. In execution, each graph is split into mini-chunks, and each

mini-chunk contains 256 vertices. Such design can enhance the hardware (i.e., core

and memory systems) utilization and take advantages of hardware prefetching. To

minimize the overhead of stealing work, each thread memorizes the starting point

of the assigned mini-chunk, and simply uses a f or loop to iterate vertices in the

mini-chunk.

During the execution, all threads first try to finish up their originally as-

signed graph chunks before starting to steal remaining tasks from the “busy”

threads. The starting offsets and other metadata shared by threads are preserved

via the atomic accesses such as sync f etch and ∗. Although redundancy reduc-

tion may impact the workload balance across computation units, this explicit work

stealing strategy can indeed solve the problem. The inter-machine balance is guar-

anteed by the chunking-based partitioning as described in [132].

6.1.8 Correctness

Start Late Most graph processing algorithms consist of many iterations of eval-

uating certain nodal function fv applied at each individual vertex v. Such function

fv : V(t)→ V(t+1) takes the current value of all source vertices V(t) stored at itera-

102

tion t and produces the next state value V(t+1) for vertex v. For example, in the case

of SSSP, the function fv corresponds to the function min(), the input state V(t) is

reduced to only the set of current minimal distances {d(t)
n1 , . . . ,d

(t)
nk } from the source

to all immediate neighbors of vertex v, and the output produced is the current min-

imal distance from the source to vertex v (i.e min(d(t)
n1 +en1v, . . . ,d

(t)
nk +enkv), where

ei j denotes the weight of the edge from i and j).

Theorem 1. SSSP produced from the delayed vertex computation converges to the

original output.

Proof. The nodal/aggregation function fv at each vertex in the SSSP algorithm is

the min() function, which is a monotonically decreasing function. The number of

edges and all the edge weights are finite, therefore the value of d(t)
nk is bounded

by below as t → ∞. Thus, by the monotone convergence theorem [52], the by-

passed/delayed update procedure converges for SSSP. Moreover, since the initial

graph state is the same for the original and the bypassed update procedure, these

two procedures converge to the same value.

If the output sequence { fv(V
(0)), . . . , fv(V

(t))} produced by the function fv

converges as t→∞ for all v∈V, then the output produced from the delayed update

procedure converges to the original output fv(V
(t)) as t → ∞. Similar proofs can

be applied on other graph applications with monotonic behaviors.

Finish Early For graph applications with heavyweight arithmetic operations,

SLFE monitors the value of each vertex, and determines each vertex’s convergence

103

accordingly. The value of a vertex V depends on its source vertices. V ’s RRG

approximately measures the maximum propagation steps for V to receive an up-

date. Thus, if V ’s value has been stable for a certain number of iterations larger

than its RRG, it means no further change will be propagated to this vertex. SLFE

bypasses the subsequent computations on such early-converged vertices. SLFE’s

accuracy was experimentally verified by comparing SLFE’s results (e.g., vertices’

properties) with the ones produced by other systems [32, 45, 132].

6.1.9 SLFE’s Generality

The idea of redundancy reduction in SLFE is applicable to other graph

frameworks. The reason a new framework SLFE is proposed for the experiments

is that SLFE employs a set of state-of-the-art optimizations, which exposes the per-

formance bottlenecks in the redundant computation, rather than other components.

This section describes how other graph frameworks can utilize the RR optimization.

The Gather-Apply-Scatter (GAS) computation model [45] has been widely

adopted by many popular graph systems [45, 46, 82, 106, 110, 131]. The RRG pro-

vided by SLFE’s unique pre-processing stage can be used to schedule the vertex-

centric GAS operations. For example, if the RRG reveals that an active vertex in

the worklist has a certain amount of redundant computations, this vertex is removed

from the worklist to avoid redundant computation on it. Take PowerGraph [45]

as an example, one can adapt SLFE’s methodology in the receive message stage

to avoid performing redundant computation on vertices in each super-step. This

optimization can save the network costs incurred in redundant gather and scatter

104

operations, and eliminate the redundant computation in the user-defined apply op-

erations.

6.2 Evaluation

SLFE is evaluated on a 8-machine cluster with 2nd generation of Xeon-Phi

processor (detailed machine configuration is shown in Table 3.1) and InfiniBand

network switch (up to 100Gb/s).

This sections compares SLFE with three distributed graph processing

systems—PowerGraph [45], PowerLyra [32], and Gemini [132]. In addition,

this section compares SLFE’s performance in a single machine with two shared-

memory systems, GraphChi [68] and Ligra [99]. All the experiments include

five popular graph applications from the two categories according to Table 2.1

(min/max: Single Source Shortest Path (SSSP), Connected Components(CC),

WidestPath (WP); arithmetic: PageRank (PR) and TunkRank(TR)). The average

results of five repeated executions (standard deviation < 5%) are reported. The in-

put for these applications include seven real-world graphs (i.e., pokec-friendster7)

and three large synthetic RMAT graphs (i.e., RMAT1-RMAT3) with the number

of vertices and edges ranging from 1.6 to 500 millions and from 30 million to 10

billion, respectively, as shown in Table 3.2.

7In this chapter, abbreviations PK, LJ, WK, DI, OK, ST, and FS are used for pokec, livejournal,
wiki, delicious, orkut, s-twitter and friendster graphs, respectively.

105

Table 6.2: 8-machine end-to-end runtime and improvement over the state-of-the-art
distributed systems.

Pre-processing time (loading + partitioning + formatting)

PK OK LJ WK DI ST FS

PowerG [s] 74.2 277 168 891 736 210 4497

PowerL [s] 84.4 312 191 982 811 239 5052

SLFE [s] 3.46 10.5 7.9 35.2 45.3 14.1 295

RRG generation time

PK OK LJ WK DI ST FS

SLFE [s] 0.05 0.08 0.13 0.6 0.68 0.3 1.62

Application execution time

PK OK LJ WK DI ST FS

SSSP

PowerG [s] 12.9 34.2 27.5 69.9 78.4 24.5 511

PowerL [s] 10.3 23.0 18.8 34.5 18.9 17.3 243

SLFE [s] 0.58 2.5 4.0 2.8 3.1 2.3 6.25

Speedup(×) 19.8 11.2 5.7 17.4 12.4 8.9 56.4

C
C

PowerG [s] 7.1 19.4 15.1 26.7 47.6 14.3 236

PowerL [s] 5.7 10.4 10.8 15.6 14.2 3.0 112

SLFE [s] 0.39 0.19 0.45 0.52 0.8 0.46 3.06

Speedup(×) 16.2 74.8 28.4 39.2 32.5 14.2 53.2

W
P

PowerG [s] 7.0 15.5 19.8 47.8 29.4 7.0 299

PowerL [s] 6.1 10.2 16.0 33.1 11.1 5.3 164

SLFE [s] 0.33 0.87 0.65 0.84 2.4 0.69 3.8

Speedup(×) 19.8 14.5 27.4 47.3 7.5 8.8 58.3

PR

PowerG [s] 210 227 524 810 511 430 2874

PowerL [s] 129 84.2 193 321 67.5 90.9 1415

SLFE [s] 5.8 2.5 6.1 12.1 4.6 6.8 37.8

Speedup(×) 28.4 55.3 52.1 42.1 40.4 29.1 53.3

T
R

PowerG [s] 37.1 92.8 179 243 234 80.6 676

PowerL [s] 14.3 34.7 80.4 137 57.7 15.5 304

SLFE [s] 2.7 1.2 4.5 4.5 5.0 1.4 17.1

Speedup(×) 8.5 47.3 26.7 40.5 23.2 25.2 26.5

GMEAN 25.1×

106

Experiment Outline Section 6.2.1 compares SLFE’s end-to-end performance

(pre-processing and execution time) with other three distributed systems running

with the largest scale: 8 machines and 68 cores per machine. This experiment

use the real-world graphs as the input to show the performance in practical us-

age. Section 6.2.2.1 evaluates SLFE’s intra-machine scalability (scale-up), with the

comparison with the two shared-memory systems. As limited to the memory size,

only the real-world graphs are used as the input. Section 6.2.2.2 evaluates SLFE’s

inter-machine scalability (scale-out). The RMAT graphs are used as the input to

make sure each machine and each core has enough computation under large scale.

Section 6.2.3 shows some micro metrics (e.g., number of computations and network

traffic) to verify that the performance gains are due to the optimization of redundant

computation.

6.2.1 End-to-end Performance Evaluation

As SLFE aims to reduce computational redundancies for distributed graph

processing systems, comparing to other state-of-the-art distributed systems can help

quantify SLFE’s computational efficiency and high performance improvement. Ta-

ble 6.2 reports the 8-machine performance of PowerGraph, PowerLyra and SLFE,

running five popular applications on seven real graphs. The first part of Table 6.2

reports the pre-processing time of the three systems, which includes the graph

loading, partitioning, and formatting steps. Since SLFE extends the general pre-

processing phase to generate RRG information, such time cost is reported as well.

For applications’ execution time, the results show that SLFE outperforms these two

107

0%

20%

40%

60%

80%

100%

120%

SSSP CC WP PR TR

N
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e OK LJ WK DI

PK ST FSGemini (100%)
RRG generation

overhead

Figure 6.5: SLFE’s time of execution phase and RRG generation time normalized
to Gemini [132] on a 8-machine cluster.

systems in all cases significantly (25.1× on average), with up to 74.8× for CC on

the OK graph. For the FS graph with more than 1 billion edges, SLFE achieves the

highest average speedup (47.9×) among all input graphs. Thus, in contrast to these

in-memory distributed systems, SLFE can handle large graphs more efficiently.

While PowerGraph and PowerLyra are the general distributed graph plat-

forms that provide many options for designers to test their ideas, Gemini is a

dedicated computation-centric system that utilizes most of the state-of-the-art op-

timization techniques. In [132], Gemini is reported to outperform PowerGraph,

GraphX [46], and PowerLyra by 19.1× on average. SLFE’s performance is com-

pared with Gemini in Figure 6.5. Since SLFE and Gemini utilize the same pre-

processing method (pre-processing time is already reported in Table 6.2), this end-

to-end comparison between SLFE and Gemini only includes the time in the exe-

cution phase and RRG generation. Regarding to the time in the execution phase,

SLFE outperforms Gemini by 34.2%, 43.1%, 42.7%, 47.5% and 41.6% on SSSP,

108

CC, WP, PR, and TR, respectively. When including the RRG generation overhead,

SLFE still yields an average of 25.1% (across the seven real graphs) end-to-end

performance boost on SSSP, the one with the smallest performance improvement

of the five applications. Additionally, such pre-processing overhead can be amor-

tized, because it can be repeatedly utilized by execution with different inputs or

even different graph applications. These performance gains show the effectiveness

of SLFE’s unique redundancy optimization.

For the distributed graph processing, the update on a vertex triggers either

a local atomic operation or a remote synchronization via the network. In contrast

to other distributed platforms, SLFE reduces the number of computations, resulting

in fewer updates, and thus less communication across distributed machines. In Fig-

ure 6.5, such benefits can be observed on relatively smaller graphs such as OK, LJ,

and WK, where communication effect is amplified (up to 71% improvement). For

the large FS graph, SLFE outperforms Gemini in all applications by 33.2% on aver-

age. Such improvement is mainly from the optimization of redundant computation,

which dominates the execution time.

6.2.2 Scalability Evaluation

6.2.2.1 Intra-machine Scalability

Next, the intra-machine scalability of SLFE is evaluated by using 1 to 68

cores to run five applications with all real graphs that fit in a single machine’s mem-

ory. Overall, Figure 6.6 shows that SLFE achieves nearly linear scale-up in all

cases. For instance, compared to 1-core and 16-core cases, running on 68 cores

109

1

10

100

1000

10000

1 4 16 68 1 4 16 68 1 4 16 68 1 4 16 68 1 4 16 68

PR TR SSSP WP CC

N
o

rm
al

iz
ed

 e
xe

cu
ti

o
n

 t
im

e SLFE GraphChi Ligra

Figure 6.6: Intra-machine scalability (1-68 cores) of SLFE, GraphChi [68], and
Ligra [99] on a single-machine setup (average of seven real world graphs).

achieves an average speedup of 44.7× and 3.5×, respectively. Although the pres-

sure on shared hardware resources becomes more intensive as core count goes up,

SLFE still maintains a decent speedup curve. Moreover, SLFE’s scalability can be

compared with two state-of-the-art single-machine systems—GraphChi and Ligra.

GraphChi uses cost-efficiency to trade-off performance, where its bottleneck is the

intensive I/O accesses. Therefore, as shown in Figure 6.6, it does not provides an

outstanding intra-machine scalability. In contrast, Ligra takes the advantages of

processing entire graph loaded in memory. Thus, compared to SLFE, Ligra has a

very competitive scale-up trend. However, due to its excessive amount of compu-

tations and memory accesses, Ligra reaches the sub-optimal performance in most

cases. SLFE reduces the computational redundancies, which results in less CPU us-

age and memory accesses in the shared-memory platform. Such optimization helps

SLFE achieve up to 1644× and 7.5× speedups over GraphChi and Ligra when

using the maximum of 68 cores.

110

0

2000

4000

6000

8000

10000

12000

8 8 8 4 2 1 8 4 2 1 8 4 2

PowerG PowerL SLFE SLFE SLFE

RMAT1 RMAT2 RMAT3

P
re

-p
ro

ce
ss

in
g

ti
m

e
(s

) Loading Partitioning

Formatting RRG generation

Figure 6.7: Inter-machine scalability of the pre-processing phase of Power-
Graph [45], PowerLyra [32], and SLFE on three synthetic graphs. SLFE and Gem-
ini [132] use the same pre-processing methodology except for the RRG generation.
PowerGraph and PowerLyra can only execute the smallest RMAT1 graph in a 8-
machine setup because of their inefficient memory usage [51, 96, 128, 132], while
SLFE fails to process RMAT3 in a single machine. For all the cases, RRG genera-
tion is invisible because it incurs very small overhead.

6.2.2.2 Inter-machine Scalability

To demonstrate SLFE’s inter-machine scalability, PaRMAT [63] is used to

generate three large-scale synthetic RMAT graphs. Due to the inefficient memory

usage [51, 96, 128, 132], PowerGraph and PowerLyra can only handle the smallest

RMAT1 graph in the 8-machine cluster. However, Gemini and SLFE can operate

these RMAT graphs in most cases. Figure 6.7 summarizes these four systems’ pre-

processing time. For RMAT1 graph on a 8-machine setup, SLFE finishes the pre-

processing procedure much faster than the PowerGraph and PowerLyra. Moreover,

as shown in Figure 6.7, SLFE’s pre-processing phase also provides a good scale-out

scalability for all the three RMAT graphs. Compared to the original preprocessing

111

0

3

6

9

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

PR SSSP WP CC TRN
o

r
m

a
li

z
e

d
 e

x
e

c
u

ti
o

n
 t

im
e 74.2

38.1
60.3
25.7

108
61.5

105
50.9

73.1
33.2

(a) RMAT 1

0

2

4

6

8

10

12

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

PR SSSP WP CC TRN
o

r
m

a
li

z
e

d
 e

x
e

c
u

t
io

n
 t

im
e

(b) RMAT 2

0

1

2

3

4

5

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

PR SSSP WP CC TRN
o

r
m

a
li

z
e

d
 e

x
e

c
u

t
io

n
 t

im
e Gemini

SLFE

PowerL

PowerG

(c) RMAT 3

Figure 6.8: Inter-machine scalability of the execution phase of Gemini [132], Pow-
erGraph [45], PowerLyra [32], and SLFE (1-8 machines) on three synthetic RMAT
graphs. Note: missing points are due to the failure of exceeding memory capacity.

steps (e.g., loading, partitioning, and formatting), the proposed RRG generation

overhead is negligible.

After comparing the pre-processing cost, the inter-machine scalability of

the execution phase of the four systems is demonstrated in Figure 6.8. This also

includes the sum of SLFE’s execution time and RRG generation time to further

verify the feasibility of the proposed approach in various scale-out configurations.

As shown in Figure 6.8a, SLFE can achieve a significant speedup (up to 108×

and 51.5×) over PowerGraph and PowerLyra for all the five applications with

the RMAT1 graph on the 8-machine cluster. Gemini has an inflection point at 2-

machine or 4-machine in all the five applications. Such behavior is due to the fact

that the communication overhead surpasses the benefits obtained from adding more

computation resources. However, with optimizing redundant computations, SLFE

incurs less communication overhead so that it still scales down as the cluster size

increases. On average, compared to the 1-machine setup, SLFE running 8-machine

112

0

2

4

6

8

10

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

PR TR SSSP WP CC

N
o

rm
a

li
z
e

d
 e

x
e

c
u

ti
o

n
 t

im
e 16core 32core 64core 68core

(a) RMAT 1

0

5

10

15

20

25

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

PR TR SSSP WP CC

N
o

r
m

a
li

z
e

d
 e

x
e

c
u

t
io

n
 t

im
e 16core 32core 64core 68core

(b) RMAT 2

0

2

4

6

8

10

12

2 4 8 2 4 8 2 4 8 2 4 8 2 4 8

PR TR SSSP WP CC

N
o

r
m

a
li

z
e

d
 e

x
e

c
u

t
io

n
 t

im
e 16core 32core 64core 68core

(c) RMAT 3

Figure 6.9: Trend-line analysis of SLFE’s execution phase (1-8 machines with 16,
32, 64, and 68 cores per machine) on three synthetic RMAT graphs. Note: missing
points are due to the failure of exceeding memory capacity.

provides an average of 2.9× execution time speedup across the five applications

with the three RMAT graphs. Among all the configurations (1 to 8 machines),

SLFE outperforms Gemini by up to 7.2× (1.9× on average). This clearly indicates

the feasibility and practicability of SLFE’s design principle.

In addition to the intra/inter-machine scalability experiments, SLFE’s trend-

lines are reported by varying the number of cores per server as well as the number

of server machines in the cluster. Figure 6.9 shows such analysis on the three syn-

thetic graphs. When running PageRank (PR) with RMAT1 with 4 and 8 machines,

the growing communication imposed by scaling out surpasses the benefit of addi-

tional computing resource. Even though TunkRank (TR) algorithm is similar to the

PageRank, it does not face to such performance inflection. Compared to TunkRank,

the redundancy reduction process in PageRank starts much earlier, which removing

a larger amount of work. Insufficient computation with more communication over-

head leads to the scaling loss. Overall, a larger cluster with more cores per machine

113

can always speed up SLFE’s execution. On average, SLFE running with 68 cores

can vertically (i.e., with the same number of machines) achieve 3.4×, 1.8×, and

1.1× speedup over 16-core, 32-core, and 64-core, respectively. Horizontally (i.e.,

with same amount of cores per machine), SLFE running with 8 machines achieve

3.6×, 2.6×, and 1.5× speedups over running on 1, 2, 4 machines, respectively.

6.2.3 Further Discussions

To further understand SLFE’s gain from the redundancy optimization, sev-

eral micro metrics are measured.

6.2.3.1 Number of Computations

The computation here is defined as an update on a vertex, which includes a

min/max or arithmetic operation and the corresponding synchronization operations.

The number of computations during the execution phase of SSSP, CC, and PR is

shown in Figure 6.10. The reason for choosing these three applications is that

they represent converging trends among the five applications: WP and SSSP have a

similar converging trend; PageRank and TunkRank have a similar converging trend.

In Figure 6.10, the “w/o RR” curves represent SLFE without RR enabled, and the

same trends are observed in Gemini, PowerGraph, and PowerLyra systems (not

shown). The “w/ RR” curves are obtained from SLFE with RR.

The SSSP initiates from a given root, and its number of computation dramat-

ically increases when more vertices are involved in the computation (Figure 6.10a

and 6.10b). Redundant computations are reduced in the pull mode. Hence, com-

114

0

30

60

90

0 10 20 30 40

#
 o

f
C

o
m

p
u

ta
ti

o
n

s
(m

il
li

o
n

s)

Iteration No.

Gemini

SORRE

w/o RR

w/ RR

(a) SSSP-FS

0

2

4

6

8

0 15 30 45

#
 o

f
C

o
m

p
u

ta
ti

o
n

s
(m

il
li

o
n

s)

Iteration No.

(b) SSSP-LJ

0

30

60

90

120

150

0 5 10 15 20 25

#
 o

f
C

o
m

p
u

ta
ti

o
n

s
(m

il
li

o
n

s)

Iteration No.

(c) CC-FS

0

2

4

6

8

10

0 2 4 6 8 10 12 14

#
 o

f
C

o
m

p
u

ta
ti

o
n

s
(m

il
li

o
n

s)

Iteration No.

(d) CC-LJ

0

50

100

150

200

0 50 100 150

#
 o

f
C

o
m

p
u

ta
ti

o
n

s
(m

il
li

o
n

s)

Iteration No.

(e) PageRank-FS

0

5

10

15

0 50 100 150 200 250

#
 o

f
C

o
m

p
u

ta
ti

o
n

s
(m

il
li

o
n

s)

Iteration No.

(f) PageRank-LJ

Figure 6.10: SLFE’s no. of computations per iteration.

115

0%
10%
20%
30%
40%
50%
60%
70%

SSSP CC WP PR TRIn
st

ru
ct

io
n

R
ed

uc
ti

on OK LJ WK DI

PK ST FS

Figure 6.11: SLFE’s reductions on the number of instructions.

pared to the original SSSP execution, SLFE’s ramping-up curves reach a much

lower amount of computation. This phenomenon is caused by the “start late” ap-

proach, where intermediate updates are bypassed. Moreover, both curves (“w/RR”

and “w/o RR”) converge to the same point in the end, showing that the redun-

dancy reduction leads to the correct results. As aforementioned in Section 6.1.4,

the push function activates all vertices to deliver “unseen” updates of inactive ver-

tices in the pull→push transition phase. One such event is circled in Figure 6.10a),

which only incurs a small amount of immediate computations to guarantee the cor-

rectness. Figure 6.10c and 6.10d show that CC’s number of computations is re-

duced along the converging. Like SSSP, CC’s curves are finally merged in the end.

In contrast, PR [32, 45, 68, 132] keeps updating each vertex in the execution. As

more early-converged vertices are detected on-the-fly, the “finish early” principle on

these vertices dramatically reduces the total amount of computations (Figure 6.10e

and 6.10f).

116

Table 6.3: SLFE’s reductions in terms of memory accesses.

Graph —SSSP— —CC— —WP— —PR— —TR—

OK 20.4% 29.6% 25.6% 59.6% 32.2%

LJ 36.2% 48.9% 24.4% 45.8% 55.3%

WK 26.4% 35.7% 22.2% 62.1% 51.2%

DI 29.6% 30.2% 29% 22.7% 55.4%

PK 30.2% 45.2% 32.7% 39.9% 22.4%

ST 35.7% 31.3% 43.3% 25.4% 21.5%

FS 29.2% 45.7% 21.6% 33.2% 27.6%

GMEAN 29.2% 37.3% 27.6% 38.7% 35.2%

6.2.3.2 Hardware and System Metrics

Instructions and Memory Acceses. The instruction reduction when SLFE en-

ables redundancy reduction (RR) is quantified via counting the retired instructions

using performance monitoring units [6, 11]. Such results are gathered from 8 ma-

chines. RR saves up to 64.3% (31.3% on average) instructions across all applica-

tions on all graphs. Moreover, the number of memory accesses is quantified via

counting hardware load and store events. As shown in Table 6.3, SLFE reduces up

to 62.1% memory accesses (33.3% on average).

Network Traffic. The network traffic arises when synchronizing a vertex’s master

data and its mirror/remote data. Graph frameworks with different implementations

have similar network traffic patterns. One important factor that impacts the traffic

pattern is the partitioning strategy, which distributes vertices across machines in the

cluster [69, 100, 101]. For simplicity, SLFE is compared to Gemini with the same

partitioning strategy and traffic format (4-byte vertex ID and 8-byte data for each

update). It is worth noting that, with this configuration, SLFE without RR generates

117

0%

10%

20%

30%

40%

50%

SSSP CC WP PR TRN
et

w
o

rk
 T

ra
ff

ic
 R

ed
u

ct
io

n
OK LJ WK DI PK ST FS

Figure 6.12: SLFE’s network traffic reduction on a 8-machine cluster.

the same amount of network traffic as Gemini. Figure 6.12 shows the improvement

on network traffic via RR. Overall, RR yields up to 42.5% (19.3% on average)

traffic reduction for five applications across all graphs.

Memory Footprint. Compared to PowerLyra and PowerGraph, SLFE reduces

footprint by 80.3% and 72.6% on a 8-machine cluster. Compared to Gemini,

SLFE’s footprint is 7.3% larger due to the storage of RRG.

6.3 Limitations

SLFE has two limitations. First, redundancy reduction guidance needs to

be generated in the pre-processing phase. Even though generating this re-usable

topological information for the redundancy reduction purpose incurs extremely low

cost, it is considered as overhead atop the original graph processing flow. The pre-

processing overhead could be further optimized in the future. Second, although

118

not observed in the experiments, SLFE’s efficient redundancy reduction could po-

tentially incur workload imbalance across computation units when the amount of

eliminated redundancies varies. For the intra-machine case, work stealing addresses

this issue. However, it is challenging to address the potential inter-machine load im-

balance due to costly communication via network. Thus, a load balancing scheme

can be developed to prevent this.

6.4 Summary

This chapter presents SLFE, a novel topology-guided distributed graph pro-

cessing system. With the design principle of “start late or finish early”, SLFE re-

duces redundant computations to achieve better performance. SLFE, as a general

framework, combines lightweight pre-processing techniques, system APIs, and run-

time libraries to enable efficient redundancy optimization. Experimental results on

an 8-machine high-end distributed cluster show that SLFE significantly outperforms

state-of-the-art distributed and shared memory graph processing systems, yielding

up to 75× and 1644× speedups, respectively. Moreover, SLFE’s redundancy de-

tection and optimization schemes can be easily adopted in other graph processing

systems.

119

Chapter 7

Conclusion

A significant amount of data from various fields is stored as vertices and

edges to explicitly expresses connections between data segments. To quickly ob-

tain valuable insights, researchers and data scientist employ powerful computing

clusters to apply graph algorithms atop these large-scale graphs. However, pro-

cessing graphs in a distributed setup suffers performance degradation caused by

workload imbalance and redundant computations. In order to improve the perfor-

mance of distributed graph processing, this work aims to optimize the imbalance

and redundancy via novel pre-processing techniques and customized computation

units.

7.1 Summary

The dissertation provides three contributions to enhance the workload

balance and computational efficiency of distributed graph analytics. First,

Heterogeneity-aware Partitioning (HAP) [58, 69, 100] balances the data distribution

of graph processing in heterogeneous environments. HAP provides two estimation

methodologies to quantify the heterogeneity of a cluster. It also enhances five par-

titioning schemes to utilize the estimations of heterogeneity for data splitting. Bal-

120

ancing the data distribution reduces the workload imbalance and communication

cost during execution, which speeds up distributed graph analytics significantly.

Another contribution is the Hula, which auto-balances the distributed graph

workload with minimal overhead. Hula creates a hybrid partitioning scheme to

maintain graph locality, as well as to generate metatdata for lightweight workload

migration. The hardware timer is utilized by Hula to keep track of the work inten-

sity of each machine in the cluster. Based on this information, Hula’s decentralized

scheduler arranges the workload migrations between two iterations of computation.

With the support of metadata, only a minimal amount of data is needed for work

migration. These techniques provided by Hula achieve a lightweight balance opti-

mization for distributed graph processing.

Finally, this dissertation defines the redundant computations existing in dis-

tributed graph processing, and reveals the root causes of the redundancy. Moreover,

it provides SLFE [103]—a system solution to reduce redundancy for distributed

graph analytics. SLFE develops a lightweight pre-processing technique to capture

the maximum propagation level of vertices in a given graph. This topological infor-

mation is defined as Redundancy Reduction Guidance (RRG) and is further utilized

for redundancy reduction. SLFE designs Redundancy Reduction (RR)-aware run-

time functions to prune redundant operations on the fly and support regular graph

traversals. To maintain high programmability, SLFE implements a set of RR-aware

APIs and provides them to users. These techniques provided in SLFE allow dis-

tributed graph processing to perform fewer redundant computations.

121

7.2 Future Work

There are a number of future research directions that can enhance and uti-

lize the techniques described in this dissertation. This section explores a number

of promising next-steps to further improve load balancing and computational effi-

ciency for distributed graph processing.

To improve the load balance of distributed graph processing on heteroge-

neous clusters, heterogeneity-aware partitioning techniques need an accurate esti-

mation of underlying machines’ graph processing capability. Due to the rapid de-

velopment of cloud computing, cutting edge hardware are merged in the service line

in a fast manner. In this case, the accurate profiling-based estimation of machines’

graph processing capability can be costly. The thread-based estimation method in-

curs no extra cost, but it is not accurate enough. Thus, an estimation methodology

is needed to precisely reflect the computational power of machines in a heteroge-

neous cluster with minimal overhead. Graph applications are generally composed

of operations like memory accesses, atomic locks, arithmetic operations, etc. Prior

works [77, 84, 86, 90–92, 101, 102, 117, 118, 120, 130] show that thorough evalua-

tions can help understand the correlations between emerging applications and hard-

ware resources. Thus, detailed evaluations need to be performed in order to reveal

the correlations between graph algorithms and fundamental hardware components.

This information can be further utilized to estimate a machine’s graph processing

power in an accurate and lightweight manner. Building such estimation methodol-

ogy is a promising direction to balance the data distribution of large-scale graphs in

a heterogeneous cluster.

122

Another interesting future work is to apply the dynamic workload balanc-

ing scheme proposed in this dissertation on various graph partitioning algorithms.

As observed in the experiments of this dissertation (i.e., Table 5.1), depending on

the graph structures, various partitioning schemes result in different pre-processing

efficiencies. Moreover, recent work [36] shows that there is no common partitioner

favoring all graph applications. These factors motivate the further effort of adopting

the lightweight dynamic balancing design principal for various graph partitioners.

The first challenge here is to select an appropriate partitioner for a given graph and

application. The second challenge is how to form the neighboring relationship be-

tween machines once a proper partitioner is selected. Some partitioners (like Grid

partitioner [45]) may result in a complex relationship for work migration. Conse-

quently, research on extending the migration scheme needs to be performed. As can

be seen, there are many opportunities to explore further in this area.

Random walk has recently grained immense attention as a powerful mathe-

matical tool for extracting information for many important graph algorithms (e.g.,

personalized PageRank [42, 50], SimRank [57], node2vec [47]) and machine learn-

ing tasks. However, due to the dynamic nature of sophisticated walk strategies, im-

plementing such an important graph processing task atop existing graph processing

engines [71, 76, 132] encounters significant performance and scalability problems.

To solve these issues, the first distributed graph random walk engine, KnightKing,

has been proposed [122] lately. To improve the computation efficiency of this im-

portant class of graph tasks, studies (similar to the ones performed in Section 2.3)

can be performed to analyze the type of redundancy and the amount of redundant

123

operations in applications implemented atop the model of random walking. Due

to the nature of dynamic walk, the root cause of redundant operations needs to

be explored. Redundancy reduction schemes described in this dissertation can be

extended and exploited for the future design of the random walk engine. Over-

all, there remains a significant amount of work that can be pursued to improve the

performance of distributed graph random walk systems.

124

Bibliography

[1] Amazon EC2. http://aws.amazon.com/ec2. Accessed: 04-16-2015.

[2] Intel xeon phi coprocessor. https://www.intel.com/content/www/us/

en/products/processors/xeon-phi/xeon-phi-processors.html.

Accessed: 04-16-2015.

[3] The github repository for the appendix of Start Late or Finish Early: A Dis-

tributed Graph Processing System with Redundancy Reduction. https:

//github.com/songshuangVLDB19/VLDB19_Appendix.

[4] IEEE standard for floating-point arithmetic. IEEE Std 754-2008, pages 1–

70, Aug 2008.

[5] Parallel boost graph library. https://www.boost.org/doc/libs/1_72_

0/libs/graph_parallel/doc/html/index.html, May 2009.

[6] Intel performance counter monitor. https://software.intel.

com/en-us/articles/intel-performance-counter-monitor#

abstracting, 2012.

[7] Avoid active vertex tracking in static pagerank. https://issues.apache.

org/jira/browse/SPARK-3427, 2014.

[8] Facebook. https://www.facebook.com/, October 2017.

125

[9] Apache hadoop. http://hadoop.apache.org/, February 2018.

[10] Apache spark. https://spark.apache.org/, February 2018.

[11] Linux profiling with performance counters (perf). https://perf.wiki.

kernel.org/index.php/Main_Page, 2018.

[12] Nanosecond-precision test. http://wiki.zeromq.org/results:

more-precise-0mq-tests, 2019.

[13] Rocksdb. https://rocksdb.org/, October 2019.

[14] Build and run applications without thinking about servers. https://aws.

amazon.com/serverless/, 2020.

[15] A. Abdolrashidi and L. Ramaswamy. Incremental partitioning of large time-

evolving graphs. In 2015 IEEE Conference on Collaboration and Internet

Computing (CIC), pages 19–27, Oct 2015.

[16] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-

Crummey, and N. R. Tallent. Hpctoolkit: Tools for performance analysis

of optimized parallel programs http://hpctoolkit.org. Concurr. Comput. :

Pract. Exper., 22(6):685–701, April 2010.

[17] Faraz Ahmad, Srimat T. Chakradhar, Anand Raghunathan, and T. N. Vi-

jaykumar. Tarazu: Optimizing mapreduce on heterogeneous clusters. In

Proceedings of the Seventeenth International Conference on Architectural

126

Support for Programming Languages and Operating Systems, ASPLOS

XVII, pages 61–74, New York, NY, USA, 2012. ACM.

[18] Zhiyuan Ai, Mingxing Zhang, Yongwei Wu, Xuehai Qian, Kang Chen, and

Weimin Zheng. Squeezing out all the value of loaded data: An out-of-core

graph processing system with reduced disk i/o. In 2017 USENIX Annual

Technical Conference (USENIX ATC 17), pages 125–137, Santa Clara, CA,

2017. USENIX Association.

[19] Khaled Ammar and M Tamer Özsu. Wgb: Towards a universal graph bench-

mark. In Advancing Big Data Benchmarks, pages 58–72. Springer, 2014.

[20] M. J. Anderson, N. Sundaram, N. Satish, M. M. A. Patwary, T. L. Willke, and

P. Dubey. Graphpad: Optimized graph primitives for parallel and distributed

platforms. In 2016 IEEE International Parallel and Distributed Processing

Symposium (IPDPS), pages 313–322, May 2016.

[21] Chaitanya Baru, Milind Bhandarkar, Raghunath Nambiar, et al. Setting the

direction for big data benchmark standards. In Selected Topics in Perfor-

mance Evaluation and Benchmarking, pages 197–208. Springer, 2013.

[22] Scott Beamer, Krste Asanović, and David Patterson. Direction-optimizing

breadth-first search. In Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis, SC ’12, pages

12:1–12:10, Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

127

[23] Richard Bellman. On a Routing Problem. Quarterly of Applied Mathemat-

ics, 16:87–90, 1958.

[24] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E

Leiserson, Keith H Randall, and Yuli Zhou. Cilk: An efficient multithreaded

runtime system. Journal of Parallel and Distributed Computing, 37(1):55–

69, 1996.

[25] P. Boldi and S. Vigna. The webgraph framework i: Compression techniques.

In Proceedings of the 13th International Conference on World Wide Web,

WWW ’04, pages 595–602, New York, NY, USA, 2004. ACM.

[26] Aydın Buluç and John R Gilbert. The combinatorial blas: Design, imple-

mentation, and applications. The International Journal of High Performance

Computing Applications, 25(4):496–509, 2011.

[27] Aydin Buluç and Kamesh Madduri. Parallel breadth-first search on dis-

tributed memory systems. In Proceedings of 2011 International Conference

for High Performance Computing, Networking, Storage and Analysis, SC

’11, pages 65:1–65:12, New York, NY, USA, 2011. ACM.

[28] Alan Bundy and Lincoln Wallen. Breadth-first search. In Catalogue of

Artificial Intelligence Tools, pages 13–13. Springer, 1984.

[29] V. T. Chakaravarthy, F. Checconi, F. Petrini, and Y. Sabharwal. Scalable

single source shortest path algorithms for massively parallel systems. In

128

2014 IEEE 28th International Parallel and Distributed Processing Sympo-

sium, pages 889–901, May 2014.

[30] J. Chen and L. K. John. Efficient program scheduling for heterogeneous

multi-core processors. In 2009 46th ACM/IEEE Design Automation Confer-

ence, pages 927–930, July 2009.

[31] Rong Chen, Xin Ding, Peng Wang, Haibo Chen, Binyu Zang, and Haib-

ing Guan. Computation and communication efficient graph processing with

distributed immutable view. In Proceedings of the 23rd International Sym-

posium on High-performance Parallel and Distributed Computing, HPDC

’14, pages 215–226, New York, NY, USA, 2014. ACM.

[32] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. Powerlyra: Differen-

tiated graph computation and partitioning on skewed graphs. In Proceedings

of the Tenth European Conference on Computer Systems, EuroSys ’15, pages

1:1–1:15, New York, NY, USA, 2015. ACM.

[33] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sam-

bavi Muthukrishnan. One trillion edges: Graph processing at facebook-

scale. Proc. VLDB Endow., 8(12):1804–1815, August 2015.

[34] Byung-Gon Chun, Gianluca Iannaccone, Giuseppe Iannaccone, Randy Katz,

Gunho Lee, and Luca Niccolini. An energy case for hybrid datacenters.

SIGOPS Oper. Syst. Rev., 44(1):76–80, March 2010.

129

[35] G. Cong, S. Kodali, S. Krishnamoorthy, D. Lea, V. Saraswat, and T. Wen.

Solving large, irregular graph problems using adaptive work-stealing. In

2008 37th International Conference on Parallel Processing, pages 536–545,

Sept 2008.

[36] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex

Brooks, Nikoli Dryden, Marc Snir, and Keshav Pingali. Gluon: A

communication-optimizing substrate for distributed heterogeneous graph an-

alytics. In Proceedings of the 39th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation, PLDI 2018, pages 752–768,

New York, NY, USA, 2018. ACM.

[37] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing

on large clusters. Commun. ACM, 51(1):107–113, January 2008.

[38] Laxman Dhulipala, Guy Blelloch, and Julian Shun. Julienne: A framework

for parallel graph algorithms using work-efficient bucketing. In Proceedings

of the 29th ACM Symposium on Parallelism in Algorithms and Architectures,

SPAA ’17, pages 293–304, New York, NY, USA, 2017. ACM.

[39] E. W. Dijkstra. A note on two problems in connexion with graphs. Numer.

Math., 1(1):269–271, December 1959.

[40] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law

relationships of the internet topology. SIGCOMM Comput. Commun. Rev.,

29(4):251–262, August 1999.

130

[41] K. F. Faxen. Efficient work stealing for fine grained parallelism. In 2010

39th International Conference on Parallel Processing, pages 313–322, Sept

2010.

[42] Dniel Fogaras, Balzs Rcz, Kroly Csalogny, and Tams Sarls. Towards scaling

fully personalized pagerank: Algorithms, lower bounds, and experiments.

Internet Mathematics, 2(3):333–358, 2005.

[43] Message P Forum. Mpi: A message-passing interface standard. Technical

report, Knoxville, TN, USA, 1994.

[44] Siddharth Garg, Shreyas Sundaram, and Hiren D. Patel. Robust heteroge-

neous data center design: A principled approach. SIGMETRICS Perform.

Eval. Rev., 39(3):28–30, December 2011.

[45] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos

Guestrin. Powergraph: Distributed graph-parallel computation on natural

graphs. In Presented as part of the 10th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 12), pages 17–30, Hollywood,

CA, 2012. USENIX.

[46] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw,

Michael J. Franklin, and Ion Stoica. Graphx: Graph processing in a dis-

tributed dataflow framework. In 11th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 14), pages 599–613, Broomfield,

CO, 2014. USENIX Association.

131

[47] Aditya Grover and Jure Leskovec. Node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD International Confer-

ence on Knowledge Discovery and Data Mining, KDD 16, pages 855–864,

New York, NY, USA, 2016. Association for Computing Machinery.

[48] Minyang Han and Khuzaima Daudjee. Giraph unchained: Barrierless asyn-

chronous parallel execution in pregel-like graph processing systems. Proc.

VLDB Endow., 8(9):950–961, May 2015.

[49] Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou,

Vijayan Prabhakaran, Wenguang Chen, and Enhong Chen. Chronos: A

graph engine for temporal graph analysis. In Proceedings of the Ninth Euro-

pean Conference on Computer Systems, EuroSys ’14, pages 1:1–1:14, New

York, NY, USA, 2014. ACM.

[50] Taher H. Haveliwala. Topic-sensitive pagerank. In Proceedings of the 11th

International Conference on World Wide Web, WWW 02, pages 517–526,

New York, NY, USA, 2002. Association for Computing Machinery.

[51] Benjamin Heintz and Abhishek Chandra. Enabling scalable social group an-

alytics via hypergraph analysis systems. In Proceedings of the 7th USENIX

Conference on Hot Topics in Cloud Computing, HotCloud15, page 14, USA,

2015. USENIX Association.

[52] Francis B Hildebrand. Methods of applied mathematics. Courier Corpora-

tion, 2012.

132

[53] Sungpack Hong, Hassan Chafi, Edic Sedlar, and Kunle Olukotun. Green-

marl: A dsl for easy and efficient graph analysis. In Proceedings of the

Seventeenth International Conference on Architectural Support for Program-

ming Languages and Operating Systems, ASPLOS XVII, pages 349–362,

New York, NY, USA, 2012. ACM.

[54] Sungpack Hong, Siegfried Depner, Thomas Manhardt, Jan Van Der Lugt,

Merijn Verstraaten, and Hassan Chafi. Pgx.d: A fast distributed graph pro-

cessing engine. In Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, SC ’15, pages

58:1–58:12, New York, NY, USA, 2015. ACM.

[55] Jiewen Huang, Daniel J Abadi, and Kun Ren. Scalable sparql querying of

large rdf graphs. Proceedings of the VLDB Endowment, 4(11):1123–1134,

2011.

[56] Nilesh Jain, Guangdeng Liao, and Theodore L. Willke. Graphbuilder: Scal-

able graph etl framework. GRADES, pages 4:1–4:6, 2013.

[57] Glen Jeh and Jennifer Widom. Simrank: A measure of structural-context

similarity. In Proceedings of the Eighth ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, KDD 02, pages 538–543,

New York, NY, USA, 2002. Association for Computing Machinery.

[58] Lizy Kurian John, Shuang Song, and Andreas Gerstlauer. Guided load bal-

ancing of graph processing workloads on heterogeneous clusters, October 8

2019. US Patent 10,437,648.

133

[59] S. Karamati, J. Young, and R. Vuduc. An energy-efficient single-source

shortest path algorithm. In 2018 IEEE 32th International Parallel and Dis-

tributed Processing Symposium, May 2018.

[60] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme

for partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359–392,

December 1998.

[61] Zuhair Khayyat, Karim Awara, Amani Alonazi, Hani Jamjoom, Dan

Williams, and Panos Kalnis. Mizan: A system for dynamic load balancing

in large-scale graph processing. In Proceedings of the 8th ACM European

Conference on Computer Systems, EuroSys ’13, pages 169–182, New York,

NY, USA, 2013. ACM.

[62] F. Khorasani, R. Gupta, and L. N. Bhuyan. Scalable simd-efficient graph

processing on gpus. In 2015 International Conference on Parallel Architec-

ture and Compilation (PACT), pages 39–50, Oct 2015.

[63] Farzad Khorasani, Rajiv Gupta, and Laxmi N. Bhuyan. Scalable simd-

efficient graph processing on gpus. In Proceedings of the 24th International

Conference on Parallel Architectures and Compilation Techniques, PACT

’15, pages 39–50, 2015.

[64] Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N. Bhuyan. Cusha:

Vertex-centric graph processing on gpus. In Proceedings of the 23rd In-

ternational Symposium on High-performance Parallel and Distributed Com-

puting, HPDC ’14, pages 239–252, New York, NY, USA, 2014. ACM.

134

[65] Jérôme Kunegis. Konect: The koblenz network collection. In Proceed-

ings of the 22Nd International Conference on World Wide Web, WWW ’13

Companion, pages 1343–1350, New York, NY, USA, 2013. ACM.

[66] Amlan Kusum, Keval Vora, Rajiv Gupta, and Iulian Neamtiu. Efficient

processing of large graphs via input reduction. In Proceedings of the

25th ACM International Symposium on High-Performance Parallel and Dis-

tributed Computing, HPDC ’16, pages 245–257, New York, NY, USA, 2016.

ACM.

[67] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is

twitter, a social network or a news media? In Proceedings of the 19th Inter-

national Conference on World Wide Web, WWW ’10, pages 591–600, New

York, NY, USA, 2010. ACM.

[68] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. Graphchi: Large-scale

graph computation on just a pc. In Presented as part of the 10th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 12),

pages 31–46, Hollywood, CA, 2012. USENIX.

[69] M. LeBeane, S. Song, R. Panda, J. H. Ryoo, and L. K. John. Data partition-

ing strategies for graph workloads on heterogeneous clusters. In SC15: In-

ternational Conference for High Performance Computing, Networking, Stor-

age and Analysis, pages 1–12, Nov 2015.

[70] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network

dataset collection. http://snap.stanford.edu/data, June 2014.

135

[71] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Ky-

rola, and Joseph M. Hellerstein. Distributed graphlab: A framework for ma-

chine learning and data mining in the cloud. Proc. VLDB Endow., 5(8):716–

727, April 2012.

[72] Yi Lu, James Cheng, Da Yan, and Huanhuan Wu. Large-scale distributed

graph computing systems: An experimental evaluation. Proc. VLDB En-

dow., 8(3):281–292, November 2014.

[73] Steffen Maass, Changwoo Min, Sanidhya Kashyap, Woonhak Kang, Mo-

han Kumar, and Taesoo Kim. Mosaic: Processing a trillion-edge graph

on a single machine. In Proceedings of the Twelfth European Conference

on Computer Systems, EuroSys ’17, pages 527–543, New York, NY, USA,

2017. ACM.

[74] Saeed Maleki, Donald Nguyen, Andrew Lenharth, Marı́a Garzarán, David

Padua, and Keshav Pingali. Dsmr: A parallel algorithm for single-source

shortest path problem. In Proceedings of the 2016 International Conference

on Supercomputing, ICS ’16, pages 32:1–32:14, New York, NY, USA, 2016.

ACM.

[75] Saeed Maleki, Donald Nguyen, Andrew Lenharth, Marı́a Garzarán, David

Padua, and Keshav Pingali. Dsmr: A shared and distributed memory algo-

rithm for single-source shortest path problem. In Proceedings of the 21st

ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-

ming, PPoPP ’16, pages 39:1–39:2, New York, NY, USA, 2016. ACM.

136

[76] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert,

Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A system for

large-scale graph processing. In Proceedings of the 2010 ACM SIGMOD In-

ternational Conference on Management of Data, SIGMOD ’10, pages 135–

146, New York, NY, USA, 2010. ACM.

[77] Yashwant Marathe, Nagendra Gulur, Jee Ho Ryoo, Shuang Song, and

Lizy K. John. Csalt: Context switch aware large tlb. In Proceedings of

the 50th Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO-50 17, pages 449–462, New York, NY, USA, 2017. Association for

Computing Machinery.

[78] Kamran Najeebullah, Kifayat Ullah Khan, Waqas Nawaz, and Young-Koo

Lee. Bpp: Large graph storage for efficient disk based processing. arXiv

preprint arXiv:1401.2327, 2014.

[79] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavy-

weight dynamic binary instrumentation. SIGPLAN Not., 42(6):89–100, June

2007.

[80] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight in-

frastructure for graph analytics. In Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles, SOSP ’13, pages 456–471,

New York, NY, USA, 2013. ACM.

[81] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight in-

frastructure for graph analytics. In Proceedings of the Twenty-Fourth ACM

137

Symposium on Operating Systems Principles, SOSP ’13, pages 456–471,

New York, NY, USA, 2013. ACM.

[82] Muhammet Mustafa Ozdal, Serif Yesil, Taemin Kim, Andrey Ayupov, John

Greth, Steven Burns, and Ozcan Ozturk. Energy efficient architecture for

graph analytics accelerators. In Proceedings of the 43rd International Sym-

posium on Computer Architecture, ISCA ’16, pages 166–177, Piscataway,

NJ, USA, 2016. IEEE Press.

[83] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The

pagerank citation ranking: Bringing order to the web. Technical report,

Stanford InfoLab, 1999.

[84] R. Panda, S. Song, J. Dean, and L. K. John. Wait of a decade: Did spec cpu

2017 broaden the performance horizon? In 2018 IEEE International Sympo-

sium on High Performance Computer Architecture (HPCA), pages 271–282,

Feb 2018.

[85] Fabio Petroni, Leonardo Querzoni, Khuzaima Daudjee, Shahin Kamali, and

Giorgio Iacoboni. Hdrf: Stream-based partitioning for power-law graphs. In

Proceedings of the 24th ACM International on Conference on Information

and Knowledge Management, CIKM ’15, pages 243–252, New York, NY,

USA, 2015. ACM.

[86] Aashish Phansalkar, Ajay Joshi, and Lizy K. John. Analysis of redundancy

and application balance in the spec cpu2006 benchmark suite. In Proceed-

ings of the 34th Annual International Symposium on Computer Architecture,

138

ISCA 07, pages 412–423, New York, NY, USA, 2007. Association for Com-

puting Machinery.

[87] Fatemeh Rahimian, Amir H. Payberah, Sarunas Girdzijauskas, and Seif

Haridi. Distributed vertex-cut partitioning. In Proceedings of the 14th IFIP

WG 6.1 International Conference on Distributed Applications and Interop-

erable Systems - Volume 8460, pages 186–200, Berlin, Heidelberg, 2014.

Springer-Verlag.

[88] Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy

Zwaenepoel. Chaos: Scale-out graph processing from secondary storage. In

Proceedings of the 25th Symposium on Operating Systems Principles, SOSP

’15, pages 410–424, New York, NY, USA, 2015. ACM.

[89] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream: Edge-

centric graph processing using streaming partitions. In Proceedings of the

Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP

’13, pages 472–488, New York, NY, USA, 2013. ACM.

[90] J. H. Ryoo, S. J. Quirem, M. Lebeane, R. Panda, S. Song, and L. K. John.

Gpgpu benchmark suites: How well do they sample the performance spec-

trum? In 2015 44th International Conference on Parallel Processing, pages

320–329, Sep. 2015.

[91] J. H. Ryoo, S. Song, and L. K. John. Puzzle memory: Multifractional par-

titioned heterogeneous memory scheme. In 2018 IEEE 36th International

Conference on Computer Design (ICCD), pages 310–317, Oct 2018.

139

[92] Jee Ho Ryoo, Nagendra Gulur, Shuang Song, and Lizy K. John. Rethink-

ing tlb designs in virtualized environments: A very large part-of-memory

tlb. In Proceedings of the 44th Annual International Symposium on Com-

puter Architecture, ISCA 17, pages 469–480, New York, NY, USA, 2017.

Association for Computing Machinery.

[93] Semih Salihoglu and Jennifer Widom. Gps: A graph processing system. In

Proceedings of the 25th International Conference on Scientific and Statistical

Database Management, SSDBM, pages 22:1–22:12, New York, NY, USA,

2013. ACM.

[94] Thomas Schank. Algorithmic aspects of triangle-based network analysis.

PhD thesis, University Karlsruhe, 2007.

[95] Martin Sevenich, Sungpack Hong, Oskar van Rest, Zhe Wu, Jayanta Baner-

jee, and Hassan Chafi. Using domain-specific languages for analytic graph

databases. Proc. VLDB Endow., 9(13):1257–1268, September 2016.

[96] Zechao Shang, Feifei Li, Jeffrey Xu Yu, Zhiwei Zhang, and Hong Cheng.

Graph analytics through fine-grained parallelism. In Proceedings of the 2016

International Conference on Management of Data, SIGMOD ’16, pages

463–478, New York, NY, USA, 2016. ACM.

[97] Bin Shao, Haixun Wang, and Yatao Li. Trinity: A distributed graph engine

on a memory cloud. In Proceedings of the 2013 ACM SIGMOD Interna-

tional Conference on Management of Data, SIGMOD ’13, pages 505–516,

New York, NY, USA, 2013. ACM.

140

[98] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and Feifei Li. Fast and

concurrent RDF queries with rdma-based distributed graph exploration. In

12th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 16), pages 317–332, GA, 2016. USENIX Association.

[99] Julian Shun and Guy E. Blelloch. Ligra: A lightweight graph processing

framework for shared memory. In Proceedings of the 18th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, PPoPP ’13,

pages 135–146, New York, NY, USA, 2013. ACM.

[100] S. Song, M. Li, X. Zheng, M. LeBeane, J. H. Ryoo, R. Panda, A. Gerstlauer,

and L. K. John. Proxy-guided load balancing of graph processing work-

loads on heterogeneous clusters. In 2016 45th International Conference on

Parallel Processing (ICPP), pages 77–86, Aug 2016.

[101] S. Song, X. Zheng, A. Gerstlauer, and L. K. John. Fine-grained power

analysis of emerging graph processing workloads for cloud operations man-

agement. In 2016 IEEE International Conference on Big Data (Big Data),

pages 2121–2126, Dec 2016.

[102] Shuang Song, Raj Desikan, Mohamad Barakat, Sridhar Sundaram, Andreas

Gerstlauer, and Lizy K. John. Fine-grain program snippets generator for

mobile core design. In Proceedings of the on Great Lakes Symposium on

VLSI 2017, GLSVLSI 17, pages 245–250, New York, NY, USA, 2017. As-

sociation for Computing Machinery.

141

[103] Shuang Song, Xu Liu, Qinzhe Wu, Andreas Gerstlauer, Tao Li, and

Lizy Kurian John. Start late or finish early: A distributed graph process-

ing system with redundancy reduction. Proc. VLDB Endow., 12(2), August

2019.

[104] Isabelle Stanton. Streaming balanced graph partitioning algorithms for ran-

dom graphs. In Proceedings of the Twenty-fifth Annual ACM-SIAM Sym-

posium on Discrete Algorithms, SODA ’14, pages 1287–1301, Philadelphia,

PA, USA, 2014. Society for Industrial and Applied Mathematics.

[105] Isabelle Stanton and Gabriel Kliot. Streaming graph partitioning for large

distributed graphs. In Proceedings of the 18th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’12, pages

1222–1230, New York, NY, USA, 2012. ACM.

[106] Narayanan Sundaram, Nadathur Satish, Md Mostofa Ali Patwary, Subra-

manya R. Dulloor, Michael J. Anderson, Satya Gautam Vadlamudi, Dipankar

Das, and Pradeep Dubey. Graphmat: High performance graph analytics

made productive. Proc. VLDB Endow., 8(11):1214–1225, July 2015.

[107] Charalampos Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Mi-

lan Vojnovic. Fennel: Streaming graph partitioning for massive scale graphs.

In Proceedings of the 7th ACM international Conference on Web Search and

Data Mining, pages 333–342. ACM, 2014.

[108] Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Marlow. The

142

anatomy of the facebook social graph. arXiv preprint arXiv:1111.4503,

2011.

[109] L. M. Vaquero, F. Cuadrado, D. Logothetis, and C. Martella. Adaptive par-

titioning for large-scale dynamic graphs. In 2014 IEEE 34th International

Conference on Distributed Computing Systems, pages 144–153, June 2014.

[110] Shiv Verma, Luke M. Leslie, Yosub Shin, and Indranil Gupta. An experi-

mental comparison of partitioning strategies in distributed graph processing.

Proc. VLDB Endow., 10(5):493–504, January 2017.

[111] Keval Vora, Rajiv Gupta, and Guoqing Xu. Synergistic analysis of evolving

graphs. ACM Trans. Archit. Code Optim., 13(4):32:1–32:27, October 2016.

[112] Keval Vora, Rajiv Gupta, and Guoqing Xu. Kickstarter: Fast and accurate

computations on streaming graphs via trimmed approximations. In Pro-

ceedings of the Twenty-Second International Conference on Architectural

Support for Programming Languages and Operating Systems, ASPLOS ’17,

pages 237–251, New York, NY, USA, 2017. ACM.

[113] Keval Vora, Guoqing Xu, and Rajiv Gupta. Load the edges you need: A

generic i/o optimization for disk-based graph processing. In 2016 USENIX

Annual Technical Conference (USENIX ATC 16), pages 507–522, Denver,

CO, 2016. USENIX Association.

[114] Kai Wang, Guoqing Xu, Zhendong Su, and Yu David Liu. Graphq: Graph

query processing with abstraction refinement—scalable and programmable

143

analytics over very large graphs on a single PC. In 2015 USENIX Annual

Technical Conference (USENIX ATC 15), pages 387–401, Santa Clara, CA,

2015. USENIX Association.

[115] Lei Wang, Fan Yang, Liangji Zhuang, Huimin Cui, Fang Lv, and Xiaobing

Feng. Articulation points guided redundancy elimination for betweenness

centrality. In Proceedings of the 21st ACM SIGPLAN Symposium on Prin-

ciples and Practice of Parallel Programming, PPoPP ’16, pages 7:1–7:13,

New York, NY, USA, 2016. ACM.

[116] Jianshu Weng, Ee-Peng Lim, Jing Jiang, and Qi He. Twitterrank: Finding

topic-sensitive influential twitterers. In Proceedings of the Third ACM In-

ternational Conference on Web Search and Data Mining, WSDM ’10, pages

261–270, New York, NY, USA, 2010. ACM.

[117] Joseph Whitehouse, Qinzhe Wu, Shuang Song, Eugene John, Andreas Gerst-

lauer, and Lizy K. John. A study of core utilization and residency in hetero-

geneous smart phone architectures. In Proceedings of the 2019 ACM/SPEC

International Conference on Performance Engineering, ICPE 19, pages 67–

78, New York, NY, USA, 2019. Association for Computing Machinery.

[118] Q. Wu, S. Flolid, S. Song, J. Deng, and L. K. John. Invited paper for the

hot workloads special session hot regions in spec cpu2017. In 2018 IEEE

International Symposium on Workload Characterization (IISWC), pages 71–

77, Sep. 2018.

144

[119] Chenning Xie, Rong Chen, Haibing Guan, Binyu Zang, and Haibo Chen.

Sync or async: Time to fuse for distributed graph-parallel computation. In

Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Prac-

tice of Parallel Programming, PPoPP 2015, pages 194–204, New York, NY,

USA, 2015. ACM.

[120] Hao Xu, Qingsen Wang, Shuang Song, Lizy Kurian John, and Xu Liu. Can

we trust profiling results? understanding and fixing the inaccuracy in modern

profilers. In Proceedings of the ACM International Conference on Super-

computing, ICS 19, pages 284–295, New York, NY, USA, 2019. Association

for Computing Machinery.

[121] Da Yan, James Cheng, Yi Lu, and Wilfred Ng. Effective techniques for mes-

sage reduction and load balancing in distributed graph computation. In Pro-

ceedings of the 24th International Conference on World Wide Web, WWW

’15, pages 1307–1317, Republic and Canton of Geneva, Switzerland, 2015.

[122] Ke Yang, MingXing Zhang, Kang Chen, Xiaosong Ma, Yang Bai, and Yong

Jiang. Knightking: A fast distributed graph random walk engine. In

Proceedings of the 27th ACM Symposium on Operating Systems Principles,

SOSP 19, page 524537, New York, NY, USA, 2019. Association for Com-

puting Machinery.

[123] Y. Yasui, K. Fujisawa, and K. Goto. Numa-optimized parallel breadth-first

search on multicore single-node system. In 2013 IEEE International Con-

ference on Big Data, pages 394–402, Oct 2013.

145

[124] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, and Ion

Stoica. Improving mapreduce performance in heterogeneous environments.

In Proceedings of the 8th USENIX Conference on Operating Systems De-

sign and Implementation, OSDI’08, pages 29–42, Berkeley, CA, USA, 2008.

USENIX Association.

[125] Kaiyuan Zhang, Rong Chen, and Haibo Chen. Numa-aware graph-

structured analytics. In Proceedings of the 20th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPoPP 2015, pages

183–193, New York, NY, USA, 2015. ACM.

[126] Kaiyuan Zhang, Rong Chen, and Haibo Chen. Numa-aware graph-

structured analytics. In Proceedings of the 20th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPoPP 2015, pages

183–193, New York, NY, USA, 2015. ACM.

[127] Kaiyuan Zhang, Rong Chen, and Haibo Chen. Numa-aware graph-

structured analytics. In Proceedings of the 20th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPoPP 2015, pages

183–193, New York, NY, USA, 2015. ACM.

[128] Mingxing Zhang, Yongwei Wu, Kang Chen, Xuehai Qian, Xue Li, and

Weimin Zheng. Exploring the hidden dimension in graph processing. In

12th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 16), pages 285–300, Savannah, GA, 2016. USENIX Association.

146

[129] Yu Zhang, Xiaofei Liao, Hai Jin, Lin Gu, Ligang He, Bingsheng He, and

Haikun Liu. Cgraph: A correlations-aware approach for efficient concurrent

iterative graph processing. In 2018 USENIX Annual Technical Conference

(USENIX ATC 18), pages 441–452, Boston, MA, 2018. USENIX Associa-

tion.

[130] X. Zheng, H. Vikalo, S. Song, L. K. John, and A. Gerstlauer. Sampling-

based binary-level cross-platform performance estimation. In Design, Au-

tomation Test in Europe Conference Exhibition (DATE), 2017, pages 1709–

1714, March 2017.

[131] Yang Zhou, Ling Liu, Kisung Lee, and Qi Zhang. Graphtwist: Fast itera-

tive graph computation with two-tier optimizations. Proc. VLDB Endow.,

8(11):1262–1273, July 2015.

[132] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. Gem-

ini: A computation-centric distributed graph processing system. In 12th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI 16), pages 301–316, GA, 2016. USENIX Association.

[133] Xiaowei Zhu, Wentao Han, and Wenguang Chen. Gridgraph: Large-scale

graph processing on a single machine using 2-level hierarchical partitioning.

In 2015 USENIX Annual Technical Conference (USENIX ATC 15), pages

375–386, Santa Clara, CA, 2015. USENIX Association.

147

