Modeling Program Resource Demand Using Inherent
Program Characteristics

Jian Chen, Lizy K. John, and Dimitris Kaseridis
Department of Electrical and Computer Engineering
The University of Texas at Austin, Austin, Texas, USA
chenjian@mail.utexas.edu, {ljohn,kaseridi}@ece.utexas.edu

ABSTRACT

The workloads in modern Chip-multiprocessors (CMP) are becom-
ing increasingly diversified, creating different resource demands on
hardware substrate. It is necessary to allocate hardware resources
based on the needs of the workloads in order to improve system ef-
ficiency and/or ensure Quality-of-Service (QoS) at certain perfor-
mance levels. Therefore, it is extremely important to identify the
resource demand of the workload in terms of the performance and
power efficiency. Existing models are inappropriate for estimat-
ing resource demands as they require either partial simulations or
time-consuming training. This paper presents an integrated frame-
work that is able to identify the single-resource or multi-resource
demands on an array of hardware resources ranging from the issue
width of the processor to the memory bandwidth. With an analyt-
ical model based on program inherent characteristics, this frame-
work does not require any detailed simulation or training yet is still
able to capture the performance trend of the program accurately.
Our experiment shows that the proposed framework on average
provides no larger than 8.6% error to any given performance target
for multi-resource demand estimation. By using the proposed per-
formance model, the framework identifies the multi-resource de-
mands up to 40X faster compared to the state-of-the-art analytical
model. The proposed framework can be applied in workload capac-
ity planning, hardware resource adaptation as well as coordinated
resource management for QoS in CMP systems.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques

General Terms
Measurement, Performance

Keywords
Microprocessor, Resource Demands, Program Characteristics, Per-
formance Modeling

1. INTRODUCTION

The workloads on modern general purpose or embedded com-
puting systems are becoming increasingly abundant and diversified,
imposing various demands on hardware resources, such as cache

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGMETRICS’11, June 7-11, 2011, San Jose, California, USA.

Copyright 2011 ACM 978-1-4503-0262-3/11/06 ...$10.00.

sizes and memory bandwidth. Efficiently modeling and identify-
ing these resource demands is fundamental for many applications,
including efficient single-ISA heterogeneous computing [17], re-
source management for throughput, power efficiency and/or Quality-
of-Service (QoS) in Chip Multiprocessors (CMP) [8], and resource
consolidation for balancing computation fidelity and response la-
tency in embedded systems [21]. For example, when executing an
application in a single-ISA heterogeneous multi-core processor, the
application’s resource demand needs to be carefully explored and
classified so that the application can be properly scheduled to the
core that matches its demand for energy efficient execution. Simi-
larly, when managing resources in CMP systems, the resource de-
mands of an application has to be efficiently identified before allo-
cating appropriate hardware resources to meet the power and per-
formance constraints.

While there are some methods proposed to identify the resource
demands of the workloads [3][5][14], these methods suffer from
either inefficiency or high implementation costs. Existing methods
typically leverages analytical models [14][15], regression models
[12][18], or neural network models [11] to estimate the perfor-
mance and/or power of the application-processor pairs, and iden-
tify the resource demand of a workload by searching through the
design space off-line for the optimum configurations. However,
these models require either partial simulations or iterative training
for each application, which is expensive and inefficient for resource
demand estimation. Moreover, the requirement of partial simula-
tions also implies that when using these models on-line, resource
demands can be only identified by using tentative runs in a trial-
and-error way [5], which may require many trial iterations and
cause significant overhead in performance and energy. To avoid
trial runs for resource demand estimation, some predictive schemes
have recently been proposed, which include the marginal utility
monitoring for last-level cache partitioning [23] and system-level
bandwidth management [16], and the on-line machine learning for
coordinated management of multiple resources [3]. However, these
schemes are either limited to manage only single resource, or im-
practical to implement and validate.

Therefore, there is a need for a model that does not require any
partial simulations or training, is easy to implement, yet still able to
identify the demands on single and multiple resources accurately.
This paper attempts to develop such model by leveraging the recent
advances in analytical modeling and workload characterization. It
exploits the fact that resource demand is estimated based on perfor-
mance trend rather than absolute performance, and hence is insen-
sitive to the second-order effects of the performance. In particular,
the contributions of this paper are as follows:

e Analytical Model Based on Program Characteristics: We
develop an analytical model based on the program character-

Program Characteristics

PREDA Kernel

Resource Demands

ILP:
Dependency Chain
Distribution

)

Binaries

ILP

Modeling

MLP

Modeling

Performance Model

Data Locality:
Stack Distance Distribution

Pt

2 Cache Size

Stack Distance Trace

Resource Analyzer

"
L]
'
'
L]
L]
'
L]
L]
1]
'

Program H
L]
'
'
L]
'

L]
'
'
L]
'
L]
L]
'

Program Instruction Mix

perating Frequency |

Profiler

i

Memory Bandwidth

H
.
H -
H Control Flow:

H Branch Transition Rate

H Branch Access Frequency

.

ssssssscscsscssssessssassnsnnsnsnnsnnsn

Resource Specs:

1. Configuration Ranges

2. Execution & Memory Latency
3. Performance Target

ranch Predictor Size

Figure 1: The PREDA framework

istics, such as Instruction Level Parallelism (ILP), Memory
Level Parallelism (MLP) and branch predictability. Unlike
existing analytical models [14][7], which require simulations
on caches and branch predictors, our model avoids any par-
tial detailed simulation; yet is still able to accurately model
the performance trend for different hardware configurations.
The experimental results show that the modeled performance
trend is on average less than 10.7% off the simulated one.

Efficient Estimation of Multi-Resource Demands: We pro-
pose a set of algorithms and heuristics that can efficiently
estimate the demands on both single resource and the mul-
tiple resources under any given performance target. The al-
gorithm for identifying the multi-resource demand is based
on marginal utility [23] and the gradient performance gain,
which leads to a fast convergence with only a few iterations.
We show that the estimated multi-resource demands on aver-
age achieves no larger than 8.6% error to any given perfor-
mance target.

Integrated Framework for Resource Demand Estimation:
We encapsulate the analytical model and the resource de-

mand estimation algorithms into an integrated framework called

Program REsource Demand Analyzer (PREDA), which au-
tomatically estimates a broad set of resource demands for a
workload. Compared with the framework using state-of-the-
art analytical model [7], our framework achieves up to 40X
speedup in estimating multi-resource demands.

The rest of the paper is organized as follows. Section 2 gives the
overview of the proposed PREDA framework. Section 3 presents
the working mechanism of the PREDA kernel. Section 4 describes
the experiment and evaluation methodology. Section 5 reports our
experimental results. Section 6 compares our work with other re-
lated works, and section 7 concludes the paper.

2. OVERVIEW OF PREDA

2.1 Resource Demand Definition

Before we continue, it is important to make a clear definition
of resource demand. The meaning of resource demand contains
two elements: the performance target and the energy efficiency.
On one hand, different levels of performance target may lead to
different resource requirements. Specifically, as the performance
target increases, the amount of resources required also increase.
On the other hand, for a given performance target, there may be a
set of different amounts of resources being able to meet that tar-
get. Among them, we are only interested in the one that is energy

efficient. Therefore, we introduce the following resource demand
definition:

Definition: Resource Demand D(p) is the amount of resource a
thread requires to efficiently achieve no less than p% of the max-
imum performance achieved with the entire resources allocated to
the thread.

Note that this definition uses a relative term for the performance

target because the absolute performance target, such as the Instruction-

Per-Cycle (IPC) rate, may lead to ill-defined cases where the target
cannot be satisfied no matter how many resources are allocated.
The relative performance target avoids this problem, and more im-
portantly it is inline with the satisfiability of the QoS target pro-
posed by Guo et al. [8]. In fact, with this definition, our framework
can be treated as a conversion layer that converts the performance
targets into the resource demands, which could be used as the Re-
source Usage Metrics for QoS enforcement [8]. Note also that
this definition assumes performance monotonicity, which means
the performance of a thread increases monotonically as the amount
of resource allocated to the thread increases [22].

2.2 PREDA Framework

The proposed PREDA framework consists of two parts: the pro-
gram characteristics profiler and the PREDA kernel. As shown in
Figure 1, the program profiler walks through the dynamic instruc-
tion stream and extracts a set of program characteristics, which
contain instruction dependency chain distribution, stack distance
distribution, instruction mix, and branch transition rate and its ac-
cess frequency. These characteristics are then fed to the PREDA
kernel, which consists of an ILP model, an MLP model, a perfor-
mance model and a resource analyzer. The models for ILP and
MLP are responsible to translate the program characteristics into
the ILP and MLP information that can be directly used by the
performance model. Hence, these models serve as the key layer
to decouple the performance evaluation from detailed simulations.
The performance model takes the ILP and MLP information along
with the branch predictability characteristics and estimates the pro-
gram execution time on an out-of-order processor. The resource
analyzer converts the estimated performance into the relative per-
formance, and searches the configuration space for the amount of
resources required to meet the performance targets. The estimated
resource demands include processor issue width, processor reorder
buffer (ROB) size, L2 (or last level) cache sizes, operating fre-
quency, memory bandwidth and branch predictor size. These re-
source demands are estimated either in single-resource mode (other
resources are fixed) or in multi-resource mode (combinations of
changing resources).

This framework is designed for off-line resource demand estima-
tion, which can be applied in areas such as early-stage design space
exploration in microprocessor design and admission control to bal-
ance the workloads in computing systems [13]. However, since the
proposed performance model in this framework is decoupled from
detailed simulation, it could also be applied online for dynamic re-
source management by using on-line profilers. Nevertheless, this
paper focuses on evaluating the accuracy and the complexity of
off-line resource demand estimation.

For the rest of the paper, we use 22 SPEC CPU2006 programs
[1] to evaluate the proposed framework (gamess, dealll, calculix,
povray, tonto, [bm,wrf are not included in the workload as we did
not manage to compile them to Alpha ISA). Each of the 22 pro-
grams is compiled to Alpha-ISA with peak configurations, and we
use the single Simpoint interval with 100 million instructions [9]
for each program.

3. PREDA KERNEL

This section introduces the working mechanism of the PREDA
kernel, which consists of ILP modeling, MLP modeling, perfor-
mance modeling and resource analyzing.

3.1 ILP Modeling

The goal of ILP modeling is to accurately estimate the back-
ground execution rate, i.e., the IPC rate the program can achieve
when it is free of any miss events [14]. To do so, we employ the
critical dependency chain length as the metric to measure the ILP
of the program as it determines the number of instructions that have
to be executed in serial, and hence sets the limit of the program’s
ILP. The same metric is also used by Eyerman et al. in their mech-
anistic model [7], but the difference lies in the profiling method to
obtain the critical dependency chain. Eyerman et al. obtain the
statistics of the critical dependency chain on a per-instruction ba-
sis. Although accurate, it requires time-consuming update in all
dependency chains each time an instruction moves out of the in-
struction window. Our profiling scheme, however, chops the dy-
namic instruction stream into slices, each with the size of the maxi-
mum interested instruction window W, q.. The statistics of critical
dependency chain are collected on a per-slice basis, and the depen-
dencies between adjacent slices are ignored. This profiling scheme
has the complexity of O(ﬁ - Winae) = O(N) (N is the num-
ber of dynamic instructions), as compared with the complexity of
O(N - Wiae) in Eyerman’s scheme [7]. Yet, the observed dif-
ference between these two schemes is within 1.5% in terms of the
profiled critical path statistics, as shown in Figure 2(a). Note that
the profiler considers both register dependence and memory depen-
dence when searching for the critical dependency chain because
memory dependence could also serialize the instruction execution.

Once the statistics of the critical dependency chain length are
obtained, the ILP model calculates the average critical dependency
chain length Ly for the interested instruction window W. On an
idealized machine with unit execution latency, this value is equiv-
alent to the average number of cycles it takes to execute the in-
structions in the instruction window. Hence, the average through-
put could be modeled by W/Lw . However, for a realistic non-
unit latency machine, this number should be further divided by the
average execution latency Lats.g according to Little’s law [14].
Therefore, the average instruction throughput is:

w
aas (W) = o T W
The average latency Lat.., can be derived by weight-averaging
the percentage of each instruction type (from instruction mix) with

the corresponding execution latency. Note that when calculating
the average latency, the latency of the L1 load miss is modeled
as the latency of regular functional unit assuming the load never
misses L2 cache. The long latency L2 misses will be captured in
the MLP model, and treated as the interrupting events that insert
intervals in the smooth execution flow. The numbers of L1 and L2
misses are estimated with the stack distance model [20].

Comparison of Critical Dependency Length

N w N o @
=} =] oS =) =)

8
h"

Critical Dependency Length (Per-inst Basis)

0
0 10 20 30 40 50 60 70
Critical Dependency Length (Per-slice Basis)
(@

Execution Rate Comparison (Window-128)

N
«a

m Simulated

N
o

[Estimated

s
[

Instruction Throughput (inst/cycle)

o o 5
perlbench [
bzip2 |—
gec [
gobmk |[E—
xalanchmk [
mcf
libquantum f—
hmmer [EE——,
sjeng |[EE—
h264ref |E—
omnetpp |EE—
astar |
bwaves
zeusmp [
gromacs |
cactusADlV EE——
milc |[—
leslie3d |
namd |
soplex |[E—
GemsFDTD |
sphinx3 |E—

(b)

Figure 2: (a) Comparison of two different profiling schemes for
critical paths. The results are based on the profiling of the 22
benchmark programs. (b) The accuracy of execution rate esti-
mation. The simulated machine has perfect branch prediction,
perfect memory disambiguation, 32KB L1 data/instruction
cache with 10 cycle L1 miss penalty, and infinite L2 cache size.

Figure 2(b) shows the accuracy of using equation 1 to estimate
the execution rate. The average error between the estimated ex-
ecution rate and the simulated one is 8.3% when the instruction
window size is 128. The error is mainly caused by imperfect rep-
resentation of program’s ILP in the presence of non-unit execution
latency. Specifically, when the execution has non-unit latency, the
critical dependency chain in terms of the instruction number may be
different with the longest dependence chain in terms of the execu-
tion cycle, resulting in mismatch between the estimated execution
rate and the simulated one.

3.2 MLP Modeling

The modeling of memory level parallelism is based on Matt-
son’s stack distance model [20]. This model exploits the inclusion
property of Least Recently Used (LRU) replacement policy (i.e.,

the content of an N sized cache is a subset of the content of any
cache larger than V) and allows us to accurately estimate the num-
ber of misses in any fully associative cache. Specifically, when a
load/store accesses a data block with stack distance larger than the
given cache size, that load/store triggers a cache miss event in a
fully associative cache. When it comes to set-associative caches,
however, the accuracy of this model slightly decreases mainly be-
cause it is unable to capture the conflict misses.

Dynamic)
Inst. Counter Stack Distance

m SD,,

S foreach load i in window W
o2 if (SD, > L2 cache size)
. miss_num-++;
w5 end if
8 end foreach
Lz

E non-overlapped L2 misses =

n SD; miss_nurm
MLP
P SD,
(@

Comparison of Critical Dependency Length
10 T T T

10°F », E

10°F

10 ¢

Observed Number of Non-overlapped L2 Misses

10°

10° 10* 10° 10° 10"
Estimated Number of Non-overlapped L2 Misses
(b)

Figure 3: (a) The estimation of non-overlapped L2 misses in
the presence of MLP. (b) The accuracy of the estimated non-
overlapped L2 misses. The results are based on the simulation
of the 22 benchmark programs.

While the stack distance model is able to estimate the number of
misses for a given cache size, it is unaware of MLP, i.e., multiple in-
dependent L2 load misses overlapping with each other. These out-
standing L2 load misses could drastically change the average load
miss penalty and significantly affect the performance, and hence
need to be carefully modeled. Prior research obtains the program’s
MLP information by simulating caches in detail [14][7]. In this
paper, we attempt to decouple MLP modeling from detailed cache
simulation. To do so, we augment the proposed ILP profiler to
generate the maximum number of loads LD, in a dependency
chain and the total number of loads L D;.:4; in an instruction win-
dow. Then, LD;otqi/ LD . indicates the average number of loads
that could be overlapped with each other in the instruction win-
dow. Assuming that the loads in a dependency chain have the same
probability of missing L2 cache with other loads, L D:otq1/LDmax
becomes the average number of the overlapped L2 load misses, or

the MLP of the program. Meanwhile, the profiler also generates
a load trace that contains the stack distance of a load and the dy-
namic instruction ID of the corresponding load, as shown in Figure
3(a). The MLP analyzer then walks through the trace, counts the
number of L2 load misses that could happen in the instruction win-
dow for the given L2 cache size, and calculates the number of non-
overlapped L2 misses by dividing the miss number with MLP. The
total number of the non-overlapped L2 misses of the program is the
sum of the non-overlapped misses in each instruction window:

T e |

2

2

where "[" is the ceiling function, miss_num(W, C) is the num-
ber of L2 misses for the instruction window W and L2 cache size
C. Figure 3(b) shows the accuracy of this model in estimating the
number of non-overlapped L2 misses. The average error between
the modeled number of non-overlapped misses and the simulated
one is 9.3%, which is reasonably accurate for performance trend
modeling.

3.3 Performance Model

The performance model is based on the previously proposed in-
terval analysis [14][6], which treats the exhibited IPC rate as a sus-
tained background execution rate intermittently disrupted by long
time miss events, namely, L2 cache misses, branch misprediction,
and instruction cache misses. The target of this model is not to ac-
curately predict the absolute performance, but rather to faithfully
capture the performance trend as one or multiple resource alloca-
tions change.

With ILP and MLP modeling, we are able to obtain the back-
ground execution rate, and the number of non-overlapped L2 misses.
We can also easily estimate the number of instruction cache misses
for any cache size with the stack distance model. However, the in-
struction cache miss is rare for a reasonable cache size, and its miss
penalty is much smaller than that of L2 cache misses. Therefore, in
this paper, we do not consider instruction cache misses in our per-
formance model. The remaining part is the number of branch mis-
prediction, which is difficult to accurately estimate purely based
on program characteristics. However, the branch transition rate
proposed by Haungs et al. [10] contains a clue as to how many
branches are hard to predict, and allows us to roughly estimate the
number of mispredicted branches. Branch transition rate measures
the frequency at which a branch changes direction between taken
and not taken. It has been demonstrated that the branches with very
low or very high transition rate are easy to predict, and branches
with transition rate around 50% are hard to predict. Based on this
property, we estimate the number of mispredicted branches by us-
ing half the number of branches with transition rate between 0.3
and 0.7. This heuristic essentially assumes that branches with tran-
sition rate between 0.3 and 0.7 have 50% prediction rate and all
other branches are predicted perfectly. It captures the general trend
that the more branches with transition rate near 50%, the more mis-
predicted branches a program would have. Although this number
is only a first-order estimation, it is still reasonable for resource
demand estimation as the resource demand estimation is based on
performance trend, which is relatively insensitive to the second-
order errors.

Hence, our performance model can be built by combining the
three major components extracted from the program characteris-
tics, that is, the cycles spent on executing instructions Cege, the
cycles spent on accessing the memory C'y,em, and the cycles spent
on serving branch mispredictions C5,.. Hence, the overall program

Pseudocode 1 Demand on Multiple Resources

##define N /*the number of resources that could change simultaneously™*/

#define max_resource_array[N] /*the array of maximum available resources*/

#define eval_perf(resource_array) /*Evaluate the execution time with the resource configuration array resource_array*/

#define est_demand(resource_array, i, target_perf)
/*Estimate the demand of resource 4 under the performance target target_perf*/

for (i=0;7 < N;i++)
base_demand[i] = est_demand(maz_resource_array,i,target_perf);

/* estimate the demand for resource ¢ when other resources are set to maximum®*/

end for
while(TRUE)
perf =eval_perf(base_demand);
if(perf > target_perf)
set the final demands as the base demand estimates;
break;
else
for (i=0;7 < N;i++)

temp_demand[0..N] = base_demand[0..N]; /* copy the base resource demand to temp_demand array */

new_demand][i] = est_demand(base_demand,i,target_perf),
temp_demand[i] = new_demand][i];
perf_gain[i] = perf - eval_perf(temp_demand);

/* calculate the performance gain with the newly estimated resource demand */

end for
find the index max_index of the maximum value in array perf_gain[N];
base_demand|max_index] = new_demand[mazx_index];
end while

execution time is:

(Cewe + Crmem + Chr)/ f
. Ninst

T min(aaug (W), IW) - f
+ Nor - Tor (3)

Delay

+ NL2(VV7 C) . Tmem

where Njns: 1S the total number of instructions, Ny, is the esti-
mated number of mispredicted branches, /W is the instruction is-
sue width, and f is the operating frequency. Tinem and T, repre-
sent the absolute memory access latency and the absolute time of
branch misprediction penalty respectively.

3.4 Resource Demand Analysis

While the performance model allows us to quickly evaluate the
performance for a specific resource allocation, it is the resource
analyzer that translates the given performance target to a set of
resource demands. This subsection presents the details of the re-
source demand estimation for each type of resources.

3.4.1 Demand on Multiple Resources

In this paper, the estimation of multi-resource demands is built
on top of the single-resource demand estimation, which uses the
marginal utility to determine the demand on the corresponding re-
source. The marginal utility originates from economic theory, and
is defined as the ratio between the incremental utility over the amount
of incremental resource. It has been successfully used as the metric
for last-level cache partitioning [23][16]. In this paper, we further
extend the application of marginal utility to different hardware re-
sources, and define the marginal utility as follows:

Perf(Rg + Dg) — Perf(Rg)
Dg

MarginalUtility(Dg) = 4)
where R is the amount of resource 3, and Dg is the amount of
increment in resource (3. Note that the maximum marginal utility
represents the best (or most efficient) use of a resource increment.
Therefore, with marginal utility, we could transform the problem of
resource demand estimation to the problem of finding the amount
of resource that meets the performance target meanwhile has the

maximum marginal utility. Thus, the estimation of the single re-
source demand becomes straightforward: sweeping the interested
resource from its minimum to its maximum while keeping other
resources fixed, and searching for the amount of resource that sat-
isfies the performance target and has the largest marginal utility.
However, there is an exception: when the performance with the
minimum resource allocation is larger than the target performance,
the resource demand is set to the minimum value.

While the single-resource demand estimation is straightforward,
the estimation of multi-resource demands is non-trivial because the
marginal utility is only comparable among the resources with the
same type. To address this problem, we propose an algorithm that
uses the gradient performance gain to search for the multi-resource
demands, as shown in Pseudocode 1. The first step of this algorithm
is to estimate the demand on each resource individually when other
resources are configured to be the maximum. The estimated single-
resource demands are then combined together as the initial multi-
resource configuration, which serves as the starting point of an it-
erative searching process. In each iteration, the algorithm identifies
the single-resource demand that has the largest performance gain
over the performance of the multi-resource configuration estimated
in the previous iteration. This single resource demand is selected
to update the multi-resource configuration, and the process contin-
ues until the performance meets the target. The complexity of this
algorithm is O(n - k), where k is the number of iterations, and 7 is
the number of the changing resources. This algorithm can estimate
the multi-resource demands on four types of resources, including
ROB size, issue width, L2 cache size, and frequency.

3.4.2 Demand on Memory Bandwidth

The program’s demand on memory bandwidth is important for
CMP systems, where multiple programs share the limited memory
bandwidth resource. It consists of the bandwidth demand on mem-
ory read and memory write. Assuming a write-back L2 cache, a
read request to the main memory can be triggered by a load/store
miss, and a write request can only occur when a dirty cache block is
evicted (i.e., cache write-back). While the conventional stack dis-
tance model can capture the read traffic to the memory, it is unable
to estimate the write-back traffic. To solve this problem, we aug-

ment the conventional stack distance model to capture both reads
and write-backs to the main memory.

To do so, during stack distance profiling, we associate each cache
block with a dirty bit and mark the dirty bit whenever the block has
been written to. We then use a Dirty Stack Histogram to record the
largest stack distance of a dirty cache block. The reason for only
considering the largest stack distance is to avoid multiple write-
back counts for one store. The details of updating the dirty stack
histogram are described in Pseudocode 2. Note that once the dirty
bit is set, it will never be reset during profiling. Therefore, the dirty
bit is unaware of multiple writes to the same block at different stack
distances, hence is unable to capture the situation where one block
may miss cache multiple times and generate multiple write-backs.
To handle this situation, we also differentiate the dirty block ac-
cording to whether the block was most recently accessed by a read
or a write. Specifically, if the dirty block was most recently ac-
cessed by a write, the corresponding counter in the dirty histogram
will be incremented regardless of the stack distance. With the dirty
histogram, we are able to estimate the number of dirty evictions
by using the property of the conventional stack distance model.
Specifically, a dirty eviction happens whenever the dirty stack dis-
tance of a block is larger than the given cache size.

Pseudocode 2 Update of the Dirty Stack Histogram

if(dirty == 1)
if(the block was most recently accessed by a read
&& stack_distance > dirty_stack_distance)
dirty_histogram|[dirty_stack_distance]- -;
dirty_histogram[stack_distance]++;
dirty_stack_distance = stack_distance;
else if(the block was most recently accessed by a write)
dirty_histogram|stack_distance]++;
dirty_stack_distance = stack_distance; end if
end if
if(the current access is a write)
dirty = 1;
dirty_stack_distance = 0;
end if

3.4.3 Demand on Branch Predictor Size

Branch predictor uses branch history to predict the outcome of
a branch instruction before its execution, and usually takes a large
fraction of the processor area. Therefore, the program’s demand on
branch predictor size needs to be identified to prevent unnecessary
resource over-provisioning. However, due to the lack of analytical
models that can translate predictor size to prediction accuracy, the
demand of branch predictor size may have to be estimated by di-
rectly using the program’s branch characteristics. Moreover, since
different types of predictors may yield different prediction accuracy
levels, the demand on predictor size also needs to be estimated in an
ad hoc way. Current implementation of PREDA only supports es-
timating the demand on the size of a two-level PAg predictor [25].
The demand estimation for other branch predictors is in our future
work.

PREDA estimates the demand on predictor size based on two
branch characteristics: the branch transition rate, and the branch
access frequency. As mentioned previously, branch transition rate
has its implication on branch history length, which in turn affects
the branch predictor size. Branches with very high or very low tran-
sition rate are easy to predict and only require short history regis-
ters; whereas branches with near 50% transition rate is hard to pre-
dict and require long history registers. However, branch transition
alone could not tell how often a branch is executed in the dynamic
instruction stream. For those branch instructions with very few ac-

Branch Transition Rate

1] 005 01 015 025 04 06 075 085 08 085
-005 01 015 -025 -04 -06 -075 -0B85 -09 -095 -1.0

1 Qe | o 0 Q i 0 0 0 i 0 | 287
=
&
§
=l 21| o 0 [i] o |z | o 0 a 0 14
&
w
Bl a1 0] 0 14 0 [0 a] 1
g
3
<L
5| 4 7 i il 0 8 0 2 2 i il 1
2
I
m

s| 7 0 0 [8 2 3 0 i 0 0
‘,>5 13 | 23 | 22 | 2 9 8 0 2 1 0 3

Static Branch Count: 1132
(a)

Leslie3d Prediction Rate v.s. two-level Branch Predictor Sizes

prediction rate

9

Level-1 entry number history length

(b)

Figure 4: The estimation of branch predictor size demand

cesses, they have negligible effect on the overall IPC whether they
are predicted correctly or incorrectly, hence should be filtered when
determining the demand of branch predictor size. Note that these
two branch characteristics are in correspondence with the two-level
PAg branch predictor, where the first level table (Per-Address His-
tory Table) is essentially a cache holding the frequently accessed
branches, and the second level is indexed with history register re-
flecting the predictability of the branches. As an example, Figure
4(a) shows the branch transition rate distribution as well as branch
access frequency distribution of the SPEC CPU program leslie3d.
The total static branch count is 1132, which seems to indicate that
the first-level table should contain 1K entries. However, if we fil-
ter out the branch instructions with small access frequencies (less
than 5 in this case), the static branch count becomes 204, indicating
that 256 entries in the first-level table would be sufficient. This is
proved by Figure 4(b), which shows that the prediction accuracy
does not degrade until the first-level entry is smaller than 256.

Based on this observation, we use the heuristics shown in Pseu-
docode 3 to estimate the demand on the first level table size and
the branch history length. Note that in order to prevent branch fil-
tering from aggressively impacting the prediction accuracy, we en-
sure that the total number of filtered dynamic branches is less than
0.1% of the total dynamic branches. Note also that the transition
rate buckets used in determining the history length are consistent
with those used in branch classification by Haungs et al. [10].

4. EXPERIMENT METHODOLOGY

We extensively modified the SimProfile from Simplescalar tool
set [2] to profile programs and collect the statistics of the aforemen-
tioned program characteristics. We also implemented the PREDA

Pseudocode 3 Demand on Branch Predictor Size

#define access_threshold 16
while(TRUE)
foreach static branches
if (branch_access_frequency < access_threshold)
filtered_static_branch ++;
filtered_dynamic_branch = filtered_dynamic_branch
+ branch_access_frequency; end if
end foreach
if (filtered_dynamic_branch < 0.001xtotal_dynamic_branch)
break;
else access_threshold - -; end if
end while
first_level_entry = total_static_branch - filtered_static_branch;
foreach remaining branches
if Itransition_rate€ [0.4,0.6]
history_length= max_history;
/* maz_history is the maximum history length
specified in the design space */
else if Itransition_rate€ [0.25,0.4) |J(0.6,0.75]
history_length= (maz_history-1) > min_history ?
max_history-1: min_history;
/* min_history is the minimum history length
specified in the design space */
else if Itransition_rate€ [0.15,0.25) | J(0.75, 0.85]
history_length= (max_history-2) > min_history ?
max_history-2 . min_history;
else if Itransition_rate€ [0.1,0.15) | J(0.85, 0.9]
history_length= (maz_history-3) > min_history ?
max_history-3 : min_history;
else if Itransition_rate€ [0.05,0.1) |J(0.9, 0.95]
history_length= (maz_history-4) > min_history ?
max_history-4 : min_history;
else if Itransition_ratec [0,0.05) [J(0.95,1.0]
history_length= (maz_history-5) > min_history ?
max_history-5 : min_history;
end if
end foreach

kernel with C++ and encapsulate it with the profiler into an inte-
grated framework.

The framework is evaluated on an out-of-order superscalar pro-
cessor with two-level cache subsystem. The configuration ranges
of relevant resources are listed in Table 1. Note that the cache asso-
ciativity and the block size are constant across all possible L2 cache
sizes as we do not explore these aspects in this paper. The number
of execution units is chosen such that the overall configuration is
balanced. In total, the listed configurations cover over 100K design
nodes. When evaluating the estimation of single-resource demand,
it is required that other resource configuration are fixed. However,
due to the large design space, it is impossible for us to evaluate
our framework exhaustively over all configurations. Therefore, we
use three representative configuration sets: config-S(mall), config-
M(edium), and config-L(arge), as the base configurations to evalu-
ate our resource estimation model. The details of these configura-
tion sets are also shown in Table 1.

Table 1: Configuration Options

Items Configuration Options | config-S | config-M | config-L
Issue Width 1:2x:8 1 4 8
ROB size 16 ::2x :: 512 16 128 512
64KB::2x::2048KB 64KB 512KB 2048KB
L2 D-Cache 8-way associative 8-way 8-way 8-way
64B 64B 64B 64B
32KB 32KB 32KB 32KB
L1 I-cache 2-way 2-way 2-way 2-way
64B 64B 64B 64B
32KB 32KB 32KB 32KB
L1 D-cache 4-way 4-way 4-way 4-way
64B 64B 64B 64B
Branch Ist-level: 8::2x::1K 1024 1024 1024
Predictor(PAg) | 2nd-level: 128::2x::4K 4096 4096 4096
Clock Freq. 0.5::0.1::2 (GHz) 0.5 GHz 1 GHz 2 GHz

In this paper, we assume the memory access latency to be 200ns,
or 200 cycles at the clock frequency of 1 GHz. This latency num-
ber in terms of cycles scales proportionally with the operating fre-
quency. The hit latencies of L1 and L2 caches are calibrated against
Cacti 5.0 [24] under 90nm technology. The latencies of other exe-
cution units are also scaled to 90nm technology. The branch mis-
prediction penalty is set to 20 cycles at 1 GHz. We employ Wattch
[4] to collect the performance and power data of the interested pro-
cessor configurations.

S. EVALUATION

The evaluation of the proposed framework covers three major as-
pects: the accuracy of the models, the accuracy of resource demand
estimation and the computation complexity of the framework.

5.1 Model Accuracy

1bzip2 Normalized Throughput :: Issue Width 1 bzip2 Normalized Throughput::ROB Size
//,;::f“ /‘g(i
5038 {1 308 vl
® e E T
Sos6 2 1 Zos e X
£ E I
B Bl
NO0.4 1 NO0A4f .-
[©
£ 5
(<} o
.2] - q .2 -
20 - estimated 20 - estimated
- simulated — simulated
0
1 2 4 8 q.ﬁ 32 64 128 256 512
Issue Width ROB Size
(@) (b)
bzip2 Normalized Throughput::L2 Cache Size bzip2 Normalized Throughput :: Frequency
1 1 "
e g
-~ P
- # - 58
508 308 s
£ s = 7
2 Y 2 ¥
o s 2
206f Lp--ofT 20.6]
Eogpei e £
3 3
No4 N0.4
© ©
£ £
(=} o
z02 - estimated 202 -~ estimated
- simulated -+ simulated

8.5 07 09 11 13 15 17 19
Frequency(GHz)

E?AK 128K 256K 512K M 2M
DL2 Cache Size

© (d)

Figure 5: The comparison of normalized throughput for bzip2
as one of the resources changes. The configurations of other
unchanged resources follow config-M.

Since the resource demand estimation is based on the relative
performance as opposed to the absolute one, we need to validate
whether the performance model could accurately capture the per-
formance trend as the resource allocation changes. To do so, we

sweep the resource allocation and calculate the corresponding through-

put with the performance model, and then normalized them with re-
spect to the largest throughput. The normalized throughput curve is
compared against the one obtained from detailed simulation. Fig-
ure 5 shows an example of such comparison for bzip2. Ideally,
these two curves should be overlapped with each other. However,
due to the imperfection of the performance model, the estimated
performance curve deviates from the simulated one. To measure
the difference between these two curves, we calculate the absolute
difference of the normalized throughput on each node of the curves,
and then calculate the average difference for each curve to evaluate
the accuracy of this model. Figure 6 summarizes these differences
for each program. Note that most of the programs have a relatively
large error in Config-L. This is mainly because some of the second-
order effects, such as the branch misprediction caused by specula-

Average Error in Normalized Throughput (Issue Width)
M Config-S
[Config-M
M Config-L

0.12

o
i

sjeng

h264ref

omnetpp e

astar o
bwaves

zeusmp

gromacs
cactusADM

mcf

libquantum

mile E—
leslie3d ——
namd EE——

bzip2
gee

SOl s
—
sphin3 e

GemsFDTD

Difference of Normalized Throughput
o o o
o o =3
o N B (o]
|
gobmk ————
xalanchmk
hmmer E—

perlbench

(@)
Average Error in Normalized Throughput (DL2 Size)

0.09 4 W Config-S
5 0.08 [Config-M
o M Config-L
®
® 0,07
2
£ 0.06 -

o

&

ﬁOOS 1

E

20004

k]

© 003

8

g

EOOZ 1

=

o 0.01 - | [I

o MUMNA UM ﬂ : ﬂ[I i

CcNQgXXGEL P 258 28S2TT 500
ERBEERSESPEELEIZERE LY
80 o¢ ETEWLE2CZ3EF T cSgLE
3 U5 35 Bg SRGZ £OTES
a g 8 3 &

©

Figure 6: Average error of the normalized throughput for issue width, ROB size, L2 cache size,

Difference of Normalized Throughput

Average Error in Normalized Throughput (ROB)
B Config-S

@ Config-M
W Config-L

ZeUsMp —

gromacs

bzip2
gec
cactusADM

o o
o o
o N} =
|
gobmk
xalanchmk EE——
mcf
libquantum e
hmmer
sjeng
astar
milc
leslie3d
soplex

T —
GemsFDTD E—

sphinx3

omnetpp E—
bwaves E—

perlbench

(b)

Average Error in Normalized Throughput (Frequency)

M Config-S
[Config-M
B Config-L

hmmer
sjeng
h264ref
astar
leslie3d
namd
soplex

sphinx3

cactusADM T
[T —
-
GemsFDTD
—

xalancbmk

eren
o © o o o o
o o o o o
o = N w B w
L
[V —
gcc ;
mef
—
omnetpp e
bwaves
zeusmp mmmm
F LT T e e E——

perlbench
libquantum

(d)

and frequency. Each resource

estimation was evaluated on three configurations: config-S, config-M, and config-L

tive path information, becomes more outstanding in extremely wide
machines; whereas our model only capture the first-order effects.
However, even in the worst case, the modeled performance trend
on average is only 0.107 or 10.7% off the simulated one, which is
still reasonable for resource demand estimation.

The error of the performance model consist of two parts: the in-
trinsic error, which is the inherent modeling error caused by some
simplifying assumptions of the model, and the parameter error,
which is the error introduced by the estimation of model parame-
ters using program characteristics. Figure 7 shows the comparison
between these two errors. As expected, most programs have much
smaller intrinsic error than the combined one, especially for gcc
and namd. However, some programs see a slightly higher intrin-
sic error than the combined error. This is because the parameter
error and the intrinsic error may be canceling each other, leading
to a smaller combined error. In worst case, the average intrinsic
error is 0.076 or 7.6% in terms of the normalized throughput (mcf
in Figure 7(a)).

5.2 Accuracy of Resource Demand Estimation

5.2.1 Single-Resource Demand Estimation

We evaluate the estimation of single-resource demand on issue
width, ROB size, L2 cache size, and frequency at 20 different per-
formance target levels, ranging from 0 to 95% with a step of 5%.
Figure 8 shows the comparison between the demand estimated with

our performance model and the one obtained from detailed simu-
lation for program bzip2. Because of the imperfection in perfor-
mance modeling, there are differences between the estimated and
the simulated demands at certain performance targets. The average
amount of these differences across the entire 20 performance tar-
get levels reflects the accuracy of the demand estimation, as shown
in Figure 9. We observe that the demand difference at any per-
formance target level is no larger than 4 configuration units. The
largest demand difference happens in estimating the frequency de-
mand, and this difference is still reasonable considering there are
16 different configuration options for frequency demand.

To evaluate the estimation of memory bandwidth demand, we
compare estimated memory bandwidth with the simulated one at
each 100K instruction interval, and accumulate the absolute differ-
ence between these two to obtain the overall memory bandwidth
estimation error. Figure 10 shows the error rates of bandwidth de-
mand estimation for both memory read and memory write traffics at
three different configurations. On average, the total memory band-
width estimation error increases from 4.76% to 6.26% as the L2
cache size changes from 64KB to 2MB. This is mainly because as
the cache size increases, memory traffics become smaller and hence
the bandwidth caused by conflict L2 misses, which are not captured
in our stack distance model, becomes more significant.

To evaluate the estimation for the demand of branch predictor
size, we compare the size and the prediction accuracy of the esti-
mated branch predictor configuration with that of the largest pre-

Average Error in Normalized Throughput (Issue Width) Average Error in Normalized Throughput (ROB)

e
]

0.03

0.02 -

0.09
0.1 B Combined Error

. 0.08 W Combined Error @ Intrinsic Error
3 1 @ Intrinsic Error ‘g_ 0.09
2 B
o ® 0.08 -
: ! 3
£ 0.06 £ 007 0 1
= L F
S 2 006 -
E 5

0.05
e Z 0.04
)
@
3
<
g
£
a

0.01 -

gee

gobmk E——
Xalanchmk ~|Ee—

hmmer — —
sjeng |—

h264ref [—

bwaves I ——
zeusmp |EEE—

gromacs [EE——

CactusADM ———

mcf

o o o o o
o o o o o
o =g] @ = &
. .
perlbench |E—
bzip2 |—
gee —
gobmk —
xalanchmk ~|—
libquantum |[—
sjeng |[Ee——
h264ref
omnetpp [
astar |—
zeusmp —

mcf

libquantum =

milc

leslie3d |r——
namd [EE—
soplex [
GemsFDTD
bzip2

astar —
namd |EE—

hmmer
soplex

leslie3d
GemsFDTD |

sphinx3 |——

bwaves
gromacs
cactusADM
omnetpp

sphinx3 |[E—
Difference
o
perlbench

(a) (b)

Average Error in Normalized Throughput (L2 Cache Size) Average Error in Normalized Throughput (Frequency)
0.08 4 0.08
W Combined Error
0.07 @ Intrinsic Error

W Combined Error
0.07 -+ @ Intrinsic Error

Difference of Normalized Throughput
o
c ¢ C o
R

Difference of Normalized Throughput
o o
= =}
& K

i,

L]

e o
o ©o
o R
| | I
{
{

i,

bzip2
gee
mcf

libquantum
mcf

o o o
o o o
o = N w
. . .
!
{
astar
bwaves
zeusmp [
gromacs
cactusADM
namd
soplex
libquantum

GemsFDTD
sphinx3
bzip2

gee

sjeng
h264ref
omnetpp
astar
bwaves
zeusmp
gromacs
cactusADM
namd E—
soplex
GemsFDTD

sphink3 |—

perlbench
gobmk
xalancbmk
hmmer
sieng
h264ref
omnetpp
milc
leslie3d
perlbench
gobmk
xalancbmk
hmmer
milc
leslie3d

© (d)
Figure 7: Comparison of the combined error and the intrinsic error in normalized throughput.The intrinsic error is obtained by

using the simulated values of the non-overlapped L2 misses and the branch mispredictions in the performance model. The errors
are averaged across three configurations: config-S, config-M, config-L.

bzip2 Resource Demand :: Issue Width bzip2 Resource Demand :: ROB Size bzip2 Resource Demand :: L2 Cache Size bzip2 Resource Demand :: Frequency
51! 4aMm 17
e == .

8 26 . 14

; o M w13

£ g 128 o5 & 5, 1.2

24 a / % 512K g 11

E € 64] p-o' N g1

i — 256K I 09

2 " 0.8

2 ; ° 128K| 0.7

B 06

ll;% 26% SL;% 40% 50% 60% 70% 80% 90% 1%/0 16% 26% SOA% 46‘% 50% 60% 70% 80% 90% 0 ll;% ZL;% SL;% 40‘% 5';% 60% 70% 80% 90% o % 10‘% 26% 36% 46% SD‘% 60% 70% 80% 90%
Performance Target Performance Target Performance Target Performance Target
(@) (b) (© (d)
Figure 8: The accuracy of single-resource demand estimation for bzip2. The results are based on config-M.

dictor in the configuration range. The results are listed in the table estimate the resource demands at each performance target ranging
2. On average, by using the estimated predictor size, we could from 50% to 95% with the step of 5%, and then performed detailed
achieve 40.3% reduction in area with only 0.12% accuracy loss simulations with the estimated resource configurations for each per-
over the largest branch predictor. Overall, the proposed heuristic formance target. The obtained relative performance (normalized to
captures the demand on branch predictor size very well. the largest performance in the design space) is compared against the
))) corresponding performance target. The differences are summarized
5.2.2 Multi-Resource Demand Estimation in Figure 11(a). The observed error is up to 12.7% (on soplex), and
The quality of multi-resource demand estimation includes two the maximum average error is 8.6% (on xlanacbmk). Note that we
aspects: the accuracy in satisfying the performance target and the only report the results with performance target larger than 50% to
energy efﬁciency of the estimated resources. avoid the ill-suited cases that some programs may have a small per-

To evaluate the accuracy, we used the proposed framework to

Demand Estimation Error (Issue Width)

W Config-S
[Config-M
B Config-L

Average Difference (Config. Unit)

sphinx3 Emmm——————————

FN QX XYY e wmE ot owans BT XA
EeereESiEEsiEEgEgELE
g3 88 Eegwgg8gsES T2 ESE
3 g S<= Y B5REE &%
= EI- ° g 8
(@)
Demand Estimation Error (L2 Cache Size)

35
M Config-S
3 [Config-M
W Config-L

2.5

gobmk Eee—

U E T ——————
cactusADM F——

Average Difference (Config. Unit)
o —
o a o~ & 0w~
perlbench Emee—Ho |
sjieng EE————
zeusmp E—y
namd E——

sphinx3 E—u——

GxxtEswEaks o .
cgEEgfrgrect R
T8 EERT LR g ELzgg
2 S E Q< 2 o R
G S =S &g =2 K £
© T S 5]
22 ©
(©

Average Difference (Config. Unit)

Average Difference (Config. Unit)

Demand Estimation Error (ROB Size)
B Config-S
[Config-M
B Config-L

35

25

h264ref EE—————"—y
omnetpp Emm——rl

MOl
libquantum Em—my
leslie3d EET——
namd EEs——/
GemsFDTD ey

xalanchmk Emm——d

cactusADM B |

< 5 oo © x 0o
2 £ 5 £ 25 £
2 E” ih%
o
g
Demand Estimation Error (Frequency)
5 W Config-S
45 @ Config-M
B Config-L

3.5

2.5

15

0.5

brip) EEm————
omnetpp Bt

gromacs o

cactusADM

mcf

gec
libquantum

gobmk EEmm——— |

xalancbmk
astar

bwaves Eemmmm—nd

zeusmp m——r

sjeng

h264ref EEmast——y

hmmer
milc
leslie3d
namd

o - ~ w IS
perlbench Em———= " |

sphinx3

J‘Jl
ge
Q0
O w
a %
£
T
[\

(d)

Figure 9: The error of single-resource estimation. Config unit refers to the quantization of each resource shown in Table 1. The error
bar represents the largest error in demand estimation for the corresponding program.

Table 2: The Demand Estimation for Branch Predictor Size

Benchmarks Size Demand] Size] Accuracy
Ll entry | History bit | Reduction | Loss

perlbench 1024 12 0 0
bzip2 128 12 52.5% 0.26%
gee 1024 12 0 0
gobmk 1024 12 0 0
xalancbmk 1024 12 0 0
mcf 512 12 30% 0.06%
libquantum 8 12 59.5% 0.03%
hmmer 128 12 52.5% 0.09%
sjeng 1024 12 0 0
h264ref 1024 12 0 0
omnetpp 1024 12 0 0
astar 64 12 56.3% 0
bwaves 32 12 58.1% 2.1%
zeusmp 64 9 92.2% 0.05%
gromacs 8 7 98.5% 0
cactusADM | 16 7 98.2% 0
milc 32 11 78.3% 0
leslie3d 256 12 45.0% 0
namd 128 12 52.5% 0.1%
soplex 256 12 45.0% 0.01%
GemsFDTD 16 7 98.2% 0.01%
sphinx3 1024 12 0 0
avg - 40.3% 0.12%

formance variation range and its smallest relative performance may
be much larger than the performance target.

To evaluate the energy efficiency, we compare the energy con-
sumption of the estimated multi-resource demand with the energy
consumption of other resource combinations that satisfy the given
performance target. Due to the large design space, it is prohibitively

expensive to exhaustively compare the estimated resource configu-
rations with every eligible design node. Therefore, we use Monte
Carlo simulations to simulate 300 random samples in the design

space, and group them into the buckets of (0,0.05],(0.05,0.1]...,(0.95,1]

according to their performance relative to the highest one in the de-
sign space. Within each bucket, we divide the energy of the esti-
mated multi-resource configuration with the maximum energy of
the design nodes in that bucket. These ratios indicate the energy
efficiency of the estimated resource demands, and are summarized
in Figure 11(b). On average, the ratio is no larger than 86.5%, and
can be as low as 44.4%, which means the estimated multi-resources
reasonably satisfy the energy efficiency requirement in the defini-
tion of resource demand.

5.3 Complexity Analysis

The complexity of the PREDA framework involves the complex-
ity of multi-resource demand searching algorithm and the time cost
in evaluating the performance model. As explained previously, the
complexity of the algorithm depends on the number of iterations
required to reach the target performance. To reduce the number
of iterations, the algorithm hoists the starting point of the searching
process as the target performance increases. This feature allows the
algorithm to avoid unnecessary search iterations and significantly
speeds up the searching process. In our experiment, the algorithm
converges in no larger than 12 iterations. We also compare the CPU
time required to finish one searching iteration by using our perfor-
mance model with the time required by using the state-of-the-art
analytical model developed by Eyerman et al. [7], and we observe
up to 40X speedup with our proposed model. This is mainly be-

14% -

12%

10%

r

8%

6%

Percentage of Erro

4%

2%

0%

Memory Bandwidth Demand Estimation Error (Config-S)

perlbench IEE—————

M read bandwidth
W write bandwidth

goc —

gobmk T

xalanchmk 1
mcf |

bzip2 T

libquantum EE—

hmmer)
sjeng T

h264ref M=

omnetpp

()

14%
12%
10%

8%

Difference with Taraget Performance

0%

astar T

bwaves 1

zeusmp
gromacs =T

cactusADM I

milc ®
leslie3d

soplex O

namd
GemsFDTD B

AVG T

sphinx3)

14%

12% -

10%

r

8%

6%

Percentage of Errol

4%

2%

0%

Memory Bandwidth Demand Estmation Error (Config-M)

@ read bandwidth

B write bandwidth

[s—]

perlbench)
bzip2 T

gee T

gobmk
xalancbmk

mcf

libquantum ~ —

hmmer

sjeng

h264ref —

milc
leslie3d

cactusADM

namd

soplex [E—r

GemsFDTD (s

sphinx3

AVG T

r

Percentage of Errol

14%

12%

10%

6% -

4%

0%

Figure 10: The memory bandwidth estimation error

Errorin Normalized Throughput (Multi-resource Demand)

|

perlbench

gec |

gobmk

bzip2
xalancbmk

mcf

hmmer
sjeng
h264ref
omnetpp

libquantum

astar
bwaves
zeusmp
gromacs

cactusADM m———

milc
leslie3d

namd |
soplex
GemsFDTD

sphinx3

(@)

Nornamlized Energy

120%

100%

80%

60%

40%

20%

0%

Energy Efficiency of Estimated Multi-resource Demand

perlbench

bzip2

gee

gobmk TE———

xalancbmk

mcf ————

libquantum

hmmer

sjeng EEE—————

h264ref
omnetpp

Memory Bandwidth Demand Estimation Error (Config-L)

perlbench mE—————0——0

astar IE————

bwaves

[read bandwidth
W write bandwidth

bzip2)

gec

gobmk ===

xalancbmk B

zeusmp
gromacs
cactusADM

mcf |

libquantum —

milc

leslie3d

hmmer E=

sjeng

h264ref)

namd
soplex
GemsFDTD

omnetpp

—~
(¢]
~

astar

bwaves EE—

sphinx3

milc

leslie3d

namd T

zeusmp

gromacs ===

cactusADM

soplex

GemsFDTD —

sphinx3

AVG T—)

(b)

Figure 11: Evaluation of multi-resource demand estimation. The results are based on estimating 4 different resource demands.

cause every time cache size changes, Eyerman’s model requires
detailed cache simulation to collect cache miss and MLP informa-
tion for different window sizes, whereas our model only needs to
walk through the stack distance trace. Depending on the data foot-
print of the programs, the profiling time cost of PREDA may be
larger than Eyerman’s model because of the stack distance profil-
ing. However, this is one-time profiling cost, and could be easily
amortized by the speedup in the demand estimation process.

6. RELATED WORK

Our work is most relevant to the predictive resource manage-
ment framework proposed by Narayanan and Satyanarayanan [21].
However, their framework can only estimate the coarse-grain re-
source demands, such as CPU cycles and memory sizes; whereas
our work estimates resource demands at much finer granularity, and
can be applied in the areas that require fine-grain resource tuning.
PUNCH proposed by Kapadia et al. [13] also shares some common
grounds with our framework as both attempt to predict the resource
demands by using application-specific parameters. But again, in
their work, the resource demands are limited to CPU time only.

Our work is also closely related with performance modeling,
which usually employs analytical models, regression models, or
predictive models. The analytical model is typically based on in-
terval analysis, which was used by Karkhanis and Smith for their
first-order superscalar processor model [14]. They further lever-
aged this model to automatically explore the design space for the
Pareto-optimal design parameters [15]. Recently, this model was
improved by Eyerman et al. for a higher accuracy in performance

modeling [7]. However, all of these models rely on detailed simula-
tion of some components, such as caches and branch predictors, to
obtain key statistics of the program-microarchitecture interactions.
The requirement for partial simulation not only costs time in off-
line performance modeling, but also implies that it has to follow
the trial-and-error scheme when applying this model for on-line re-
source management. However, our approach focuses on modeling
the performance trend rather than the absolute performance value,
and avoids any detailed simulation of any resource component. The
decoupling from detailed simulations not only ensures fast off-line
resource demand estimation, but also allows this model to be ap-
plied in on-line resource management without trial runs.

Both regression models and predictive models are essentially
empirical models, which hide the details of program-hardware in-
teractions by fitting high-level equations with the simulated results.
The regression model has been applied in estimating the signifi-
cance of the design parameters and their interactions [12], explor-
ing the design space [18] as well as analyzing the microarchitec-
tural adaptivity [19]. An artificial neural network (ANN) based
predictive model was also proposed by Ipek et al. for performance
prediction [11]. While the empirical models are relatively simple,
they require time consuming training on a per-application basis be-
fore they can reasonably model performance. The requirement for
training fundamentally limits these models from being applied on-
line. In contrast, our model is based on the analysis of program
inherent characteristics and does not require any training.

Besides oft-line performance modeling, some on-line resource
management techniques have been proposed recently. Qureshi et

al. proposed the cache utility monitor (UMON) to estimate the
utility of assigning additional cache ways to an application [23].
Kaseridis et al. extended this on-line cache monitor for system-
level memory bandwidth management [16]. While these works
address single resource management, Bitirgen et al. attempted to
manage multiple resources by using on-line machine learning tech-
niques [3]. However, the on-line machine learning model requires
periodic training and is expensive to implement and hard to vali-
date. In contrast, our model does not require any training and could
be applied on-line for both single or multiple resource management
with some hardware support for on-line profiling .

7. CONCLUSIONS

As the applications in computer systems become increasingly
diversified, it is important to efficiently identify the hardware re-
source demands of the applications so that the hardware substrate
could be tailored to the needs of the applications for power effi-
cient computing. Existing models are inappropriate for estimat-
ing resource demands as they require either partial simulations or
time-consuming training. In this paper, we present an integrated
framework for program resource demand analysis (PREDA), which
leverages the synergy between the performance trend modeling and
marginal utility to identify the resource demand of a workload with-
out any detailed simulation. The proposed framework is able to es-
timate both single-resource and multi-resource demand on an array
of processor resources, ranging from the issue width, the operating
frequency to the memory bandwidth. Experimental results show
that the proposed framework on average provides no larger than
8.6% error to any given performance target for multi-resource de-
mand estimation. By using the proposed performance model, the
framework achieves up to 40X speedup in multi-resource demand
estimation compared with that by using state-of-the-art analytical
model. The proposed framework is useful for workload capacity
planning in computing systems, early stage design space explo-
ration, as well as coordinated multiple resource management for
Quality-of-Service in CMP systems.

8. ACKNOWLEDGMENTS

The authors would like to thank Giuliano Casale and other anony-
mous reviewers for their valuable feedback. This work is supported
in part through the NSF Award number 0702694. Any opinions,
findings, and conclusions or recommendations expressed herein are
those of the authors and do not necessarily reflect the views of NSF.

9. REFERENCES

[1] SPEC cpu2006 benchmark suite. In http://www.spec.org.

[2] T. Austin, E. Larson, and D. Ernst. Simplescalar: An
infrastructure for computer system modeling. Computer,
35:59-67, February 2002.

[3] R. Bitirgen, E. Ipek, and J. F. Martinez. Coordinated
management of multiple interacting resources in chip
multiprocessors: A machine learning approach. In
MICRO41, pages 318-329, 2008.

[4] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a
framework for architectural-level power analysis and
optimizations. In ISCA 00, pages 83-94, 2000.

[5] A.S. Dhodapkar and J. E. Smith. Managing
multi-configuration hardware via dynamic working set
analysis. In ISCA ’02, pages 233-244, 2002.

[6] S.Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith. A
performance counter architecture for computing accurate cpi
components. In ASPLOS-XII, pages 175-184, 2006.

(71

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith. A
mechanistic performance model for superscalar out-of-order
processors. ACM Trans. Comput. Syst., 27(2):1-37, 2009.

F. Guo, Y. Solihin, L. Zhao, and R. Iyer. A framework for
providing quality of service in chip multi-processors. In
MICRO 40, pages 343-355, 2007.

G. Hamerly, E. Perelman, J. Lau, and B. Calder. Simpoint
3.0: Faster and more flexible program analysis. In Journal of
Instruction Level Parallelism, volume 7, pages 1-28, 2005.
M. Haungs, P. Sallee, and M. Farrens. Branch transition rate:
a new metric for improved branch classification analysis. In
HPCA’00, pages 241 -250, 2000.

E. Ipek, S. A. McKee, R. Caruana, B. R. de Supinski, and
M. Schulz. Efficiently exploring architectural design spaces
via predictive modeling. In ASPLOS-XII, pages 195-206,
2006.

P. Joseph, K. Vaswani, and M. Thazhuthaveetil. Construction
and use of linear regression models for processor
performance analysis. In HPCA’06, pages 99 — 108, 2006.
N. Kapadia, J. Fortes, and C. Brodley. Predictive
application-performance modeling in a computational grid
environment. In Proceedings of The Eighth International
Symposium on High Performance Distributed Computing,
pages 47 —54, 1999.

T. S. Karkhanis and J. E. Smith. A first-order superscalar
processor model. In ISCA’04, pages 338-349, 2004.

T. S. Karkhanis and J. E. Smith. Automated design of
application specific superscalar processors: an analytical
approach. In ISCA’07, pages 402—411, 2007.

D. Kaseridis, J. Stuecheli, J. Chen, and L. John. A
bandwidth-aware memory-subsystem resource management
using non-invasive resource profilers for large cmp systems.
In HPCA’10, pages 1-11, 2010.

R. Kumar, D. M. Tullsen, and N. P. Jouppi. Core architecture
optimization for heterogeneous chip multiprocessors. In
PACT °06, pages 23-32, 2006.

B. Lee and D. Brooks. Illustrative design space studies with
microarchitectural regression models. In HPCA’07, pages
340 -351, 2007.

B. C. Lee and D. Brooks. Efficiency trends and limits from
comprehensive microarchitectural adaptivity. In ASPLOS
X111, pages 3647, 2008.

R. L. Mattson, D. R. Slutz, and I. L. Traiger. Evaluation
techniques for storage hierarchies. IBM Syst. J., 9(2):78-117,
1970.

D. Narayanan and M. Satyanarayanan. Predictive resource
management for wearable computing. In Proceedings of the
1st international conference on Mobile systems, applications
and services, MobiSys 03, pages 113-128. ACM, 2003.

K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual private
caches. In ISCA ’07, pages 57-68, 2007.

M. K. Qureshi and Y. N. Patt. Utility-based cache
partitioning: A low-overhead, high-performance, runtime
mechanism to partition shared caches. In MICRO’06, pages
423-432, 2006.

S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P.
Jouppi. Cacti 5.1. HP Technical Reports, 2008.

T.-Y. Yeh and Y. N. Patt. A comparison of dynamic branch
predictors that use two levels of branch history. In ISCA ’93,
pages 257-266, 1993.

