Autocorrelation Analysis: A New and Improved Method for
Measuring Branch Predictability

Jian Chen, Lizy K. John
Department of Electrical and Computer Engineering
The University of Texas at Austin, Austin, Texas, USA
chenjian@mail.utexas.edu, ljohn@ece.utexas.edu

ABSTRACT

Branch taken rate and transition rate have been proposed as metrics
to characterize the branch predictability. However, these two met-
rics may misclassify branches with regular history patterns as hard-
to-predict branches, causing an inaccurate and ambiguous view of
branch predictability. This study uses autocorrelation to analyze the
branch history patterns and presents a new metric Degree of Pattern
Irregularity (DPI) for branch classification. The proposed metric is
evaluated with different branch predictors, and the results show that
DPI significantly improves the quality and the accuracy of branch
classification over traditional taken rate and transition rate.
Categories and Subject Descriptors: C.4 [Performance of Sys-
tems][Measurement techniques, Modeling techniques]

General Terms: Measurement, Performance

Keywords: Branch characterization, Autocorrelation

1. INTRODUCTION

Classifying branches in terms of their predictability has been ap-
plied in many areas of computer architecture, including branch pre-
diction, predicated execution, etc. The existing metrics for charac-
terizing branch behaviors include branch taken rate [2], which mea-
sures the taken frequency of a branch, and branch transition rate [3],
which captures the frequency of a branch switching between taken
and not taken. These metrics characterize the branch predictability
based on their values: branches with very high or very low taken
rate/transition rate are easy to predict, and branches with near 50%
taken rate/transition rate are hard to predict. Although simple, these
metrics may misclassify some of the easy-to-predict branches as
hard-to-predict. For instance, a branch with regular history pattern
"110110110..." is indeed easy to predict since a 3-bit history length
is sufficient to make a perfect prediction for this branch. However,
this branch has 0.667 taken rate and 0.667 transition rate, and is
therefore misclassified as a hard-to-predict branch. To address this
limitation, this work proposes to characterize branch predictabil-
ity with a novel metric called Degree of Pattern Irregularity (DPI),
which measures the degree of the branch behavior deviating from
regular pattern by autocorrelation analysis. We show that DPI sig-
nificantly improves the accuracy of hard-to-predict branch classifi-
cation compared with taken rate and transition rate.

2. BRANCH AUTOCORRELATION

Autocorrelation is widely applied in signal processing and pat-
tern recognition to find repeating patterns buried under noise. For a
real-value discrete sequence of n elements {h () }7—o, the autocor-
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Figure 1: (a) Autocorrelation for regular branch history.(b) Au-
tocorrelation for irregular branch history.

relation of this sequence is Rpn(j) = Y. h(¢)h(i — j), where
j € [0,n]. In order to prevent undefined values outside the win-
dow [0, n] from polluting the calculation, the sequence {h(7)}i—o
is typically extended periodically to the left, creating a rotation ef-
fect in the window [0, n] as the sequence slides to the right. There-
fore, the autocorrelation holds the following two properties [1]: (a)
It reaches its maximum value at the origin; (b) If the discrete se-
quence is periodic, its autocorrelation is also periodic with the same
period. Considering the fact that branch history only consist of "0"
(as not taken) and "1" (as taken), we have the following implication:
for the autocorrelation of branch histories, the difference between
the maximum value at the origin and the largest value off the origin
reflects the amount of irregularity in the branch history. This can
be understood by treating an irregular branch history as a regular
branch history XORed with one or more bits deviating from the
regular pattern. The number of these deviating bits is reflected on
the difference between the two largest values of the autocorrelation.
As shown in Figure 1(b), one bit highlighted with dark grey devi-
ates from the periodic pattern, which causes the difference between
the two largest autocorrelation values equivalent to one. The irreg-
ularity measured by such difference is one of the main sources of
branch misprediction. Hence, the fraction of the irregularity over
the number of the branch dynamic accesses is the direct indicator
of branch predictability, which we refer to as the Degree of Pattern
Irregularity (DPI). Note that a regular branch history is equivalent
to a branch history with zero DPI, as shown in Figure 1(a).

The complexity of the autocorrelation analysis involves two as-
pects: computation and storage. Since branch history only contains
0’s and 1s, its autocorrelation only requires logic AND operations
and bit-wise accumulate operations. Compared with the storage re-
quirements of taken rate (1 bit per static branch) and transition rate
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Figure 2: Dynamic branch classification based on DPI.
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(2 bits per static branch), autocorrelation analysis requires more
storage space, yet its impact on the profiling speed is negligible as
long as the history length is within a reasonable range.

3. EXPERIMENT AND RESULTS

We use PIN, a dynamic instrumentation tool on x86 platform, to
instrument the workload and obtain the trace of conditional branches.
This trace is then seamlessly fed to our detailed branch analyzer,
which is able to perform autocorrelation analysis on each static
branch and simulate different types of branch predictors simulta-
neously. The workloads of the experiment are composed of all pro-
grams from SPEC CPU2006 benchmark suite, with each compiled
to x86-ISA at base configurations. To reduce the simulation time,
we use PinPoints to identify the representative simulation points.
For each program, we simulate the dominant simulation points that
covers 90% of the total weights, and each simulation point contains
100 million instructions.

We evaluate the proposed metric by using three different types
of branch predictors to ensure the generality. These three branch
predictors are: a per-address history predictor (PAs), a global two-
level predictor (GAs) and a global neural network predictor (Per-
ceptron) [4], each with history length of 16. For PAs and GAs, the
size of Pattern History Table (PHT) is set to 64K entries, and the
branch history table (BHT) of PAs has 1024 entries. To be consis-
tent with PAs and GAs, the Perceptron predictor also contains 64K
entries for the weights with each 8-bit wide. In this work, we only
consider the conditional branches.

Branch Classification: In Figure 2(a), we classify the branches
into 10 groups in terms of their DPI values. Class 1 has DPI value
0, representing the branches with regular history pattern. Class
2 to 6 have DPI values in the ranges of (0,0.01], (0.01,0.02], ...,
(0.04,0.05], respectively; and class 7 to 10 have DPI values with
the ranges of (0.05-0.10], (0.10-0.15], (0.15-0.20], (0.20-1] respec-
tively. As shown in the figure, 40.0% of the total dynamic con-
ditional branches fall in class 1, and 31.6% of them fall in class
2. The occupancies of the other classes are significantly lower,
with each class less than 6.0%. Figure 2(b) further shows the mis-
prediction rate of the branches in each DPI class for PAs, GAs,
and Perceptron predictors. Notice that there is an overall trend that
the misprediction rate increases as the branch DPI increases. This
trend holds true for all three different types of branch predictors,
which demonstrates that DPI is an appropriate metric for branch
predictability. Moreover, this figure also shows that the mispre-
diction rates of the branches in DPI class 1 and 2 are drastically
smaller than those in the rest DPI classes, which means branches
with DPI less than 0.01 are the easy-to-predict branches. As a re-
sult, DPI allows us to classify the branch predictability in a clear
and coherent way: branches with DPI less than 0.01 are the easy-
to-predict branches; whereas branches with DPI larger than 0.01
are the hard-to-predict branches.

Comparison with Conventional Metrics: Figure 3(a) shows
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Figure 3: Comparison of branch classification quality.

the percentage of the branches classified as easy-to-predict branches
among the branches with prediction rate larger than 95% (The easy-
to-predict branches are classified by taken rate € [0,0.05) | J(0.95,
0.1], transition rate € [0,0.1) [ J(0.9,0.1], or DPI € [0, 0.01]). As
shown in this figure, DPI consistently yields larger percentage than
transition rate or taken rate across all three types of branch pre-
dictors, meaning that DPI can identify more truly easy-to-predict
branches than taken rate or transition rate. On the other hand, we
also measure the percentages of the branches with prediction rate
less than 95% over the branches classified as hard-to-predict. As
shown in Figure 3(b), DPI improves the accuracy of the hard-to-
predict branch classification by up to 17.7% over taken rate, and
15.0% over transition rate. The reason that DPI is superior in
branch classification is that it has a broader view of branch his-
tory when characterizing the branch behaviors. In fact, taken rate
examines the branch history bit by bit, and transition rate does it
two-bit by two-bit; whereas DPI examines the branch history at a
broader pattern level.

Applications: As an important extension to the existing met-
rics, the proposed DPI metric can be applied in the fields where the
conventional branch classification metrics are used. These fields
include, but not limited to: identifying hard-to-predict branches for
predication, characterizing control flow for benchmark cloning and
synthesizing [5].

4. CONCLUSIONS

Based on the autocorrelation analysis of branch history patterns,
this paper presents a new metric Degree of Pattern Irregularity
(DPI) for branch predictability characterization. Unlike existing
taken rate or transition rate metrics, DPI directly measures the reg-
ularity of the patterns in per-address branch history, and hence is
able to identify more easy-to-predict branches and significantly im-
prove the accuracy of the classification of hard-to-predict branches.
Our experiments show that DPI improves the accuracy of hard-to-
predict branch classification by up to 17.7% over taken rate and
15.0% over transition rate. Overall, this metric examines the branch
history at a broader pattern level, and is an important extension to
the existing metrics in branch classification.

5. REFERENCES

[1] E. O. Brigham. The Fast Fourier Transform, chapter 13. 1974.

[2] P-Y. Chang and et al. Branch classification: a new mechanism
for improving branch predictor performance. In MICRO '94,
pages 22-31, 1994.

[3] M. Haungs, et al. Branch transition rate: a new metric for
improved branch classification analysis. In HPCA ’00, pages
241 -250, 2000.

[4] D. Jimenez and C. Lin. Dynamic branch prediction with
perceptrons. In HPCA °01, pages 197 —206, 2001.

[5] A. Joshi, et al. Automated microprocessor stressmark
generation. In HPCA ’08, pages 229 —239, 2008.



