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Abstract. The contentious debates between RISC and CISC have died down, 
and a CISC ISA, the x86 continues to be popular. Nowadays, processors with 
CISC-ISAs translate the CISC instructions into RISC style micro-operations 
(eg: uops of Intel and ROPS of AMD).  The use of the uops (or ROPS) allows 
the use of RISC-style execution cores, and use of various micro-architectural 
techniques that can be easily implemented in RISC cores. This can easily allow 
CISC processors to approach RISC performance. However, CISC ISAs do have 
the additional burden of translating instructions to micro-operations. In a 1991 
study between VAX and MIPS, Bhandarkar and Clark showed that after cancel-
ing out the code size advantage of CISC and the CPI advantage of RISC, the 
MIPS processor had an average 2.7x advantage over the studied CISC proces-
sor (VAX). A 1997 study on Alpha 21064 and the Intel Pentium Pro still 
showed 5% to 200% advantage for RISC for various SPEC CPU95 programs. A 
decade later and after introduction of interesting techniques such as fusion of 
micro-operations in the x86, we set off to compare a recent RISC and a recent 
CISC processor, the IBM POWER5+ and the Intel Woodcrest. We find that the 
SPEC CPU2006 programs are divided between those showing an advantage on 
POWER5+ or Woodcrest, narrowing down the 2.7x advantage to nearly 1.0. 
Our study points to the fact that if aggressive micro-architectural techniques for 
ILP and high performance can be carefully applied, a CISC ISA can be imple-
mented to yield similar performance as RISC processors. Another interesting 
observation is that approximately 40% of all work done on the Woodcrest is 
wasteful execution in the mispredicted path.  

1   Introduction 

Interesting debates on CISC and RISC instruction set architecture styles were fought 
over the years, e.g.: the Hennessy-Gelsinger debate at the Microprocessor Forum [8] 
and Bhandarkar publications [3, 4]. In the Bhandarkar and Clark study of 1991 [3], 
the comparison was between Digital's VAX and an early RISC processor, the MIPS. 
As expected, MIPS had larger instruction counts (expected disadvantage for RISC) 
and VAX had larger CPIs (expected disadvantage for CISC). Bhandarkar et al. pre-
sented a metric to indicate the advantage of RISC called the RISC factor. The average 
RISC factor on SPEC89 benchmarks was shown to be approximately 2.7. Not even 
one of the SPEC89 program showed an advantage on the CISC. 
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The Microprocessor forum debate between John Hennessy and Pat Gelsinger in-
cluded the following 2 quotes:   

 

"Over the last five years, the performance gap has been steadily diminishing. It 
is an unfounded myth that the gap between RISC and CISC, or between x86 and 
everyone else, is large. It's not large today. Furthermore, it is getting smaller." 

- Pat Gelsinger, Intel  

"At the time that the CISC machines were able to do 32-bit microprocessors, 
the RISC machines were able to build pipelined 32-bit microprocessors. At the time 
you could do a basic pipelining in CISC machine, in a RISC machine you could do 
superscalar designs, like the RS/6000, or superpipelined designs like the R4000. I 
think that will continue. At the time you can do multiple instruction issue with rea-
sonable efficiency on an x86, I believe you will be able to put second-level caches, or 
perhaps even two processors on the same piece of silicon, with a RISC machine."  

- John Hennessy, Stanford  

Many things have changed since the early RISC comparisons such as the VAX-
MIPS comparison in 1991 [3]. The debates have died down in the last decade, and 
most of the new ISAs conceived during the last 2 decades have been mainly RISC. 
However, a CISC ISA, the x86 continues to be popular. It translates the x86 macro-
instructions into micro-operations (uops of Intel and ROPS of AMD). The use of the 
uops (or ROPS) allows the use of RISC-style execution cores, and use of various mi-
cro-architectural techniques that can be easily implemented in RISC cores. A 1997 
study of the Alpha and the Pentium Pro [4] showed that the performance gap was nar-
rowing, however the RISC Alpha still showed significant performance advantage. 
Many see CISC performance approaching RISC performance, but exceeding it is 
probably unlikely. The hardware for translating the CISC instructions to RISC-style is 
expected to consume area, power and delay. Uniform-width RISC ISAs do have an 
advantage for decoding and runtime translations that are required in CISC are defi-
nitely not an advantage for CISC. 

Fifteen years after the heated debates and comparisons, and at a time when all the 
architectural ideas in Hennessy's quote (on chip second level caches, multiple proc-
essors) have been put into practice, we set out to compare a modern CISC and RISC 
processor. The processors are Intel's Woodcrest (Xeon 5160) and IBM's POWER5+ 
[11, 16]. A quick comparison of key processor features can be found in Table 1. 
Though the processors do not have identical micro-architectures, there is a signifi-
cant similarity. They were released around the same time frame and have similar 
transistor counts (276 million for P5+ and 291 million for x86). The main differ-
ence between the processors is in the memory hierarchy. The Woodcrest has larger 
L2 cache while the POWER5+ includes a large L3 cache.  The SPEC CPU2006 re-
sults of Woodcrest (18.9 for INT/17.1 for FP) are significantly higher than that of 
POWER5+ (10.5 for INT/12.9 for FP). The Woodcrest has a 3 GHz frequency 
while the POWER5 has a 2.2 GHz frequency. Even if one were to scale up the 
POWER5+ results and compare the score for CPU2006 integer programs, it is clear 
that even ignoring the frequency advantage, the CISC processor is exhibiting an ad-
vantage over the RISC processor. In this paper, we set out to investigate the per-
formance differences of these 2 processors. 
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Table 1. Key Features of the IBM POWER5+ and Intel Woodcrest [13] 

 

 IBM POWER5+ Intel-Woodcrest(Xeon 5160) 

Bit width 64bit 32/64bit 

Cores/chip*Thread/core 2x2 2x1 

Clock Frequency 2.2GHz 3.GHz 

L1 I/D 2x64/32k 2x32k/32k 

L2  1.92M 4M 

L3 36M (off-chip) None 

Execution Rate/Core 5 issue 5uops 

Pipeline Stages 15 14 

Out of Order 200 inst 126 uops 

Memory B/W 12.8GB/s 10.5GB/s 

Process technology 90nm 65nm 

Die Size 245mm2 144nm2 

Transistors 276 million 291 million 

Power (Max) 100W 80W 

SPECint/fp2006 [cores] 10.5 / 12.9 18.9 / 17.1 [4] 

SPECint/fp2006_rate[cores] 197 / 229 [16] 60.0 / 44.1 [4] 

Other interesting processor studies in the past include a comparison of the 
PowerPC601 and Alpha 21064 [12], a detailed study of the Pentium Pro processor 
[5],   a comparison of the SPARC and MIPS [7], etc.  

2   The Two Chips 

2.1   POWER5+ 

The IBM POWER5+ is an out of order superscalar processor. The core contains one 
instruction fetch unit, one decode unit, two load/store pipelines, two fixed-point exe-
cution pipelines, two floating-point execution pipelines, and two branch execution 
pipelines. It has the ability to fetch up to 8 instructions per cycle and dispatch and re-
tire 5 instructions per cycle. POWER5+ is a multi-core chip with two processor cores 
per chip. The core has a 64KB L1 instruction cache and a 32KB L1 data cache. The 
chip has a 1.9MB unified L2 cached shared by the two cores. An additional 36MB L3  
cache is available off-chip with its controller and directory on the chip.  

The POWER5+ memory management unit has 3 types of caches to help address 
translation: a translation look-aside buffer (TLB), a segment look-aside buffer (SLB) 
and an effective-to-real address table (ERAT). The translation processes starts its 
search with the ERAT. Only on that failing does it search the SLB and TLB. This 
processor supports simultaneous multithreading. 
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2.2   Woodcrest 

The Xeon 5160 is based on 
Intel’s Woodcrest micro-
architecture, the server  
variant of the Core micro-
architecture. It is a dual core, 
64 bit, 4-issue superscalar, 
moderately pipelined (14 
stages), out-of-order MPU, 
and implemented in a 65nm 
process. The processor can 
address 36 bits of physical 
memory and 48 bits of vir-
tual. An 8 way 32KB L1 I 
cache, a dual ported 32KB 
L1D cache along with a 
shared 4MB L2 cache feeds 
data and instruction to the 
core. Unlike the POWER5+ 
it has no L3 cache. The 
branch prediction occurs in-
side the Instruction Fetch 
Unit. The Core micro-
architecture employs the tra-
ditional Branch Target Buffer 
(BTB), a Branch Address 
Calculator (BAC) and the Re-
turn Address Stack (RAS) 
and two more predictors. The 
two predictors are: the loop 
detector (LD) which predicts loop exits and the Indirect Branch Predictor (IBP) which 
picks targets based on global history, which helps for branches to a calculated  
address. A queue has been added between the branch target predictors and the instruc-
tion fetch to hide single cycle bubbles introduced by taken branches. The x86 instruc-
tions are generally broken down into simpler micro-operations (uops), but in certain 
specialized cases, the processor fuses certain micro-operations to create integrated  
or chained operations. Two types of fusion operations are used: macro-fusion and  
micro-fusion. 

3   Methodology 

In this study we use the 12 integer and 17 floating-point programs of the SPEC 
CPU2006 [18] benchmark suite and measure performance using the on chip perform-
ance counters. Both POWER5+ and Woodcrest microprocessors provide on-chip 
logic to monitor processor related performance events. The POWER5+ Performance 

 

Fig. 1. IBM POWER5+ Processor [16] 

 

Fig. 2. Front-End of the Intel Woodcrest processor [17] 
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Monitor Unit contains two dedicated registers that count instructions completed and 
total cycles as well as four programmable registers, which can count more than 300 
hardware events occurring in the processor or memory system. The Woodcrest archi-
tecture has a similar set of registers, two dedicated and two programmable registers. 
These registers can count various performance events such as, cache misses, TLB 
misses, instruction types, branch misprediction and so forth. The perfex utility from 
the Perfctr tool is used to perform the counter measurements on Woodcrest. A tool 
from IBM was used for making the measurements on POWER5+.  

The Intel Woodcrest processor supports both 32-bit as well as 64-bit binaries. The 
data we present for Woodcrest corresponds to the best runtime for each benchmark 
(hence is a mix of 64-bit and 32-bit applications). Except for gcc, gobmk, omnetpp, 
xalancbmk and soplex, all other programs were in the 64-bit mode. The benchmarks 
for POWER5+ were compiled using Compilers: XL Fortran Enterprise Edition 10.01 
for AIX and XL C/C++ Enterprise Edition 8.0 for AIX. The POWER5+ binaries were 
compiled using the flags:  

 

C/C++ -O5 -qlargepage -qipa=noobject -D_ILS_MACROS -qalias=noansi -
qalloca + PDF (-qpdf1/-qpdf2)  

FP - O5 -qlargepage -qsmallstack=dynlenonheap -qalias=nostd + PDF (-qpdf1/-
qpdf2). 

The OS used was AIX 5L V5.3 TL05. The benchmarks on Woodcrest were com-
piled using Intel’s compilers - Intel(R) C Compiler for 32-bit applications/ EM64T-
based applications Version 9.1 and Intel(R) Fortran Compiler for 32-bit applications/ 
EM64T-based applications, Version 9.1. The binaries were compiled using the flag:   
-xP -O3 -ipo -no-prec-div / -prof-gen -prof-use.  

Woodcrest was configured to run using SUSE LINUX 10.1 (X86-64). 

4   Execution Characteristics of the Two Processors 

4.1   Instruction Count (path length) and CPI 

According to the traditional RISC vs. CISC tradeoff, we expect POWER5+ to have a 
larger instruction count and a lower CPI compared to Intel Woodcrest, but we observe 
that this distinction is blurred. Figure 3 shows the path length (dynamic instruction 
count) of the two systems for SPEC CPU2006. As expected, the instruction counts in 
the RISC POWER5+ is more in most cases, however, the POWER5+ has better in-
struction counts than the Woodcrest in 5 out of 12 integer programs and 7 out of 17 
floating-point programs (indicated with * in Figure 3).  The path length ratio is de-
fined as the ratio of the instructions retired by POWER5+ to the number of instruc-
tions retired by Woodcrest. The path length ratio (instruction count ratio) ranges 
from 0.7 to 1.23 for integer programs and 0.73 to 1.83 for floating-point programs. 

The lack of bias is evident since the geometric mean is about 1 for both integer and 
floating-point applications. Figure 4 presents the CPIs of the two systems for SPEC 
CPU2006. As expected, the POWER5+ has better CPIs than the Woodcrest in most 
cases. However, in 5 out of 12 integer programs and 7 out of 17 floating-point pro-
grams, the Woodcrest CPI is better (indicated with * in Figure 4). The CPI ratio is the 
 



62 C. Isen, L. John, and E. John 

 

Fig. 3. a) Instruction Count (Path Length)-INT 

 

Fig. 3. b) Instruction Count (Path Length) – FP 

ratio of the CPI of Woodcrest to that of POWER5+. The CPI ratio ranges from 0.78 
to 4.3 for integer programs and 0.75 to 4.4 for floating-point applications. This data is 
a sharp contrast to what was observed in the Bhandarkar-Clark study. They obtained 
an instruction count ratio in the range of 1 to 4 and a CPI ratio ranging from 3 to 10.5. 
In their study, the RISC instruction count was always higher than CISC and the CISC 
CPI was always higher than the RISC CPI. 

 



 A Tale of Two Processors: Revisiting the RISC-CISC Debate 63 

 

Fig. 4. a) CPI of the 2 processors for INT 

 

Fig. 4. b) CPI of the 2 processors for FP 
 
Figure 5 illustrates an interesting metric, the RISC factor and its change from the 

Bhandarkar-Clark study to our study. Bhandarkar–Clark defined RISC factor as the ratio 
of CPI ratio to path length (instruction count) ratio. The x-axis indicates the CPI ratio 
(CISC to RISC) and the y-axis indicates the instruction count ratio (RISC to CISC).   

The SPEC 89 data-points from the Bhandarkar-Clark study are clustered to the 
right side of the figure, whereas most of the SPEC CPU2006 points are located closer 
to the line representing RISC factor=1 (i.e. no advantage for RISC or CISC). This line 
represents the situation where the CPI advantage for RISC is cancelled out by the path 
length advantage for CISC.  The shift highlights the sharp contrast between the results 
observed in the early days of RISC and the current results. 
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4.2   Micro-operations  
Per Instruction 
(uops/inst) 

Woodcrest converts its 
instructions into sim-
pler instructions called 
micro-ops (uops). The 
number of uops per  
instruction gives an  
indication of the com-
plexity of the x86 in-
structions used in each 
benchmark. Past stud-
ies by Bhandarkar and 
Ding [5] have recorded 
the uops per instruction 
to be in the 1.2 to 1.7 
range for SPEC 89 
benchmarks. A higher 
uops/inst ratio would 
imply that more work is 
done per instruction for 
CISC, something that is 
expected of CISC. Our 
observation on Wood-
crest shows the uops 
per instruction ratio to 
be much lower than 
past studies [5]: an av-
erage very close to 1. 
Table 2 presents the 
uops/inst for both 
SPEC CPU2006 integer 
and floating-point 
suites. The integer programs have an average of 1.03 uops/inst and the FP programs 
have an average of 1.07 uops/instructions. Only 482.sphinx3 has a uops/inst ratio that 
is similar to what is observed by Bhandarkar et al. [5] (a ratio of 1.34). Among the in-
teger benchmarks, mcf has the highest uops/inst ratio – 1.14.  

4.3   Instruction Mix  

In this section, we present the instruction mix to help the reader better understand the 
later sections on branch predictor performance, and cache performance. The instruc-
tion mix can give us an indication of the difference between the benchmarks. It is far 
from a clear indicator of bottlenecks but it can still provide some useful information. 
Table 3 contains the instruction mix for the integer programs while Table 4  
 

 

Fig. 5.(a) CPI ratio vs. Path length ratio - INT 

 

Fig. 5.(b) CPI ratio vs. Path length ratio - FP 
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Table 2. Micro-ops per instruction for CPU2006 on Intel Woodcrest 

BENCHMARK uops/inst BENCHMARK uops/inst 
400.perlbench 1.06 433.milc 1.01 
401.bzip2 1.03 434.zeusmp 1.02 
403.gcc 0.97 435.gromacs 1.01 
429.mcf 1.14 436.cactusADM 1.12 
445.gobmk 0.93 437.leslie3d 1.09 

456.hmmer 1.08 444.namd 1.02 

458.sjeng 1.06 447.dealII 1.04 
462.libquantum 1.05 450.soplex 1.00 
464.h264ref 1.02 453.povray 1.07 

471.omnetpp 0.98 454.calculix 1.05 
473.astar 1.07 459.GemsFDTD 1.16 
483.xalancbmk 0.96 465.tonto 1.08 

  470.lbm 1.00 
  481.wrf 1.16 

  482.sphinx3 1.34 
  410.bwaves.input1 1.01 
  416.gamess 1.02 
INT - geomean 1.03 FP – geomean 1.07 

Table 3. Instruction mix for SPEC CPU2006 integer benchmarks 

POWER5+ Woodcrest 

BENCHMARK Branches Stores Load Others Branches Stores Loads other 

400.perlbench 18% 15% 25% 41% 23% 11% 24% 41% 

401.bzip2 15% 8% 23% 54% 15% 9% 26% 49% 

403.gcc 19% 17% 18% 46% 22% 13% 26% 39% 

429.mcf 17% 9% 26% 48% 19% 9% 31% 42% 

445.gobmk 16% 11% 20% 53% 21% 14% 28% 37% 

456.hmmer 14% 11% 28% 47% 8% 16% 41% 35% 

458.sjeng 18% 6% 20% 56% 21% 8% 21% 50% 

462.libquantum 21% 8% 21% 50% 27% 5% 14% 53% 

464.h264ref 7% 16% 35% 42% 8% 12% 35% 45% 

471.omnetpp 19% 17% 26% 38% 21% 18% 34% 27% 

473.astar 13% 8% 27% 52% 17% 5% 27% 52% 

483.xalancbmk 20% 9% 23% 47% 26% 9% 32% 33% 
 

 

contains the same information for floating-point benchmarks. In comparing the com-
position of instructions in the binaries of POWER5+ and Woodcrest, the instruction 
mix seems to be largely similar for both architectures. We do observe that some 
Woodcrest binaries have a larger fraction of load instructions compared to their 
POWER5+ counterparts. For example, the execution of hmmer on POWER5+ has 
28% load instruction while the Woodcrest version has 41% loads. Among integer 
programs, gcc, gobmk and xalancbmk are other programs where the percentage of 
loads in Woodcrest is higher than that of POWER5+. 
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Table 4. Instruction mix for SPEC CPU2006 floating-point benchmarks 

POWER5+ Woodcrest 

BENCHMARK Branches Stores Load Others Branches  Stores Loads Others 

410.bwaves 1% 7% 46% 46% 1% 8% 47% 44% 

416.gamess 8% 8% 31% 53% 8% 9% 35% 48% 

433.milc 3% 18% 34% 46% 2% 11% 37% 50% 

434.zeusmp 2% 11% 26% 61% 4% 8% 29% 59% 

435.gromacs 4% 14% 28% 54% 3% 14% 29% 53% 

436.cactusADM 0% 14% 38% 48% 0% 13% 46% 40% 

437.leslie3d 1% 12% 28% 59% 3% 11% 45% 41% 

444.namd 5% 6% 28% 61% 5% 6% 23% 66% 

447.dealII 15% 9% 32% 45% 17% 7% 35% 41% 

450.soplex 15% 6% 26% 53% 16% 8% 39% 37% 

453.povray 12% 14% 31% 44% 14% 9% 30% 47% 

454.calculix 4% 6% 25% 65% 5% 3% 32% 60% 

459.GemsFDTD 2% 10% 31% 57% 1% 10% 45% 43% 

465.tonto 6% 13% 29% 52% 6% 11% 35% 49% 

470.lbm 1% 9% 18% 72% 1% 9% 26% 64% 

481.wrf 4% 11% 31% 54% 6% 8% 31% 56% 

482.sphinx3 8% 3% 31% 59% 10% 3% 30% 56% 
 

 

We also find a difference in the fraction of branch instructions, though not as sig-
nificant as the differences observed for load instructions. For example, xalancbmk has 
20% branches in a POWER5+ execution and 26% branches in the case of Woodcrest. 
A similar difference exists for gobmk and libquantum. In the case of hmmer, unlike 
the previous cases, the number of branches is lower for Woodcrest (14% for 
POWER5+ and only 8% for Woodcrest). Similar examples for difference in the frac-
tion of load and branch instructions can be found in the floating-point programs. A 
few examples are cactusADM, leslie3d, soplex, gemsFDTD and lbm. FP programs 
have traditionally had a lower fraction of branch instructions, but three of the pro-
grams exhibit more than 12% branches. This observation holds for both POWER5+ 
and Woodcrest. Interestingly these three programs (dealII, soplex and povray) are 
C++ programs. 

4.4   Branch Prediction 

Branch prediction is a key feature in modern processors allowing out of order execu-
tion. Branch misprediction rate and misprediction penalty significantly influence the 
stalls in the pipeline, and the amount of instructions that will be executed specula-
tively and wastefully in the misprediction path. In Figure 6 we present the branch 
misprediction statistics for both architectures. We find that Woodcrest outperforms 
POWER5+ in this aspect. The misprediction rate for Woodcrest among integer 
benchmarks ranges from a low 1% for xalancbmk to a high 14% for astar. Only  
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gobmk and astar have a misprediction rate higher than 10% for Woodcrest. On the 
other hand, the misprediction rate for POWER5+ ranges from 1.74% for xalancbmk 
and 15% for astar. On average the misprediction for integer benchmarks is 7% for 
POWER5+ and 5.5% for Woodcrest. In the case of floating-point benchmarks this is 
5% for POWER5+ and 2% for Woodcrest. We see that, in the case of the floating-
point programs, POWER5+ branch prediction performs poorly relative to Woodcrest. 
This is particularly noticeable in programs like games, dealII, tonto and sphinx. 

0%

2%

4%

6%

8%

10%

12%

14%

16%

400.perlb
en

ch

401.bzip
2

403.gcc

429.m
cf

445.gobmk

458.sj
eng

462.lib
quantum

464.h264ref

471.omnetpp

473.asta
r

483.xa
lan

cb
mk

P5+ branch mispred % WC branch mispred %
 

Fig. 6. a) Branch misprediction – INT 
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4.5   Cache Misses  

The cache hierarchy is one of the important micro-architectural features that differ  
between the systems. POWER5+ has a smaller L2 cache (1.9M instead of 4M in 
Woodcrest), but it has a large shared L3 cache. This makes the performance of the 
cache hierarchies of the two processors of particular interest. Figure 7 shows the L1 
data cache misses per thousand instructions for both integer and floating-point bench-
marks. Among integer programs mcf stands out, while there are no floating-point pro-
grams with a similar behavior. POWER5+ has a higher L1 D cache miss rate for gcc, 
milc and lbm even though both processors have the same L1 D cache size. In general, 
the L1 data cache miss rates are under 40 misses per 1k instructions. In spite of the 
small L2 cache, the L2 miss ratio on POWER5+ is lower than that on Woodcrest. 
While no data is available to further analyze this, we suspect that differences in the 
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Fig. 7. a) L1 D cache misses per 1k Instructions – INT 
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Fig. 7. b) L1 D cache misses per 1k Instructions - FP 
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Fig. 8. a) L2 cache misses per 1k Instructions – INT 
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Fig. 8. b) L2 cache misses per 1k Instructions – FP 

amount of loads in the instruction mix (as discussed earlier), differences in the  
instruction cache misses (POWER5+ has a bigger I-cache) etc. can lead to this. 

4.6   Speculative Execution 

Over the years out-of-order processors have achieved significant performance gains 
from various speculation techniques. The techniques have primarily focused on con-
trol flow prediction and memory disambiguation. In Figure 9 we present speculation 
percentage, a measure of the amount of wasteful execution, for different benchmarks. 
We define the speculation % as the ratio of instructions that are executed specula-
tively but not retired to the number of instructions retired (i.e. (dispatched_inst_cnt / 
retired_inst_cnt) -1). We find the amount of speculation in integer benchmarks to be 
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Fig. 9. (a) Percentage of instructions executed speculatively - INT 
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Fig. 9. (b) Percentage of instructions executed speculatively - FP 
 

higher than floating-point benchmarks, not surprising considering the higher percent-
age of branches and branch mispredictions in integer programs.  

In general, the Woodcrest micro-architecture speculates much more aggressively 
compared to POWER5+. On an average, an excess of 40% of instructions in Wood-
crest and 29% of instructions in POWER5+ are speculative for integer benchmarks. 
The amount of speculations for FP programs on average is 20% for Woodcrest and 
9% for POWER5+. Despite concerns on power consumption, the fraction of instruc-
tions spent in mispredicted path has increased from the average of 20% (25% for INT 
and 15% for FP) seen in the 1997 Pentium Pro study. Among the floating-point pro-
grams, POWER5+ speculates more than Woodcrest in four of the benchmarks: dealII, 
soplex, povray and sphinx. It is interesting to note that 3 of these benchmarks are C++ 
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programs. With limitation on power and energy consumption, wastage from execution 
in speculative path is of great concern. 

5   Techniques That Aid Woodcrest 

Part of Woodcrest’s performance advantage comes from the reduction of micro-
operations through fusion. Another important technique is early load address resolu-
tion. In this section, we analyze these specific techniques. 

5.1   Macro-fusion and Micro-op Fusion 

Although the Woodcrest breaks instructions into micro-operations, in certain cases, it 
also uses fusion of micro-operations to combine specific uops to integrated opera-
tions, thus taking the advantage of simple or complex operations as it finds fit. Macro-
fusion [11] is a new feature for Intel’s Core micro-architecture, which is designed to 
decrease the number of micro-ops in the instruction stream. Select pairs of compare 
and branch instruction are fused together during the pre-decode phase and then sent 
through any one of the four decoders. The decoder then produces a micro-op from the 
fused pair of instructions. The hardware can perform a maximum of one macro-fusion 
per cycle. 

Table 5 and Table 6 show the percentage of fused operations for integer and float-
ing-point benchmarks. In the tables, fused operations are classified as macro-fusion 
and micro-fusion. Micro-fusion is further classified into two: Loads that are fused 
with arithmetic operations or an indirect branch (LD_IND_BR) and store address 
computations fused with data store (STD_STA). As stated before, the version of the 
benchmark selected (32bit vs. 64bit) depends on the overall performance. This was 
done to give maximum performance benefit to CISC. It turns out that most of the pro-
grams performed best in the 64-bit mode but in this mode macro-fusion does not work 
well. Since our primary focus is in comparing POWER5+ with Woodcrest we used 
the binaries that yielded best performance for this study too. 

The best case runs (runs with highest performance) for integer benchmarks have an 
average of 19% operations that can be fused by micro or macro-fusion. This implies 
that the average uops/inst will go up from 1.03 to 1.23 uops/inst if there was no fu-
sion. The majority of the fusion comes from micro-fusion, an average of 14%, and the 
rest from macro-fusion. Macro-fusion in integer benchmarks ranges from 0.13% in 
hammer to 21% for xalancbmk. For micro-fusion, we find it to range from 6% (astar) 
to 29% (hmmer). Among the two sub-components of micro-fusion, store address com-
putation fusion is predominant. ‘Store address and store’ fusion ranges from 4%, for 
astar, to 18%, for omnetpp. On the other hand Loads fusion (LD_IND_BR - Loads 
that fused with arithmetic operations or an indirect branch) is the lowest for mcf and 
the highest for hmmer. The best case runs (runs with highest performance) for FP 
benchmarks have an average of 15% uops that can be fused by micro or macro-fusion. 
Almost all of the fusion is from micro-fusion. The percentage of uops that can be 
fused via micro-fusion in FP programs ranges from 4% (sphinx) to 21% (leslie3D).  
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Table 5. Micro & macro-fusion in SPEC CPU2006 integer benchmarks 

BENCHMARK uops/inst 

%macro-

fusion uop 

%micro-

fusion uop 

%fusion 

uop 

%LD_IND_BR 

uops 

%STD_STA 

uops 

400.perlbench 1.06 0% 13% 13% 3% 11% 

401.bzip2 1.03 0% 12% 12% 4% 9% 

403.gcc 0.97 15% 16% 31% 4% 13% 

429.mcf 1.14 0% 8% 8% 0% 8% 

445.gobmk 0.93 12% 19% 31% 5% 15% 

456.hmmer 1.08 0% 29% 29% 14% 15% 

458.sjeng 1.06 0% 9% 9% 2% 7% 

462.libquantum 1.05 0% 8% 8% 3% 5% 

464.h264ref 1.02 0% 18% 18% 6% 12% 

471.omnetpp 0.98 10% 22% 31% 5% 18% 

473.astar 1.07 0% 6% 6% 1% 4% 

483.xalancbmk 0.96 21% 13% 34% 13% 10% 

Average 1.03 5% 14% 19% 5% 11% 
 

Table 6. Micro & macro-fusion in SPEC CPU2006 – FP benchmarks 

BENCHMARK uops/inst 

%macro-

fusion uop 

%micro-

fusion uop 

%fusion 

uop 

%LD_IND_BR 

uops 

%STD_STA 

uops 

410.bwaves 1.01 0% 19% 19% 11% 8% 

416.gamess 1.02 0% 20% 20% 11% 9% 

433.milc 1.01 0% 13% 13% 3% 11% 

434.zeusmp 1.02 0% 13% 13% 5% 8% 

435.gromacs 1.01 0% 18% 18% 3% 14% 

436.cactusADM 1.12 0% 20% 20% 8% 12% 

437.leslie3d 1.09 0% 21% 21% 12% 10% 

444.namd 1.02 0% 9% 9% 3% 6% 

447.dealII 1.04 0% 19% 19% 12% 7% 

450.soplex 1.00 4% 15% 20% 8% 7% 

453.povray 1.07 0% 13% 13% 5% 8% 

454.calculix 1.05 0% 9% 9% 6% 3% 

459.GemsFDTD 1.16 0% 13% 13% 5% 9% 

465.tonto 1.08 0% 20% 20% 10% 10% 

470.lbm 1.00 0% 19% 19% 10% 9% 

481.wrf 1.16 0% 13% 13% 7% 6% 

482.sphinx3 1.34 0% 4% 4% 2% 2% 

Average 1.07 0% 15% 15% 7% 8% 
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Hypothetically, not having fusion would increase the uops/inst for floating-point 
programs from 1.07 uops/inst to 1.23 uops/inst and for integer programs from 1.03 
uops/inst to 1.23 uops/inst. It is clear that this micro-architectural technique has 
played a significant part in blunting the advantage of RISC by reducing the number of 
uops that are executed per instruction. 

5.2   Early Load Address Resolution 

The cost of memory access has been accentuated by the higher performance of the 
logic unit of the processor (the memory wall). The Woodcrest architecture is said to 
perform an optimization aimed at reducing the load latencies of operations with re-
gards to the stack pointer [2]. The work by Bekerman et al. [2] proposes tracking the 
ESP register and simple operations on it of the form reg±immediate, to enable quick 
resolutions of the load address at decode time. The ESP register in IA32 holds the 
stack pointer and is almost never used for any other purpose. Instructions such as 
CALL/RET, PUSH/POP, and ENTER/LEAVE can implicitly modify the stack 
pointer. There can also be general-purpose instructions that modify the ESP in the 
fashion ESP←ESP±immediate. These instructions are heavily used for procedure 
calls and are translated into uops as given below in Table 7. The value of the immedi-
ate operand is provided explicitly in the uop.  

Table 7. Early load address prediction - Example 

PUSH EAX ESP←ESP - immediate.  

Mem[ESP] ← EAX 

POP EAX EAX ← mem[ESP] 

ESP←ESP - immediate.  

LOAD EAX from stack EAX ← mem[ESP+imm] 

These ESP modifications can be tracked easily after decode. Once the initial ESP 
value is known later values can be computed after each instruction decode. In essence 
this method caches a copy of the ESP value in the decode unit. Whenever a simple 
modification to the ESP value is detected the cached value is used to compute the ESP 
value without waiting for the uops to reach execution stage. The cached copy is also 
updated with the newly computed value. In some cases the uops cause operations that 
are not easy to track and compute; for example loads from memory into the ESP or 
computations that involve other registers. In these cases the cached value of ESP is 
flagged and it is not used for computations until the uop passes the execution stage 
and the new ESP value is obtained. In the mean while, if any other instruction that 
follows attempts to modify the ESP value, the decoder tracks the change operation 
and the delta value it causes. Once the new ESP value is obtained from the uop that 
passed the execution stage, the delta value observed is applied on it to bring the ESP 
register up-to-date. Having the ESP value at hand allows quick resolution of the load 
addresses there by avoiding any stall related to that. This technique is expected to bear 
fruit in workloads where there is a significant use of the stack, most likely for func-
tion calls. Further details on this optimization can be found in Bekerman et al. [2]. 
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In Table 8 we present data related to ESP optimization. The percentage of 
ESP.SYNC refers to the number of times the ESP value had to be synchronized with 
the delta value as a percent of the total number of instructions. A high number is not 
desirable as it would imply the frequent need to synchronize the ESP data i.e. ESP 
data can not be computed at the decoder because it has to wait for the value from the 
execution stage. % ESP.ADDITIONS is a similar percent for the number of ESP addi-
tion operations performed in the decode unit – an indication of the scope of this opti-
mization. A high value for this metric is desirable because, larger the percentage of 
instructions that use the addition operation, more are the number of cycles saved. The 
stack optimization seems to be more predominant in the integer benchmarks and not 
the floating-point benchmarks. The % ESP addition optimization in integer  
benchmarks range from 0.1% for hmmer to 11.3% for xalancbmk.  The % of ESP 
synchronization is low even for benchmarks with high % of ESP addition. For exam-
ple xalancbmk exhibits 11.3% ESP addition and has only 3.76% ESP synchronization. 
The C++ programs are expected to have more function calls and hence more scope for 
this optimization. Among integer programs omnetpp and xalancbmk are among the 
ones with a large % ESP addition. The others are gcc and gobmk; the modular and 
highly control flow intensive nature of gcc allows for these optimizations. Although 
Astar is a C++ application, it makes very little use of C++ features [19] and we find 
that it has a low % for ESP addition. Among the floating-point applications, dealII 
and povray, both C++ applications, have a higher % of ESP addition. 

Table 8. Percentage of instructions on which early load address resolutions were applied 

BENCHMARK 

% ESP 

SYNCH 

% ESP 

ADDITIONS BENCHMARK 

% ESP 

SYNCH 

% ESP 

ADDITIONS 

400.perlbench 0.90% 6.88% 433.milc 0.00% 0.04% 

401.bzip2 0.30% 1.41% 434.zeusmp 0.00% 0.00% 

403.gcc 1.80% 7.99% 435.gromacs 0.03% 0.14% 

429.mcf 0.17% 0.24% 436.cactusADM 0.00% 0.00% 

445.gobmk 1.81% 8.45% 437.leslie3d 0.00% 0.00% 

456.hmmer 0.00% 0.11% 444.namd 0.00% 0.01% 

458.sjeng 0.41% 3.19% 447.dealII 0.20% 3.05% 

462.libquantum 0.12% 0.13% 450.soplex 0.11% 0.54% 

464.h264ref 0.12% 1.44% 453.povray 0.67% 2.77% 

471.omnetpp 3.06% 7.60% 454.calculix 0.03% 0.09% 

473.astar 0.01% 0.14% 459.GemsFDTD 0.08% 0.33% 

483.xalancbmk 3.76% 11.30% 465.tonto 0.26% 0.77% 

   470.lbm 0.00% 0.00% 

   481.wrf 0.19% 0.35% 

   482.sphinx3 0.17% 0.90% 

   410.bwaves 0.03% 0.04% 

   416.gamess 0.15% 0.76% 

INT - geomean 1.04% 4.07% FP - geomean 0.12% 0.60% 
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On average the benefit from ESP based optimization is 4% for integer programs 
and 0.6% for FP programs. Each ESP based addition that is avoided amounts to 
avoiding execution of one uop. Although the average benefit is low, some of the ap-
plications benefit significantly in reducing unnecessary computations and there by 
helping performance of those applications in relation to their POWER5+ counter 
parts.  

6   Conclusion 

Using the SPEC CPU2006 benchmarks, we analyze the performance of a recent CISC 
processor, the Intel Woodcrest (Xeon 5160) with a recent RISC processor, the IBM 
POWER5+.  In a CISC RISC comparison in 1991, the RISC processor showed an ad-
vantage of 2.7x and in a 1997 study of the Alpha 21064 and the Pentium Pro, the 
RISC Alpha showed 5% to 200% advantage on the SPEC CPU92 benchmarks. Our 
study shows that the performance difference between RISC and CISC has further nar-
rowed down. In contrast to the earlier studies where the RISC processors showed 
dominance on all SPEC CPU programs, neither the RISC nor CISC dominates in this 
study. In our experiments, the Woodcrest shows advantage on several of the SPEC 
CPU2006 programs and the POWER5+ shows advantage on several other programs.  

Various factors have helped the Woodcrest to obtain its RISC-like performance. 
Splitting the x86 instruction into micro-operations of uniform complexity has helped, 
however, interestingly the Woodcrest also combines (fuses) some micro-operations to 
a single macro-operation. In some programs, up to a third of all micro-operations are 
seen to benefit from fusion, resulting in chained operations that are executed in a  
single step by the relevant functional unit. Fusion also reduces the demand on reserva-
tion station and reorder buffer entries. Additionally, it reduces the net uops per in-
struction. The average uop per instruction for Woodcrest in 2007 is 1.03 for integer 
programs and 1.07 for floating-point programs, while in Bhandarkar and Ding’s 1997 
study [5] using SPEC CPU95 programs, the average was around 1.35 uops/inst. Al-
though the POWER5+ has smaller L2 cache than the Woodcrest, it is seen to achieve 
equal or better L2 cache performance than the Woodcrest. The Woodcrest has better 
branch prediction performance than the POWER5+. Approximately 40%/20% (int/fp) 
of instructions in Woodcrest and 29%/9% (int/fp) of instructions in the POWER5+ 
are seen to be in the speculative path.   

Our study points out that with aggressive micro-architectural techniques for ILP, 
CISC and RISC ISAs can be implemented to yield very similar performance. 
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