
1

Understanding and Improving Operating System Effects
in Control Flow Prediction

Abstract

Many modern applications exercise the operating system kernel significantly, resulting in
several implications including affecting the control flow transfer in the execution environment.
This paper focuses on understanding the operating system effects on control flow transfer and
prediction, and designing architectural support to alleviate the bottlenecks.

We characterize the control flow transfer of several emerging applications on a commercial
operating system. We find that the exception-driven, intermittent invocation of OS code and the
user/OS branch history interference increase the misprediction in both user and kernel code.

We propose two simple OS-aware control flow prediction philosophies to alleviate the
destructive impact of user/OS branch interference. The first one consists of capturing separate
branch correlation information for user and kernel code. The second philosophy involves using
separate branch prediction tables for user and kernel code. We study the improvement
contributed by the OS-aware philosophies to various branch prediction strategies ranging from
simple Gshare to more elegant Agree, Multi-Hybrid and Bi-Mode predictors. On 32K entry
predictors, incorporating OS-aware strategies yields up to 34%, 23%, 27% and 9% prediction
accuracy improvement in Gshare, Multi-Hybrid, Agree and Bi-Mode predictors, resulting in up
to 8% execution speedup.

1. Introduction

Every once in a while in systems research, we come to the point where we need to evaluate

how well is the hardware suited for a given application, how well is it accommodating the

operating system (OS), and how well is the application exploiting an OS’s capabilities. Such

issues are extremely important in order to fine tune system performance since we find that the

three subsystems - application (workload), OS and hardware - are constantly evolving, and many

times quite independently.

The nature and diversity of workloads has seen substantial changes that we need to go back to

understanding the interplay of the three subsystems based on these new workloads. In particular,

we note the growing importance of the OS in emerging application environments, with OS

services being invoked much more often. Several recent studies [Rose95, Red00] have reported

high operating system contribution to the overall execution time. In commercial applications such

as databases and web services, the OS component has been observed to reach as high as 55% of

the execution time in some of the workloads considered in this paper. Li et al. [Li00] also report

higher OS involvement in Java applications compared to traditional SPEC workloads. The reason

for the higher OS involvement in all these emerging environments is because the applications are

in general multi-threaded and exercise the I/O subsystem much more extensively. This trend is

likely to continue in the near future and it is very important to consider the operating system not

only for complete system evaluations as other studies have pointed out [Rose95], but also when

attempting to optimize the hardware and/or the application [Zhang02]. A detailed characterization

2

of the interactions between the application-OS-hardware can have considerable ramifications in

the design of each system component, and this paper takes a step in that direction.

We focus on one specific issue that has long been considered an important issue for

performance optimization of state-of-the-art processors - control flow prediction. Current high

performance processors provision aggressive support for Instruction Level Parallelism (ILP) and

have deep pipelines to keep cycle times low. The delivered ILP and pipelining performance is

critically dependent on being able to accurately predict the control (branch) flow in the program,

so that we can execute more useful instructions and avoid stalling/squashing the pipeline.

Branch predictors for control flow prediction have been studied extensively with different

programs [Yeh91, Young95, Sech96 and Mich97] and also with OS effects [Gloy96]. The OS

affects control flow predictability by introducing the additional user/OS branch aliasing in branch

predictor tables. The negative impact of kernel branches on branch prediction has been reported

in [Gloy96]. We also find that user/OS execution can significantly increase the mispredictions in

each part (Figure 1). For example, as shown in Figure 1a, kernel code nearly doubles the

misprediction rates in 7 out of 13 of our benchmarks in a Gshare predictor.

0
2
4
6
8

10
12

db
(1

6k
)

db
(6

4k
)

je
ss

(1
6k

)

je
ss

(6
4k

)

ja
va

c(
16

k)

ja
va

c(
64

k)

ja
ck

(1
6k

)

ja
ck

(6
4k

)

m
tr

t(
16

k)

m
tr

t(
64

k)

co
m

pr
es

s(
16

k)

co
m

pr
es

s(
64

k)

gc
c(

16
k)

gc
c(

64
k)

vo
rt

ex
(1

6k
)

vo
rt

ex
(6

4k
)

pm
ak

e(
16

k)

pm
ak

e(
64

k)

se
nd

m
ai

l(1
6k

)

se
nd

m
ai

l(6
4k

)

po
st

gr
es

.s
el

ec
t(

16
k)

po
st

gr
es

.s
el

ec
t(

64
k)

po
st

gr
es

.u
pd

at
e(

16
k)

po
st

gr
es

.u
pd

at
e(

64
k)

po
st

gr
es

.jo
in

(1
6k

)

po
st

gr
es

.jo
in

(6
4k

)

Benchmark(Gshare Predictor Size)

M
is

pr
ed

ic
tio

n
 R

at
e

(%
) Extra Caused by OS Execution

User Only

(a) User

0
2
4
6
8

10
12
14

db
(1

6k
)

db
(6

4k
)

je
ss

(1
6k

)

je
ss

(6
4k

)

ja
va

c(
16

k)

ja
va

c(
64

k)

ja
ck

(1
6k

)

ja
ck

(6
4k

)

m
tr

t(
16

k)

m
tr

t(
64

k)

co
m

pr
es

s(
16

k)

co
m

pr
es

s(
64

k)

gc
c(

16
k)

gc
c(

64
k)

vo
rt

ex
(1

6k
)

vo
rt

ex
(6

4k
)

pm
ak

e(
16

k)

pm
ak

e(
64

k)

se
nd

m
ai

l(1
6k

)

se
nd

m
ai

l(6
4k

)

po
st

gr
es

.s
el

ec
t(

16
k)

po
st

gr
es

.s
el

ec
t(

64
k)

po
st

gr
es

.u
pd

at
e(

16
k)

po
st

gr
es

.u
pd

at
e(

64
k)

po
st

gr
es

.jo
in

(1
6k

)

po
st

gr
es

.jo
in

(6
4k

)

Benchmark(Gshare Predictor Size)

M
is

pr
ed

ic
ti

on
 R

at
e

(%
)

Extra Caused by User Execution
OS Only

(b) OS
Figure 1. Impact of User/OS Execution on Branch Prediction

Branch aliasing characterization shows that user/OS aliasing contributes to up to 24% of all

misprediction and 46% of aliasing misprediction in the benchmarks studied in this paper. While

eliminating all branch prediction aliasing is not trivial, it is our belief that the destructive user/OS

3

part can be alleviated with appropriate architectural support. There are numerous branch

predictors that have been proposed to address different situations [Yeh93, Far93, Ever96, Spra97,

Lee97, Chang96, Mish97 and Eden98]. These prediction mechanisms have paid less attention to

the OS requirements and no particular scheme was proposed on tuning control flow prediction

hardware for the OS. Our intention in this paper, however, is not to propose a new predictor to

add to this list. Rather, it is to understand the fundamental nature of the user/OS interference and

suggest simple and cost-effective optimizations that one can incorporate into any predictor to

alleviate the impact of the OS activity on the control flow prediction.

Adhering to this philosophy, we investigate what causes the execution of a spectrum of

applications with significant OS involvement to give worse branch prediction in the user and

kernel modes by characterizing their execution using complete system simulation. This

investigation shows that the interference between the branches in the user and kernel modes is

leading to this poor performance. User and kernel branches have different characteristics (such as

the direction bias) that cause the history information used by the predictors - and shared by both

the user and kernel - to become polluted. Such pollution would not have happened if we had a

separate predictor for each mode.

These observations lead us to advocate separating out branch prediction logic for user and

kernel modes. By doing this, we are reducing the interference between the two. This approach can

be easily integrated into existing prediction schemes without significantly complicating the logic.

Separating resources for OS to reduce the user/OS interference exists for other resources (e.g.,

TLB, memory, etc.). However, to our knowledge, this paper presents the first study and

quantitative analysis on orchestrating control flow prediction resources for OS.

The rest of this paper is organized as follows. In section 2, we characterize kernel branch

behavior in different applications. We also quantify the effect of user/OS branch aliasing or

interference1. Section 3 introduces OS-aware prediction designed specifically to reduce user/OS

branch aliasing and evaluates the improvement contributed by the OS-aware philosophies to

various branch prediction strategies. Finally, conclusions are provided in Section 4.

2. Characterizing OS Branch Behavior

In this section, we use simulation of complete system activity to characterize OS branch

execution and evaluate its impact on branch predictability. We use the SimOS [Rose95] full

system simulation environment and select thirteen benchmarks with significant OS involvement.

We provide a brief overview of the selected applications. A set of six Java applications from the

4

SPECjvm98 suite (s1 dataset) is executed using a commercial JDK from Sun Microsystems

simulated on top of IRIX 5.3. Vortex is a database manipulation code and gcc is a compiler code

from the SPECint95 benchmark suite. Pmake is a program development workload that is a variant

of the compiled phase of the modified Andrew benchmark employed in [Rose95a]. The sendmail

benchmark forwards email messages to local accounts on the system using the Simple Mail

Transport Protocol (SMTP). The sizes of the messages vary from 1K to 1.5M. We also use three

benchmarks that use PostgreSQL [Psql1, Psql2], a relational database management system

(DBMS). The database is populated with relational tables for the TPC-C benchmark [TPC-C].

We evaluate the execution of three specific queries on this data set: a sequential table scan of a

table with 1 million rows and a selectivity of 3% (postgres.select), an update to a field of a

300,000 row table (postgres.update) and a nested loop join involving two tables of sizes 11MB

and 24KB (postgres.join). The SPECjvm98 applications, pmake and gcc are all executed to

completion. All other applications are simulated for 2 billion cycles. Table 1 summarizes the

complete system branch execution statistics of each studied benchmark.

Table 1. Complete System Branch Execution Statistics

Conditional Branch Statistics
User OS

Benchmarks

T
ot

al
In

st
ru

ct
io

ns
(M

)

%
 O

S
E

xe
cu

ti
on # of Context

Switches
between
User/OS

Static
Sites

Dynamic
Instances

Static
Sites

Dynamic
Instances

db1 201 31 935,783 33,957 13,147,512 6,016 19,742,706
jess2 467 30 4,852,221 38,654 35,986,299 6,037 28,266,026
javac3 366 19 2,039,387 38,815 34,766,245 6,070 20,807,714
jack4 1,782 17 23,530,133 40,640 210,722,195 6,142 40,451,532
mtrt5 1,431 7 5,949,357 36,629 195,674,102 6,099 23,343,298
compress6 2,428 6 11,819,663 33,907 406,427,219 6,081 26,101,839
gcc7 1,036 8 4,975,087 13,570 138,915,436 4,696 13,845,466
vortex8 1,811 8 21,486,430 4,108 133,545,812 1,189 11,976,141
pmake9 1,117 17 1,018,543 11,651 122,460,692 5,273 33,821,182
sendmail10 1,494 54 1,438,961 4,516 139,259,991 5,553 75,069,918
postgres.select11 1,516 38 5,632,788 8,417 107,228,678 6,201 93,551,585
postgres.update12 1,438 55 6,385,224 8,144 83,362,599 6,325 149,084,522
postgres.join13 1,849 15 5,858,258 8,606 220,730,099 6,099 72,657,859

1. Performs multiple database functions on a memory resident database
2. Java expert shell system based on NASA’s CLIPS expert system
3. The JDK 1.0.2 Java compiler compiling 225,000 lines of code
4. Parser generator with lexical analysis, early version of what is now JavaCC
5. Dual-threaded raytracer
6. Modified Lempel-Ziv method (LZW) to compress and decompress large file
7.Compiles pre-processed source into optimized SPARC assembly code
8.A full object oriented database
9.Two parallel compilation processes compile the Modified Andrew Benchmark[Oust90]
10.UNIX electronic mail transport agent
11.Object-Relational DBMS PostgreSQL [psql] executes a select query
12.Object-Relational DBMS PostgreSQL executes an update query
13.Object-Relational DBMS PostgreSQL executes a join query

1 We use the terms branch aliasing and branch interference interchangeably in this paper.

5

As illustrated in Table 1, the OS activity in the selected benchmarks ranges from 6% in

compress to as high as 55% in postgres.update. The kernel portion of dynamic branch instances

can be found to constitute a significant part in these applications. On the average, kernel

branches, which include loops, error/bound checking, and other routine conditionals, constitute

27% of branch sites and 30% of dynamic branch instances in our benchmark executions.

Branches are more frequent in OS (than in user mode) [Red00] because it has to be designed to

handle all possible situations (i.e., abundant error and bound checking). Further, the OS functions

are performed not just for one process/application but also for the system as a whole (other

daemons, periodic book-keeping duties etc.).

2.1. Context Switch Profile and Branch Distribution

During the execution, branch instructions from user and OS code get interspersed. OS is

activated either voluntarily by a system call from the application, or from a call by some other

application, or implicitly by some underlying periodic/asynchronous (timer/device interrupt)

mechanism. The inter-mingling of user and kernel branches can affect their behavior, compared

to the execution when they were isolated from each other. Figure 2 shows the average number of

executed branches in each mode per context invocation on the studied benchmarks. In all

benchmarks except db and postgres.update2, OS exercises fewer branches than user code in each

visit to that mode.

0

100

200

300

db jes
s

jav
ac jac

k
m

trt

co
m

pr
es

s
gc

c

vo
rte

x

pm
ak

e

se
nd

m
ail

po
stg

re
s.s

ele
ct

po
stg

re
s.u

pd
at

e

po
stg

re
s.j

oin AVG

A
ve

ra
g

e
N

u
m

b
er

 o
f

E
xe

cu
te

d
 B

ra
n

ch
es OS

User

Figure 2. Average Number of Executed Branches per Visit
in User and Kernel Modes

We tracked the distribution of the number of executed branches for each context switch and the

profiling results for a 5,000 context switch sample of benchmark jack are shown in Figure 3 for

user and kernel code separately. While the user part shows random and sparse distribution, most

of the OS contexts are caused by exception driven OS routines (e.g. TLB miss and page fault) and

2 For benchmarks db and postgres.update, OS service read and write, which consists of far more branch instructions,
dominates OS execution, causing higher average number of executed branches in OS.

6

execute very few branches. The distributions in Figure 3 for the kernel are a cause for concern

since it indicates the possibility that the branch history may be not accurate for correct predictions

(with user mode branches interference). On the other hand, the user branch distribution suggests

that this problem may not be as severe for the user mode. Kernel invocations are more short lived,

while user execution has reasonable time quanta to work with and build history.

user

1

10

100

1000

0 1000 2000 3000 4000 5000

User Context Serial No.

N
u

m
b

er
 o

f
E

xe
cu

te
d

B

ra
n

ch
es

(a)

OS

1

10

100

1000

0 1000 2000 3000 4000 5000

OS Context Serial No.
N

u
m

b
er

 o
f

E
xe

cu
te

d

B
ra

n
ch

es
(b)

Figure 3. Executed Branches in User and OS Contexts
(5,000 Sampling Contexts)

2.2. OS Branch Execution Profile

We next examine what are the dominant kernel branches, and how their performance can be

affected by the user code executing between OS operations. The pie chart of Figure 4 shows the

percentage of OS branches (in benchmark jack) executed in the different services. Additional

benchmark results can be found in Appendix A1. The top five components

include: TLB miss (TLB miss, 39%); OS scheduling (scheduling, 37%); performing file and I/O

services (I/O & file system, 5%), idle looping (idle, 4%); and kernel synchronization

(synchronization, 4%).

scheduling
37%

TLB miss
39%

miscellaneous
3%

idle
4%

exception
handling

2%

system call
3%

paging
3%

synchronization
4%

I/O & file system
5%

Figure 4. Where do the OS Dynamic Branches Come from?

7

These results show that we really need to focus mainly on the TLB handler (it is done in

software on the given MIPS platform to facilitate the use of flexible page table structure and

simplify the handling of sparse address spaces.) and the scheduler. Further, it should be noted that

other services such as file system, synchronization etc., are directly invoked by the user code.

Hence, their behavior (including that for branches) is influenced by the current state of the

invoking application and the parameters of the call. So one would not like to associate the term

“interference” for such services. On the other hand, TLB handling and scheduler invocations are

not necessarily voluntary. It is useful to understand how the branches in these OS subsystems are

invoked and whether history would have any bearing on their behavior for predictability – so that

we can better understand if the predictability of these branches would be affected by the user code

getting in-between.

Table 2 gives further evidence of the significance of the TLB handling and scheduler

subsystems on the overall branches within the OS. The utlb routine that handles TLB misses and

the checkRunq routine that does scheduling (picking the next process to run) account for over

70% of the OS dynamic branches. Though utlb and checkRunq both have high dynamic branch

instances, the number of actual branch sites is quite small. We briefly go over these routines

below identifying the branches in these routines and their anticipated behavior qualitatively.

Table 2. OS Routine Branch Characterization

OS Routine
% Dynamic

Branches
Active Branch

Sites
utlb 38.7 1
checkRunq 34.2 6
idle 3.89 3
syscall 2.8 14
io_splock 2.38 5
exception_ip12 2.08 6
bcopy 1.5 6
mrlock 1.17 8
vsema 0.65 5
uiomove 0.6 10
findchunk 0.48 8
blkclr 0.48 1
ufget 0.48 8
mrunlock 0.45 3
copyout 0.42 3
getff 0.42 7
psema 0.42 6

The utlb handler has only 1 branch, and the reason for its high dynamic instance is because this

routine is invoked frequently. The utlb routine is invoked directly by the hardware which is the

only entity that can invoke this operation. On the other hand, the scheduler (checkRunq) is

8

invoked from several places. First, this operation is needed for scheduling decisions (by

consulting the ready queue) whenever the time quantum expires (triggered by timer interrupt),

when I/O device activity completes (there are usually priority boosts and rescheduling may be

needed) and idle looping, or even voluntarily during blocking (making semaphore, I/O requests

etc.) or other process state change activities (such as termination). Consequently, it is to be noted

that, while utlb invocations are only the consequence of application behavior, the scheduler

actions are invoked from all over the OS and are invoked either asynchronously (by hardware

events) or voluntarily due to system load/behavior. In all, we found there are more than 23 events

that can cause checkRunq to be invoked.

2.3. Characteristics of OS Branches

We investigate specific properties of these OS branches and their architectural implications in

this subsection.

2.3.1. Branch Directions and Weakly Biased Branches in Kernel

It is well known that branches often have biased behavior and many branches are either usually

“taken” or usually “not taken”. The conventional branch history table (BHT) counters exploit this

behavior to predict future outcomes of that branch. However, when branches showing different

biases are mapped into the same entry of the predictor table, aliased branches update BHT

counters with different directions, leading to aliasing mispredictions.

We measure branch direction distribution in order to gain more insight on bias behavior of the

user and OS branches. Figure 5 shows the result on benchmark jack. Additional

benchmark results can be found in Appendix A2. The branch sites are

categorized into 100% “taken” (always-taken), 0% “taken” (always-not-taken) and groups

between them. For example, the marker “70%-79%” on X-axis implies that branch sites that fall

into this category have a possibility of 70% to 79% to be “taken”.

46.2

9.5 8.8

14.7

0.91.8

42.3

17.5

0
5

10
15
20
25
30
35
40
45
50

al
way

s-
ta

ke
n

(1
00

%
)

90
%

-9
9%

80
%
-8

9%

70
%
-7

9%

60
%

-6
9%

50
%

-5
9%

40
%

-4
9%

30
%

-3
9%

20
%
-2

9%

10
%
-1

9%

1%
-9

%

al
way

s-
no

t-t
ak

en
 (0

%
)

Branch Direction

%
 o

f
D

yn
am

ic
 B

ra
nc

h
es user

OS

Figure 5. User and OS Branch Directions

9

Figure 5 shows that user and OS branches behave differently in terms of the bias or direction

distribution. For example, 46% of dynamic branches in kernel are “always taken” while their

counterparts in user code are only 15%. On the other hand, 18% of dynamic branches in kernel

are “always not taken” and that number in user mode can be as high as 42%. This implies that

even when the strongly biased user and kernel branches are mapped into the same BHT counter,

it is likely that they will lead to aliasing misprediction.

Another interesting observation in Figure 5 is that while the dominant portion of branch sites is

strongly biased (i.e. always taken or always not taken) in user code, a significant number of

branches are weakly biased in OS code. More precisely, we observed that 8.8% of dynamic

branches that contribute to the weakly biased (with the category of 40%-49%) branches shown in

Figure 5, come from a wide range of 22 kernel service routines. The weakly biased OS branches

showing interleaved directions are also found on other benchmarks. Among these is the

checkRunq routine that is frequently invoked. This routine checks through queues to find out if a

rescheduling decision needs to be made. Intuitively, it can be hypothesized that the execution

characteristics of such a routine are more a function of the load on the system more than anything

else. Even when the load does not change very much during the course of this execution, there are

bursts of I/O, synchronization activity and other events that can exercise the checkRunq

differently, causing its branch to vary direction. Weakly biased branches can be a problem to

many branch predictors, which rely on the persistent history and saturated 2-bit counter for

accurate branch prediction.

2.3.2. How Correlated are Kernel Branches?

We observe that many OS branches are very correlated and hence benefit from two-level

predictors that exploit global history correlation. It should be noted that the utlb routine has a

single branch that is nearly always taken. While static predictors would suffice for this branch,

previous history is also a very good indicator for this particular branch that accounts for a large

portion of the kernel’s dynamic branches. Further, OS exception handlers frequently use binary

decision trees to classify and dispatch vectored interrupts from the trap entry point to the specific

fault handler. Figure 6a shows an example use of such a structure in the general exception handler

exception_ip12 OS code. This handler dispatches an exception to the corresponding kernel

processing routine based on the value of the exception vector. The binary decision tree based

branch sequence of this handler is given in Figure 6b. It can be observed that the branches in the

OS routine inttrap will be correlated with a NNT branching sequence while the branches in

10

systrap will be correlated with a NNNT branching sequence. Hence Gshare [McFar93] and GAg

[Yeh91] predictors work extremely well with these branches.

0x80007dd4: <exception_ip12>
andi $k0,$k0,0x7c
li $k1,124
beq $k0,$k1,0x80007d0c <handle_vced>
li $k1,56
beq $k0,$k1,0x80007cec <handle_vcei>
li $k1,32
beqz $k0,0x800080f0 <inttrap>
sw $at,-24524($zero)
beq $k0,$k1,0x80008770 <systrap>
li $at,8
beq $k0,$at,0x80007e78 <kmiss>
li $at,12
beq $k0,$at,0x80007e78 <kmiss>
li $at,92
beq $k0,$at,0x80007e60 <exception_ip12+8c>
li $at,36
bne $k0,$at,0x80008274 <longway>
mfc0 $k0,$12
andi $k0,$k0,0x18
bnez $k0,0x80008274 <longway>
mfc0 $k0,$13
bgez $k0,0x80007e48 <exception_ip12+74>
. . .
jr $at

beq

handle_vcedbeq

handle_vceibeqz

inttrapbeq

beq

beq

beq

bne

bnez

systrap

kmiss

kmiss

exception_ip12+8c

longway

longwaybgez

exception_ip12+74...

T

T

T

T

T

T

T

T

N

N

N

N

N

N

N

N

N

N

T

T

NNT

NNNT

(a) OS Assembly Code to Perform General
Exception Handling

(b) Binary Decision Tree based Branching
Sequence Corresponding to Code Shown in (a)

Figure 6. Branch Correlation in OS Code

2.3.3. Impact of Intermittent Kernel Execution on Strongly Biased Kernel Branches

Even strongly biased OS branches can experience mispredictions due to the user code

interference. An example for this can be obtained from the utlb routine from the OS. Since the

utlb handler needs to be very efficient, this code is usually written in assembly and is hand-

optimized. There are exactly 13 instructions in this routine, with the bulk of the instructions used

to read the page table entry from the memory system and load it into the TLB. There is exactly 1

branch within this code that is strongly taken. But intervening user code interference can result in

mispredictions in even such strongly biased branches. Consider a correlation based branch

predictor, and two scenarios of branch history shift register (BHSR) contents in Figure 7. In the

absence of user code intervention, the correlation shift register may look like (a), and leads to

correct prediction, whereas the intervening user code may result in the correlation information to

look like (b) and result in aliasing misprediction.

BHSR

k k k k .. k k k k

BHSR

1 ..1 10

k u u u .. u k u k
0 11 1 1 1 .. 1 1 1 1 0 1

(a) (b)

Figure 7. Impact of User/Kernel Inference
on Strongly Biased Kernel Branches

11

2.3.4. Characterization of User/OS Aliasing

Table 3. Characterization of Branch Aliasing
(8K BHT Eentries Gshare, MR: Misprediction Rate)

Benchmarks Metric
OS/OS

Aliasing
User/User
Aliasing

User/OS
Aliasing

% of Misprediction 6.2 28.2 19.4db
(MR=4.8%) % of Correct Prediction 1.4 2.7 2.1

% of Misprediction 3.3 37.3 20.1jess
(MR=8.8%) % of Correct Prediction 1.4 6.5 3.9

% of Misprediction 3.1 34.7 16.4javac
(MR=7.1%) % of Correct Prediction 0.7 5.2 2.4

% of Misprediction 1.3 35.7 18.8jack
(MR=8%) % of Correct Prediction 0.6 7.9 4.7

% of Misprediction 1.3 23.5 10.2mtrt
(MR=4%) % of Correct Prediction 0.2 3.8 1.1

% of Misprediction 0.7 12.0 2.5compress
(MR=3.1%) % of Correct Prediction 0.1 4.7 0.2

% of Misprediction 0.3 41.5 6.2gcc
(MR=10.2%) % of Correct Prediction 0.1 10.5 1.9

% of Misprediction 0.1 39.4 11.7vortex
(MR=7.8%) % of Correct Prediction 0 11.8 3.8

% of Misprediction 3.6 25.1 9.4pmake
(MR=6.6%) % of Correct Prediction 0.5 4.6 1

% of Misprediction 22.2 9 23.7sendmail
(MR=9.3%) % of Correct Prediction 3.8 1.7 2.9

% of Misprediction 7.4 16 19.7postgres.select
(MR=3.1%) % of Correct Prediction 0.9 2.4 2.2

% of Misprediction 7.8 18.4 22.4postgres.update
(MR=5.7%) % of Correct Prediction 1.7 3.3 3.8

% of Misprediction 1.1 15 4.5postgres.join
(MR=5.6%) % of Correct Prediction 0.2 5.3 1.1

It is well known that branch aliasing, namely, several branches mapping to the same entry in

the prediction tables, impacts the branch prediction accuracy. Although some of the aliasing can

be neutral or constructive, a large part of the aliasing is often destructive. We performed a branch

aliasing characterization to understand the impact of user/OS aliasing. In order to do that, we

instrument our branch prediction simulators to record the histograms of mappings between branch

instructions and BHT entries. We capture BHT access references, and we mark each as a member

of one of the following categories: (1) if a BHT access is mapped to the same branch site from

user (or kernel) space, we record an instance of a user/user (or a OS/OS) hit; (2) if a BHT access

is mapped to different branch sites from user (or kernel) space, we record user/user (or OS/OS)

aliasing; (3) if a BHT entry or access is mapped to branches from different spaces, we record

user/OS aliasing; (4) Finally, a cold miss is counted when a BHT entry is first mapped to a

branch. To reduce the effect of capacity misses, we examine the mapping behavior on a BHT

with 8K entries.

12

Branch aliasing is attributed to user (User/User Aliasing), kernel (OS/OS Aliasing) and the

interaction between them (User/OS Aliasing). The percentages of misprediction and correct

prediction caused by different aliasing are shown in Table 3. In experiments with a Gshare

predictor of size 8K BHT entries, user/OS aliasing on the average contributes to the 14.2% and

2.5% of misprediction and correct prediction respectively, implying most of the user/OS aliasing

are negative. The percentage of misprediction caused by user/OS aliasing does not change

significantly when the predictor size is increased from 8K entries to 64K entries. This indicates

that just increasing the capacity of the branch predictor will not effectively solve the user/OS

aliasing problem. The user/user aliasing that many previous studies have evaluated is still

important as the results observed from Table 3 indicate. However, user/OS aliasing is also a big

source for mispredictions. Table 4 characterizes the impact of branch aliasing on misprediction in

user and OS component. With an 8K BHT entry Gshare, approximately 22-62% of

mispredictions in OS code are found to be from user/OS aliasing, suggesting that it is essential to

protect kernel branch predictors from interference from user code.

Table 4. Characterization of Misprediction
due to Branch Aliasing in User and OS Component
(8K BHT Entries Gshare, MR: Misprediction Rate)

Benchmarks
OS/OS

Aliasing
User/User
Aliasing

User/OS
Aliasing

MR%

User -- 39.0 13.5 8.6db
OS 22.3 -- 34.9 2.3
User -- 47.3 12.8 12.3jess
OS 15.5 -- 47.7 4.3
User -- 42.0 10.0 9.3javac
OS 17.9 -- 47.0 3.5
User -- 43.9 11.6 7.8jack
OS 6.9 -- 50.4 9.4
User -- 26.6 5.8 3.9mtrt
OS 11.5 -- 44.0 4.7
User -- 12.5 1.3 3.1compress
OS 16.8 -- 32.0 2.1
User -- 43.6 3.3 10.6gcc
OS 6.7 -- 62 5.8
User -- 44.7 6.6 7.5vortex
OS 1 -- 49.5 11.3
User -- 28.8 5.4 7.2pmake
OS 28 -- 36.2 4.3
User -- 19.9 26.2 6.3sendmail
OS 40.5 -- 21.6 14.9
User -- 26.7 16.5 3.5postgres.select
OS 18.4 -- 24.5 2.6
User -- 29.3 17.9 9.6postgres.update
OS 21 -- 29.9 3.5
User -- 16.1 2.4 7postgres.join
OS 16.2 -- 33.5 1.6

In summary, we observe that user/OS branch aliasing can significantly deteriorate branch

prediction accuracy. This is primarily attributed to the exception-driven and intermittent kernel

13

branch execution that causes inaccurate branch history information in BHSR. Moreover, user and

kernel branches have different bias distribution, which in turn spreads user-kernel branch aliasing

references across a wide range of BHT entries. The above observations motivate the need for OS-

aware branch prediction techniques.

3. Alleviating Impact of User/OS Interference

It is clear from the prior sections that user and kernel code possess different branch behavior,

often resulting in conflicts in unified structures that capture branch history. In subsections 3.1 and

3.2, we present two philosophies that aim to alleviate the destructive impact of OS branch

execution on branch predictability.

During the initial period of a context switch, both user and kernel history patterns coexist in

history capturing structures. In Gshare and any correlation based predictor, this can happen in

shift registers (BHSRs) that capture correlation between branches and/or branch history tables

(BHTs). One solution is to use separate shift registers to individually keep track of branch

correlation and another solution is to use separate BHTs.

3.1. OS-aware Philosophy 1 - Splitting Correlation Shift Registers

We illustrate our OS-aware philosophy in the context of a Gshare predictor, but it can be

applied to other correlation-based predictors as well. A Gshare predictor with split correlation

history shift registers is illustrated in Figure 8. This predictor functions exactly the same as a

conventional Gshare predictor except that two dedicated BHSRs (i.e., U-BHSR for user and K-

BHSR for kernel) are used to gather branch correlation patterns and to generate BHT indexing.

By using K-BHSR for kernel branches, OS-aware Gshare-1 overcomes the loss of branch history

patterns in kernel mode. Meanwhile, OS-aware Gshare-1 dynamically switches between BHSRs

when a context switch occurs, preventing the BHT indexing ambiguity during the initial stages of

a context switch.

K-BHSR

branch address

X
O
R

i bits

i bits

i bits

..

..

BHT of 2i Entries

pr
ed

ic
tio

n

execution mode bit

U-BHSR

...

Processor Status Register

Figure 8. OS-aware Philosophy 1 applied to Gshare - Employs Split Correlation History

14

3.2. OS-aware Philosophy 2 - Splitting BHTs for User and Kernel

The proposed OS-aware philosophy-1 aims to preserve accurate BHT counter indexing during a

context switch. However, user/OS aliasing can still occur when user and kernel branches have the

same XORed global history pattern, but opposite biases. Due to their different branch bias

distribution, user and kernel branches can update BHT counters in different manners. To reduce

the destructive user/OS branch aliasing in BHT, we propose the use of split BHT for each, which

yields OS-aware Gshare-2 predictor, as shown in Figure 9. This predictor eliminates the

destructive user/OS aliasing by using separate correlation and history information for user mode

and kernel mode. It is also observed that when branch history tables are split into user and kernel

parts, the kernel BHT can be smaller than the user BHT because of the fewer active branch sites

in kernel (as shown in Table 1). Due to the difficulty in creating a 7:1 or 3:1 split (due to the user

BHT becoming not power of 2), we kept the user BHT at half the size of the original Gshare and

allocate kernel BHT with a fixed size of 2K entry in our experiment.

K-BHSR

X
O
R

i bits
K-BHT of 2i Entries

execution mode bit

branch address

i bits

X
O
R

...

..
j bits

j bits

U-BHSR

pr
ed

ic
ti

on

...

U-BHT of 2j Entries

Processor Status Register

..

Figure 9. OS-aware Philosophy 2 applied to Gshare- Employs Split BHTs

Filtering out kernel branches can easily be done at run time by using the Processor Status

Register (PSR). Typically, in a microprocessor a set of PSR bits is used to record and identify

kernel-user execution mode or privilege level. For example, MIPS R10000 [Yeag96] uses KSU

field in PSR to identify current execution mode and Intel’s next generation IA-64 Itanium

(Merced) [MPR0400] uses PSR.cpl to determine one of 4 privilege levels (level 0-3). The

corresponding field in PSR can be used to select the appropriate predictor. At runtime,

instructions from a fetch unit are filtered into an active part of prediction resource (user or kernel,

depending on execution mode).

15

In summary, the OS-aware Gshare-1 (split correlation-Gshare) and OS-aware Gshare-2 (split

history table-Gshare) predictors are designed specifically to reduce user/OS branch aliasing

without adding extra hardware for branch de-aliasing. They consume equivalent or less resource

than a conventional Gshare.

3.3. Integrating OS-aware Prediction Philosophy with Other Predictors

OS-aware prediction is a philosophy suggested by our characterization study, not necessarily a

particular predictor. We surveyed literature to identify branch predictors, which may be poised to

handle branches with the characteristics unveiled in the earlier sections. Although not targeted for

OS-user branch interference, Multi-Hybrid [Ever96], Agree [Spra97] and Bi-Mode schemes

[Lee97] do contain mechanisms tailored for branches with heterogeneous characteristics and/or

de-aliasing. Table 5 summarizes these schemes, and the additional cost used for branch de-

aliasing. The sizes of all the predictors are normalized to Gshare to give an indication of the

associated area cost.

Table 5. A Comparison of Several Branch De-aliasing Schemes

Predictor
Description of feature to exploit heterogeneous branches

or De-aliasing
Additional Branch

De-aliasing Hardware

Predictor Size
Normalized to

Gshare(8k-
256k)

Gshare
[McFar93]

Consists of one correlation shift register (BHSR) and
one BHT. BHSR is XORed with branch address bits of a
branch address to index BHT entry. The XORing helps
to reduce aliasing effects.

0 1

Multi-Hybrid 1, 2

[Ever97]

Consists of multiple single-scheme components: simple
2-bit (2bc), GAs, Gshare, Pshare and always taken
predictor. Use of simple 2-bit predictors (2bc) and static
predictors as components of the multi-hybrid predictor
provides quick warm up after a context switch.

5×2K predictor
selection counters in
BTB

1.04-2.25

Agree
[Spra97]

Converts instances of destructive aliasing into either
constructive or neutral aliasing by attaching each branch
with a biasing bit that predicts the most likely outcome
of that branch.

2K biasing bits in BTB 1-1.13

Bi-Mode
[Lee97]

Uses separate history tables for taken and not-taken
branches, and a selection branch history table. This
classification helps to alleviate destructive aliasing while
keeping the harmless aliasing together.

the third BHT for
dynamic bias selection

1.5

OS-aware
philosophy-1
[this paper]

OS-aware Gshare predictor uses separate shift registers
(U-BHSR and K-BHSR) for capturing path history
patterns.

1 shift register 1

OS aware
philosophy-2-
[this paper]

OS-aware Gshare predictor that uses separate branch
history tables for user and kernels. Kernel-BHT is 2K
and User-BHT is 50% of Gshare.

consumes less BHT
resource than Gshare

0.51-1

1. Our simulated Multi-Hybrid does not include AVG predictor [Chang95] because it needs source recompilation which often is difficult
for commercial and complicated software like OS and JVM.
2. As indicated by [Ever96], we allocate half of the total budget for Gshare, a quarter of the total budget for Pshare, and 1/8 for 2bc and
Gas respectively. The priority ordering of the component predictors is 2bc, GAs, Gshare, Pshare and always taken scheme.

16

All these predictors contain a Gshare predictor or a Gshare indexing [Ever96, Spra97 and

Lee97]. To integrate the proposed techniques, we simply replace the conventional Gshare

component used in the above predictors with the proposed OS-aware split-correlation-Gshare and

split history-Gshare.

Table 6a shows the average (of the 13 studied benchmarks) misprediction rates of each baseline

predictor and the percentage of misprediction reduction by incorporating the OS-aware

philosophies proposed in this paper. Table 6b further illustrates the breakdown of the

misprediction reduction in user and OS parts, for each individual benchmark.

Table 6a Misprediction Reduction by Introducing OS-aware Philosophies

Size (Number of BHT entries, not including de-
aliasing overhead)Schemes Metric

8k 16k 32k 64k 128k 256k
Gshare Misprediction(in %) 14.03 12.35 10.89 9.64 8.66 8

Gshare+OS-aware Phil. 1 % of Misprediction Reduction 31% 33% 34% 32% 31% 29%

Gshare+OS-aware Phil. 2 % of Misprediction Reduction 20% 24% 22% 20% 17% 15%

Multi-Hybrid Misprediction(in %) 10.87 9.53 8.58 7.66 6.96 6.3

Multi-Hybrid+OS-aware Phil. 1 % of Misprediction Reduction 21% 22% 23% 23% 22% 22%
Multi-Hybrid+OS-aware Phil. 2 % of Misprediction Reduction 13% 12% 13% 11% 10% 8%
Agree Misprediction(in %) 12.59 11.41 10.46 9.66 9.13 8.78

Agree+OS-aware Phil. 1 % of Misprediction Reduction 27% 27% 27% 26% 25% 24%

Agree+OS-aware Phil. 2 % of Misprediction Reduction 19% 22% 22% 20% 20% 19%

Bi-Mode Misprediction(in %) 7.7 6.95 6.42 6.07 5.79 5.57
Bi-Mode+OS-aware Phil. 1 % of Misprediction Reduction 10% 9% 9% 9% 9% 9%
Bi-Mode+OS-aware Phil. 2 % of Misprediction Reduction 4% 2% 1% 1% 0% 0%

As described in subsection 3.1, philosophy 1 only separates the branch history shift registers.

The partitioning of the BHT for user or OS happens dynamically. The resource available for the

code is not less than that in the baseline. Hence, Philosophy 1 is never inferior to the baseline.

Philosophy 2 is at times worse than the baseline. In Philosophy 2, the partitioning of the BHT

between user and kernel code is done statically. Both the user and kernel BHTs are smaller than

the unified BHT in the baseline configuration. In the configurations studied in this paper, the user

BHT is only 50% of the baseline BHT, and the K-BHT is fixed at 2K in all cases. Hence, the

overall size of the philosophy 2 BHT is not much greater than 50% of the BHT in the baseline. A

2K K-BHT is seen to be sufficient to capture all history patterns in the OS code and except in

postgres.update, the mispredictions in OS code goes down. For the user part, the small size of the

U-BHT (4K BHT entries) can detrimentally affect the performance on benchmarks compress,

gcc, pmake, postgres.select and postgres.join.

17

On the average, with a 32K BHT entry Gshare, incorporating OS-aware Phil.1 and Phil.2

strategies reduces 34% and 22% of the misprediction. OS-aware philosophies also reduce the

misprediction of Multi-Hybrid, Agree and Bi-Mode predictors. For instance, compared with the

32K BHT entry baseline predictors, OS-aware Multi-Hybrid, Agree and Bi-Mode predictors yield

up to 23%, 27% and 9% prediction accuracy improvement respectively, implying that OS-aware

predictions still provide significant improvements on some of the most powerful predictors.

Table 6b. Breakdown of Misprediction Reduction
by Introducing OS-aware Philosophies (8K BHT Entries)

Schemes and % of Misprediction Reduction
Gshare

+ OS-aware
Multi-Hybrid
+ OS-aware

Agree
+OS-aware

Bi-Mode
+ OS-awareBenchmarks

Phil. 1 Phil. 2 Phil. 1 Phil. 2 Phil. 1 Phil. 2 Phil. 1 Phil. 2
User 28% 23% 20% 15% 21% 17% 9% 8%
OS 28% 8% 7% 11% 15% 7% 7% 10%db
Full-System 28% 19% 16% 14% 20% 16% 8% 8%
User 39% 31% 31% 25% 34% 27% 13% 8%
OS 52% 42% 12% 15% 44% 36% 13% 20%jess
Full-System 42% 34% 28% 23% 36% 29% 13% 10%
User 28% 19% 20% 13% 24% 17% 8% 4%
OS 40% 36% 10% 20% 42% 41% 9% 18%javac
Full-System 30% 22% 18% 14% 27% 21% 8% 6%
User 57% 47% 47% 39% 51% 42% 21% 13%
OS 79% 82% 29% 49% 64% 70% 43% 53%jack
Full-System 61% 53% 46% 40% 53% 46% 23% 17%
User 27% 15% 27% 19% 20% 11% 7% 4%
OS 60% 59% 15% 23% 49% 48% 19% 27%mtrt
Full-System 31% 20% 25% 19% 22% 15% 8% 6%
User 11% -27% 10% -3% 7% -30% 3% 2%
OS 43% 29% 7% 11% 19% 12% 8% 13%compress
Full-System 12% -25% 10% 1% 7% -29% 3% 3%
User 16% 2% 10% -1% 12% 2% 10% -1%
OS 46% 55% 3% 26% 62% 68% 14% 31%gcc
Full-System 18% 5% 10% 0% 15% 7% 10% 1%
User 76% 63% 71% 48% 73% 65% 35% 28%
OS 96% 97% 30% 54% 98% 99% 67% 77%vortex
Full-System 78% 68% 70% 48% 78% 72% 37% 31%
User 8% -6% 4% -11% 6% -7% 4% -6%
OS 11% 2% 2% 8% 7% 13% 3% 8%pmake
Full-System 8% -4% 4% -8% 6% -5% 4% -4%
User 5% 3% 1% 0% 3% 2% 2% 1%
OS 5% 0% 3% 1% 3% 2% 2% 2%sendmail
Full-System 5% 1% 2% 0% 3% 2% 2% 2%
User 56% 45% 47% 12% 50% 48% 36% -34%
OS 27% 8% 17% 22% 26% 29% 14% 13%postgres.select
Full-System 45% 30% 35% 16% 40% 40% 26% -14%
User 35% 30% 25% 24% 25% 25% 23% 21%
OS 14% -10% 6% 6% 9% 17% 5% 5%postgres.update
Full-System 27% 14% 17% 17% 19% 22% 16% 15%
User 12% -6% 8% -1% 10% -6% 3% -6%
OS 42% 32% 15% 26% 35% 44% 26% 34%postgres.join
Full-System 14% -4% 9% 0% 12% -3% 4% -5%

18

As shown in Table 6a and Table 6b, philosophy 1 outperforms philosophy 2 on most of the de-

aliasing predictors we examined. Considering overall performance, in more than half the cases,

the performance gain due to the elimination of user/OS aliasing by philosophy 2 outweighs the

performance loss due to individually using smaller prediction tables for each part. More precisely,

for example, the OS-aware Phil.2 reduces 22% of misprediction on a conventional Agree

predictor of 32K BHT entries, using only 18K entries BHT consisting of a 16K entries U-BHT

and a 2k entries K-BHT.

3.4. Performance Evaluation

We evaluate the benefits of integrating the above predictors with OS-aware predictions on a

dynamically scheduled superscalar processor using a full-system simulator that captures OS

behavior as well. Table 7 summarizes the configuration of the simulated machine architecture.

We use SimOS MXS model [Benn95], which simulates a superscalar microprocessor with

multiple instruction issue, register renaming, dynamic scheduling, and speculative execution with

precise exceptions. The simulated architectural model is an 8-issue superscalar processor with

instruction latencies as in the MIPS R10000 [Yeag96]. By default, the branch prediction

algorithm allows fetch unit to fetch through up to 4 unresolved branches. In our model, a

misprediction will cause a 10-cycle penalty. BHSR is speculatively updated and later corrected

after a misprediction. BHT counter update takes place in order at instruction commit time.

Table 7. Simulated Machine Architecture

Processor Core
Fetch/Decode/Issue/Retire Width 8
Instruction Window Size 128
Reorder Buffer Size 128
Number of Function Units 2×Issue Width
Latency of Function Units MIPS R10000 Like
Branch Target Buffer (BTB) 2048-entry, 4-way
Return Address Stack 32-entry w/ misprediction repair
Misprediction Penalty 10 cycles
Load Store Queue Size 64

Memory Hierarchy

MMU
Fully associative TLB, 48-entries, 4KB
page size

L1 I-Cache
32KB, 2-way(LRU), 64B blocks,
4MSHRs, 2 ports, 1 cycle latency

L1 D-Cache
32KB, 2-way(LRU), 32B blocks,
4MSHRs, 2 ports, 1 cycle latency

L2 Cache
1MB, 2-way(LRU), 128B blocks,
4MSHRs, 2 ports, 10 cycle latency

Memory 256MB, 60-cycle access

Figure 13 shows the IPC performance for this scenario. Since instruction counts are the same,

IPC improvement is indicative of execution cycle improvement. Results are depicted for the 13

19

evaluated programs. Comparison of predictors integrating OS-aware philosophy with Gshare,

Multi-Hybrid, Agree and Bi-Mode predictors is presented. The scale of Y-axis is varied for each

benchmark due to their differences in IPC. Philosophy 1 improves IPC performance on all of the

benchmarks for all of the four types of base predictors. This benefit is particularly substantial in

those programs where user/OS aliasing is significant, such as jess, jack, vortex, and

postgres.update (as was illustrated in Figure 1). The same trend can be observed in programs

such as javac and db. For those programs where the impact of user/OS aliasing on misprediction

is less significant (for instance, compress and pmake), the integration of OS-aware philosophies

show only limited improvement.

db

1.5

1.55

1.6

1.65

1.7

32K BHT Entries

IP
C

jess

1.3

1.35

1.4

1.45

1.5

1.55

1.6

32K BHT Entries

IP
C

javac

1.5

1.55

1.6

1.65

1.7

32K BHT Entries

IP
C

Gshare
Gshare+OS-aware Phil. 1
Gshare+OS-aware Phil. 2
Multi-Hybrid
Multi-Hybrid+OS-aware Phil. 1
Multi-Hybrid+OS-aware Phil. 2
Agree
Agree+OS-aware Phil. 1
Agree+OS-aware Phil. 2
Bi-Mode
Bi-Mode+OS-aware Phil. 1
Bi-Mode+OS-aware Phil. 2

jack

1.4

1.45

1.5

1.55

1.6

32K BHT Entries

IP
C

mtrt

1.8

1.85

1.9

1.95

2

32K BHT Entries

IP
C

compress

1.7

1.75

1.8

1.85

1.9

32K BHT Entries

IP
C

Gshare
Gshare+OS-aware Phil. 1
Gshare+OS-aware Phil. 2
Multi-Hybrid
Multi-Hybrid+OS-aware Phil. 1
Multi-Hybrid+ OS-aware Phil. 2
Agree
Agree+OS-aware Phil. 1
Agree+ OS-aware Phil. 2
Bi-Mode
Bi-Mode+OS-aware Phil. 1
Bi-Mode+ OS-aware Phil. 2

gcc

1.2

1.25

1.3

1.35

1.4

1.45

1.5

32K BHT Entries

IP
C

vortex

1.5

1.55

1.6

1.65

1.7

1.75

1.8

32K BHT Entries

IP
C

pmake

1.5

1.55

1.6

1.65

1.7

1.75

1.8

32K BHT Entries

IP
C

Gshare
Gshare+OS-aware Phil. 1
Gshare+OS-aware Phil. 2
Multi-Hybrid
Multi-Hybrid+OS-aware Phil. 1
Multi-Hybrid+ OS-aware Phil. 2
Agree
Agree+OS-aware Phil. 1
Agree+ OS-aware Phil. 2
Bi-Mode
Bi-Mode+OS-aware Phil. 1
Bi-Mode+ OS-aware Phil. 2

sendmail

1.3

1.35

1.4

1.45

1.5

32K BHT Entries

IP
C

postgres.select

1.2

1.25

1.3

1.35

1.4

32K BHT Entries

IP
C

postgres.update

1.1

1.15

1.2

1.25

1.3

32K BHT Entries

IP
C

Gshare
Gshare+OS-aware Phil. 1
Gshare+OS-aware Phil. 2
Multi-Hybrid
Multi-Hybrid+OS-aware Phil. 1
Multi-Hybrid+ OS-aware Phil. 2
Agree
Agree+OS-aware Phil. 1
Agree+ OS-aware Phil. 2
Bi-Mode
Bi-Mode+OS-aware Phil. 1
Bi-Mode+ OS-aware Phil. 2

20

postgres.join

1.5

1.55

1.6

1.65

1.7

32K BHT Entries

IP
C

Gshare
Gshare+OS-aware Phil. 1
Gshare+OS-aware Phil. 2
Multi-Hybrid
Multi-Hybrid+OS-aware Phil. 1
Multi-Hybrid+ OS-aware Phil. 2
Agree
Agree+OS-aware Phil. 1
Agree+ OS-aware Phil. 2
Bi-Mode
Bi-Mode+OS-aware Phil. 1
Bi-Mode+ OS-aware Phil. 2

Figure 13. IPC of OS-aware Predictors

Integration of philosophy 2 results in improvement in many cases, even though the predictor

size is not much more than 50% of the baseline predictor. In most of the cases in Gshare, Multi-

Hybrid and Agree predictors, despite the small size, philosophy 2 still results in improvement. In

the case of the Bi-Mode predictors, philosophy 2-integrated case is inferior to the baseline for 5

of 13 benchmarks. However, if one compares them to a baseline that is comparable in size (i.e.,

16K BHT entries), philosophy 2 with 18K BHT entries (16K U-BHT + 2K K-BHT) outperforms

16K BHT entries baseline predictor in all cases, resulting up to 10% of IPC speedup (see

Appendix 3 for details).

Compared with a Gshare predictor, the two proposed philosophies - Phil.1 and Phil.2 yield up

to 8% and 7% of IPC improvement respectively. This improvement is a result of the removal of

aliasing mispredictions. The integration of OS-aware philosophies into Multi-Hybrid predictor

yields up to 5% of IPC gain. As described earlier, Multi-Hybrid allocates the largest prediction

resource to its Gshare component and its overall prediction accuracy is more impacted by Gshare

than any other predictor. Hence, the replacement of the conventional Gshare with the proposed

OS-aware Gshare predictors improves performance.

By introducing OS-aware philosophies on the Agree predictor, up to 7% of IPC improvement

can be achieved. The performance of Agree predictor is largely dependent on branch biases and

possibility of identifying the biased behavior the first time the branch is introduced into the BTB.

If the branch does not show strongly biased behavior, there is still frequent aliasing between

instances of a branch that do not comply with the biasing bit and instances which do comply with

the biasing bit. Once we incorporate OS-aware policies into the Agree predictor, the filtering out

of the visible portion of weakly biased kernel branches leads more U-BHT entries to reach

“agree” status.

The IPC improvement of OS-aware Bi-Mode is marginal (1%), but it should be noted that the

OS-aware Bi-Mode consumes only equivalent or less resource to achieve this performance

enhancement. Thus, OS-aware prediction leads to the same performance with less hardware.

21

The results shown in Figure 13 also indicate that the combination of the OS-aware prediction

and a simple predictor (for instance, Gshare) can outperform sophisticated predictors (e.g., Multi-

Hybrid and Agree) with larger size configuration.

In summary, architectural support for specific OS branch behavior can enhance prediction

performance without increasing predictor size or complexity. Current and next generation

microprocessors are becoming increasingly sensitive to branch prediction accuracy due to the use

of deeper pipelines and wider issue microarchitecture. The proposed techniques are expected to

yield more ILP performance benefit on aggressive implementations with higher misprediction

penalties.

3.5. Discussion

We motivated the research in this paper using Figure 1, which showed that kernel interference

increases user misprediction from 1.1x to 6x (with an average of 2.1x). Similarly, we observed

that user interference increases OS misprediction from 1.3x to 129x (with an average of 13x). In

this subsection, we revisit this characterization in the presence of the OS-aware philosophies.

0
2
4
6
8

10
12

db
(1

6k
)

db
(6

4k
)

je
ss

(1
6k

)

je
ss

(6
4k

)

ja
va

c(
16

k)

ja
va

c(
64

k)

ja
ck

(1
6k

)

ja
ck

(6
4k

)

m
tr

t(
16

k)

m
tr

t(
64

k)

co
m

pr
es

s(
16

k)

co
m

pr
es

s(
64

k)

gc
c(

16
k)

gc
c(

64
k)

vo
rt

ex
(1

6k
)

vo
rt

ex
(6

4k
)

pm
ak

e(
16

k)

pm
ak

e(
64

k)

se
nd

m
ai

l(1
6k

)

se
nd

m
ai

l(6
4k

)

po
st

gr
es

.s
el

ec
t(

16
k)

po
st

gr
es

.s
el

ec
t(

64
k)

po
st

gr
es

.u
pd

at
e(

16
k)

po
st

gr
es

.u
pd

at
e(

64
k)

po
st

gr
es

.jo
in

(1
6k

)

po
st

gr
es

.jo
in

(6
4k

)

Benchmark(Gshare Predictor Size)

M
is

pr
ed

ic
tio

n
 R

at
e

 (
%

) Eliminated by OS-aware Phil.1
Extra Caused by OS Execution
User Only

(a) User

0
2
4
6
8

10
12
14

db
(1

6k
)

db
(6

4k
)

je
ss

(1
6k

)

je
ss

(6
4k

)

ja
va

c(
16

k)

ja
va

c(
64

k)

ja
ck

(1
6k

)

ja
ck

(6
4k

)

m
tr

t(
16

k)

m
tr

t(
64

k)

co
m

pr
es

s(
16

k)

co
m

pr
es

s(
64

k)

gc
c(

16
k)

gc
c(

64
k)

vo
rt

ex
(1

6k
)

vo
rt

ex
(6

4k
)

pm
ak

e(
16

k)

pm
ak

e(
64

k)

se
nd

m
ai

l(1
6k

)

se
nd

m
ai

l(6
4k

)

po
st

gr
es

.s
el

ec
t(

16
k)

po
st

gr
es

.s
el

ec
t(

64
k)

po
st

gr
es

.u
pd

at
e(

16
k)

po
st

gr
es

.u
pd

at
e(

64
k)

po
st

gr
es

.jo
in

(1
6k

)

po
st

gr
es

.jo
in

(6
4k

)

Benchmark(Gshare Predictor Size)

M
is

pr
ed

ic
tio

n
 R

at
e

 (
%

) Eliminated by OS-aware Phil.1
Extra Caused by User Execution
OS Only

(b) OS
Figure 14. Impact of User/OS Execution on OS-Phil. 1 Branch Predictors

22

Figure 14 illustrates the impact of user/OS execution on branch prediction after OS-aware

philosophy 1 is integrated with Gshare. Compared with Figure 1, OS-aware philosophy 1

significantly reduces the negative impact of user/OS interference on branch prediction, resulting

in the drop of mispredictions from 2.1x to 1.2x and from 13x to 2x in user and OS space

respectively.

As described in subsection 3.1, philosophy 1 reduces the misprediction by providing

interference free branch history for both user and kernel sides. In order to investigate the impact

of the initial state of the K-BHSR when switching to the OS mode from the user mode, an

experiment is performed with a variant of Philosophy 1 where the K-BHSR is cleared out upon an

OS call is made. We compare the misprediction rates of a baseline Phil. 1 with this variant of

Phil. 1 scheme. As shown in Table 8, the Phil. 1 with K-BHSR zeroing out on an OS call

provides similar performance result with that of a baseline Phil. 1, implying that removing the

interference in the predictor state between user and kernel modes is more important than really

figuring out what state to leave the predictor in when entering the kernel.

Table 8. Effect of Zeroing out K-BHSR in Phil. 1

db jess javac jack mtrt compress gcc vortex pmake sendmail
postgres.

select
postgres.

update
postgres.

join
Baseline 3.49 5.09 4.98 3.15 2.75 2.68 8.42 1.69 6.01 8.8 1.7 4.16 4.86
with K-BHSR Zeroing out 3.40 5.12 5.01 3.13 2.73 2.74 8.43 1.69 6.03 9.02 1.69 4.15 4.85

Similarly, Figure 15 revisits the impact of user/OS on branch misprediction after OS-aware

philosophy 2 is integrated. Compared with Figure 1, OS-aware philosophy 2 cost-effectively

reduces the negative impact of kernel code on branch misprediction in user part. The

misprediction reduction by OS interference removal outweighs the extra misprediction caused by

using less (50%) BHT resource on all benchmarks except compress and pmake. In the OS part,

the fixed size 2K K-BHT still outperforms the performance of a unified 16K BHT on benchmarks

jess, javac, jack, mtrt, gcc , vortex and postgres.join.

0
2
4
6
8

10
12

db
(1

6k
)

db
(6

4k
)

je
ss

(1
6k

)

je
ss

(6
4k

)

ja
va

c(
16

k)

ja
va

c(
64

k)

ja
ck

(1
6k

)

ja
ck

(6
4k

)

m
tr

t(
16

k)

m
tr

t(
64

k)

co
m

pr
es

s(
16

k)

co
m

pr
es

s(
64

k)

gc
c(

16
k)

gc
c(

64
k)

vo
rt

ex
(1

6k
)

vo
rt

ex
(6

4k
)

pm
ak

e(
16

k)

pm
ak

e(
64

k)

se
nd

m
ai

l(1
6k

)

se
nd

m
ai

l(6
4k

)

po
st

gr
es

.s
el

ec
t(

16
k)

po
st

gr
es

.s
el

ec
t(

64
k)

po
st

gr
es

.u
pd

at
e(

16
k)

po
st

gr
es

.u
pd

at
e(

64
k)

po
st

gr
es

.jo
in

(1
6k

)

po
st

gr
es

.jo
in

(6
4k

)

Benchmark(Gshare Predictor Size)

M
is

pr
ed

ic
tio

n
 R

at
e

 (
%

) Eliminated by OS-aware Phil.2
Extra Caused by Less U-BHT in Phil.2
User Only

(a) User

23

0
2
4
6
8

10
12
14
16

db
(1

6k
)

db
(6

4k
)

je
ss

(1
6k

)

je
ss

(6
4k

)

ja
va

c(
16

k)

ja
va

c(
64

k)

ja
ck

(1
6k

)

ja
ck

(6
4k

)

m
tr

t(
16

k)

m
tr

t(
64

k)

co
m

pr
es

s(
16

k)

co
m

pr
es

s(
64

k)

gc
c(

16
k)

gc
c(

64
k)

vo
rt

ex
(1

6k
)

vo
rt

ex
(6

4k
)

pm
ak

e(
16

k)

pm
ak

e(
64

k)

se
nd

m
ai

l(1
6k

)

se
nd

m
ai

l(6
4k

)

po
st

gr
es

.s
el

ec
t(

16
k)

po
st

gr
es

.s
el

ec
t(

64
k)

po
st

gr
es

.u
pd

at
e(

16
k)

po
st

gr
es

.u
pd

at
e(

64
k)

po
st

gr
es

.jo
in

(1
6k

)

po
st

gr
es

.jo
in

(6
4k

)

Benchmark(Gshare Predictor Size)

M
is

p
re

di
ct

io
n

 R
at

e
(%

) Eliminated by OS-aware Phil.2
Extra Caused by Fixed 2K K-BHT
OS Only

(b) OS
Figure 15. Impact of User/OS Execution on OS-Phil. 2 Branch Predictors

4. Summary and Conclusion

Control flow prediction is one of the key issues in the design of high performance processors. It

is extremely important that processor hardware, software and the operating system collaborate

with each other to deliver high performance. The operating system affects control flow

predictability by introducing the additional user/OS branch aliasing in predictor hardware.

Compared to the branches in user code, the OS branches are usually invoked by the exception-

driven and intermittently executed kernel routines and may have different biased behavior caused

by performing operations not common in user mode. Thus, when interacted with user branches,

the OS branches increase misprediction significantly. Current branch predictors have paid less

attention to the OS requirements and therefore, do not contain mechanisms to specifically

alleviate the user/OS aliasing.

This paper focuses on understanding and improving the control flow predictability in the light

of the OS code. Having characterized kernel and user branch execution behavior and quantified

their impact on misprediction rates of a commercial OS, we propose OS-aware branch prediction

designed to reduce user/OS branch aliasing without adding extra hardware for branch de-aliasing.

The proposed OS-aware prediction is a philosophy that advocates orchestrating branch

correlation information and/or branch history information for user and kernel branches

individually. The proposed OS-aware philosophy can be incorporated into any other predictor,

ranging from a naïve Gshare to the more sophisticated Multi-Hybrid, Agree and Bi-Mode

predictors, to further improve prediction accuracy. More precisely, on the 32K BHT entry

predictors, incorporating OS-aware strategies into previously proposed Gshare, Multi-Hybrid,

Agree and Bi-Mode predictors yields up to 34%, 23%, 27% and 9% prediction accuracy

improvement and up to 8%, 5%, 7% and 1% execution speedup respectively. Simulation results

also show that the combination of the OS-aware prediction and a simple predictor (for instance,

24

Gshare) can outperform sophisticated predictors (e.g., Multi-Hybrid and Agree) with larger size

configuration.

OS-aware philosophy improves prediction performance by cost-effectively alleviating the

user/kernel branch aliasing. Moreover, it provides opportunities for catering user and kernel

branches with differently tuned structures. For example, compared with a conventional design,

the OS-aware philosophy 2 requires access to only one of the smaller prediction tables for a given

branch instruction mode (kernel or user), which can result in energy savings and low-latency

access. These advantages are valuable in the light of power and clock frequency constraints in

emerging processor and branch predictor designs [Jim00][Pari02]. In our future work, we plan to

model the energy consumption and the access latency of the OS-aware branch predictors.

Historically, privilege bits are used to protect system critical resources such as page tables and

process control blocks for security purposes. The results of our study show that on a fine-grained

resource sharing superscalar microprocessor, the protection of performance-critical

microarchitecture hardware, such as branch prediction tables, also is important. It is likely that

future high-end microprocessors will aggressively support more predictions (e.g. value

prediction). Further research is needed to investigate the benefit of OS-aware microarchitecture

on these predictors.

Reference

[Ande91] T. E. Anderson, H. M. Levy, B. N. Bershad, E. D. Lazowska, The Interaction of Architecture and
Operating System Design, In Proceedings of the fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 108-120, 1991
[Benn95] J. Bennett and M. Flynn, Performance Factors for Superscalar Processors, Technical Report CSL-TR-
95-661, Computer Systems Laboratory, Stanford University, Feb. 1995
[Chang95] P. Chang and U. Banerjee, Profile-guided Multi-heuristic Branch Prediction, In Proceedings of the
International Conference on Parallel Processing, 1995
[Chang96] P. -Y. Chang, M. Evers, and Y. Patt, Improving Branch Prediction Accuracy by Reducing Pattern
History Table Interference, In Proceedings of International Conference on Parallel Architectures and
Compilation Techniques, pages 48-57, 1996
[Eden98] A. N. Eden and T. Mudge, The YAGS Branch Prediction Scheme, In Proceedings of the 31st Annual
ACM/IEEE International Symposium on Microarchitecture, pages 69 - 77, 1998
[Ever96] M. Evers, P. Y. Chang and Y. N. Patt, Using Hybrid Branch Predictors to Improve Branch Prediction
Accuracy in the Presence of Context Switches, In Proceedings of the 23rd Annual International Symposium on
Computer Architecture, pages 3-11, 1996
[Gloy96] N. Gloy, C. Young, J. B. Chen and M. D. Smith, An Analysis of Dynamic Branch Prediction Schemes
on System Workloads, In Proceedings of the 23rd Annual International Symposium on Computer Architecture,
pages 12-21, 1996
[Jim00] D. A. Jiménez, S. W. Keckler, and C. Lin, The Impact of Delay on the Design of Branch Predictors, In
Proceedings of the 33rd Annual International Symposium on Microarchitecture, 2000
[Lee97] C.-C. Lee, I.-C. K. Chen, and T. Mudge, The Bi-Mode Branch Predictor, In Proceedings of the 30th
Annual IEEE/ACM International Symposium on Microarchitecture, pages 4 - 13, 1997
[Li00] T. Li, L. K. John, N.Vijaykrishnan, A. Sivasubramaniam, J. Sabarinathan and A.Murthy, Using Complete
System Simulation to Characterize SPECjvm98 Benchmarks, In Proceedings of ACM International Conference
on Supercomputing, pages 22-33, 2000
[Lind99] T. Lindholm and F. Yellin, The Java Virtual Machine Specification, Second Edition, Addison Wesley,
1999

25

[McFar93] S. McFarling, Combining Branch Predictors, WRL Technical Note TN-36, Digital Equipment
Corporation, June 1993
[Mich97] P. Michaud, A. Seznec and R. Uhlig, Trading Conflict and Capacity Aliasing in Conditional Branch
Predictors, In Proceedings of the 24th International Symposium on Computer Architecture, pages 292 - 303,
1997
[MPR0400] K. Diefendorff, HP, Intel Complete IA-64 Rollout, Microprocessor Report, pages 1-9, Apr. 2000
[Oust90] J. Ousterhout, Why aren’t Operating Systems Getting Faster as Fast as Hardware?, In
Proceedings of the Summer 1990 USENIX Conference, pages 247-256, 1990
[Pari02] D. Parikh, K. Skadron, Y. Zhang, M. Barcella, and M. Stan, Power Issues Related to Branch Prediction,
In Proceedings of 8th International Symposium on High Performance Computer Architecture, 2002
[Perl93] C. Perleberg and A. Smith, Branch Target Buffer Design and Optimization, IEEE Transactions on
Computers, 42(4): 396-412, 1993
[Psql] "PostgreSQL", http://www.us.postgresql.org/
[Psql2] M. Stonebraker, L. A. Rowe and M. Hirohama, The Implementation of Postgres, IEEE Transactions on
Knowledge and Data Engineering, 2(1), March 1990.
[Red00] J. A. Redstone, S. J. Eggers and H. M. Levy, An Analysis of Operating System Behavior on a
Simultaneous Multithreaded Architecture, In Proceedings of the 9th International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 245-256, 2000
[Rose95a] M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, A. Gupta, The Impact of Architectural
Trends on Operating System Performance, In Proceedings of the 15th ACM Symposium on Operating System
Principles, pages 285-298, 1995.
[Rose95] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta, Complete Computer System Simulation: the
SimOS Approach, IEEE Parallel and Distributed Technology: Systems and Applications, vol.3, no.4, pages 34-
43, Winter 1995
[Sech96] S. Sechrest, C-C. Lee, and T. Mudge, Correlation and Aliasing in Dynamic Branch Predictors, In
Proceedings of the 23rd Annual International Symposium on Computer Architecture, pages. 22-32. 1996
[SPECJVM98] SPEC JVM98 Benchmarks, http://www.spec.org/osg/jvm98/
[Spra97] E. Sprangle, R. S. Chappell, M. Alsup and Y. N. Patt, The Agree Predictor: A Mechanism for Reducing
Negative Branch History Interference, In Proceedings of the 24th Annual International Symposium on Computer
Architecture, pages 284-291, 1997
[TPC-C] Transaction Processing Council, The TPC-C Benchmark, http://www.tpc.org/tpcc/
[Yeag96] K. C. Yeager, MIPS R10000, IEEE Micro, Vol.16, No.1, pages 28-40, Apr. 1996
[Yeh91] T. Yeh and Y. N. Patt, Two-Level Adaptive Branch Prediction, In Proceeding of 24th International
Symposium on Microarchitecture, pages. 51-61, 1991
[Yeh93] T.-Y. Yeh, and Y. N. Patt, A Comparison of Dynamic Branch Predictors that Use Two Levels of Branch
History, In Proceedings of the 20th Annual International Symposium on Computer Architecture, pages 257-266,
1993
[Young95] C. Young, C. Gloy and M. D. Smith, A Comparative Analysis of Schemes for Correlated Branch
Prediction, In Proceedings of the 22nd Annual International Symposium on Computer Architecture, pages 276-
286, 1995
[Zhang02] Y. Zhang, J. Zhang, A. Sivasubramaniam, C. Liu and H. Franke, Characterizing TPC-H on a
Clustered Database Engine from the OS Perspective, Workshop on Computer Architecture Evaluation
using Commercial Workloads (CAECW-02), 2002

Appendix
A1. Breakdown of Dynamic OS Branches based on Service

db

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

jess

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

26

javac

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

jack

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

mtrt

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

compress

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

gcc

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

vortex

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

pmake

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

sendmail

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Buffer Copying
System calls
Exception handling
Miscellaneous

postgres.select

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

postgres.update

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

27

postgres.join

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

AVG

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

A2. Illustration of Weakly Biased Branches in OS

21.2

17.0 16.8 16.1

1.24.9

19.0

28.8

0

5

10

15

20

25

30

alw
ay

s-
ta

ke
n

(1
00

%
)

90
%-9

9%

80
%-8

9%

70
%-7

9%

60
%-6

9%

50
%-5

9%

40
%-4

9%

30
%-3

9%

20
%-2

9%

10
%-1

9%

1%
-9

%

alw
ay

s-
no

t-t
ak

en
 (0

%
)

Branch Direction

%
 o

f
D

yn
am

ic
 B

ra
nc

he
s db-user

db-OS
21.5

26.2

13.5
12.4

19.8

2.8
3.4

25.9

0

5

10

15

20

25

30

alw
ay

s-
ta

ke
n (

10
0%

)

90
%-9

9%

80
%-8

9%

70
%-7

9%

60
%-6

9%

50
%-5

9%

40
%-4

9%

30
%-3

9%

20
%-2

9%

10
%-1

9%

1%
-9%

lw
ay

s-
no

t-t
ak

en
 (0

%
)

Branch Direction

%
 o

f
D

yn
am

ic
 B

ra
nc

he
s jess-user

jess-OS

17.1 17.0
21.0 17.6

3.3

2.6

27.3

21.0

0

5

10

15

20

25

30

alw
ay

s-
ta

ke
n (

10
0%

)

90
%-9

9%

80
%-8

9%

70
%-7

9%

60
%-6

9%

50
%-5

9%

40
%-4

9%

30
%-3

9%

20
%-2

9%

10
%-1

9%

1%
-9%

lw
ay

s-
no

t-t
ak

en
 (0

%
)

Branch Direction

%
 o

f
D

yn
am

ic
 B

ra
nc

he
s javac-user

javac-OS

42.346.2

9.5 8.8

1.8 0.9

14.7 17.5

0

5

10

15

20

25

30

alw
ay

s-
ta

ke
n (

10
0%

)

90
%-9

9%

80
%-8

9%

70
%-7

9%

60
%-6

9%

50
%-5

9%

40
%-4

9%

30
%-3

9%

20
%-2

9%

10
%-1

9%

1%
-9%

lw
ay

s-
no

t-t
ak

en
 (0

%
)

Branch Direction

%
 o

f
D

yn
am

ic
 B

ra
nc

he
s jack-user

jack-OS

28.1

15.3 15.1

17.9

6.1 7.3

23.2

24.1

0

5

10

15

20

25

30

alw
ay

s-
ta

ke
n (

10
0%

)

90
%-9

9%

80
%-8

9%

70
%-7

9%

60
%-6

9%

50
%-5

9%

40
%-4

9%

30
%-3

9%

20
%-2

9%

10
%-1

9%

1%
-9%

lw
ay

s-
no

t-t
ak

en
 (0

%
)

Branch Direction

%
 o

f
D

yn
am

ic
 B

ra
nc

he
s mtrt-user

mtrt-OS

7.6

71.935.3

13.5 13.4

0.9
2.9

21.3

0

5

10

15

20

25

30

alw
ay

s-
ta

ke
n (

10
0%

)

90
%-9

9%

80
%-8

9%

70
%-7

9%

60
%-6

9%

50
%-5

9%

40
%-4

9%

30
%-3

9%

20
%-2

9%

10
%-1

9%

1%
-9%

lw
ay

s-
no

t-t
ak

en
 (0

%
)

Branch Direction

%
 o

f
D

yn
am

ic
 B

ra
nc

he
s compress-user

compress-OS

28

35.2

15.6 15.5

7.0

1.75.7

31.5

23.8

0

5

10

15

20

25

30

alw
ay

s-
ta

ke
n (

10
0%

)

90
%-9

9%

80
%-8

9%

70
%-7

9%

60
%-6

9%

50
%-5

9%

40
%-4

9%

30
%-3

9%

20
%-2

9%

10
%-1

9%

1%
-9%

lw
ay

s-
no

t-t
ak

en
 (0

%
)

Branch Direction

%
 o

f
D

yn
am

ic
 B

ra
nc

he
s gcc-user

gcc-OS

35.3

0.9
0.4 0.0

36.0

0.0 0.9

87.8

0

5

10

15

20

25

30

alw
ay

s-
ta

ke
n

(1
00

%
)

90
%

-9
9%

80
%

-8
9%

70
%

-7
9%

60
%

-6
9%

50
%

-5
9%

40
%

-4
9%

30
%

-3
9%

20
%

-2
9%

10
%

-1
9%

1%
-9

%

lw
ay

s-
no

t-t
ak

en
 (0

%
)

Branch Direction

%
 o

f
D

yn
am

ic
 B

ra
nc

he
s vortex-user

vortex-OS

24.0

17.1 17.2

3.8
2.2

11.9

27.7

18.8

0

5

10

15

20

25

30

alw
ay

s-
ta

ke
n

(1
00

%
)

90
%

-9
9%

80
%

-8
9%

70
%

-7
9%

60
%

-6
9%

50
%

-5
9%

40
%

-4
9%

30
%

-3
9%

20
%

-2
9%

10
%

-1
9%

1%
-9

%

lw
ay

s-
no

t-t
ak

en
 (0

%
)

Branch Direction

%
 o

f
D

yn
am

ic
 B

ra
nc

he
s pmake-user

pmake-OS

24.1

3.0 1.7
5.11.1

4.3

27.2

19.1

0

5

10

15

20

25

30

35

40

45

alw
ay

s-
ta

ke
n

(1
00

%
)

90
%

-9
9%

80
%

-8
9%

70
%

-7
9%

60
%

-6
9%

50
%

-5
9%

40
%

-4
9%

30
%

-3
9%

20
%

-2
9%

10
%

-1
9%

1%
-9

%

lw
ay

s-
no

t-t
ak

en
 (0

%
)

Branch Direction

%
 o

f
D

yn
am

ic
 B

ra
nc

he
s sendmail-user

sendmail-OS

45.8

16.9 16.9

1.3

0.0

25.9

8.4

17.0

0

5

10

15

20

25

30

alw
ay

s-
ta

ke
n

(1
00

%
)

90
%

-9
9%

80
%

-8
9%

70
%

-7
9%

60
%

-6
9%

50
%

-5
9%

40
%

-4
9%

30
%

-3
9%

20
%

-2
9%

10
%

-1
9%

1%
-9

%

lw
ay

s-
no

t-t
ak

en
 (0

%
)

Branch Direction

%
 o

f
D

yn
am

ic
 B

ra
nc

he
s postgres.select-user

postgres.select-OS

33.4

18.4 17.7

4.0
1.8

20.9

7.8

17.3

0

5

10

15

20

25

30

alw
ay

s-
ta

ke
n

(1
00

%
)

90
%

-9
9%

80
%

-8
9%

70
%

-7
9%

60
%

-6
9%

50
%

-5
9%

40
%

-4
9%

30
%

-3
9%

20
%

-2
9%

10
%

-1
9%

1%
-9

%

lw
ay

s-
no

t-t
ak

en
 (0

%
)

Branch Direction

%
 o

f
D

yn
am

ic
 B

ra
nc

he
s postgres.update-user

postgres.update-OS

28.4

20.8 20.8

13.8

0.2

13.6

26.7

19.4

0

5

10

15

20

25

30

alw
ay

s-
ta

ke
n

(1
00

%
)

90
%

-9
9%

80
%

-8
9%

70
%

-7
9%

60
%

-6
9%

50
%

-5
9%

40
%

-4
9%

30
%

-3
9%

20
%

-2
9%

10
%

-1
9%

1%
-9

%

lw
ay

s-
no

t-t
ak

en
 (0

%
)

Branch Direction

%
 o

f
D

yn
am

ic
 B

ra
nc

he
s

postgres.join-user
postgres.join-OS 25.4

13.7 13.4

4.2
1.8

23.9

19.9

30.4

0

5

10

15

20

25

30

alw
ay

s-
ta

ke
n

(1
00

%
)

90
%

-9
9%

80
%

-8
9%

70
%

-7
9%

60
%

-6
9%

50
%

-5
9%

40
%

-4
9%

30
%

-3
9%

20
%

-2
9%

10
%

-1
9%

1%
-9

%

lw
ay

s-
no

t-t
ak

en
 (0

%
)

Branch Direction

%
 o

f
D

yn
am

ic
 B

ra
nc

he
s AVG-user

AVG-OS

A3. Performance of 16K Baseline vs. 18K OS-aware Phil. 2 Predictors

db

1.5

1.55

1.6

1.65

1.7

Gshare Multi-
Hybrid

Agree Bi-
Mode

IP
C

Improved by 2K K-BHT
16K Baseline

jess

1.3

1.35

1.4

1.45

1.5

1.55

1.6

Gshare Multi-
Hybrid

Agree Bi-
Mode

IP
C

Improved by 2K K-BHT
16K Baseline

javac

1.5

1.55

1.6

1.65

1.7

Gshare Multi-
Hybrid

Agree Bi-
Mode

IP
C

Improved by 2K K-BHT
16K Baseline

29

jack

1.4

1.45

1.5

1.55

1.6

Gshare Multi-
Hybrid

Agree Bi-
Mode

IP
C

Improved by 2K K-BHT
16K Baseline

mtrt

1.8

1.85

1.9

1.95

2

Gshare Multi-
Hybrid

Agree Bi-
Mode

IP
C

Improved by 2K K-BHT
16K Baseline

compress

1.7

1.75

1.8

1.85

1.9

Gshare Multi-
Hybrid

Agree Bi-
Mode

IP
C

Improved by 2K K-BHT
16K Baseline

gcc

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Gshare Multi-
Hybrid

Agree Bi-
Mode

IP
C

Improved by 2K K-BHT
16K Baseline

vortex

1.5

1.55

1.6

1.65

1.7

1.75

1.8

Gshare Multi-
Hybrid

Agree Bi-
Mode

IP
C

Improved by 2K K-BHT
16K Baseline

pmake

1.5

1.55

1.6

1.65

1.7

1.75

1.8

Gshare Multi-
Hybrid

Agree Bi-
Mode

IP
C

Improved by 2K K-BHT
16K Baseline

sendmail

1.3

1.35

1.4

1.45

1.5

Gshare Multi-
Hybrid

Agree Bi-
Mode

IP
C

Improved by 2K K-BHT
16K Baseline

postgres.select

1.2

1.25

1.3

1.35

1.4

Gshare Multi-
Hybrid

Agree Bi-
Mode

IP
C

Improved by 2K K-BHT
16K Baseline

postgres.update

1.1

1.15

1.2

1.25

1.3

Gshare Multi-
Hybrid

Agree Bi-
Mode

IP
C

Improved by 2K K-BHT
16K Baseline

postgres.join

1.5

1.55

1.6

1.65

1.7

Gshare Multi-
Hybrid

Agree Bi-
Mode

IP
C

Improved by 2K K-BHT
16K Baseline

