
Understanding and Improving Operating System Effects
in Control Flow Prediction

Tao Li t, Lizy Kurian John t, Anand Sivasubramaniam*, N. Vijaykrishnan* and Juan F:lubio t

*Department of Electrical and Computer Engineering
The University of Texas at Austin

Austin, TX 78712
{tli3,1john,jrubio} @ ece.utexas.edu

*Department of Computer Science and Engineering
The Pennsylvania State University

University Park, PA 16802
{anand, vijay} @cse.psu,edu

ABSTRACT
Many modern applications result in a significant operating system
(OS) component. The OS component has several implications
including affecting the control flow transfer in the execution
environment. This paper focuses on understanding the operating
system effects on control flow transfer and prediction, and
designing architectural support to alleviate the bottlenecks. We
characterize the control flow transfer o f several emerging
applications on a commercial operating system. We find that the
exception-driven, intermittent invocation of OS code and the
user/OS branch history interference increase the misprediction in
both user and kernel code.

We propose two simple OS-aware control flow prediction
techniques to alleviate the destructive impact of user/OS branch
interference. The first one consists o f capturing separate branch
correlation information for user and kernel code. The second one
involves using separate branch prediction tables for user and
kernel code. We study the improvement contributed by the OS-
aware prediction to various branch predictors ranging from
simple Gshare to more elegant Agree, Multi-Hybrid and Bi-Mode
predictors. On 32K entries predictors, incorporating OS-aware
techniques yields up to 34% 23% 27% and 9% prediction
accuracy improvement in Gshare, Multi-Hybrid, Agree and Bi-
Mode predictors, resulting in up to 8% execution speedup.

1. INTRODUCTION
Every once in a while in systems research, we come to the point
where we need to evaluate how well is the hardware suited for a
given application, how well is it accommodating the operating
system (OS), and how well is the application exploiting an OS's
capabilities. Such issues are extremely important in order to fine
tune system performance since we find that the three subsystems -
application (workload), OS and hardware - are constantly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ASPLOSX 10/02 San Jose, CA, USA
© 2002 ACM 1-58113-574-2/02/0010...$5.00

evolving, and many times quite independently [1].

The nature and diversity of workloads have seen substantial
changes that we need to go back to understanding file interplay of
the three subsystems based on these new workloads. In particular,
we note the growing importance of the OS in emerging application
environments, with OS services being invoked much more often.
Several recent studies [22][20] have reported high operating
system contribution to the overall execution time. In commercial
applications such as databases and web services, the OS
component has been observed to reach as high as 55% of the
execution time in some of the workloads considered in this paper.
Li et al. [II] also report higher OS involvement in Java
applications compared to traditional SPEC workloads. The reason
for the higher OS involvement in all these emerging environments
is because the applications are in general multi.-threaded and
exercise the I/O subsystem much more extensively. This trend is
likely to continue in the near future and it is very important to
consider the operating system not only for coraplete system
evaluations as other studies have pointed out [21], but also when
attempting to optimize the hardware and/or the application [32]. A
detailed characterization of the interactions between the
application-OS-hardware can have considerable ramifications in
the design of each system component, and this paper takes a step in
that direction.

We focus on one specific issue that has long been considered an
important issue for performance optimization of state-of-the-art
processors - control flow prediction. Current high performance
processors provision aggressive support for Instruction Level
Parallelism (ILP) and have deep pipelines to keep cycle times low.
The delivered ILP and pipelining performance: is critically
dependent on being able to accurately predict the control (branch)
flow in the program, so that we can execute more useful
instructions and avoid stalling/squashing the pipeline.

Branch predictors for control flow prediction have been studied
extensively with different programs [29][31][23][1511 and also with
OS effects [8]. The OS affects control flow predictability by
introducing the additional user/OS b r o t h aliasing in branch
predictor tables. The negative impact of kernel branches on branch
prediction has been reported in [8]. We also find that kernel code
nearly doubles the misprediction rates in 7 out of 13 of our
benchmarks in a Gshare predictor (Figure 1).

Branch aliasing characterization shows that user/OS aliasing
contributes to up to 24% of all misprediction and 46% of aliasing

68

mispredicfion in the benchmarks studied in this paper. While
eliminating all branch prediction aliasing is not trivial, it is our
belief that the destructive user/OS part can be alleviated with
appropriate architectural support. There are numerous branch
predictors that have been proposed to address different situations
[30][14][7][25][10][4][15][6]. These prediction mechanisms have
paid less attention to the OS requirements and no particular
scheme was proposed on tuning control flow prediction hardware
for the OS. Our intention in this paper, however, is not to propose
a new predictor to add to this list. Rather, it is to understand the
fundamental nature of the user/OS interference and suggest simple
and cost-effective optimizations that one can incorporate into any
predictor to alleviate the impact of the OS activity on the control
flow prediction.

12 i I • ExVa Caused by OS Execu~n
10/ B / D User Only

. . . . -~ ~>0 s o

OenchmarqGahare Predictor Size) ~ ~ ~ R

Figure 1. Impact of User/OS Execution on Branch Prediction

Adhering to this philosophy, we investigate what causes the
execution of a spectrum of applications with significant OS
involvement to give worse branch prediction in the user and kernel
modes by characterizing their execution using complete system
simulation. This investigation shows that the interference between
the branches in the user and kernel modes is leading to this poor
performance. User and kernel branches have different
characteristics (such as the direction bias) that cause the history
information used by the predictors - and shared by both the user
and kernel - to become polluted. Such pollution would not have
happened if we had a separate predictor for each mode.

These observations lead us to advocate separating out branch
prediction logic for user and kernel modes. By doing this, we are
reducing the interference between the two. This approach can be
easily integrated into existing prediction schemes without
significantly complicating the logic. Separating resources for OS to
reduce the user/OS interference exists for other resources (e.g.,
TLB, memory etc.). However, to our knowledge, this paper
presents the first study and quantitative analysis on orchestrating
control flow prediction resources for OS.

The rest of this paper is organized as follows. In section 2, we
characterize OS branch behavior in different applications. We also
quantify the effect of user/OS branch aliasing or interference].
Section 3 introduces OS-aware prediction designed specifically to
reduce user/OS branch aliasing and evaluates the improvement
contributed by the OS-aware techniques to various branch
prediction strategies. Finally, conclusions are provided in Section
4.

] We use the terms branch aliasing and branch interference
interchangeably in this paper.

2. CHARACTERIZING OS BRANCH
BEHAVIOR
In this section, we use simulation of complete system activity to
characterize OS branch execution and evaluate its impact on
branch predictability. We use the SimOS [22] full system
simulation environment and select thirteen benchmarks with
significant OS involvement. We provide a brief overview of the
selected applications. A set of six Java applications from the
SPECjvm98 [24] suite (sl dataset) is executed using a commercial
JDK [13] from Sun Microsystems simulated on top of IRIX 5.3.
Vortex is a database manipulation code and gcc is a compiler code
from the SPECint95 benchmark suite. Pmake is a program
development workload that is a variant of the compiled phase of
the modified Andrew benchmark employed in [21]. The sendmail
benchmark forwards email messages to local accounts on the
system using the Simple Mail Transport Protocol (SMTP). The
sizes of the messages vary from 1K to 1.5M. We also use three
benchmarks that use PostgreSQL [19][26], a relational database
management system (DBMS). The database is populated with
relational tables for the TPC-C benchmark [27]. We evaluate the
execution of three specific queries on this data set: a sequential
table scan of a table with 1 million rows and a selectivity of 3%
(postgres.select), an update to a field of a 300,000 row table
(postgres.update) and a nested loop join involving two tables of
sizes lIMB and 24KB (postgres.join). The SPECjvm98
applications, pmake and gcc are all executed to completion. All
other applications are simulated for billion-instruction execution.
Table 1 summarizes the complete system branch execution
statistics of each studied benchmark.

As illustrated in Table 1, the OS activity in the selected
benchmarks ranges from 6% in compress to as high as 55% in
postgres.update. The kernel portion of dynamic branch instances
can be found to constitute a significant part in these applications.
On the average, kernel branches, which include loops, error/bound
checking, and other routine conditionals, constitute 27% of branch
sites and 30% of dynamic branch instances in our benchmark
executions. Branches have been found to be more frequent in OS
(than in user mode) [20] because it has to be designed to handle all
possible situations (i.e., abundant error and bound checking).
Further, the OS functions are performed not just for one
process/application but also for the system as a whole (other
daemons, periodic book-keeping duties etc.).

2.1 Context Switch Profile and Branch
Distribution
During the execution, branch instructions from user and OS code
get interspersed. OS is activated either voluntarily by a system call
from the application, or from a call by some other application, or
implicitly by some underlying periodic/asynchronous (timer/device
interrupt) mechanism. The inter-mingling of user and kernel
branches can affect their behavior, compared to the execution
when they were isolated from each other. Figure 2 shows the
average number of executed branches in each mode per context
invocation on the studied benchmarks. In all benchmarks except db
and postgres.update, OS exercises fewer branches than user code
in each visit to that mode. For benchmarks db and postgres.update,
OS service read and write, which consists of far more branch
instructions, dominates OS execution, causing higher average
number of executed branches in OS.

69

Benchmarks

d b I

j e s s

j avac
jack 4
mtr?
compress 6
~CC 7

v o r t e x 8

pmake 9
sendmail l°
postgres.select 1
postgres.update]2
postgres.join ls

Table 1. Complete System Branch Execution Statistics

= # of °
-~ ~ .-, Context

~ ~ Switches
~ between
= m User/OS

201 31 0.gM
467 30 4.9M
366 19 2.0M

1,782 17 23.5M
1,431 7 5.9M
2,428 6 11.8M
1,036 8 5.0M
1,811 8 21.5M
1,117 17 1.OM
1,494 54 1.4M
1,516 38 5.6M
1,438 55 6.4M
1,849 15 5.9M

Conditional Branch Statistics
User OS

Static Sites Dynamic Instances
(percentage) (percentage)

33,957 (85°/0) 13.1M (40%)
38,654 (86%) 36.0M (56%)
38,815 (86%)
40,640 (87%)
36,629 (86%)
33,907 (85%)
13,570 (74%)
4,108 (78%)

11,651 (69°/0)
4,516 (45%)
8,417 (58%)
8,144 (56%)
8,606 (59%)

34.8M (63%)
210.7M (84%).
195.7M (89%)
406.4M (94%)
138.9M (91%)
133.5M (92%)
122.5M (78%)
139.3M (65%)
107.2M (53%)
83.4M (36%)

220.7M (75%)

Static Sites
(percentage)

6,016 05%)
6,037 (14°/0)
6,070 (14%)
6,142 (13%)
6,099 (14%)
6,081 (15%)
4,696 (26%)
1,189 (22%)
5,273 (31%)
5,553 (55%)
6,201 (42%)
6,325 (44%)
6,099 (41%)

Dynamic
Instances

(percentage)

19.7M (60%)
28.3M (44%)
20.8M (37%)
40.5M (l 6%)
23.3M (l 1%)
26.1 i (6 %)
13.8M (9 %)
12.0M (8 %)
33.8M (22%)
75. I M (35%)
93.6M (47%)

149.1M (64%)
72.7M (25%)

l .Performs/nultiple database functions on a memory resident database
2.Java expert shell system based on NASA's CLIPS expert system
3.The JDK 1.0.2 Java compiler compiling 225,000 lines of code
4.Parser generator with lexical analysis, early version of what is now JavaCC
5.Dual-threaded raytracer
6.Modified Lempel-Ziv method (LZW) to compress and decompress large file
7.Compiles pre-processed source into optimized SPARC assembly code
8.A full object oriented database
9.Two parallel compilation processes compile the modified Andrew Benchmark[16]
10.UNIX electronic mail transport agent
I 1 .Object-relational DBMS PostgreSQL executes a select query
12.Object-relational DBMS PostgreSQL executes an update query
13.Object-relational DBMS PostgreSQL executes a join query

invocations arc more short lived, while user execution has
i ~ 300 • OS reasonable time quanta to work with and build history.

• u s e r ®.o

> ~ .100

~ • ~1~"~"*~,,,.4'22~ " ~ t . - t • •

Figure 2. Average Number of Executed Branches 1
per Visit in User and Kernel Modes

We tracked the distribution of the number of executed branches for
each context switch. The profiling results for a 5,000 context
switch sample of benchmark jack are shown in Figure 3 for user
and kernel code separately. Comparing Figure 33 and 3b, one can
see that the user contexts can execute far more branches than the
OS contexts do. Further analysis indicates that most of these OS
contexts are caused by exception driven OS routines (e.g. TLB
miss and page fault) that execute very few branches. The
distributions in Figure 3 for the kernel are a cause for concern
since it indicates the possibility that the branch history may be not
accurate for correct predictions (with interference from user mode
branches). On the other hand, the user branch distribution suggests
that this problem may not be as severe for the user mode. Kernel

1000

Jr 'B=

'11o
z

I

0 1000 2000 3000 4000 ,5000

Use¢ Context Serial NO.

OS

. ~ _ _ _

- - - - " " - . - ' - - ' " "--.2...~ .~ ' - - ".--.: 2.

m

(~ Context Serial No.
Figure 3. Executed Branches in User and OS Contexts

(5,000 Sampling Contexts)

70

2 . 2 0 S Branch Execution Profile

We next examine what are the dominant kernel branches, and how
their performance can be affected by the user code executing
between OS operations. The pie chart of Figure 4 shows the
percentage of OS branches (in benchmark jack) executed in the
different services. Additional benchmark results can be found in
[12]. The top five components include: TLB miss (TLB miss,
39%); OS scheduling (scheduling, 37%); performing file and I/O
services (I/0 & file system, 5%), idle looping (idle, 4%); and
kernel synchronization (synchronization, 4%).

synchronlza
4%

i(
4

gO & file system
5%

system call exception

'LB miss
39%

37%

Figure 4. Where do the OS Dynamic Branches Come from?

These results show that we really need to focus mainly on the TLB
handler (it is done in software on the given MIPS platform to
facilitate the use of flexible page table structure and simplify the
handling of sparse address spaces.) and the scheduler. Further, it
should be noted that other services such as file system,
synchronization etc., are directly invoked by the user code. Hence,
their behavior (including that for branches) is influenced by the
current state of the invoking application and the parameters of the
call. So one would not like to associate the term "interference" for
such services. On the other hand, TLB handling and scheduler
invocations are not necessarily voluntary. It is useful to understand
how the branches in these OS subsystems are invoked and whether
history would have any bearing on their behavior for predictability
- so that we can better understand if the predictability of these
branches would be affected by the user code getting in-between.

Table 2 further shows the OS routine based branch distribution.
The utlb is the OS TLB miss handler. The checkRunq routine
performs scheduling (picking the next process to run). The idle
does idle looping. Explicit system calls from user code are handled
by syscall. The io_splock routine manipulates I/O spin locks to
ensure that all operations to a particular I/O device are
synchronized. The exception ip12 is the OS general exception
handler. The bcopy is a memory copy routine used for paging and
buffer copying in OS. The mrlock routine gets the states of locks
and semaphores. Table 2 gives further evidence of the significance
of the TLB handling and scheduler subsystems on the overall
branches within the OS. Though utlb and checkRunq both have
high dynamic branch instances, the number of actual branch sites
is quite small. We briefly go over these routines below identifying
the branches in these routines and their anticipated behavior
qualitatively.

The utlb handler has only 1 branch, and the reason for its high
dynamic occurrence is that this routine is invoked frequently. The
utlb routine is invoked directly by the hardware which is the only
entity that can invoke this operation. On the other hand, the
scheduler (checkRunq) is invoked from several places. First, this
operation is needed for scheduling decisions (by consulting the
ready queue) whenever the time quantum expires (triggered by
timer interrupt), when I/O device activity completes (there are
usually priority boosts and rescheduling may be needed) and idle
looping, or even voluntarily during blocking (making semaphore,
I/O requests etc.) or other process state change activities (such as
termination). Consequently, it is to be noted that, while utlb
invocations are only the consequence of application behavior, the
scheduler actions are invoked from all over the OS and are invoked
either asynchronously (by hardware events) or voluntarily due to
system load/behavior. In all, we found there are more than 23
events that can cause checkRunq to be invoked.

Table 2. OS Routine Branch Characterization

OS Routine % Dynamic Active Branch
Branches Sites

utlb 38.7 1
checkRunq
idle
syscall
io splock
exception ip 12
bcopy
mriock

34.2
3.89
2.80
2.38

14

2.08 6
1.50 6
1.17

2.3 Characteristics of OS Branches
We investigate specific properties of these OS branches and their
architectural implications in this subsection.

2.3.1 Branch Directions and Weakly Biased
Branches in OS

It is well known that branches often have biased behavior and
many branches are either usually "taken" or usually "not taken".
The conventional branch history table (BHT) counters exploit this
behavior to predict future outcomes of that branch. However, when
branches showing different biases are mapped into the same entry
of the predictor table, aliased branches update BHT counters with
different directions, leading to aliasing mispredictions.

We measure branch direction distribution in order to gain more
insight on bias behavior of the user and OS branches. Figure 5
shows the result on benchmark jack. Additional benchmark results
can be found in [12]. The branch sites are categorized into 100%
"taken" (always-taken), 0% "taken" (always-not-taken) and groups
between them. For example, the marker "70%-79%" on X-axis
implies that branch sites that fall into this category have a
possibility of 70% to 79% to be "taken".

Figure 5 shows that user and OS branches behave differently in
terms of the bias or direction distribution. For example, 46% of
dynamic branches in OS are "always taken" while their
counterparts in user code are only 15%. On the other hand, ! 8% of
dynamic branches in OS are "always not taken" and that number in
user mode can be as high as 42%. This implies that even when the
strongly biased user and OS kernel branches are mapped into the

71

same BHT counter, it is likely that they will lead to aliasing
misprediction.

§0

.1 45 46 .2 - ~ - use r 42.3 C
4o - - a - - o s :
35 °

In 3O
..~ 25

is 17.

*~ o5 7-~'=-~-w.~-.~_._.-g=,Jt ..

/ /

Figure 5. User and OS Branch Directions

Another interesting observation in Figure 5 is that while the
dominant portion of branch sites is strongly biased (i.e. always
taken or always not taken) in user code, a significant number of
branches are weakly biased in OS code. More precisely, we
observed that 8.8% of dynamic branches that contribute to the
weakly biased (with the category of 40%-49%) branches shown in
Figure 5, come from a wide range of 22 kernel service routines.
The weakly biased OS branches showing interleaved directions are
also found on other benchmarks [12]. Among these is the
checkRunq routine that is frequently invoked. This routine checks
through queues to find out if a rescheduling decision needs to be
made. Intuitively, it can be hypothesized that the execution
characteristics of such a routine are more a function of the load on
the system more than anything else. Even when the load does not
change very much during the course of this execution, there are
bursts of I/O, synchronization activity and other events that can
exercise the checkRunq differently, causing its branch to vary
direction. Weakly biased branches can be a problem to many
branch predictors, which rely on the persistent history and
saturated 2-bit counters for accurate branch prediction.

2.3.2 How Correlated are Kernel Branches?

We observe that many OS branches are very correlated and hence
benefit from two-level predictors that exploit global history
correlation. It should be noted that the utlb routine has a single
branch that is nearly always taken. While static predictors would
suffice for this branch, previous history is also a very good
indicator for this particular branch that accounts for a large portion
of the kernel's dynamic branches. Further, OS exception handlers
frequently use binary decision trees to classify and dispatch
vectored interrupts from the trap entry point to the specific fault
handler. Figure 6a shows an example use of such a structure in the
general exception handler (exceptionjp12) OS code. This handler
dispatches an exception to the corresponding kernel processing
routine based on the value of the exception vector. The binary
decision tree based branch sequence of this handler is given in
Figure 6b. It can be observed that the branches in the OS routine
inttrap will be correlated with a NNT branching sequence while
the branches in systrap will be correlated with a NNNT branching
sequence. Hence Gshare [14] and GAg [29] predictors work
extremely well with these branches.

Ox80007dd4 : <exception_ipl2>
andi $kO, SkO, Ox7c
li Skl, 124
beq $kO, Skl, Ox80007dOc <handle_vced>
li Skl, 56
beq SkO,$kl,Ox80007cec <handle_vcei>
li Skl, 32
beqz $kO, Ox800080fO <inttrap>
sw Sat, -24524 ($zero)
beq $kO, $kl, 0x80008770 <systrap>
li Sat, 8
beg SkO, Sat, Ox80007e78 <kmiss>
li Sat, 12
beq SkO, Sat, OxSOOOTe78 <k~niss>
li Sat, 92
beq SkO, Sat, Ox80007e60 <exception ip12+8c>
ii Sat, 36
bne SkO, Sat, 0x80008274 <longway>
mfcO SkO, $12
andi SkO, $kO, 0x18
bnez $kO, 0x80008274 <longway>
mfcO $kO, $13
bgez $kO,Ox80007e48 <exception ip12+74>

~;dt
(a) OS Assembly Code to Perform

General Exception Handling

/ /
[/ N b e q T handle_vced

-~/ -,,~
~ ~ handle_ycei

~ inttrap NN' l r '

N N N T N A T systrap

~ T kmiss

~ T kmiss

N ~ exception_tp l 2 + Sc

longway

longway

• . . exception__ipl2+ 74
(b) Binary Decision Tree based Branching Sequence

Corresponding to Code Shown in (a)
Figure 6. Branch Correlation in OS Code

2.3.3 Impact of Intermittent Kernel Execution on
Strongly Biased Kernel Branches

Even strongly biased OS branches can experience: mispredictions
due to the user code interference. An example :for this can be
obtained from the utlb routine from the OS. Since the utlb handler
needs to be very efficient, this code is usually written in assembly
and is hand-optimized. There are exactly 13 instructions in this
routine, with the bulk of the instructions used to read the page
table entry from the memory system and load it into the TLB.
There is exactly 1 branch within this code that is strongly taken.
But intervening user code interference can result in mispredictions
in even such strongly biased branches. Consider a correlation
based branch predictor, and two scenarios of branch history shift
register (BHSR) contents in Figure 7. In the absence-of_user code
intervention, the correlation shift register may look like (a), and
leads to correct prediction, whereas the intervening user code may
result in the correlation information to look like (b) and result in
aliasing misprediction.

72

k k k k .. k k k k k u u u . . u k u k

~ ~ ' ! ~ , ~ ~ 1 o 1 ~ 1 . . I O ~ O ~
B H S R B H S R

(a) (b)
Figure 7. Impact of User/Kernel Inference

on Strongly Biased Kernel Branches

2.3.4 Characterization of User/OS Aliasing
It is well known that branch aliasing, namely, several branches
mapping to the same entry in the prediction tables, impacts the
branch prediction accuracy. Although some of the aliasing can be
neutral or constructive, a large part of the aliasing is often
destructive. We performed a branch aliasing characterization to
understand the impact of user/OS aliasing. In order to do that, we
instrumented the branch predictor to track the mapping between
branch instructions and the BHT entries. Branch aliasing is
recorded whenever the branch instruction being mapped to a given
BHT entry is different from what is already present at that entry.
Branch aliasing is attributed to user (User/User Aliasing), kernel
(OS/OS Aliasing) and the interaction between them (User/OS
Aliasing). The percentages of misprediction and correct prediction
caused by different aliasing categories are shown in Table 3.

Table 3. Characterization of Branch Aliasing
(8K BHT Eentries Gshare, MR: Misprediction R:

Benchmarks

t .

Metric ~ ~ ' i ~ ~ ' ~ ~ ~ ' ~

% of Misprediction 6.2 28.2 19.4
% of Correct Prediction 1.4 2.7 2.1
% of Mispredietion 3.3 37.3 20.1
% of Correct Prediction 1.4 6.5 3.9
% of Misprediction 3.1 34.7 16.4
% of Correct Prediction 0.7 5.2 2.4
% of Misprediction 1.3 35.7 18.8
% of Correct Prediction 0.6 7.9 4.7
% of Misprediction 1.3 23.5 10.2
% of C0rrect Prediction 0.2 3.8 1.1
% of Misprediction 0.7 12.0 2.5
% of Correct Prediction 0.1 4.7 0.2
% of Misprediction 0.3 41.5 6.2
% of Correct Prediction 0.1 10.5 1.9
% of Misprediction 0.1 39.4 11.7
% of Correct Prediction 0.0 11.8 3.8
% of Misprediction 3.6 25.1 9.4
% of Correct Prediction 0.5 4.6 1.0
% of Misprediction 22.2 9.0 23.7
% of Correct Prediction 3.8 1.7 2.9
% of Misprediction 7.4 16.0 19.7
% of Correct Prediction 0.9 2.4 2.2
% of Misprediction 7.8 18 .4 22.4
% of Correct Prediction 1.7 3.3 3.8
% of Misprediction 1.1 15.0 4.5
% of Correct Prediction 0.2 5.3 1.1

db
(MR=4.8%)

jess
(MR=8.8%)
j a v a e
(MR=7.1%)

lack
(MR=8%)
mtrt
(MR=4%)
compress
(MR=3.1%)

~1~¢R=10.2%)
vortex
(MR=7.8%)
pmake
(MR-6.6%)

isendmail
(MR=9.3 */.)

ostgres.select
R=3.1%)

ostgres.update
R=5.7%)

ostgres.join
R---5.6%)

In experiments with a Gshare predictor of size 8K BHT entries,
user/OS aliasing on the average contributes to the 14.2% and 2.5%
of misprediction and correct prediction respectively, implying most
of the user/OS aliasing are negative. The percentage of
misprediction caused by user/OS aliasing does not change
significantly when the predictor size is increased from 8K entries
to 64K entries. This indicates that just increasing the capacity of

the branch predictor will not effectively solve the user/OS aliasing
problem. The user/user aliasing that many previous studies have
evaluated is still important as the results observed from Table 3
indicate. However, user/OS aliasing is also a big source for
mispredictions. Table 4 characterizes the impact of branch aliasing
on misprediction in user and OS component. With an 8K BHT
entries Gshare, approximately 22-62% of mispredictions in OS
code are found to be from user/OS aliasing, suggesting that it is
essential to protect kernel branch predictors from interference from
user code.

Table 4. Characterization of Mispredietion
due to Branch Aliasing in User and OS Component
(8K BHT Entries Gshare, MR: Mispredietion Rate)

m~ ~ rl3 gtl0
Benchmarks ~ . ~ ~ ~ - ~

User -- 39.0 13.5 8.6 db
OS 22.3 -- 34.9 2.3

less User --: 47.3 12.8 12.3
OS 15.51 -- 47.7 4.3

javac User - - 42.0 10.0 9.3
OS 17.9 -- 47.0 3.5

jack User -- 43.9 11.6 7.8
OS 6.9 -- 50.4 9.4
User -- 26.6 5.8 3.9 mtrt
OS 11.5 -- 44.0 4.7
User -- 12.5 1.3 3.1

compress OS 16.8 -- 32.0 2.1

User -- 43.6 3.3 10.6
gee OS 6.7 -- 62.0 5.8

User -- 44.7 6.6 7.5 vortex
OS 1.0 -- 49.5 11.3
User -- 28.8 5.4 7.2

!pmake OS 28.0 -- 36.2 4.3 i
isendmai I User -- 19.9 26.2 6.3

OS 40.5 -- 21.6 14.9
postgres.select User -- 26.7 16.5 3.5
; OS 18.4 -- 24.5 i 2.6
postgres.update User -- 29.3 17.9! 9.6

OS 21.0 -- 29.9i 3.5 i

postgres.join i ¢~Ser 16.2 -- 16.1 -- 33.5 2.4 ~:~[

In summary, we observe that user/OS branch aliasing can
significantly deteriorate branch prediction accuracy. This is
primarily attributed to the exception-driven and intermittent kernel
branch execution that causes inaccurate branch history information
in BHSR. Moreover, user and kernel branches have different bias
distribution, which in turn spreads user-kernel branch aliasing
references across a wide range of BHT entries. The above
observations motivate the need for OS-aware branch prediction
techniques.

3. ALLEVIATING IMPACT OF USER/OS
INTERFERENCE
It is clear from the prior sections that user and kernel code possess
different branch behavior, often resulting in conflicts in unified
structures that capture branch history. In subsections 3.1 and 3.2,
we present two structures that aim to alleviate the destructive
impact of OS branch execution on branch predictability.

73

During the initial period of a context switch, both user and kernel
history patterns coexist in history capturing structures. In Gshare
and any correlation based predictor, this can happen in shift
registers (BHSRs) that capture correlation between branches
and/or branch history tables (BHTs). One solution is to use
separate shift registers to individually keep track of branch
correlation and another solution is to use separate BHTs.

3.1 Split BHSR Predictor

We illustrate our OS-aware techniques in the context of a Gshare
predictor, but it can be applied to other correlation-based
predictors as well. A Gshare predictor with split correlation history
shift registers (i.e. split BHSR predictor) is illustrated in Figure 8.
The split BHSR predictor functions exactly the same as a
conventional Gshare predictor except that two dedicated BHSRs
(i.e., U-BHSR for user and K-BHSR for kernel) are used to gather
branch correlation patterns and to generate BHT indexing. By
using K-BHSR for kernel branches, the split BHSR predictor
overcomes the loss of branch history patterns in kernel mode.
Meanwhile, the split BHSR predictor dynamically switches
between BHSRs when a context switch occurs, preventing the
BHT indexing ambiguity during the initial stages of a context
switch.

Processor Status Register

I • I
execution mode bit

K-BHSR
i bits I BHT of 2 i Entries

U-BHSR

~'1 I I I . . I I ~" [" i ' -] .~
i bits I .e /> [~ 1 " ~ ' ~

I ~ ~ " ' "

Figure 8. Gshare with Split BHSR

3.2 Split Predictor

The proposed split BHSR predictor aims to preserve accurate BHT
counter indexing during a context switch. However, user/OS
aliasing can still occur when user and kernel branches have the
same XORed global history pattern, but opposite biases. Due to
their different branch bias distribution, user and kernel branches
can update BHT counters in different manners. To reduce the
destructive user/OS branch aliasing in BHT, we propose the use of
split BHT for user and kernel code, which yields split predictor, as
shown in Figure 9. This predictor eliminates the destructive
user/OS aliasing by using separate correlation and history
information for user mode and kernel mode. It is also observed that
when branch history tables are split into user and kernel parts, the
kernel BHT can be smaller than the user BHT because of the fewer
active branch sites in kernel (as shown in Table 1). Due to the
difficulty in creating a 7:1 or 3:1 split (due to the user BHT
becoming not power of 2), we kept the user BHT at half the size of
the original Gshare and allocate kernel BHT with a fixed size of
2K entries in our experiments.

Separating out kernel branches can easily be done at run time by
using the Processor Status Register (PSR). Typically, in a

microprocessor a set of PSR bits is used to record and identify
kernel-user execution mode or privilege level. For example, MIPS
R10000 [28] uses KSU field in PSR to identify cun:ent execution
mode and Intel's next generation IA-64 Itanium (Mereed) [5] uses
PSR.epl to determine one of 4 privilege levels (level 0-3). The
corresponding field in PSR can be used to select the appropriate
predictor. At runtime, instructions from a fetch unit are filtered
into an active part of prediction resource (user or kernel,
depending on execution mode).

Processor Status Register

I • I
I mo ebi,

1
K-BHSR K-BHT of 2 i Emrics |

ib i= I '-I, r - ~ /

[branch address

i bits "E
I

j bits U-BHSR

~ 1 1 1 1 . . 1 1 ~
j bit~

U-BHT of~ Entries
Figure 9. Split Gshare Predictor

In summary, the split BHSR predictor and split predictor are
designed specifically to reduce user/OS branch aliasing without
adding extra hardware for branch de-aliasing. They consume
equivalent or less resource than a conventional predictor.

3.3 Integrating OS-aware]Prediction
Techniques with other Predictors

Splitting user and kernel prediction resources is a technique
suggested by our characterization study, not necessarily a
particular predictor. We surveyed literature to identify branch
predictors, which may be poised to handle branches with the
characteristics unveiled in the earlier sections. Although not
targeted for user/OS branch interference, Multi-Hybrid [7], Agree
[25] and Bi-Mode [10] schemes do contain mechanisms tailored
for branches with heterogeneous characteristics and/or de-aliasing.
Table 5 summarizes these schemes, and the additional cost used
for branch de-aliasing. The sizes of all the predictors are
normalized to Gshare to give an indication of the associated
hardware cost.

All these predictors contain a Gshare predictor or a. Gshare
indexing [7][25][10]. To integrate the proposed techniques, we
simply replace the conventional Gshare component used in the
above predictors with the proposed OS-aware split-BHSR Gshare
predictor and split Gshare predictor.

Table 6a shows the average (of the 13 studied benchmarks)
misprediction rates of each baseline predictor and the percentage
of misprediction reduction by incorporating the OS-aware
techniques proposed in this paper. Table 6b further illustrates the
breakdown of the misprediction reduction in user and OS parts, for
each individual benchmark.

As described in subsection 3.1, split BHSR predictor only
separates the branch history shift registers. The partitioning of the

74

BHT for user or OS happens dynamically. The resource available
for the code is not less than that in the baseline. Hence, split BHSR
predictor is never inferior to the baseline. Split predictor is at times
worse than the baseline. In split predictor, the partitioning of the
BHT between user and kernel code is done statically. Both the user
and kernel BHTs are smaller than the unified BHT in the baseline
confignration. In the configurations studied in this paper, the U-
BHT is only 50% of the baseline BHT, and the K-BHT is fixed at
2K entries in all cases. Hence, the overall size of the split predictor
BHT is not much greater than 50% of the BHT in the baseline. A
2K K-BHT is seen to be sufficient to capture all history patterns in
the OS code and except in postgres.update, the mispredictions in
OS code goes down. For the user part, the small size of the U-BHT
(4K BHT entries) can detrimentally affect the performance on
benchmarks compress, gcc, pmake, postgres.select and
postgres.join.

On the average, with a 32K BHT entries Gshare, incorporating
OS-aware split BHSR predictor and split predictor reduces 34%

and 22% of the misprediction. OS-aware predictions also reduce
the misprediction of Multi-Hybrid, Agree and Bi-Mode predictors.
For instance, compared with the 32K BHT entries baseline
predictors, OS-aware Multi-Hybrid, Agree and Bi-Mode predictors
yield up to 23%, 27% and 9% prediction accuracy improvement
respectively, implying that OS-aware predictions still provide
significant improvements on some of the most powerful predictors.

As shown in Table 6a and Table 6b, split BHSR predictor
outperforms split predictor on most of the de-aliasing predictors
we examined. Considering overall performance, in more than half
the cases, the performance gain due to the elimination of user/OS
aliasing by split predictor outweighs the performance loss due to
individually using smaller prediction tables for each part. More
precisely, for example, the OS-aware split predictor reduces 22%
of misprediction on a conventional Agree predictor of 32K BHT
entries, using only 18K entries BHT consisting o fa 16K entries U-
BHT and a 2K entries K-BHT.

Table 5. A Comparison of Several Branch De-aliasing Schemes

Predictor

Gshare [14]

Multi-Hybrid I, 2 [7]

Agree [25]

Bi-Mode [10]

OS-aware split BHSR
predictor [this paper]

OS-aware split
predictor [this paper]

Description of Feature to Exploit
Heterogeneous Branches or De-aliasing

Consists of one correlation shift register (BHSR) and one BHT. BHSR
is XORed with branch address bits of a branch address to index BHT
entries. The XORing helps to reduce aliasing effects.
Consists of multiple single-scheme components: simple 2-bit (2be),
GAs., Gshare, Pshare and-always taken predictor. Use of simple 2-bit
predictors (2be) and static predictors as components of the Multi-
Hybrid predictor provides qmck warm up after a context switch.
Converts instances of destructive aliasing into either constructive or
n.eutral ali~sing by attaching, each branch with a biasing bit that predicts
the most liKeq outcome ot that branch.
Uses separate history tables for taken and not-taken branches, and a
selection branch history table. This classification helps to alleviate
destructive aliasing while keeping the harmless aliasing together.
OS-aware Gshare predictor uses separate shift registers (U-BHSR and
K-BHSR) for capturing path history patterns.

OS-aware Gshare predictor that uses separate branch history tables for
user and kernels. Kernel BHT is 2K and User BHT is 50% of Gshare.

~Additional
Branch De-

aliasing
Hardware

Predictor
Size

Normalized
to Gshare
(8k-256k)

0 !

5x2K predictor
selection 1.04-2.25
counters in BTB

2K biasing bits
in BTB 1-1.13

the third BHT
for dynamic bias
selection

1 shift register

consumes less
BHT resource
than Gshare

1.5

0.51-1

1. Our simulated Multi-Hybrid does not include AVG predictor [3] because it needs source recompilation which oRen is difficult for commercial and
complicated software like OS and JVM.
2. As indicated by [7], we allocate half of the total budget for Gshare, a quarter of the total budget for Pshare, and 1/8 for 2be and GAs respectively. The
priority ordering of the component predictors is 2bc, GAS, Gshare, Pshare and always taken scheme.

Table 6a. Misprediction Reduction by Introducing OS-aware Prediction

Schemes Metric

Gshare+OS-aware Split BHSR Predictor
Gshare+OS-aware Split Predictor
Multi-Hybrid
Muiti-Hybrid+OS-aware Split BHSR Predictor
Multi-Hybfid+OS-aware Split Predictor
Agree
Agree+OS-aware Split BHSR Predictor
Agree+OS-aware Split Predictor
Bi-Mode
Bi-Mode+OS-aware Split BHSR Predictor
Bi-Mode+OS-aware Split Predictor

Size (Number of BHT entries, not including de-
aliasing overhead)

8k 16k 32k 64k 128k 256k

Misprediction(in %) 14.03 12.35 10.89 9.64 8.66 8.00
% of Misprediction Reduction 31% 33% 34% 32% 31% 29%
% of Misprediction Reduction 20% 24% 22% 20% 17% 15%
Mispredietion(in %) 10.87 9.53 8.58 7.66 6.96 6.30
% of Misprediction Reduction 21%' 22% 23% 23% 22% 22%
% of Misprediction Reduction 13% 12% 13% 11% 10% 8%
Misprediction(in %) 12.59 11 .41 10.46 9.66 9.13 8.78
% of Misprediction Reduction 27% 27% 27% 26% 25% 24%
% of Misprediction Reduction 19~ 22% 22% 20% 20% 19%
Misprediction(in %) 7.70 6.95 6.42 6.07 5.79 5.57
% of Misprediction Reduction 10% 9% 9% 9% 9% 9%
% of Misprediction Reduction 4% 2% 1% 1% 0% 0%

75

Table 6b. Breakdown of Misprediction Reduction by Introducing OS-aware Prediction (8K BHT Entries0

Benchmarks

Schemes and % of Misprediction
Multi-Hybrid
+ OS-aware

SiT lit
SR

Predictor
Split

Predictor

User 20% 15%
db OS 7% 11%

Full-System 16% 14%

jess

javac

jack

mtrt

compress

User
OS.

31%
12%

25%
15%

Full-System 28% 23%
User 20% 13%
OS 10%
Full-System
User
OS
Full-System
User
OS
Full-System
User
OS
Full-System
User
OS
Full-System
User
OS

gcc

vortex
Full-System
User

18%
47%
29%
46%
27%
15%
25%
10%

Gshare
+ OS-aware

BSl~lit Split
SR Predictor Predictor

28% 23%
28% 8%
28% 19%
39% 31%
52% 42%
42% 34%
28% 19%
40% 36%
30% 22%
57% 47%
79% 82%
61% 53%
27% 15%
60% 59%
31% 20%
11% -27%
43% 29%
12% -25%
16% 2%
46% 55%
18% 5%
76% 63%
96% 97%
78% 68%

8% -6%
11% 2%
8% -4%
5% 3%
5% 0%
5% 1%

56% 45%
27% 8%
45% 30%
35% 30%
14% -10%
27% 14%
12% -6%
42% 32%
14% -4%

7%
10%
10%
3%

10%
71%
30%
70%

4%
2%
4%
1%

pmake OS
Full-System

20%
14%
39%
49%
40%
19%
23%
19%
-3%
11%

1%
-1%
26%

0%
48%
54%
48%

-11%
8%

-8%
0% User

sendmail OS 3% 1%
Full-System 2% 0%
User 47% 12%
OS
Full-System
User
OS

postgres.select

postgres.update

17%
35%
25%

6%
17%
8%

15%
9%

postgres.join

Full-System
User
OS
Full-System

22%
16%
24%

6%
17%
-1%
26%

0%

Reduction
Agree

+OS-aware

B S l • l i t Split SR
Predictor Predictor

21% 17%
15% 7%
20% 16%
34% 27%
44% 36%
36% 29%
24% 17%
42% 41%
27% 21%
51% 42%
64% 70%
53% 46%
20% 11%
49% 48%
22% 15%

7% -30%
19% 12%
7% -29%

12% 2%
62% 68%
15% 7%
73% 65%
98% 99%
78% 72%

6% -7%
7% ! 3%
6% -5%
3% 2%
3% 2%
3% 2%

50% 48%
26% 29%
40% 40%
25% 25%

9% 17%
19% 22%
10% -6%
35% 44%
12% -3%

Bi-Mode
+ OS-aware

BSl~lit Split SR
Predictor Predictor

9% 8%
7% 10%
8% 8%

13% 8%
13 % 20%
13% 10%
8% 4%
9% 18%
8% 6%

21% 13%
43% 53%
23% 17%

7% 4%
19% 27%
8% 6%
3% 2%
8% 13%
3% 3%

10% -1%
14% 31%
10% 1%
35% 28%
67% 77%
37% 31%

4% -6%
3% 8%
4% -4%
2% 1%
2% 2%
2% 2%

36% -34%
14% 13%
26% -14%
23% 21%

5% 5%
16% 15%
3% -6%

26% 34%
4% -5%

3.4 Performance Evaluation

We evaluate the benefits of integrating the above predictors with
OS-aware predictions on a dynamically scheduled superscalar
processor using a full-system simulator that captures OS behavior
as well. Table 7 summarizes the configuration of the simulated
machine architecture. We use SimOS MXS model [2], which
simulates a superscalar microprocessor with multiple instruction
issue, register renaming, dynamic scheduling, and speculative
execution with precise exceptions. The simulated architectural
model is an 8-issue superscalar processor with instruction latencies
as in the MIPS R10000 [28]. By default, the branch prediction
algorithm allows fetch unit to fetch through up to 4 unresolved
branches. In our model, a misprediction will cause a 10-cycle

penalty. BHSR is speculatively updated and later corrected after a
misprediction. BHT counter update takes place in order at
instruction commit time.

Figure I0 shows the IPC improvement for this scenario. Since
instruction counts are the same, IPC improvement is indicative of
execution cycle improvement. Results are depicted for the 13
evaluated programs. Comparison of predictors integrating OS-
aware prediction techniques with Gshare, Multi-Hybrid, Agree and
Bi-Mode predictors is presented. The scale of Y-axis is varied for
each benchmark due to their differences in IPC. Split BHSR
predictors improve IPC performance on all of the benchmarks for
all of the four types of base predictors. This benefit is particularly
substantial in those programs where user/OS aliasing is significant,
such as jess,jack; vortex, and postgres.update (as was illustrated in

76

Figure 1). The same trend can be observed in programs such as
javac and db. For those programs Where the impact of user/OS
aliasing on misprediction is less significant (for instance, compress
and pmake), the integration of OS-aware techniques shows only
limited improvement.

Integration of split predictor results in improvement in many cases,
even though the predictor size is not much more than 50% of the
baseline predictor. In most of the cases in Gshare, Multi-Hybrid
and Agree predictors, despite the small size, split predictor still

results in improvement. In the case of the Bi-Mode predictors, split
predictor-integrated case is inferior to the baseline for 5 of 13
benchmarks. However, if one compares them to a baseline that is
comparable in size (i.e., 16K BHT entries), OS-aware split
predictor with 18K BHT entries (16K U-BHT + 2K K-BHT)
outperforms 16K BHT entries baseline predictor in all cases,
resulting up to 10% of IPC speedup [12].

1.7

1"65I~ ~ ~ ~
~ 1.6
1.55
1.5 , 32K BHT Entries
1.6 ~ jack _

1":: I I-'~ m~ ,
32K BHT Entries

1.5
1.45 gcc

1"4 I ['-~ ~I~ ~ • I.35 1.3 1.25 1.2
32K BHT Entries

1.5

1.45
.1 .4

1.35

1.3

1.7

1.65
• 1.6
1,55

1.5

sendmail

32K BHT Entries

postgres.join

32K 13HT Entries

1.6 1.7
1.55 jess l ~ a ~ ~ ~

1 . 4
1 . 5 5

1 . 3 5

1.3 , 1.5
32K BHT Entries 32K BHT Entrles

compress

1.85 1.75
1.8 , 1.7 , ,

32K BHT Entries 32K BHT Entries
1.8 1.8

1.75 vortex 1.75 pmaKe

1 " 7 I ~ ~ J ~ ~ 1"7 ~ ~ ~ l ~ '~.55 '~.s5
1.6 1.6

1.55 1.55

1.5 1.5
32K BHT Entries

1.4
postgres.select

1.35

1.25
1.2

32K BHT Entries
D Gshare
• Gshare+Split BHSR Predictor
B Gshare+Split Predictor
m Multi-Hybrid
[] Multi-Hybrid+Split BHSR Predictor
• Multi-Hybrid+ Split Predictor
[] Agree
[] Agree+Split BHSR Predictor
• Agree+ Split Predictor
[] Bi-Mode
[] Bi-Mode+Split BHSR Predictor
m Bi-Mode+ Split Predictor

1.3

1.25

• 1.2

1.15

1.1

32K BHT Entries
postgres.update

32K BHT Entries

[] Gshare
[] Gshare+Split BHSR Predictor
[] Gshare+Split Predictor
Q Multi-Hybrid
[] Multi-Hybrid+Split BHSR Predictor
[] Multi-Hybrid+Split Predictor
Q Agree
[] Agree+Split BHSR Predictor
[] Agree+Split Predictor
[] Bi-Mode
[] Bi-Mode+Split BHSR Predictor
[] gi-Mode+Split Predictor

[] Gshare
[] Gshare+Split BHSR Predictor
[] Gshare+Split Predictor
[] Multi-Hybrid
[] Multi-Hybrid+Split BHSR Predictor
• Multi-Hybrid+ Split Predictor
[] Agree
i Agree+Split BHSR Predictor
• Agree+ Split Predictor
[] Bi-Mode
[] • i -Mode+Spli t BHSR Predictor
[] Bi-Mode+ Split Predictor

[] Gshare
[] Gshare+Split BHSR Predictor
[] Gshare+Split Predictor
[] Multi-Hybrid
[] Multi-Hybrid+Split BHSR Predictor
[] Multi-Hybrid+ Split Predictor
[] Agree
B Agree+Split BHSR Predictor
• Agree+ Split Predictor
[] gi-Mode

gi-Mode+Split BHSR Predictor
[] Bi-Mode+ Split Predictor

D Gshare
[] Gshare+Split BHSR Predictor

Gshare+Split Predictor
[] Multi-Hybrid
Q Multi-Hybrid+Split BHSR Predictor
• Multi-Hybrid+ Split Predictor
[] Agree
s Agree+Split BHSR Predictor
• Agree+ Split Predictor
[] Bi-Mode
[] Bi-Mode+Split BHSR Predictor
[] Si-Mode+ Split Predictor

Figure 10. IPC Improvement of OS-aware Predictors

Compared with a Gshare predictor, the two proposed techniques -
split BHSR predictor and split predictor yield up to 8% and 7% of
IPC improvement respectively. This improvement is a result of the
removal of aliasing mispredictions.

The integration of OS-aware prediction into Multi-Hybrid
predictor yields up to 5% of IPC gain. As described earlier, Multi-
Hybrid allocates the largest prediction resource to its Gshare
component and its overall prediction accuracy is more impacted by
Gshare than any other predictor. Hence, the replacement of the

77

conventional Gshare with the proposed OS-aware Gshare
predictors improves performance.

By introducing OS-aware prediction on the Agree predictor, up to
7% of IPC improvement can be achieved. The performance of
Agree predictor is largely dependent on branch biases and
possibility of identifying the biased behavior the first time the
branch is introduced into the BTB [18]. If the branch does not
show strongly biased behavior, there is still frequent aliasing
between instances of a branch that do not comply with the biasing
bit and instances which do comply with the biasing bit. Once we
incorporate OS-aware predictions into the Agree predictor, the
filtering out of the visible portion of weakly biased kernel branches
leads more U-BHT entries to reach "agree" status.

Table 7. Simulated Machine Architecture

Processor Core
Fetch/Decode/Issue/Retire
Width
Instruction Window Size
Reorder Buffer Size
Number of Function Units
Latency of Function Units
Branch Target Buffer
(BTB)

Return Address Stack

Misprediction Penalty
Load Store Queue Size

8

128
128
2xlssue Width
MIPS R10000 Like

2048-entry, 4-way

32-e.ntry w/misprediction
repmr
10 cycles
64

MMU

L1 I-Cache

L1 D-Cache

L2 Cache

Memory

Memory Hierarchy
Fully associative TLB, 48-
entries, 4KB page size
32KB, 2-way(LRU), 64B
blocks, 4MSHRs, 2 ports, 1
cycle latency
32KB, 2-way(LRU), 32B
blocks, 4MSHRs, 2 ports, 1
cycle latency
1MB, 2-way(LRU), 128B
blocks, 4MSHRs, 2 ports, 10
cycle latency
256MB, 60-cycle access

The IPC improvement of OS-aware Bi-Mode is marginal (1%), but
it should be noted that the OS-aware Bi-Mode consumes only
equivalent or less resource to achieve this performance
enhancement. Thus, OS-aware prediction leads to the same
performance with less hardware.

The results shown in Figure 10 also indicate that the combination
of the OS-aware prediction and a simple predictor (for instance,
Gshare) can outperform sophisticated predictors (e.g., Multi-
Hybrid and Agree) with larger size configuration.

In summary, architectural support for specific OS branch behavior
can enhance prediction performance without increasing predictor
size or complexity. Current and next generation microprocessors
are becoming increasingly sensitive to branch prediction accuracy
due to the use of deeper pipelines and wider issue
microarchitecture. The proposed techniques are expected to yield

more ILP performance benefit on aggressive implementations with
higher mispredicfion penalties.

3 . 5 D i s c u s s i o n

We motivated the research in this paper using Figure 1, which
showed that kernel interference increases user misprediction from
l . l x to 6x (with an average of 2.1x). Similarly, we observed that
user interference increases OS mispredicfion from 1.3x to 129x
(with an average of 13x) [12]. In this subsection, we revisit this
characterization in the presence of the OS-aware prediction.

n | '~ EIImlnab)d by Spilt BHSR Predictor
• Extra Caused byOS E~cutlon 101 i i °u.,oo

i S r-- ~ ! ! : :... "'!
s i i:'"' 'i i: :"~!'" ' '~"~ : :i"~:--.

. ~ i ~ i ! i i : : " ' "

Benchmark(GsharePredlctorSIze) ~ i i

(a)User
14 ~ ,~?EIImlnatedbySplltBHSRPredlctor I

J I III Exb'a Caused by UNr Emcutlon I

i"l ' °° '° ' ' ° '' -- 0 .

Benchnmrk(GsharePredlctorSIze) ~ ~ ~

(b)OS
Figure 11. Impact of User/OS Execution

on OS-aware Split BHSR Predictor
Figure 11 illustrates the impact of user/OS execution on branch
prediction after OS-aware split BHSR predictor is integrated with
Gshare. Compared with Figure 1, OS-aware split BHSR predictor
significantly reduces the negative impact of user/OS interference
on branch prediction, resulting in the drop of mispredictions from
2.1x to 1.2x and from 13x to 2x in user and OS space respectively.

As described in subsection 3.1, split BHSR predictor reduces the
mispredietion by providing interference free branch history for
both user and kernel sides. In order to investigate the impact of the
initial state of the K-BHSR when switching to the OS mode from
the user mode, an experiment is performed with a variant of split
BHSR predictor where the K-BHSR is cleared out upon an OS call
is made. We compare the misprediction rates of a baseline split
BHSR predictor with this variant of split BHSR predictor scheme.
As shown in Table 8, the split BHSR predictor with K-BHSR
zeroing out on an OS call provides similar performance result with
that of a baseline split BHSR predictor, implying that removing the
interference in the predictor state bettween user and kernel modes is
more important than really figuring out what state to leave the
predictor in when entering the kernel.

Table 8. Effect of Zeroing out K-BHSR in Split BHSR Predictor

jess postgres postgres posts db javac jack mtrt compress gee vortex pmake sendmail (select) (update) (joi

Baseline 3.45 5.09 4.9~ 3.15 2.7.' 2.68 8.4~ 1.69 6.01 8.80 1.7C ~ 4.16
with K-BHSR Zeroing out 3.4C 5.12 5.01 3.13 2.72 2.74 8.42 1.69 6.03 9.02 1.65 4.15

78

Similarly, Figure 12 revisits the impact of user/OS on branch
misprediction after an OS-aware split predictor is integrated.
Compared with Figure 1, OS-aware split predictor cost-effectively
reduces the negative impact of kernel code on branch
misprediction in user part. The misprediction reduction by OS
interference removal outweighs the extra misprediction caused by
using less (50%) BHT resource on all benchmarks except pmake.
In the OS part, the fixed size 2K K-BHT still outperforms the
performance of a unified 16K BHT on benchmarks jess, javac,
jack, mtrt, gcc and vortex.

~. 12 / .- [,.'~*ElirdnatedbySIHIt'Predlcto¢
10-[: ' I l E x l x a C a u s e d b y L e N (5 0 %) g - B f f r

¢ 8 -I i : " : : ' " M J " U s e r Only . .

o 6 ' . : : : : : : : ~ i : ~ ,

: l

(a)User
18 ~.~' Eliminated by Split Predlcto¢
14T--1 I IE, xtra Caused bi/Fixed 2K K-BHT I mm

I ~ 0 2 t l ~ OS Only [II
$,. . . V' i

4 i : : " : r " : i :~ : i , mmm~m~m~M..mi~im| miall . . O .
31

Benchm,rk(CImare Predictor Size) ~ ~

(b)OS
Figure 12. Impact of User/OS Execution

on OS-aware Split Predictor

4. S U M M A R Y AND CONCLUSION

Control flow prediction is one of the key issues in the design of
high performance processors. It is extremely important that
processor hardware, software and the operating system collaborate
with each other to deliver high performance. The operating system
affects control flow predictability by introducing the additional
user/OS branch aliasing in predictor hardware. Compared to the
branches in user code, the OS branches are usually invoked by the
exception-driven and intermittently executed kernel routines and
may have different biased behavior caused by performing
operations not common in user mode. Thus, when interacted with
user branches, the OS branches increase misprediction
significantly. Current branch predictors have paid less attention to
the OS requirements and therefore, do not contain mechanisms to
specifically alleviate the user/OS aliasing.

This paper focuses on understanding and improving the control
flow predictability in the light of the OS code. Having
characterized kernel and user branch execution behavior and
quantified their impact on misprediction rates of a commercial OS,
we propose OS-aware branch prediction designed to reduce
user/OS branch aliasing without adding extra hardware for branch
de-aliasing.

The proposed OS-aware prediction is a technique that advocates
orchestrating branch correlation information and/or branch history

information for user and kernel branches individually. The
proposed OS-aware prediction can be incorporated into many
other predictors, ranging from a naive Gshare to the more
sophisticated Multi-Hybrid, Agree and Bi-Mode predictors, to
further improve prediction accuracy. More precisely, on the 32K
BHT entries predictors, incorporating OS-aware strategies into
previously proposed CGshare, Multi-Hybrid, Agree and Bi-Mode
predictors yields up to 34%, 23%, 27% and 9% prediction
accuracy improvement and up to 8%, 5%, 7% and 1% execution
speedup respectively. Simulation results also show that the
combination of the OS-aware prediction and a simple predictor
(for instance, Gshare) can outperform sophisticated predictors
(e.g., Multi-Hybrid and Agree) with larger size configuration.

OS-aware techniques improve prediction performance by cost-
effectively alleviating the user/OS branch aliasing. Moreover, it
provides opportunities for catering user and kernel branches with
differently tuned structures. For example, compared with a
conventional design, the OS-aware split predictor requires access
to only one of the smaller prediction tables for a given branch
instruction mode (OS or user), which can result in energy savings
and low-latency access. These advantages are valuable in the light
of power and clock frequency constraints in emerging processor
and branch predictor designs [9][17]. In our future work, we plan
to model the energy consumption and the access latency of the OS-
aware branch predictors.

Historically, privilege bits are used to protect system critical
resources such as page tables and process control blocks for
security purposes. The results of our study show that on a fine-
grained resource sharing superscalar microprocessor, the
protection of performance-critical microarchitecture hardware,
such as branch prediction tables, also is important. It is likely that
future high-end microprocessors will aggressively support more
predictions (e.g. value prediction). Further research is needed to
investigate the benefit of OS-aware microarchitecture on these
predictors.

5. A C K N O W L E D G M E N T S

We would like to thank Steven K. Reinhardt (University of
Michigan), David Wood (University of Wisconsin) and all
anonymous reviewers for their insightful comments and
suggestions. We thank Xiaodong Zhang, Zhao Zhang and Zhichun
Zhu (College of William & Mary) for their help in setting up the
postgres database. This research is supported by the National
Science Foundation under grant numbers 0113105, 9807112,
0103583, 9988164, 0073419 and CAREER 0093085, by a State of
Texas Advanced Technology program grant, by a grant from
GSRC, and by Tivoli, Motorola, Intei, IBM and Microsoft
Corporations.

6. REFERENCES

[1] T.E. Anderson, H. M. Levy, B. N. Bershad, E. D. Lazowska,
The Interaction of Architecture and Operating System Design,
In Proceedings of the fourth International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 108-120, 1991.

79

[2] J. Bennett and M. Flynn, Performance Factors for Superscalar
Processors, Technical Report CSL-TR-95-661, Computer
Systems Laboratory, Stanford University, Feb. 1995.

[3] P. Chang and U. Banexjjee, Profile-guided Multi-heuristic
Branch Prediction, In Proceedings of the International
Conference on Parallel Processing, 1995.

[4] P.Y. Chang, M. Evers, and Y. Patt, Improving Branch
Prediction Accuracy by Reducing Pattern History Table
Interference, In Proceedings of International Conference on
Parallel Architectures and Compilation Techniques, pages 48-
57, 1996.

[5] K. Diefendorff, HP, Intel Complete IA-64 Roilout,
Microprocessor Report, pages 1-9, Apr. 2000.

[6] A.N. Eden and T. Mudge, The YAGS Branch Prediction
Scheme, In Proceedings of the 31 st Annual ACM/IEEE
International Symposium on Microarchitecture, pages 69-77,
1998.

[7] M. Evers, P. Y. Chang and Y. N. Patt, Using Hybrid Branch
Predictors to Improve Branch Prediction Accuracy in the
Presence of Context Switches, In Proceedings of the 23rd
Annual International Symposium on Computer Architecture,
pages 3-11, 1996.

[8] N. Gloy, C. Young, J. B. Chen and M. D. Smith, An Analysis
of Dynamic Branch Prediction Schemes on System
Workloads, In Proceedings of the 23rd Annual International
Symposium on Computer Architecture, pages 12-21, 1996.

[9] D.A. Jimdnez, S. W. Keckler, and C. Lin, The Impact of
Delay on the Design of Branch Predictors, In Proceedings of
the 33rd Annual International Symposium on
Microarchitecture, 2000.

[10] C. C. Lee, I. C. K. Chen, and T. Mudge, The Bi-Mode Branch
Predictor, In Proceedings of the 30th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 4-13,
1997.

[11] T. Li, L. K. John, N.Vijaykrishnan, A. Sivasubramaniam, J.
Sabarinathan and A.Murthy, Using Complete System
Simulation to Characterize SPECjvrn98 Benchmarks, In
Proceedings of ACM International Conference on
Supercomputing, pages 22-33, 2000.

[12] T. Li, L. K. John, A. Sivasubramaniam, N.Vijaykrishnan and
J. Rubio, Understanding and Improving Operating System
Effects in Control Flow Prediction, Technical Report,
Department of Electrical and Computer Engineering,
University of Texas at Austin, June 2002.
http://www.ece.utexas.edu/proj eets/ece/lca/ps/tao-TR-june-
2002.pdf.

[13] T. Lindholm and F. Yellin, The Java Virtual Machine
Specification, Second Edition, Addison Wesley, 1999.

[14] S. McFarling, Combining Branch Predictors, WRL Technical
Note TN-36, Digital Equipment Corporation, June 1993.

[15]P. Michaud, A. Seznec and R. Uhlig, Trading Conflict and
Capacity Aliasing in Conditional Branch Predictors, In
Proceedings of the 24th International Symposium on
Computer Architecture, pages 292-303, 1997.

[16] J. Ousterhout, Why aren't Operating Systems Getting Faster
as Fast as Hardware?, In Proceedings of the Summer 1990
USENIX Conference, pages 247-256, 1990.

[17] Parikh, K. Skadron, Y. Zhang, M. Barcella, and M. Stan,
Power Issues Related to Branch Prediction, In Proceedings of
8th International Symposium on High Performance Computer
Architecture, 2002.

[18] C. Perleberg and A. Smith, Branch Target Buffer Design and
Optimization, IEEE Transactions on Computers, 42(4): pages
396.-412, 1993.

[19] "PostgreSQL", http://www.us.postgresql.org/.

[20] J. A. Redstone, S. J. Eggers and H. M. Levy, An Analysis of
Operating System Behavior on a Simultaneous Multithreaded
Architecture., In Proceedings of the 9th International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 245-256, 2000.

[21] M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchei, A.
Gupta, The Impact of Architectural Trends on Operating
System Performance, In Proceedings of the 15th ACM
Symposium on Operating System Principles, pages 285-298,
1995.

[22] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta,
Complete Computer System Simulation: the SimOS
Approach, IEEE Parallel and Distributed Technology:
Systems and Applications, voi.3, no.4, pages 34-43, Winter
1995.

[23] S. Sechrest, C-C. Lee, and T. Mudge, Correlation and
Aliasing in Dynamic Branch Predictors, In Proceedings of the
23rd Annual International Symposium on Computer
Architecture, pages 22-32, 1996.

[24] SPEC JVM98 Benchmarks, http://www.spec.org/osg/jvm98/.

[25] E. Sprangle, R. S. Chappeil, M. Alsup and Y. N. Patt, The
Agree Predictor: A Mechanism for Reducing Negative Branch
History Interference, In Proceedings of the 24th ~Smnual
International Symposium on Computer Architecture, pages
284-291, 1997.

[26] M. Stonebraker, L. A. Rowe and M. Hirohama, The
Implementation of Postgres, IEEE Transactions on
Knowledge and Data Engineering, 2(1), March 1990.

[27] Transaction Processing Council, The TPC-C Benchmark,
http://www.tpc.org/tpce/.

[28] K. C. Yeager, MIPS R10000, IEEE Micro, vol. 16, no. 1,
pages 28-40, Apr. 1996.

[29] T. Y. Yeh and Y. N. Patt, Two-Level Adaptive Branch
Prediction, In Proceeding of 24th International Symposium
on Microarchitecture, pages 51-61, 1991.

[30] T. Y. Yeh and Y. N. Patt, A Comparison of Dynanaic Branch
Predictors that Use Two Levels of Branch History, In
Proceedings of the 20th Annual International Symposium on
Computer Architecture, pages 257-266, 1993.

[31] C. Young, C. Gloy and M. D. Smith, A Comparative Analysis
of Schemes for Correlated Branch Prediction, In Proceedings
of the 22nd Annual International Symposium on Computer
Architecture, pages 276-286, 1995.

[32] Y. Zhang, J. Zhang, A. Sivasubramaniam, C. Liu and H.
Franke, Characterizing TPC-H on a Clustered Database
Engine from the OS Perspective, In Proceedings of the
Workshop on Computer Architecture Evaluation using
Commercial Workloads (CAECW-02), 2002.

80

