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ABSTRACT 
Many modern applications result in a significant operating system 
(OS) component. The OS component has several implications 
including affecting the control flow transfer in the execution 
environment. This paper focuses on understanding the operating 
system effects on control flow transfer and prediction, and 
designing architectural support to alleviate the bottlenecks. We 
characterize the control flow transfer o f  several emerging 
applications on a commercial operating system. We find that the 
exception-driven, intermittent invocation of  OS code and the 
user/OS branch history interference increase the misprediction in 
both user and kernel code. 

We propose two simple OS-aware control flow prediction 
techniques to alleviate the destructive impact of  user/OS branch 
interference. The first one consists o f  capturing separate branch 
correlation information for user and kernel code. The second one 
involves using separate branch prediction tables for user and 
kernel code. We study the improvement contributed by the OS- 
aware prediction to various branch predictors ranging from 
simple Gshare to more elegant Agree, Multi-Hybrid and Bi-Mode 
predictors. On 32K entries predictors, incorporating OS-aware 
techniques yields up to 34% 23% 27% and 9% prediction 
accuracy improvement in Gshare, Multi-Hybrid, Agree and Bi- 
Mode predictors, resulting in up to 8% execution speedup. 

1. INTRODUCTION 
Every once in a while in systems research, we come to the point 
where we need to evaluate how well is the hardware suited for a 
given application, how well is it accommodating the operating 
system (OS), and how well is the application exploiting an OS's 
capabilities. Such issues are extremely important in order to fine 
tune system performance since we find that the three subsystems - 
application (workload), OS and hardware - are constantly 
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evolving, and many times quite independently [ 1 ]. 

The nature and diversity of workloads have seen substantial 
changes that we need to go back to understanding file interplay of 
the three subsystems based on these new workloads. In particular, 
we note the growing importance of the OS in emerging application 
environments, with OS services being invoked much more often. 
Several recent studies [22][20] have reported high operating 
system contribution to the overall execution time. In commercial 
applications such as databases and web services, the OS 
component has been observed to reach as high as 55% of the 
execution time in some of the workloads considered in this paper. 
Li et al. [II]  also report higher OS involvement in Java 
applications compared to traditional SPEC workloads. The reason 
for the higher OS involvement in all these emerging environments 
is because the applications are in general multi.-threaded and 
exercise the I/O subsystem much more extensively. This trend is 
likely to continue in the near future and it is very important to 
consider the operating system not only for coraplete system 
evaluations as other studies have pointed out [21], but also when 
attempting to optimize the hardware and/or the application [32]. A 
detailed characterization of the interactions between the 
application-OS-hardware can have considerable ramifications in 
the design of each system component, and this paper takes a step in 
that direction. 

We focus on one specific issue that has long been considered an 
important issue for performance optimization of state-of-the-art 
processors - control flow prediction. Current high performance 
processors provision aggressive support for Instruction Level 
Parallelism (ILP) and have deep pipelines to keep cycle times low. 
The delivered ILP and pipelining performance: is critically 
dependent on being able to accurately predict the control (branch) 
flow in the program, so that we can execute more useful 
instructions and avoid stalling/squashing the pipeline. 

Branch predictors for control flow prediction have been studied 
extensively with different programs [29][31 ][23][ 1511 and also with 
OS effects [8]. The OS affects control flow predictability by 
introducing the additional user/OS b r o t h  aliasing in branch 
predictor tables. The negative impact of kernel branches on branch 
prediction has been reported in [8]. We also find that kernel code 
nearly doubles the misprediction rates in 7 out of 13 of our 
benchmarks in a Gshare predictor (Figure 1). 

Branch aliasing characterization shows that user/OS aliasing 
contributes to up to 24% of all misprediction and 46% of aliasing 
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mispredicfion in the benchmarks studied in this paper. While 
eliminating all branch prediction aliasing is not trivial, it is our 
belief that the destructive user/OS part can be alleviated with 
appropriate architectural support. There are numerous branch 
predictors that have been proposed to address different situations 
[30][14][7][25][10][4][15][6]. These prediction mechanisms have 
paid less attention to the OS requirements and no particular 
scheme was proposed on tuning control flow prediction hardware 
for the OS. Our intention in this paper, however, is not to propose 
a new predictor to add to this list. Rather, it is to understand the 
fundamental nature of the user/OS interference and suggest simple 
and cost-effective optimizations that one can incorporate into any 
predictor to alleviate the impact of the OS activity on the control 
flow prediction. 

12 i I • ExVa Caused by OS Execu~n 
10/ B / D User Only 

. . . .  -~ ~>0  s o  

OenchmarqGahare Predictor Size) ~ ~ ~ R 

Figure 1. Impact of User/OS Execution on Branch Prediction 

Adhering to this philosophy, we investigate what causes the 
execution of a spectrum of applications with significant OS 
involvement to give worse branch prediction in the user and kernel 
modes by characterizing their execution using complete system 
simulation. This investigation shows that the interference between 
the branches in the user and kernel modes is leading to this poor 
performance. User and kernel branches have different 
characteristics (such as the direction bias) that cause the history 
information used by the predictors - and shared by both the user 
and kernel - to become polluted. Such pollution would not have 
happened if we had a separate predictor for each mode. 

These observations lead us to advocate separating out branch 
prediction logic for user and kernel modes. By doing this, we are 
reducing the interference between the two. This approach can be 
easily integrated into existing prediction schemes without 
significantly complicating the logic. Separating resources for OS to 
reduce the user/OS interference exists for other resources (e.g., 
TLB, memory etc.). However, to our knowledge, this paper 
presents the first study and quantitative analysis on orchestrating 
control flow prediction resources for OS. 

The rest of this paper is organized as follows. In section 2, we 
characterize OS branch behavior in different applications. We also 
quantify the effect of user/OS branch aliasing or interference ]. 
Section 3 introduces OS-aware prediction designed specifically to 
reduce user/OS branch aliasing and evaluates the improvement 
contributed by the OS-aware techniques to various branch 
prediction strategies. Finally, conclusions are provided in Section 
4. 

] We use the terms branch aliasing and branch interference 
interchangeably in this paper. 

2. CHARACTERIZING OS BRANCH 
BEHAVIOR 
In this section, we use simulation of complete system activity to 
characterize OS branch execution and evaluate its impact on 
branch predictability. We use the SimOS [22] full system 
simulation environment and select thirteen benchmarks with 
significant OS involvement. We provide a brief overview of the 
selected applications. A set of six Java applications from the 
SPECjvm98 [24] suite (sl dataset) is executed using a commercial 
JDK [13] from Sun Microsystems simulated on top of IRIX 5.3. 
Vortex is a database manipulation code and gcc is a compiler code 
from the SPECint95 benchmark suite. Pmake is a program 
development workload that is a variant of the compiled phase of 
the modified Andrew benchmark employed in [21]. The sendmail 
benchmark forwards email messages to local accounts on the 
system using the Simple Mail Transport Protocol (SMTP). The 
sizes of the messages vary from 1K to 1.5M. We also use three 
benchmarks that use PostgreSQL [19][26], a relational database 
management system (DBMS). The database is populated with 
relational tables for the TPC-C benchmark [27]. We evaluate the 
execution of three specific queries on this data set: a sequential 
table scan of a table with 1 million rows and a selectivity of 3% 
(postgres.select), an update to a field of a 300,000 row table 
(postgres.update) and a nested loop join involving two tables of 
sizes lIMB and 24KB (postgres.join). The SPECjvm98 
applications, pmake and gcc are all executed to completion. All 
other applications are simulated for billion-instruction execution. 
Table 1 summarizes the complete system branch execution 
statistics of each studied benchmark. 

As illustrated in Table 1, the OS activity in the selected 
benchmarks ranges from 6% in compress to as high as 55% in 
postgres.update. The kernel portion of dynamic branch instances 
can be found to constitute a significant part in these applications. 
On the average, kernel branches, which include loops, error/bound 
checking, and other routine conditionals, constitute 27% of branch 
sites and 30% of dynamic branch instances in our benchmark 
executions. Branches have been found to be more frequent in OS 
(than in user mode) [20] because it has to be designed to handle all 
possible situations (i.e., abundant error and bound checking). 
Further, the OS functions are performed not just for one 
process/application but also for the system as a whole (other 
daemons, periodic book-keeping duties etc.). 

2.1 Context Switch Profile and Branch 
Distribution 
During the execution, branch instructions from user and OS code 
get interspersed. OS is activated either voluntarily by a system call 
from the application, or from a call by some other application, or 
implicitly by some underlying periodic/asynchronous (timer/device 
interrupt) mechanism. The inter-mingling of user and kernel 
branches can affect their behavior, compared to the execution 
when they were isolated from each other. Figure 2 shows the 
average number of executed branches in each mode per context 
invocation on the studied benchmarks. In all benchmarks except db 
and postgres.update, OS exercises fewer branches than user code 
in each visit to that mode. For benchmarks db and postgres.update, 
OS service read and write, which consists of far more branch 
instructions, dominates OS execution, causing higher average 
number of executed branches in OS. 
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Benchmarks 

d b  I 

j e s s  

j avac 
jack 4 
mtr? 
compress 6 
~CC 7 

v o r t e x  8 

pmake 9 
sendmail l° 
postgres.select 1 
postgres.update ]2 
postgres.join ls 

Table 1. Complete System Branch Execution Statistics 

= # of ° 
-~ ~ .-, Context 

~ ~ Switches 
~ between 
= m User/OS 

201 31 0.gM 
467 30 4.9M 
366 19 2.0M 

1,782 17 23.5M 
1,431 7 5.9M 
2,428 6 11.8M 
1,036 8 5.0M 
1,811 8 21.5M 
1,117 17 1.OM 
1,494 54 1.4M 
1,516 38 5.6M 
1,438 55 6.4M 
1,849 15 5.9M 

Conditional Branch Statistics 
User OS 

Static Sites Dynamic Instances 
(percentage) (percentage) 

33,957 (85°/0) 13.1M (40%) 
38,654 (86%) 36.0M (56%) 
38,815 (86%) 
40,640 (87%) 
36,629 (86%) 
33,907 (85%) 
13,570 (74%) 
4,108 (78%) 

11,651 (69°/0) 
4,516 (45%) 
8,417 (58%) 
8,144 (56%) 
8,606 (59%) 

34.8M (63%) 
210.7M (84%). 
195.7M (89%) 
406.4M (94%) 
138.9M (91%) 
133.5M (92%) 
122.5M (78%) 
139.3M (65%) 
107.2M (53%) 
83.4M (36%) 

220.7M (75%) 

Static Sites 
(percentage) 

6,016 05%) 
6,037 (14°/0) 
6,070 (14%) 
6,142 (13%) 
6,099 (14%) 
6,081 (15%) 
4,696 (26%) 
1,189 (22%) 
5,273 (31%) 
5,553 (55%) 
6,201 (42%) 
6,325 (44%) 
6,099 (41%) 

Dynamic 
Instances 

(percentage) 

19.7M (60%) 
28.3M (44%) 
20.8M (37%) 
40.5M (l 6%) 
23.3M (l 1%) 
26.1 i ( 6 % )  
13.8M ( 9 % )  
12.0M ( 8 % )  
33.8M (22%) 
75. I M (35%) 
93.6M (47%) 

149.1M (64%) 
72.7M (25%) 

l .Performs/nultiple database functions on a memory resident database 
2.Java expert shell system based on NASA's CLIPS expert system 
3.The JDK 1.0.2 Java compiler compiling 225,000 lines of code 
4.Parser generator with lexical analysis, early version of what is now JavaCC 
5.Dual-threaded raytracer 
6.Modified Lempel-Ziv method (LZW) to compress and decompress large file 
7.Compiles pre-processed source into optimized SPARC assembly code 
8.A full object oriented database 
9.Two parallel compilation processes compile the modified Andrew Benchmark[ 16] 
10.UNIX electronic mail transport agent 
I 1 .Object-relational DBMS PostgreSQL executes a select query 
12.Object-relational DBMS PostgreSQL executes an update query 
13.Object-relational DBMS PostgreSQL executes a join query 

invocations arc more short lived, while user execution has 
i ~  300 • OS reasonable time quanta to work with and build history. 
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Figure 2. Average Number of Executed Branches 1 
per Visit in User and Kernel Modes 

We tracked the distribution of the number of executed branches for 
each context switch. The profiling results for a 5,000 context 
switch sample of benchmark jack are shown in Figure 3 for user 
and kernel code separately. Comparing Figure 33 and 3b, one can 
see that the user contexts can execute far more branches than the 
OS contexts do. Further analysis indicates that most of these OS 
contexts are caused by exception driven OS routines (e.g. TLB 
miss and page fault) that execute very few branches. The 
distributions in Figure 3 for the kernel are a cause for concern 
since it indicates the possibility that the branch history may be not 
accurate for correct predictions (with interference from user mode 
branches). On the other hand, the user branch distribution suggests 
that this problem may not be as severe for the user mode. Kernel 
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2 . 2 0 S  Branch Execution Profile 

We next examine what are the dominant kernel branches, and how 
their performance can be affected by the user code executing 
between OS operations. The pie chart of Figure 4 shows the 
percentage of  OS branches (in benchmark jack) executed in the 
different services. Additional benchmark results can be found in 
[12]. The top five components include: TLB miss (TLB miss, 
39%); OS scheduling (scheduling, 37%); performing file and I/O 
services (I/0 & file system, 5%), idle looping (idle, 4%); and 
kernel synchronization (synchronization, 4%). 

synchronlza 
4% 

i( 
4 

gO & file system 
5% 

system call exception 

'LB miss 
39% 

37% 

Figure 4. Where do the OS Dynamic Branches Come from? 

These results show that we really need to focus mainly on the TLB 
handler (it is done in software on the given MIPS platform to 
facilitate the use of flexible page table structure and simplify the 
handling of sparse address spaces.) and the scheduler. Further, it 
should be noted that other services such as file system, 
synchronization etc., are directly invoked by the user code. Hence, 
their behavior (including that for branches) is influenced by the 
current state of the invoking application and the parameters of the 
call. So one would not like to associate the term "interference" for 
such services. On the other hand, TLB handling and scheduler 
invocations are not necessarily voluntary. It is useful to understand 
how the branches in these OS subsystems are invoked and whether 
history would have any bearing on their behavior for predictability 
- so that we can better understand if the predictability of these 
branches would be affected by the user code getting in-between. 

Table 2 further shows the OS routine based branch distribution. 
The utlb is the OS TLB miss handler. The checkRunq routine 
performs scheduling (picking the next process to run). The idle 
does idle looping. Explicit system calls from user code are handled 
by syscall. The io_splock routine manipulates I/O spin locks to 
ensure that all operations to a particular I/O device are 
synchronized. The exception ip12 is the OS general exception 
handler. The bcopy is a memory copy routine used for paging and 
buffer copying in OS. The mrlock routine gets the states of locks 
and semaphores. Table 2 gives further evidence of the significance 
of the TLB handling and scheduler subsystems on the overall 
branches within the OS. Though utlb and checkRunq both have 
high dynamic branch instances, the number of actual branch sites 
is quite small. We briefly go over these routines below identifying 
the branches in these routines and their anticipated behavior 
qualitatively. 

The utlb handler has only 1 branch, and the reason for its high 
dynamic occurrence is that this routine is invoked frequently. The 
utlb routine is invoked directly by the hardware which is the only 
entity that can invoke this operation. On the other hand, the 
scheduler (checkRunq) is invoked from several places. First, this 
operation is needed for scheduling decisions (by consulting the 
ready queue) whenever the time quantum expires (triggered by 
timer interrupt), when I/O device activity completes (there are 
usually priority boosts and rescheduling may be needed) and idle 
looping, or even voluntarily during blocking (making semaphore, 
I/O requests etc.) or other process state change activities (such as 
termination). Consequently, it is to be noted that, while utlb 
invocations are only the consequence of application behavior, the 
scheduler actions are invoked from all over the OS and are invoked 
either asynchronously (by hardware events) or voluntarily due to 
system load/behavior. In all, we found there are more than 23 
events that can cause checkRunq to be invoked. 

Table 2. OS Routine Branch Characterization 

OS Routine % Dynamic Active Branch 
Branches Sites 

utlb 38.7 1 
checkRunq 
idle 
syscall 
io splock 
exception ip 12 
bcopy 
mriock 

34.2 
3.89 
2.80 
2.38 

14 

2.08 6 
1.50 6 
1.17 

2.3 Characteristics of OS Branches 
We investigate specific properties of these OS branches and their 
architectural implications in this subsection. 

2.3.1 Branch Directions and Weakly Biased 
Branches in OS 

It is well known that branches often have biased behavior and 
many branches are either usually "taken" or usually "not taken". 
The conventional branch history table (BHT) counters exploit this 
behavior to predict future outcomes of that branch. However, when 
branches showing different biases are mapped into the same entry 
of the predictor table, aliased branches update BHT counters with 
different directions, leading to aliasing mispredictions. 

We measure branch direction distribution in order to gain more 
insight on bias behavior of the user and OS branches. Figure 5 
shows the result on benchmark jack. Additional benchmark results 
can be found in [12]. The branch sites are categorized into 100% 
"taken" (always-taken), 0% "taken" (always-not-taken) and groups 
between them. For example, the marker "70%-79%" on X-axis 
implies that branch sites that fall into this category have a 
possibility of 70% to 79% to be "taken". 

Figure 5 shows that user and OS branches behave differently in 
terms of the bias or direction distribution. For example, 46% of 
dynamic branches in OS are "always taken" while their 
counterparts in user code are only 15%. On the other hand, ! 8% of 
dynamic branches in OS are "always not taken" and that number in 
user mode can be as high as 42%. This implies that even when the 
strongly biased user and OS kernel branches are mapped into the 
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same BHT counter, it is likely that they will lead to aliasing 
misprediction. 

§0 . . . . . . . . . .  
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Figure 5. User and OS Branch Directions 

Another interesting observation in Figure 5 is that while the 
dominant portion of branch sites is strongly biased (i.e. always 
taken or always not taken) in user code, a significant number of 
branches are weakly biased in OS code. More precisely, we 
observed that 8.8% of dynamic branches that contribute to the 
weakly biased (with the category of 40%-49%) branches shown in 
Figure 5, come from a wide range of 22 kernel service routines. 
The weakly biased OS branches showing interleaved directions are 
also found on other benchmarks [12]. Among these is the 
checkRunq routine that is frequently invoked. This routine checks 
through queues to find out if a rescheduling decision needs to be 
made. Intuitively, it can be hypothesized that the execution 
characteristics of such a routine are more a function of the load on 
the system more than anything else. Even when the load does not 
change very much during the course of this execution, there are 
bursts of I/O, synchronization activity and other events that can 
exercise the checkRunq differently, causing its branch to vary 
direction. Weakly biased branches can be a problem to many 
branch predictors, which rely on the persistent history and 
saturated 2-bit counters for accurate branch prediction. 

2.3.2 How Correlated are Kernel Branches? 

We observe that many OS branches are very correlated and hence 
benefit from two-level predictors that exploit global history 
correlation. It should be noted that the utlb routine has a single 
branch that is nearly always taken. While static predictors would 
suffice for this branch, previous history is also a very good 
indicator for this particular branch that accounts for a large portion 
of the kernel's dynamic branches. Further, OS exception handlers 
frequently use binary decision trees to classify and dispatch 
vectored interrupts from the trap entry point to the specific fault 
handler. Figure 6a shows an example use of such a structure in the 
general exception handler (exceptionjp12) OS code. This handler 
dispatches an exception to the corresponding kernel processing 
routine based on the value of the exception vector. The binary 
decision tree based branch sequence of this handler is given in 
Figure 6b. It can be observed that the branches in the OS routine 
inttrap will be correlated with a NNT branching sequence while 
the branches in systrap will be correlated with a NNNT branching 
sequence. Hence Gshare [14] and GAg [29] predictors work 
extremely well with these branches. 

Ox80007dd4 : <exception_ipl2> 
andi $kO, SkO, Ox7c 
li Skl, 124 
beq $kO, Skl, Ox80007dOc <handle_vced> 
li Skl, 56 
beq SkO,$kl,Ox80007cec <handle_vcei> 
li Skl, 32 
beqz $kO, Ox800080fO <inttrap> 
sw Sat, -24524 ($zero) 
beq $kO, $kl, 0x80008770 <systrap> 
li Sat, 8 
beg SkO, Sat, Ox80007e78 <kmiss> 
li Sat, 12 
beq SkO, Sat, OxSOOOTe78 <k~niss> 
li Sat, 92 
beq SkO, Sat, Ox80007e60 <exception ip12+8c> 
ii Sat, 36 
bne SkO, Sat, 0x80008274 <longway> 
mfcO SkO, $12 
andi SkO, $kO, 0x18 
bnez $kO, 0x80008274 <longway> 
mfcO $kO, $13 
bgez $kO,Ox80007e48 <exception ip12+74> 

~;dt 
(a) OS Assembly Code to Perform 

General Exception Handling 

/ / 
[ / N b e q T  handle_vced 

-~/ -,,~ 
~ ~ handle_ycei 

~ inttrap NN' l r '  

N N N T  N A T  systrap 

~ T  kmiss 

~ T kmiss 

N ~  exception_tp l 2 + Sc 

longway 

longway 

• . . exception__ipl2+ 74 
(b) Binary Decision Tree based Branching Sequence 

Corresponding to Code Shown in (a) 
Figure 6. Branch Correlation in OS Code 

2.3.3 Impact of  Intermittent Kernel Execution on 
Strongly Biased Kernel Branches 

Even strongly biased OS branches can experience: mispredictions 
due to the user code interference. An example :for this can be 
obtained from the utlb routine from the OS. Since the utlb handler 
needs to be very efficient, this code is usually written in assembly 
and is hand-optimized. There are exactly 13 instructions in this 
routine, with the bulk of the instructions used to read the page 
table entry from the memory system and load it into the TLB. 
There is exactly 1 branch within this code that is strongly taken. 
But intervening user code interference can result in mispredictions 
in even such strongly biased branches. Consider a correlation 
based branch predictor, and two scenarios of branch history shift 
register (BHSR) contents in Figure 7. In the absence-of_user code 
intervention, the correlation shift register may look like (a), and 
leads to correct prediction, whereas the intervening user code may 
result in the correlation information to look like (b) and result in 
aliasing misprediction. 
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Figure 7. Impact of User/Kernel Inference 

on Strongly Biased Kernel Branches 

2.3.4 Characterization of User/OS Aliasing 
It is well known that branch aliasing, namely, several branches 
mapping to the same entry in the prediction tables, impacts the 
branch prediction accuracy. Although some of the aliasing can be 
neutral or constructive, a large part of the aliasing is often 
destructive. We performed a branch aliasing characterization to 
understand the impact of user/OS aliasing. In order to do that, we 
instrumented the branch predictor to track the mapping between 
branch instructions and the BHT entries. Branch aliasing is 
recorded whenever the branch instruction being mapped to a given 
BHT entry is different from what is already present at that entry. 
Branch aliasing is attributed to user (User/User Aliasing), kernel 
(OS/OS Aliasing) and the interaction between them (User/OS 
Aliasing). The percentages of misprediction and correct prediction 
caused by different aliasing categories are shown in Table 3. 

Table 3. Characterization of Branch Aliasing 
(8K BHT Eentries Gshare, MR: Misprediction R: 

Benchmarks 

t .  

Metric ~ ~ ' i  ~ ~ ' ~  ~ ~ ' ~  

% of Misprediction 6.2 28.2 19.4 
% of Correct Prediction 1.4 2.7 2.1 
% of Mispredietion 3.3 37.3 20.1 
% of Correct Prediction 1.4 6.5 3.9 
% of Misprediction 3.1 34.7 16.4 
% of Correct Prediction 0.7 5.2 2.4 
% of Misprediction 1.3 35.7 18.8 
% of Correct Prediction 0.6 7.9 4.7 
% of Misprediction 1.3 23.5 10.2 
% of C0rrect Prediction 0.2 3.8 1.1 
% of Misprediction 0.7 12.0 2.5 
% of Correct Prediction 0.1 4.7 0.2 
% of Misprediction 0.3 41.5 6.2 
% of Correct Prediction 0.1 10.5 1.9 
% of Misprediction 0.1 39.4 11.7 
% of Correct Prediction 0.0 11.8 3.8 
% of Misprediction 3.6 25.1 9.4 
% of Correct Prediction 0.5 4.6 1.0 
% of Misprediction 22.2 9.0 23.7 
% of Correct Prediction 3.8 1.7 2.9 
% of Misprediction 7.4 16.0 19.7 
% of Correct Prediction 0.9 2.4 2.2 
% of Misprediction 7.8 18 .4  22.4 
% of Correct Prediction 1.7 3.3 3.8 
% of Misprediction 1.1 15.0 4.5 
% of  Correct Prediction 0.2 5.3 1.1 

db 
(MR=4.8%) 

jess 
(MR=8.8%) 
j a v a e  
(MR=7.1%) 

lack 
(MR=8%) 
mtrt 
(MR=4%) 
compress 
(MR=3.1%) 

~1~¢R=10.2%) 
vortex 
(MR=7.8%) 
pmake 
(MR-6.6%) 

isendmail 
(MR=9.3 */.) 

ostgres.select 
R=3.1%) 

ostgres.update 
R=5.7%) 

ostgres.join 
R---5.6%) 

In experiments with a Gshare predictor of size 8K BHT entries, 
user/OS aliasing on the average contributes to the 14.2% and 2.5% 
of misprediction and correct prediction respectively, implying most 
of the user/OS aliasing are negative. The percentage of 
misprediction caused by user/OS aliasing does not change 
significantly when the predictor size is increased from 8K entries 
to 64K entries. This indicates that just increasing the capacity of 

the branch predictor will not effectively solve the user/OS aliasing 
problem. The user/user aliasing that many previous studies have 
evaluated is still important as the results observed from Table 3 
indicate. However, user/OS aliasing is also a big source for 
mispredictions. Table 4 characterizes the impact of branch aliasing 
on misprediction in user and OS component. With an 8K BHT 
entries Gshare, approximately 22-62% of mispredictions in OS 
code are found to be from user/OS aliasing, suggesting that it is 
essential to protect kernel branch predictors from interference from 
user code. 

Table 4. Characterization of Mispredietion 
due to Branch Aliasing in User and OS Component 
(8K BHT Entries Gshare, MR: Mispredietion Rate) 

m~ ~ rl3 gtl0 
Benchmarks ~ . ~  ~ ~ - ~  

User -- 39.0 13.5 8.6 db 
OS 22.3 -- 34.9 2.3 

less User --: 47.3 12.8 12.3 
OS 15.51 -- 47.7 4.3 

javac User - -  42.0 10.0 9.3 
OS 17.9 -- 47.0 3.5 

jack User -- 43.9 11.6 7.8 
OS 6.9 -- 50.4 9.4 
User -- 26.6 5.8 3.9 mtrt 
OS 11.5 -- 44.0 4.7 
User -- 12.5 1.3 3.1 

compress OS 16.8 -- 32.0 2.1 

User -- 43.6 3.3 10.6 
gee OS 6.7 -- 62.0 5.8 

User -- 44.7 6.6 7.5 vortex 
OS 1.0 -- 49.5 11.3 
User -- 28.8 5.4 7.2 

!pmake OS 28.0 -- 36.2 4.3 i 
isendmai I User -- 19.9 26.2 6.3 

OS 40.5 -- 21.6 14.9 
postgres.select User -- 26.7 16.5 3.5 
; OS 18.4 -- 24.5 i 2.6 
postgres.update User -- 29.3 17.9! 9.6 

OS 21.0 -- 29.9i 3.5 i 

postgres.join i ¢~Ser 16.2 -- 16.1 -- 33.5 2.4 ~:~[ 

In summary, we observe that user/OS branch aliasing can 
significantly deteriorate branch prediction accuracy. This is 
primarily attributed to the exception-driven and intermittent kernel 
branch execution that causes inaccurate branch history information 
in BHSR. Moreover, user and kernel branches have different bias 
distribution, which in turn spreads user-kernel branch aliasing 
references across a wide range of BHT entries. The above 
observations motivate the need for OS-aware branch prediction 
techniques. 

3. ALLEVIATING IMPACT OF USER/OS 
INTERFERENCE 
It is clear from the prior sections that user and kernel code possess 
different branch behavior, often resulting in conflicts in unified 
structures that capture branch history. In subsections 3.1 and 3.2, 
we present two structures that aim to alleviate the destructive 
impact of OS branch execution on branch predictability. 
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During the initial period of a context switch, both user and kernel 
history patterns coexist in history capturing structures. In Gshare 
and any correlation based predictor, this can happen in shift 
registers (BHSRs) that capture correlation between branches 
and/or branch history tables (BHTs). One solution is to use 
separate shift registers to individually keep track of branch 
correlation and another solution is to use separate BHTs. 

3.1 Split BHSR Predictor 

We illustrate our OS-aware techniques in the context of a Gshare 
predictor, but it can be applied to other correlation-based 
predictors as well. A Gshare predictor with split correlation history 
shift registers (i.e. split BHSR predictor) is illustrated in Figure 8. 
The split BHSR predictor functions exactly the same as a 
conventional Gshare predictor except that two dedicated BHSRs 
(i.e., U-BHSR for user and K-BHSR for kernel) are used to gather 
branch correlation patterns and to generate BHT indexing. By 
using K-BHSR for kernel branches, the split BHSR predictor 
overcomes the loss of branch history patterns in kernel mode. 
Meanwhile, the split BHSR predictor dynamically switches 
between BHSRs when a context switch occurs, preventing the 
BHT indexing ambiguity during the initial stages of a context 
switch. 

Processor Status Register 

I • I 
execution mode bit 

K-BHSR 
i bits I BHT of  2 i Entries 

U-BHSR 

~'1 I I I . . I  I ~" [ " i ' - ]  .~ 
i bits I .e /> [ ~ 1  " ~ ' ~  

I ~ ~  " ' "  

Figure 8. Gshare with Split BHSR 

3.2 Split Predictor 

The proposed split BHSR predictor aims to preserve accurate BHT 
counter indexing during a context switch. However, user/OS 
aliasing can still occur when user and kernel branches have the 
same XORed global history pattern, but opposite biases. Due to 
their different branch bias distribution, user and kernel branches 
can update BHT counters in different manners. To reduce the 
destructive user/OS branch aliasing in BHT, we propose the use of 
split BHT for user and kernel code, which yields split predictor, as 
shown in Figure 9. This predictor eliminates the destructive 
user/OS aliasing by using separate correlation and history 
information for user mode and kernel mode. It is also observed that 
when branch history tables are split into user and kernel parts, the 
kernel BHT can be smaller than the user BHT because of the fewer 
active branch sites in kernel (as shown in Table 1). Due to the 
difficulty in creating a 7:1 or 3:1 split (due to the user BHT 
becoming not power of 2), we kept the user BHT at half the size of 
the original Gshare and allocate kernel BHT with a fixed size of 
2K entries in our experiments. 

Separating out kernel branches can easily be done at run time by 
using the Processor Status Register (PSR). Typically, in a 

microprocessor a set of PSR bits is used to record and identify 
kernel-user execution mode or privilege level. For example, MIPS 
R10000 [28] uses KSU field in PSR to identify cun:ent execution 
mode and Intel's next generation IA-64 Itanium (Mereed) [5] uses 
PSR.epl to determine one of 4 privilege levels (level 0-3). The 
corresponding field in PSR can be used to select the appropriate 
predictor. At runtime, instructions from a fetch unit are filtered 
into an active part of prediction resource (user or kernel, 
depending on execution mode). 

Processor Status Register 

I • I 
I mo ebi, 

1 
K-BHSR K-BHT of  2 i Emrics | 

ib i=  I '-I, r - ~  / 

[ branch address 

i bits "E 
I 

j bits U-BHSR 

~ 1 1 1 1 . . 1 1  ~ 
j bit~ 

U-BHT of~ Entries 
Figure 9. Split Gshare Predictor 

In summary, the split BHSR predictor and split predictor are 
designed specifically to reduce user/OS branch aliasing without 
adding extra hardware for branch de-aliasing. They consume 
equivalent or less resource than a conventional predictor. 

3.3 Integrating OS-aware ]Prediction 
Techniques with other Predictors 

Splitting user and kernel prediction resources is a technique 
suggested by our characterization study, not necessarily a 
particular predictor. We surveyed literature to identify branch 
predictors, which may be poised to handle branches with the 
characteristics unveiled in the earlier sections. Although not 
targeted for user/OS branch interference, Multi-Hybrid [7], Agree 
[25] and Bi-Mode [10] schemes do contain mechanisms tailored 
for branches with heterogeneous characteristics and/or de-aliasing. 
Table 5 summarizes these schemes, and the additional cost used 
for branch de-aliasing. The sizes of all the predictors are 
normalized to Gshare to give an indication of the associated 
hardware cost. 

All these predictors contain a Gshare predictor or a. Gshare 
indexing [7][25][10]. To integrate the proposed techniques, we 
simply replace the conventional Gshare component used in the 
above predictors with the proposed OS-aware split-BHSR Gshare 
predictor and split Gshare predictor. 

Table 6a shows the average (of the 13 studied benchmarks) 
misprediction rates of each baseline predictor and the percentage 
of misprediction reduction by incorporating the OS-aware 
techniques proposed in this paper. Table 6b further illustrates the 
breakdown of the misprediction reduction in user and OS parts, for 
each individual benchmark. 

As described in subsection 3.1, split BHSR predictor only 
separates the branch history shift registers. The partitioning of  the 
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BHT for user or OS happens dynamically. The resource available 
for the code is not less than that in the baseline. Hence, split BHSR 
predictor is never inferior to the baseline. Split predictor is at times 
worse than the baseline. In split predictor, the partitioning of the 
BHT between user and kernel code is done statically. Both the user 
and kernel BHTs are smaller than the unified BHT in the baseline 
confignration. In the configurations studied in this paper, the U- 
BHT is only 50% of the baseline BHT, and the K-BHT is fixed at 
2K entries in all cases. Hence, the overall size of the split predictor 
BHT is not much greater than 50% of the BHT in the baseline. A 
2K K-BHT is seen to be sufficient to capture all history patterns in 
the OS code and except in postgres.update, the mispredictions in 
OS code goes down. For the user part, the small size of the U-BHT 
(4K BHT entries) can detrimentally affect the performance on 
benchmarks compress, gcc, pmake, postgres.select and 
postgres.join. 

On the average, with a 32K BHT entries Gshare, incorporating 
OS-aware split BHSR predictor and split predictor reduces 34% 

and 22% of the misprediction. OS-aware predictions also reduce 
the misprediction of Multi-Hybrid, Agree and Bi-Mode predictors. 
For instance, compared with the 32K BHT entries baseline 
predictors, OS-aware Multi-Hybrid, Agree and Bi-Mode predictors 
yield up to 23%, 27% and 9% prediction accuracy improvement 
respectively, implying that OS-aware predictions still provide 
significant improvements on some of the most powerful predictors. 

As shown in Table 6a and Table 6b, split BHSR predictor 
outperforms split predictor on most of the de-aliasing predictors 
we examined. Considering overall performance, in more than half 
the cases, the performance gain due to the elimination of user/OS 
aliasing by split predictor outweighs the performance loss due to 
individually using smaller prediction tables for each part. More 
precisely, for example, the OS-aware split predictor reduces 22% 
of misprediction on a conventional Agree predictor of 32K BHT 
entries, using only 18K entries BHT consisting o fa  16K entries U- 
BHT and a 2K entries K-BHT. 

Table 5. A Comparison of Several Branch De-aliasing Schemes 

Predictor 

Gshare [ 14] 

Multi-Hybrid I, 2 [7] 

Agree [25] 

Bi-Mode [ 10] 

OS-aware split BHSR 
predictor [this paper] 

OS-aware split 
predictor [this paper] 

Description of Feature to Exploit 
Heterogeneous Branches or De-aliasing 

Consists of one correlation shift register (BHSR) and one BHT. BHSR 
is XORed with branch address bits of a branch address to index BHT 
entries. The XORing helps to reduce aliasing effects. 
Consists of multiple single-scheme components: simple 2-bit (2be), 
GAs., Gshare, Pshare and-always taken predictor. Use of simple 2-bit 
predictors (2be) and static predictors as components of the Multi- 
Hybrid predictor provides qmck warm up after a context switch. 
Converts instances of destructive aliasing into either constructive or 
n.eutral ali~sing by attaching, each branch with a biasing bit that predicts 
the most liKeq outcome ot  that branch. 
Uses separate history tables for taken and not-taken branches, and a 
selection branch history table. This classification helps to alleviate 
destructive aliasing while keeping the harmless aliasing together. 
OS-aware Gshare predictor uses separate shift registers (U-BHSR and 
K-BHSR) for capturing path history patterns. 

OS-aware Gshare predictor that uses separate branch history tables for 
user and kernels. Kernel BHT is 2K and User BHT is 50% of Gshare. 

~Additional 
Branch De- 

aliasing 
Hardware 

Predictor 
Size 

Normalized 
to Gshare 
(8k-256k) 

0 ! 

5x2K predictor 
selection 1.04-2.25 
counters in BTB 

2K biasing bits 
in BTB 1-1.13 

the third BHT 
for dynamic bias 
selection 

1 shift register 

consumes less 
BHT resource 
than Gshare 

1.5 

0.51-1 

1. Our simulated Multi-Hybrid does not include AVG predictor [3] because it needs source recompilation which oRen is difficult for commercial and 
complicated software like OS and JVM. 
2. As indicated by [7], we allocate half of the total budget for Gshare, a quarter of the total budget for Pshare, and 1/8 for 2be and GAs respectively. The 
priority ordering of the component predictors is 2bc, GAS, Gshare, Pshare and always taken scheme. 

Table 6a. Misprediction Reduction by Introducing OS-aware Prediction 

Schemes Metric 

Gshare+OS-aware Split BHSR Predictor 
Gshare+OS-aware Split Predictor 
Multi-Hybrid 
Muiti-Hybrid+OS-aware Split BHSR Predictor 
Multi-Hybfid+OS-aware Split Predictor 
Agree 
Agree+OS-aware Split BHSR Predictor 
Agree+OS-aware Split Predictor 
Bi-Mode 
Bi-Mode+OS-aware Split BHSR Predictor 
Bi-Mode+OS-aware Split Predictor 

Size (Number of BHT entries, not including de- 
aliasing overhead) 

8k 16k 32k 64k 128k 256k 

Misprediction(in %) 14.03 12.35 10.89 9.64 8.66 8.00 
% of Misprediction Reduction 31% 33% 34% 32% 31% 29% 
% of Misprediction Reduction 20% 24% 22% 20% 17% 15% 
Mispredietion(in %) 10.87 9.53 8.58 7.66 6.96 6.30 
% of Misprediction Reduction 21%' 22% 23% 23% 22% 22% 
% of Misprediction Reduction 13% 12% 13% 11% 10% 8% 
Misprediction(in %) 12.59 11 .41  10.46 9.66 9.13 8.78 
% of Misprediction Reduction 27% 27% 27% 26% 25% 24% 
% of Misprediction Reduction 19~ 22% 22% 20% 20% 19% 
Misprediction(in %) 7.70 6.95 6.42 6.07 5.79 5.57 
% of Misprediction Reduction 10% 9% 9% 9% 9% 9% 
% of Misprediction Reduction 4% 2% 1% 1% 0% 0% 
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Table 6b. Breakdown of Misprediction Reduction by Introducing OS-aware Prediction (8K BHT Entries0 

Benchmarks 

Schemes and % of Misprediction 
Multi-Hybrid 
+ OS-aware 

SiT lit 
SR 

Predictor 
Split 

Predictor 

User 20% 15% 
db OS 7% 11% 

Full-System 16% 14% 

jess 

javac 

jack 

mtrt 

compress 

User 
OS. 

31% 
12% 

25% 
15% 

Full-System 28% 23% 
User 20% 13% 
OS 10% 
Full-System 
User 
OS 
Full-System 
User 
OS 
Full-System 
User 
OS 
Full-System 
User 
OS 
Full-System 
User 
OS 

gcc 

vortex 
Full-System 
User 

18% 
47% 
29% 
46% 
27% 
15% 
25% 
10% 

Gshare 
+ OS-aware 

BSl~lit Split 
SR Predictor Predictor 

28% 23% 
28% 8% 
28% 19% 
39% 31% 
52% 42% 
42% 34% 
28% 19% 
40% 36% 
30% 22% 
57% 47% 
79% 82% 
61% 53% 
27% 15% 
60% 59% 
31% 20% 
11% -27% 
43% 29% 
12% -25% 
16% 2% 
46% 55% 
18% 5% 
76% 63% 
96% 97% 
78% 68% 

8% -6% 
11% 2% 
8% -4% 
5% 3% 
5% 0% 
5% 1% 

56% 45% 
27% 8% 
45% 30% 
35% 30% 
14% -10% 
27% 14% 
12% -6% 
42% 32% 
14% -4% 

7% 
10% 
10% 
3% 

10% 
71% 
30% 
70% 

4% 
2% 
4% 
1% 

pmake OS 
Full-System 

20% 
14% 
39% 
49% 
40% 
19% 
23% 
19% 
-3% 
11% 

1% 
-1% 
26% 

0% 
48% 
54% 
48% 

-11% 
8% 

-8% 
0% User 

sendmail OS 3% 1% 
Full-System 2% 0% 
User 47% 12% 
OS 
Full-System 
User 
OS 

postgres.select 

postgres.update 

17% 
35% 
25% 

6% 
17% 
8% 

15% 
9% 

postgres.join 

Full-System 
User 
OS 
Full-System 

22% 
16% 
24% 

6% 
17% 
-1% 
26% 

0% 

Reduction 
Agree 

+OS-aware 

B S l • l i t  Split SR 
Predictor Predictor 

21% 17% 
15% 7% 
20% 16% 
34% 27% 
44% 36% 
36% 29% 
24% 17% 
42% 41% 
27% 21% 
51% 42% 
64% 70% 
53% 46% 
20% 11% 
49% 48% 
22% 15% 

7% -30% 
19% 12% 
7% -29% 

12% 2% 
62% 68% 
15% 7% 
73% 65% 
98% 99% 
78% 72% 

6% -7% 
7% ! 3% 
6% -5% 
3% 2% 
3% 2% 
3% 2% 

50% 48% 
26% 29% 
40% 40% 
25% 25% 

9% 17% 
19% 22% 
10% -6% 
35% 44% 
12% -3% 

Bi-Mode 
+ OS-aware 

BSl~lit Split SR 
Predictor Predictor 

9% 8% 
7% 10% 
8% 8% 

13% 8% 
13 % 20% 
13% 10% 
8% 4% 
9% 18% 
8% 6% 

21% 13% 
43% 53% 
23% 17% 

7% 4% 
19% 27% 
8% 6% 
3% 2% 
8% 13% 
3% 3% 

10% -1% 
14% 31% 
10% 1% 
35% 28% 
67% 77% 
37% 31% 

4% -6% 
3% 8% 
4% -4% 
2% 1% 
2% 2% 
2% 2% 

36% -34% 
14% 13% 
26% -14% 
23% 21% 

5% 5% 
16% 15% 
3% -6% 

26% 34% 
4% -5% 

3.4 Performance Evaluation 

We evaluate the benefits of integrating the above predictors with 
OS-aware predictions on a dynamically scheduled superscalar 
processor using a full-system simulator that captures OS behavior 
as well. Table 7 summarizes the configuration of the simulated 
machine architecture. We use SimOS MXS model [2], which 
simulates a superscalar microprocessor with multiple instruction 
issue, register renaming, dynamic scheduling, and speculative 
execution with precise exceptions. The simulated architectural 
model is an 8-issue superscalar processor with instruction latencies 
as in the MIPS R10000 [28]. By default, the branch prediction 
algorithm allows fetch unit to fetch through up to 4 unresolved 
branches. In our model, a misprediction will cause a 10-cycle 

penalty. BHSR is speculatively updated and later corrected after a 
misprediction. BHT counter update takes place in order at 
instruction commit time. 

Figure I0 shows the IPC improvement for this scenario. Since 
instruction counts are the same, IPC improvement is indicative of 
execution cycle improvement. Results are depicted for the 13 
evaluated programs. Comparison of predictors integrating OS- 
aware prediction techniques with Gshare, Multi-Hybrid, Agree and 
Bi-Mode predictors is presented. The scale of Y-axis is varied for 
each benchmark due to their differences in IPC. Split BHSR 
predictors improve IPC performance on all of the benchmarks for 
all of the four types of base predictors. This benefit is particularly 
substantial in those programs where user/OS aliasing is significant, 
such as jess,jack; vortex, and postgres.update (as was illustrated in 
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Figure 1). The same trend can be observed in programs such as 
javac and db. For those programs Where the impact of user/OS 
aliasing on misprediction is less significant (for instance, compress 
and pmake), the integration of OS-aware techniques shows only 
limited improvement. 

Integration of split predictor results in improvement in many cases, 
even though the predictor size is not much more than 50% of the 
baseline predictor. In most of the cases in Gshare, Multi-Hybrid 
and Agree predictors, despite the small size, split predictor still 

results in improvement. In the case of the Bi-Mode predictors, split 
predictor-integrated case is inferior to the baseline for 5 of 13 
benchmarks. However, if one compares them to a baseline that is 
comparable in size (i.e., 16K BHT entries), OS-aware split 
predictor with 18K BHT entries (16K U-BHT + 2K K-BHT) 
outperforms 16K BHT entries baseline predictor in all cases, 
resulting up to 10% of IPC speedup [12]. 
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1"65I~  ~ ~ ~ 
~ 1.6 
1.55 
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1.6 ~ jack _ 
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32K BHT Entries 

postgres.join 

32K 13HT Entries 
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1.3 , 1.5 
32K BHT Entries 32K BHT Entrles 
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32K BHT Entries 32K BHT Entries 
1.8 1.8 
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1 " 7 I ~  ~ J ~  ~ 1"7 ~ ~ ~ l  ~ '~.55 '~.s5 
1.6 1.6 

1.55 1.55 

1.5 1.5 
32K BHT Entries 

1.4 
postgres.select 

1.35 

1.25 
1.2 

32K BHT Entries 
D Gshare 
• Gshare+Split BHSR Predictor 
B Gshare+Split Predictor 
m Multi-Hybrid 
[] Multi-Hybrid+Split BHSR Predictor 
• Multi-Hybrid+ Split Predictor 
[] Agree 
[] Agree+Split BHSR Predictor 
• Agree+ Split Predictor 
[] Bi-Mode 
[] Bi-Mode+Split BHSR Predictor 
m Bi-Mode+ Split Predictor 

1.3 

1.25 

• 1.2 

1.15 

1.1 

32K BHT Entries 
postgres.update 

32K BHT Entries 

[ ]  Gshare 
[ ]  Gshare+Split BHSR Predictor 
[ ]  Gshare+Split Predictor 
Q Multi-Hybrid 
[ ]  Multi-Hybrid+Split BHSR Predictor 
[ ]  Multi-Hybrid+Split Predictor 
Q Agree 
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[ ]  Agree+Split Predictor 
[ ]  Bi-Mode 
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Figure 10. IPC Improvement of OS-aware Predictors 

Compared with a Gshare predictor, the two proposed techniques - 
split BHSR predictor and split predictor yield up to 8% and 7% of 
IPC improvement respectively. This improvement is a result of the 
removal of aliasing mispredictions. 

The integration of OS-aware prediction into Multi-Hybrid 
predictor yields up to 5% of IPC gain. As described earlier, Multi- 
Hybrid allocates the largest prediction resource to its Gshare 
component and its overall prediction accuracy is more impacted by 
Gshare than any other predictor. Hence, the replacement of the 
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conventional Gshare with the proposed OS-aware Gshare 
predictors improves performance. 

By introducing OS-aware prediction on the Agree predictor, up to 
7% of IPC improvement can be achieved. The performance of 
Agree predictor is largely dependent on branch biases and 
possibility of identifying the biased behavior the first time the 
branch is introduced into the BTB [18]. If the branch does not 
show strongly biased behavior, there is still frequent aliasing 
between instances of a branch that do not comply with the biasing 
bit and instances which do comply with the biasing bit. Once we 
incorporate OS-aware predictions into the Agree predictor, the 
filtering out of the visible portion of weakly biased kernel branches 
leads more U-BHT entries to reach "agree" status. 

Table 7. Simulated Machine Architecture 

Processor Core 
Fetch/Decode/Issue/Retire 
Width 
Instruction Window Size 
Reorder Buffer Size 
Number of Function Units 
Latency of Function Units 
Branch Target Buffer 
(BTB) 

Return Address Stack 

Misprediction Penalty 
Load Store Queue Size 

8 

128 
128 
2xlssue Width 
MIPS R10000 Like 

2048-entry, 4-way 

32-e.ntry w/misprediction 
repmr 
10 cycles 
64 

MMU 

L1 I-Cache 

L1 D-Cache 

L2 Cache 

Memory 

Memory Hierarchy 
Fully associative TLB, 48- 
entries, 4KB page size 
32KB, 2-way(LRU), 64B 
blocks, 4MSHRs, 2 ports, 1 
cycle latency 
32KB, 2-way(LRU), 32B 
blocks, 4MSHRs, 2 ports, 1 
cycle latency 
1MB, 2-way(LRU), 128B 
blocks, 4MSHRs, 2 ports, 10 
cycle latency 
256MB, 60-cycle access 

The IPC improvement of OS-aware Bi-Mode is marginal (1%), but 
it should be noted that the OS-aware Bi-Mode consumes only 
equivalent or less resource to achieve this performance 
enhancement. Thus, OS-aware prediction leads to the same 
performance with less hardware. 

The results shown in Figure 10 also indicate that the combination 
of the OS-aware prediction and a simple predictor (for instance, 
Gshare) can outperform sophisticated predictors (e.g., Multi- 
Hybrid and Agree) with larger size configuration. 

In summary, architectural support for specific OS branch behavior 
can enhance prediction performance without increasing predictor 
size or complexity. Current and next generation microprocessors 
are becoming increasingly sensitive to branch prediction accuracy 
due to the use of deeper pipelines and wider issue 
microarchitecture. The proposed techniques are expected to yield 

more ILP performance benefit on aggressive implementations with 
higher mispredicfion penalties. 

3 . 5  D i s c u s s i o n  

We motivated the research in this paper using Figure 1, which 
showed that kernel interference increases user misprediction from 
l . l x  to 6x (with an average of 2.1x). Similarly, we observed that 
user interference increases OS mispredicfion from 1.3x to 129x 
(with an average of 13x) [12]. In this subsection, we revisit this 
characterization in the presence of the OS-aware prediction. 
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Figure 11. Impact of User/OS Execution 

on OS-aware Split BHSR Predictor 
Figure 11 illustrates the impact of user/OS execution on branch 
prediction after OS-aware split BHSR predictor is integrated with 
Gshare. Compared with Figure 1, OS-aware split BHSR predictor 
significantly reduces the negative impact of user/OS interference 
on branch prediction, resulting in the drop of mispredictions from 
2.1x to 1.2x and from 13x to 2x in user and OS space respectively. 

As described in subsection 3.1, split BHSR predictor reduces the 
mispredietion by providing interference free branch history for 
both user and kernel sides. In order to investigate the impact of the 
initial state of the K-BHSR when switching to the OS mode from 
the user mode, an experiment is performed with a variant of split 
BHSR predictor where the K-BHSR is cleared out upon an OS call 
is made. We compare the misprediction rates of a baseline split 
BHSR predictor with this variant of split BHSR predictor scheme. 
As shown in Table 8, the split BHSR predictor with K-BHSR 
zeroing out on an OS call provides similar performance result with 
that of a baseline split BHSR predictor, implying that removing the 
interference in the predictor state bettween user and kernel modes is 
more important than really figuring out what state to leave the 
predictor in when entering the kernel. 

Table 8. Effect of Zeroing out K-BHSR in Split BHSR Predictor 

jess postgres postgres posts db javac jack mtrt compress gee vortex pmake sendmail (select) (update) (joi 

Baseline 3.45 5.09 4.9~ 3.15 2.7.' 2.68 8.4~ 1.69 6.01 8.80 1.7C ~ 4.16 
with K-BHSR Zeroing out 3.4C 5.12 5.01 3.13 2.72 2.74 8.42 1.69 6.03 9.02 1.65 4.15 
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Similarly, Figure 12 revisits the impact of user/OS on branch 
misprediction after an OS-aware split predictor is integrated. 
Compared with Figure 1, OS-aware split predictor cost-effectively 
reduces the negative impact of kernel code on branch 
misprediction in user part. The misprediction reduction by OS 
interference removal outweighs the extra misprediction caused by 
using less (50%) BHT resource on all benchmarks except pmake. 
In the OS part, the fixed size 2K K-BHT still outperforms the 
performance of a unified 16K BHT on benchmarks jess, javac, 
jack, mtrt, gcc and vortex. 

~.  12 / .- [ ,.'~*ElirdnatedbySIHIt'Predlcto¢ 
10-[ : ' I l E x l x a C a u s e d b y L e N ( 5 0 % ) g - B f f r  

¢ 8 -I i : " : : ' "  M J " U s e r  Only . . 

o 6 ' .  : : : : : :  : ~ i :  . . . . . . . . .  ~ , 

: l  

(a)User 
18 ~.~' Eliminated by Split Predlcto¢ 
14T--1  I IE, xtra Caused bi/Fixed 2K K-BHT I mm 

I ~ 0 2 t  l ~ OS Only [ II 
$ ,. . .  V' i  

4 .... i : : " :  .... r " :  i :~ : i ,  mmm~m~m~M..mi~im| miall . .  O . . . . . . . . . . . . . . . . . . . .  
31 

Benchm,rk(CImare Predictor Size) ~ ~ 

(b)OS 
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on OS-aware Split Predictor 

4. S U M M A R Y  AND CONCLUSION 

Control flow prediction is one of the key issues in the design of 
high performance processors. It is extremely important that 
processor hardware, software and the operating system collaborate 
with each other to deliver high performance. The operating system 
affects control flow predictability by introducing the additional 
user/OS branch aliasing in predictor hardware. Compared to the 
branches in user code, the OS branches are usually invoked by the 
exception-driven and intermittently executed kernel routines and 
may have different biased behavior caused by performing 
operations not common in user mode. Thus, when interacted with 
user branches, the OS branches increase misprediction 
significantly. Current branch predictors have paid less attention to 
the OS requirements and therefore, do not contain mechanisms to 
specifically alleviate the user/OS aliasing. 

This paper focuses on understanding and improving the control 
flow predictability in the light of the OS code. Having 
characterized kernel and user branch execution behavior and 
quantified their impact on misprediction rates of a commercial OS, 
we propose OS-aware branch prediction designed to reduce 
user/OS branch aliasing without adding extra hardware for branch 
de-aliasing. 

The proposed OS-aware prediction is a technique that advocates 
orchestrating branch correlation information and/or branch history 

information for user and kernel branches individually. The 
proposed OS-aware prediction can be incorporated into many 
other predictors, ranging from a naive Gshare to the more 
sophisticated Multi-Hybrid, Agree and Bi-Mode predictors, to 
further improve prediction accuracy. More precisely, on the 32K 
BHT entries predictors, incorporating OS-aware strategies into 
previously proposed CGshare, Multi-Hybrid, Agree and Bi-Mode 
predictors yields up to 34%, 23%, 27% and 9% prediction 
accuracy improvement and up to 8%, 5%, 7% and 1% execution 
speedup respectively. Simulation results also show that the 
combination of the OS-aware prediction and a simple predictor 
(for instance, Gshare) can outperform sophisticated predictors 
(e.g., Multi-Hybrid and Agree) with larger size configuration. 

OS-aware techniques improve prediction performance by cost- 
effectively alleviating the user/OS branch aliasing. Moreover, it 
provides opportunities for catering user and kernel branches with 
differently tuned structures. For example, compared with a 
conventional design, the OS-aware split predictor requires access 
to only one of the smaller prediction tables for a given branch 
instruction mode (OS or user), which can result in energy savings 
and low-latency access. These advantages are valuable in the light 
of power and clock frequency constraints in emerging processor 
and branch predictor designs [9][17]. In our future work, we plan 
to model the energy consumption and the access latency of the OS- 
aware branch predictors. 

Historically, privilege bits are used to protect system critical 
resources such as page tables and process control blocks for 
security purposes. The results of our study show that on a fine- 
grained resource sharing superscalar microprocessor, the 
protection of performance-critical microarchitecture hardware, 
such as branch prediction tables, also is important. It is likely that 
future high-end microprocessors will aggressively support more 
predictions (e.g. value prediction). Further research is needed to 
investigate the benefit of OS-aware microarchitecture on these 
predictors. 
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