

Routine based OS-aware Microprocessor Resource
Adaptation for Run-time Operating System Power Saving

Tao Li
Department of Electrical and Computer Engineering

University of Texas at Austin
Austin, Texas, 78712

tli3@ece.utexas.edu

Lizy Kurian John
Department of Electrical and Computer Engineering

University of Texas at Austin
Austin, Texas, 78712

ljohn@ece.utexas.edu

ABSTRACT
The increasingly constrained power budget of today’s
microprocessor has resulted in a situation where power savings of
all components in a system have to be taken into consideration.
Operating System (OS) is a major power consumer in many
modern applications execution. This paper advocates a routine
based OS-aware microprocessor resource adaptation mechanism
targeting run-time OS power savings. Simulation results show that
compared with the existing sampling-based adaptation schemes,
this novel methodology yields more attractive power and
performance trade-off on the OS execution. To our knowledge,
this paper is the first step to address the power saving issue of the
OS itself, an increasingly important area that has been largely
overlooked in the previous studies.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Other Architecture Styles-
adaptable architectures, pipeline processors
D.4.m [Operating Systems]: Miscellaneous

General Terms
Performance, Design.

Keywords
Low power, adaptive processor, operating system.

1. INTRODUCTION
Today’s high-performance microprocessor constitutes of

millions of transistors clocked at Giga Hz frequency, which
translates to the significant power dissipation. Its performance-
driven market and increasingly constrained power budget
necessitate the power saving consideration of all components in a
system, spanning from circuits to the software running on it.

Operating System (OS) constitutes a major software component
of today’s complex systems featured with high-end and general-
purpose microprocessors, memory hierarchy and heterogeneous
I/O devices. Many modern and emerging workloads (e.g.,
database, web servers and file/e-mail applications) exercise the
OS significantly [1, 6]. Figure 1 shows that on the average, the
OS draws 32% of the total energy (CPU, cache and main memory)

during the execution of the 12 studied workloads (see section 2
for detail), making it a major power consumer. The proportion of
the OS power consumption is projected to increase due to the
increasing demands for system management activities, such as
thermal sensor reading, energy accounting and power control for
memory and I/O devices [2]. Clearly, in a power constrained
environment, OS power saving needs to be addressed. However,
previous studies [3, 4, 5] entirely focus on lowing power for user-
only applications. To our knowledge, power saving and
optimization for the OS itself have received little attention.

91%89%

0%

10%

20%

30%

40%

50%

pmake gcc
vo

rte
x

se
ndmail

file
man db

jes
s

jav
ac jac

k

postg
res

.se
lect

postg
res

.update

osboot
AVG

Figure 1. % of Energy Dissipated by the OS

In this study, we explore the adaptation of processor resources
to reduce OS power on today’s high-performance superscalar
processors, which exploit aggressive hardware design to maximize
performance across a wide range of targeted applications. It has
been observed that program’s computational requirement,
generally measured by the instruction per cycle (IPC), varies
during its execution. By tuning processor resources to be
appropriate to the actual needs of the program, significant power
savings can be achieved with minimal impact on performance.
Figure 2 illustrates the IPC variation over time for jess, a
SPECjvm98 Java benchmark [19] running on an 8-issue
superscalar processor. The benchmark’s IPC varies from as low as
nearly zero to as high as five, indicating the significant
discrepancy in computational requirement during its execution.

0
1
2
3
4
5
6

0.00 0.07 0.13 0.20 0.26
Execution Time (seconds)

IP
C

Figure 2. IPC Variation in Benchmark jess

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED’03, August 25–27, 2003, Seoul, Korea.
Copyright 2003 ACM 1-58113-682-X/03/0008…$5.00.

241

One factor that contributes to the widely varying IPC is the
frequent OS activity: the inherent instruction level parallelism
(ILP) in the OS has been found to be much lower than user
applications [6]. The abundant use of serializing instructions and
highly-optimized instruction sequence in the OS design limit the
available instruction level parallelism (ILP). Figure 3 compares
the IPC of user and OS running the 12 studied benchmarks on an
8-issue machine. The OS IPC is 1.2x to 2.4x lower than the user
IPC, implying that: (1) the OS does not exploit the superscalar
capabilities provided by the wide-issue, aggressive processor as
efficiently as user code does; (2) power savings can be achieved
by allocating processor resources (with lower computational
capabilities) matching the OS requirement.

0

0.5

1

1.5

2

2.5

IP
C

 pmake vortex fileman jess jack p.update AVG
 gcc sendmail db javac p.select osboot

User

OS

Figure 3. IPC of User and OS on an 8-issue Machine

Current adaptation techniques [3, 4, 5, 11] rely on periodic
sampling schemes to match program computational requirement
with processor resources. However, we show in this paper that
resource adaptation based on sampling window becomes less
efficient when applied to the exception-driven and short-lived OS
execution. Moreover, for large and sophisticated programs like
OS, a naïve sampling scheme does not guarantee the optimal
solution when both energy and performance are under
consideration.

Therefore, we advocate a routine based OS-aware
microprocessor resource adaptation scheme. The rationale is that
although modern operating systems are large sophisticated
software, their complexities are hidden behind a relatively simple
interface - a set of OS kernel service routines, which provides a
common interface to exercise the OS. The power and performance
knowledge of different OS routines can be characterized then
exposed to the hardware to finely tune the power/performance
knob of the OS at run-time.

The proposed innovative technique ensures that processor
resources match to the computational demands of the OS in a
timely and optimal fashion yet with low overhead. Compared with
existing techniques, the proposed scheme has the following
advantages: (1) OS-aware resource adaptation guarantees the
timely and fine-grained resolution required to capture the
exception-driven, short-lived OS activity. (2) Adapting processor
resources only at OS routine boundaries largely eliminates
reconfiguration latency. (3) Routine based adaptation selects the
optimal configuration for individual routine, yielding more
attractive power and performance trade-off. (4) Aggressive
optimizations can be safely applied to certain OS routines to
further save energy without degrading performance.

This paper is organized as follows: Section 2 describes the
experimental methodology and executed benchmarks. Section 3
presents a based line sampling-adaptation scheme and
demonstrates the challenges in sampling OS activity. Section 4

proposes the routine based OS-aware microarchitecture adaptation
scheme and discusses its benefits. Section 5 presents simulation
results. Section 6 discusses related work. In Section 7, we
conclude with some final remarks.

2. EXPERIMENTAL METHODOLOGY
As described in Table 1, the baseline machine we consider for

this study is an aggressive, 8-issue superscalar processor. To
reduce its power consumption, the processor can be reconfigured
to the 6-issue, 4-issue, 2-issue and 1-issue modes by reducing its
computational capacity. Previous studies [3, 4, 5] observe that
power consumption of a high-performance superscalar machine is
largely determined by the instruction issue width and the scale of
major microarchitectural structures, such as: instruction window
(IW), reorder buffer (ROB) and load store queue (LSQ).
Therefore, in 6-issue mode, we limit the instruction fetch, decode,
issue and retire width to be 6 and disable 1/4 of the IW, ROB and
LSQ entries. In the 4-issue, 2-issue and 1-issue modes, we restrict
the issue width to be 4, 2, and 1 and disable 1/2, 3/4, and 7/8 of
the above resources (i.e., IW, ROB and LSQ) respectively.

Table 1. Baseline Machine

Processor Core
Technology/Vdd/Frequency 0.18 um/2.0V/900 Mhz
Fetch/Issue/Retire Width 8
Physical Register File 64
Instruction Window Size 128
Reorder Buffer Size 256
Function Units MIPS R10000 Like
Branch Target Buffer (BTB) 2048-entry, 4-way
Return Address Stack 32-entry w/ misprediction repair
Branch Prediction/Penalty 24K-entry Hybrid/10 Cycles
Load Store Queue Size 64

Memory Hierarchy

MMU
Fully associative TLB, 48-entries,
4KB page size

L1 I-Cache 32KB, 2-way, 64B blocks, 1 cycle
L1 D-Cache 32KB, 2-way, 32B blocks, 1 cycle
L2 Cache 512KB, 2-way, 128B blocks, 9 cycle
Memory 256MB, 180 cycle access

We use the complete system power simulator SoftWatt [7]. The
SoftWatt tool, built on top of the SimOS infrastructure [8],
integrates validated energy model similar to other low level power
simulator like Wattch [9]. By leveraging the SimOS cycle-
accurate full-system simulation capability, SoftWatt captures both
the power and performance characteristics of the unmodified OS
running on the machine model described above. In our study, the
simulated OS is a full-blown, commercial version of the SGI IRIX
5.3.

We use 12 applications that have different characteristics. The
pmake is a parallel program development workload. The vortex
and gcc are two benchmarks from the SPECint95. The sendmail
benchmark forwards emails using the Simple Mail Transport
Protocol (SMTP). The db, jess, javac and jack are Java programs
from the SPECjvm98 suite executed on a SGI-ported Sun Java
Virtual Machine (JVM). We also use two benchmarks that run on
a relational database management system (DBMS) engine-
PostgreSQL [10]. The database is populated with relational tables
for the TPC-C benchmark. The postgres.select performs a
sequential table scan of a table with 1 million rows and a
selectivity of 3%. The postgres.update updates to a field of a

242

300,000 row table. The fileman performs popular file management
activities, such as copy, remove, tar -cvf and tar -xvf operations.
The osboot executes a complete OS booting sequence from a root
disk image and then generates a shell for the user.

Table 2 shows the OS IPC and power consumption (average
over all benchmarks) on the different modes. It can be seen that
by reducing processor resources, the 4-issue mode saves 49% of
power with a performance loss of only 5%. The OS IPC does not
scale well with the increasing superscalar capability, making it
ideal candidate for resource adaptation. Given the assumption that
the OS execution can be timely and accurately detected,
significant power savings can be achieved (with tolerable
performance penalty) by catering appropriate processor
computational resource for it.

Table 2. OS IPC and Power on Different Modes

 1-issue 2-issue 4-issue 6-issue 8-issue
IPC 0.88 1.09 1.15 1.19 1.21

Power(W) 6.4 12.2 21.7 31.1 42.8

3. SAMPLING BASED ADAPTATION:
CHALLENGES FOR OS

In prior research, the run-time periodic sampling of measurable
metrics (e.g., IPC) has ubiquitously been used to estimate
program computational demand and to guide the adaptations.
Current sampling-adaptation approaches [3, 11] use a finite state
machine (FSM) to specify the transitions between different
configurations. For example, Figure 4 shows a FSM for
transitioning between the normal mode (8-issue) and the low
power modes (6, 4, 2 and 1-issue) described in Section 2. The
enabling (ExI) and disabling conditions (DxI) and the IPC
thresholds are set and extended according to the one proposed by
Bahar et al. [3]. For example, the enabling conditions for entering
the 4-issue mode are E4I or !D4I&!E2I or E4I&!E2I&!E1I respectively.
In this paper, we consider this adaptation technique as the
baseline scheme.

1: !E6I&!E4I&!E2I&!E1I
2: E6I&!E4I&!E2I&!E1I
3: !D6I&!E4I
4: E4I
5: !D4I&!E2I
6: E2I
7: !D2I&!E1I
8: E1I
9: !D1I
10: D6I
11: D4I

2
issue

1
issue

8
issue

4
issue

6
issue

1

2

3

4

8

5

6

7 9

16

15

14

13

10

11

12

12: D2I
E6I : IPC<4.5 D6I : IPC>5.0 13: D1I
E4I : IPC<3.0 D4I : IPC>3.2 14: E4I&!E2I&!E1I
E2I : IPC<1.5 D2I : IPC>1.8 15: E2I&!E1I
E1I : IPC<0.5 D1I : IPC>0.8 16: E1I

Figure 4. FMS used in Sampling based Adaptation (Trigger
Conditions and Thresholds are set and extended according to [3])

At run-time, the estimated program IPC within the previous
sampling window (A) serves as the input of FMS to choose the
configurations for the current interval (B), as shown in Figure 5.1.
The basic premise of this sampling algorithm is that past program
behavior indicates its future needs. The sampling window period
(sT) determines the finest granularity at which program phase
changes can be resolved. Generally, sT has to be small enough to
capture the changes of program behavior.

In practice, accomplishing an adaptation can cause performance
penalty (latency marked as aT in Figure 5.1). In the superscalar
processor design, IW, LSQ and ROB are implemented with
partitioned structure [5]. A reconfiguration has to guarantee that
there are no instructions left on the partitions that will be
deactivated. Additional care must be taken in resizing the ROB
and LSQ because of their circular FIFO like structure [4]. Due to
these restrictions, whenever an adaptation decision is made, the
dispatch unit stops pumping instructions into the IW, LSQ and
ROB until all existing instructions are drained out from the
partitions to be turned off. This pipeline flushing like action can
take a non-trivial amount of time, depending on the number of
instructions already in pipeline and the cycles for them to
complete [11]. Moreover, compared with single mode only
execution, adaptations introduce extra latency due to pipeline
warm-ups after the reconfigurations. As shown in Figure 5.2,
reducing sampling window period (sh TT <<) offers capability to
capture fine-grained phase changes in execution. However, the
aggregated adaptation overhead can be prohibitive. This fact
prevents the use of small sampling window without significantly
slowing down program execution. In [4], a sampling window of
2048 cycles is set. In [11], an even larger resizing period is
chosen for the entire program hotspot, which could take several
million cycles.

At run-time, user and OS execution appear alternately within
the sampling windows, as shown in Figure 5. OS is activated with
voluntarily by a system call from the application, or from a call by
some other application, or implicitly by some underlying
periodic/asynchronous (timer/device interrupt) mechanisms. The
IPC discrepancy between user and OS indicates the different
computational requirement when the user/OS context switches.
When program phase shifts (e.g., due to user/OS interactions), the
prior interval becomes a poor estimate for the next.

In the traditional and performance-centric OS design, highly
optimized lightweight routines (e.g., faults and interrupt handlers)
are usually implemented in order to keep the cycles down.
Therefore, many OS service routines show short-lived execution
period. Theoretically, given a sampling interval of sT , in order to
accurately capture the phase shift caused by an OS service and
exploit the adapted configuration for at least another sampling
interval, the duration of that OS service osdT should be at least sT2
cycles, i.e. sosd TT 2≥ .

Our characterization shows that there are only 16 OS routines
satisfy the above restriction on the duration (≥ 4096 cycles)
required by the 2048 cycles sampling interval, a commonly used
window granularity to avoid the costly reconfiguration overhead.
Figure 6 further illustrates how OS service routines with different
duration contribute to the total OS energy dissipation (Note that
the x-axis uses logarithmic scale). It is observed that even though
some OS services are very efficiently implemented from the
execution cycle viewpoint, those lightweight OS services can have
significant impact on the total OS energy. For example, on
benchmark postgres.update, the OS service routines with duration
less than 4096 cycles draw 50% of the OS energy. As described
earlier, a sampling window which is larger than 2048 cycles can
not guarantee to resolve these OS activity and adapt processor
resource timely to reduce that portion of OS energy (shown on the
left side of the dotted line in Figure 6).

243

disable
sampling

OS UserUser OS User

User User UserOS OS User

disable
sampling

User UserOS OS User

sampling window

smaller sampling
window

dilated sampling windowAdaptation
overhead

(1)

(2)

(3)

A B C
Ta

Ts

Th

OS Routine-based
Resource Adaptation

Figure 5. Sampling Policies used in Resource Adaptation

To summarize, a long window interval does not provide the
opportunity to switch mode when the program phases change due
to the exception-driven, non-deterministic and short-live nature of
user/OS interactions. On the other hand, the fine-grained
switching required by the brief OS invocations makes it difficult
to amortize the performance degradation due to the frequent
adaptations. To reconfigure processor resource for the short-lived
OS activity without rising costly adaptation overhead, we propose
a routine based OS-aware processor adaptation mechanism
targeting on the run-time OS power savings.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

10 100 1,000 10,000 100,000
Duration of OS Services (in Cycles)

A
cc

um
ul

at
iv

e
O

S
 E

ne
rg

y

pmake
gcc
vortex
sendmail
fileman
db
jess
javac
jack
postgres.select
postgres.update
osboot

4,096

Figure 6. Accumulative OS Energy vs. OS Service Duration

4. PROPOSED SOLUTION: OS-AWARE
ROUTINE BASED ADAPTATION

Routine based OS-aware adaptation dedicates to reconfigure
processor upon the OS execution. Separating out OS execution
can easily be done at run-time by using the Processor Status
Register. Processor adaptations occur only at the boundaries of
the user/OS context switches, as shown by Figure 5.3. Today,
almost all high-performance, out-of-order machines support
precise exception to ensure the correctness of program execution.
The OS invocations, either explicitly (e.g. system calls and I/O
interrupts) or implicitly (e.g. fault handling) are treated as
exceptions on these processors. Upon receiving an exception, the
processor completes all previous instructions (specified in
program order) and then flushes the pipeline [18]. At this point, a
reconfiguration can be made with zero latency because there is no
instruction left in the pipeline and the partitioned hardware
structures. Similarly, when the processor returns from an OS
service, another adaptation happens immediately by restoring the
processor to the mode prior to the user/OS context switch. The
processor then fetches the instructions from the user applications
and continuously executes using that mode. Therefore, routine
based OS-aware adaptation is capable to capture all OS activity
timely and accurately, while retaining a zero adaptation overhead
in the OS. The separating OS activity out of the regular sampling
interval creates the “dilated” sampling window (as shown in

Figure 5.3), diminishing the number of reconfigurations and the
total execution cycles of the user program. Moreover, this
technique prevents pathological IPC degradations arising from
erroneously matching processor configurations catered for OS to
user program’s requirement (as shown in Figure 5.1, window B
and C). This is critical since user program after the context
switched from OS generally requires the full issuing capabilities
of the machine to operate on new data and working set. Though
interesting, a detailed analysis of such impact is beyond the scope
of this paper.

As described earlier, processor resource adaptation saves power
and is detrimental to performance. The goal of such adaptation is
to reduce power with the minimum performance lost. Modern
operating systems are large, sophisticated software. Individual OS
routine performs specific functionality and can exhibit vast
variation in computational requirement. A configuration that is
good for one piece of code may not turn out to be optimal for
another.

The Energy-Delay product (EDP) is a reasonable metric to
evaluate energy efficiency, namely, the goal of achieving high
performance while minimizing energy consumption. Figure 7
shows the Energy×Delay (normalized with 8-issue mode) of
different OS service routines (clock, COW_fault and read)
running on different modes. Clock processes timer interrupt.
COW_fault performs page level copy-on-write operations and
read transfers data from OS file cache to the user address space.

0

0.2

0.4

0.6

0.8

1

clock COW_fault read

No
rm

ali
ze

d
En

er
gy

-D
ela

y P
ro

du
ct 1-issue

2-issue
4-issue
6-issue
8-issue

Figure 7. Energy××××Delay of Different OS Services
Figure 7 leads to a number of interesting observations. In

general, the 8-issue mode is not energy efficient by showing the
highest Energy×Delay on all of the three OS routines. The
application of the 1-issue, 2-issue, 4-issue and 6-issue modes
yields better trade-off between power and performance. More
interesting, the optimal configuration (with the lowest
Energy×Delay value) changes, depending on the OS routines. For
example, on the 1-issue mode, the clock shows its best
Energy×Delay scenario (0.3), while the COW_fault yields an
Energy×Delay value of 0.8.

The heterogeneous Energy×Delay behavior of various OS
routines makes a unified adaptation for the whole OS less

244

attractive. However, it provides an avenue to finely tune the OS
power/performance knob: the per-OS routine based optimal
configuration can be exposed to and exploited by the hardware to
achieve a better OS Energy×Delay trade-off. In practice, a simple
profile-driven methodology [17] can be used for finding the
optimal configuration for individual routine in a pre-
characterization stage. At run-time, the hardware selectively
applies the pre-characterized, optimal configuration to individual
OS routine instantaneously, eliminating a search of the
configuration space.

Having known the nature and functionality of an OS
invocation, one can apply Energy×Delay optimizations even more
aggressively. In this paper, we consider the following two
optimizations:

(1) Resizing Register File
Modern superscalar machines exploit register renaming and use

large register file to eliminate false dependencies between
instructions. In many hand-tuned and highly optimized OS
routines, however, the true dependencies dominate. In these
scenarios, the size of the physical register file can be reduced to
save more power. Specifically, we observe that disabling half of
the physical registers for OS routines utlb, timein, clock, close,
brk, alarm, dup, pipe, ioctl, utsys, prctl, and msync saves 5% - 7%
of the processor power with no performance loss. Generally, the
additional complexity for resizing a register file greatly diminishes
the likelihood to do so [5]. The proposed routine based OS-aware
adaptation scheme can safely and efficiently resize the register file
because it guarantees that no physical register is mapped
whenever a resizing occurs at the user/OS context switch
boundaries.

(2) OS-aware Control Flow Speculation
Control flow speculation has been widely adopted in today's

microprocessor design to exploit the ILP in programs.
Nevertheless, the fetches and subsequent processing of
misspeculated instructions will waste more energy and cycles
[12]. It has been observed that the conventional branch predictors
can frequently mispredict the control flow transfers in the
exception-driven and short-lived OS execution. In [13], Li et al.
propose an OS-aware control flow speculation scheme which
allocates dedicated branch prediction resource to the OS to
improve its branch prediction accuracy. In this study, we integrate
an OS-aware hybrid predictor [13] with the proposed processor
adaptation scheme to further optimize its energy efficiency in the
light of the exception-driven and non-deterministic OS execution.

5. POWER SAVINGS AND
PERFORMANCE EVALUATION

This section presents power savings as well as performance
evaluations of the proposed technique and the baseline adaptation
mechanism (described in Section 3) on the OS execution. The
schemes we compare are: (1) a baseline adaptation scheme with a
2048-cycle sampling window (ADPT with sw=2048); (2) a
baseline adaptation scheme with a fine-grained 128-cycle
sampling window (ADPT with sw=128); (3) the routine based
OS-aware adaptation (OS-aware ADPT); (4) the routine based
OS-aware adaptation with aggressive optimizations (OS-aware
ADPT w/ AO). Figure 8 shows the average power of the
experimented workloads on different schemes. Figure 9 and
Figure 10 show the performance (IPC) and Energy×Delay metric
on the same scenario. All values are normalized with respect to

the baseline 8-issue machine without implementing any
adaptation.

Figure 8 shows that compared with the coarse-grained sampling
technique (ADPT with sw=2048), the OS-aware ADPT can
reduce power more aggressively by being able to accurately
capture the exception-driven, short-lived OS activity and match
them with appropriate resources in a timely fashion. For the same
reason, scheme using fine-grained sampling window (ADPT with
sw=128) is also observed to achieve good power savings. The OS-
aware ADPT w/ AO has a double-fold impact on power savings:
reducing the size of register file drops power while the improved
control flow speculation tends to increase power because the
pipeline flushing stalls happen less frequently. Intuitively,
optimizations such as OS-aware control-flow speculation could
increase per-cycle processor power. Nevertheless, it reduces
program execution cycles and the total clock power, on which
both the processor and software energy largely depends.
Therefore, overall it will benefit the targeted program
Energy×Delay metric that we try to optimize. Moreover, as can be
seen in the Figure 8, one factor does not dominate another one by
showing drastic changes in power compared with the OS-aware
ADPT scheme.

0

0.2

0.4

0.6

pmak
e

gcc

vo
rte

x

sen
dmail

file
man db

jes
s

java
c

jac
k

postgres
.se

lec
t

pos
tgres

.update
osb

oot AVG

No
rm

al
iz

ed
 P

ow
er

ADPT (sw=2048) ADPT (sw=128)
OS-aware ADPT OS-aware ADPT w/ AO

Figure 8. Normalized Power (ADPT with sw=2048 is sampling-
based adaptation with 2048-cycle window, ADPT with sw=128 is sampling based
adaptation with 128-cycle window, OS-aware ADPT is OS routine based
adaptation, and OS-aware ADPT w/ AO is OS routine based adaptation with
aggressive optimizations)

0.7

0.8

0.9

1

pmake
gcc

vorte
x

sendmail

file
man db

jess
javac jack

postgres
.selec

t

postgr
es

.update
osb

oot
AVG

No
rm

al
iz

ed
 IP

C

ADPT (sw=2048) ADPT (sw=128)
OS-aware ADPT OS-aware ADPT w/ AO

Figure 9. Normalized IPC
Looking at Figure 9, one can see that the performance of OS-

aware ADPT is competitive with that of the ADPT (sw=2048),
despite that the ADPT (sw=2048) favors the OS performance by
overestimating its computational requirement due to the
interference of the higher user IPC. Figure 9 also shows that using
fine-grained window sampling scheme (ADPT with sw=128)
measurably degrades performance due to the aggregated
adaptation overhead. As described earlier, the OS-aware ADPT
does not incur adaptation overheads in OS. The use of the optimal

245

solution for individual routine further eliminates the unnecessary
adaptations within a routine, leading to a better performance than
the existing fine-grained adaptation scheme. Another observation
from Figure 9 is that the OS-aware ADPT w/ AO further increases
performance by reducing the time spent on processing wrong-path
instructions. Note that the y-axis begins at 70% normalized IPC in
Figure 9.

The results shown in Figure 10 indicate the OS-aware ADPT
retains performance while reducing power by showing the
desirable characteristics when both performance and energy are
under consideration. The OS-aware ADPT w/ AO further
improves the OS Energy×Delay behavior, implying that although
the aggressive optimizations such as resizing register file may
yield unbalanced machine for many user applications, they
produce more energy savings when judiciously applied to certain
OS routines.

0

0.2

0.4

0.6

0.8

pmak
e

gcc

vort
ex

se
nd

mail

file
man db

jes
s

java
c

jack

postg
res

.se
lec

t

postg
res

.update
osb

oot
AVG

No
rm

al
iz

ed
 E

ne
rg

y.
De

la
y ADPT (sw=2048) ADPT (sw=128)

OS-aware ADPT OS-aware ADPT w/ AO

Figure 10. Normalized Energy××××Delay

6. RELATED WORK
Previous research [14] employs the OS to reduce power at

system level. Recently, the energy behavior of embedded, real-
time operating systems has been studied in [15, 16]. In [7], a full-
system energy simulator is developed and the necessity of
simulating OS energy is quantified. So far, techniques for run-
time software power savings exclusively focus on the user-only
applications. Among those, microarchitecture level power
management [3, 4, 5, 11] has been demonstrated to be an
attractive solution for the fine-grained program Energy×Delay
optimization. In [3], Bahar et al. exploit IPC variations in
program to reduce power. Our proposed scheme further explores
the IPC variations between user and OS and the fine-grained
phase changes due to the user/OS context switches. By varying
processor fetch and execution rates, Marculescu et al. [17] study
power-performance trade-off based on a profile-driven
methodology, which is employed in this study to characterize the
per-OS routine based Energy×Delay behavior. In [4, 5], the
authors propose mechanisms for independently monitoring and
adapting multiple microarchitectural structures in one system. By
leveraging the pre-characterized Energy×Delay knowledge, our
approach avoids the complexity in the simultaneous control and
independent operation of multiple adaptive structures.

7. CONCLUSION
Modern applications spend a significant proportion of their

execution time within the operating system, making OS a major
power consumer. To save power, we argue that hardware should
provide resources that closely match the needs of the OS.

However, with exception-driven and intermittent execution in
nature, it becomes difficult to accurately predict and adapt
processor resources in a timely fashion. The novel approach we
proposed in this paper permits precise hardware reconfigurations
for the OS with low overhead and allows fine-grained
performance/power tuning at microarchitectural level. This
scheme is orthogonal to and can be integrated with existing
techniques proposed for user-only applications to further enhance
their efficiency in the light of the prevalent, OS-intensive and
emerging workloads. With the increasing impact of the leakage
power, routine customized aggressive adaptation tends to save
more power by safely turning off more transistors. The proposed
scheme can be exploited in mobile computing systems for energy
saving, as well as in conventional systems for dynamic thermal
management.

8. ACKNOWLEDEGMENT
This research is partially supported by the National Science

Foundation under grant number 0113105; the Defense Advanced
Research Projects Agency under contract F33615-01-C-1892; and
by the AMD, Intel, IBM, Tivoli and Microsoft Corporations.

9. REFERENCES
[1] J. A. Redstone et al., An Analysis of Operating System Behavior on a
Simultaneous Multithreaded Architecture, In Proc. of ASPLOS, 2000.
[2] H. Zeng et al., ECOSystem: Managing Energy as a First Class
Operating System Resource, In Proc. of ASPLOS, 2002.
[3] R. I. Bahar et al., Power and Energy Reduction via Pipeline Balancing,
In Proc. of ISCA, 2001.
[4] D. Ponomarev et al., Reducing Power Requirements of Instruction
Scheduling through Dynamic Allocation of Multiple Data-path Resources,
In Proc. of MICRO, 2002.
[5] S. Dropsho et al., Integrating Adaptive On-Chip Storage Structures for
Reduced Dynamic Power, In Proc. of PACT, 2002.
[6] K. Keeton et al., Performance Characterization of a Quad Pentium Pro
SMP using OLTP Workloads, In Proc. of ISCA, 1998.
[7] S. Gurumurthi et al., Using Complete Machine Simulation for
Software Power Estimation: the SoftWatt Approach, In Proc. of HPCA,
2002.
[8] M. Rosenblum et al., Complete Computer System Simulation: the
SimOS Approach, IEEE Parallel and Distributed Technology: Systems
and Applications, vol.3, no.4, 1995.
[9] D. Brooks et al., Wattch: A Framework for Architectural-level Power
Analysis and Optimizations, In Proc. of ISCA, 2000.
[10] "PostgreSQL", http://www.us.postgresql.org/
[11] A. Iyer et al., Microarchitecture Level Power Management, IEEE
Transactions on VLSI, vol. 10, no. 3, 2002.
[12] S. Manne et al., Pipeline Gating: Speculation Control for Energy
Reduction, In Proc. of ISCA, 2001.
[13] T. Li et al., Understanding and Improving Operating System Effects
in Control Flow Prediction, In Proc. of ASPLOS, 2002.
[14] L. Benini et al., Monitoring System Activity for OS-directed
Dynamic Power Management, In Proc. of ISLPED 1998.
[15] K. Baynes et al., The Performance and Energy Consumption of three
Embedded Real-Time Operating Systems, In Proc. of CASES, 2001.
[16] T. K. Tan et al., Embedded Operating System Energy Analysis and
Macro-modeling, In Proc. of ICCD 2002.
[17] D. Marculescu, Profile-Driven Code Execution for Low Power
Dissipation, In Proc. of ISLPED, 2000.
[18] J. L. Hennessy et al., Computer Architecture: A Quantitative
Approach, Morgan Kaufman Publishers, 1996.
[19] SPEC JVM98 Benchmarks, http://www.spec.org/jvm98/

246

