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ABSTRACT 
The increasingly constrained power budget of today’s 
microprocessor has resulted in a situation where power savings of 
all components in a system have to be taken into consideration. 
Operating System (OS) is a major power consumer in many 
modern applications execution. This paper advocates a routine 
based OS-aware microprocessor resource adaptation mechanism 
targeting run-time OS power savings. Simulation results show that 
compared with the existing sampling-based adaptation schemes, 
this novel methodology yields more attractive power and 
performance trade-off on the OS execution. To our knowledge, 
this paper is the first step to address the power saving issue of the 
OS itself, an increasingly important area that has been largely 
overlooked in the previous studies. 

Categories and Subject Descriptors 
C.1.3 [Processor Architectures]: Other Architecture Styles- 
adaptable architectures, pipeline processors 
D.4.m [Operating Systems]: Miscellaneous 

General Terms 
Performance, Design. 

Keywords 
Low power, adaptive processor, operating system. 

1. INTRODUCTION 
Today’s high-performance microprocessor constitutes of 

millions of transistors clocked at Giga Hz frequency, which 
translates to the significant power dissipation. Its performance-
driven market and increasingly constrained power budget 
necessitate the power saving consideration of all components in a 
system, spanning from circuits to the software running on it. 

Operating System (OS) constitutes a major software component 
of today’s complex systems featured with high-end and general-
purpose microprocessors, memory hierarchy and heterogeneous 
I/O devices. Many modern and emerging workloads (e.g., 
database, web servers and file/e-mail applications) exercise the 
OS significantly [1, 6]. Figure 1 shows that on the average, the 
OS draws 32% of the total energy (CPU, cache and main memory) 

during the execution of the 12 studied workloads (see section 2 
for detail), making it a major power consumer. The proportion of 
the OS power consumption is projected to increase due to the 
increasing demands for system management activities, such as 
thermal sensor reading, energy accounting and power control for 
memory and I/O devices [2]. Clearly, in a power constrained 
environment, OS power saving needs to be addressed. However, 
previous studies [3, 4, 5] entirely focus on lowing power for user-
only applications. To our knowledge, power saving and 
optimization for the OS itself have received little attention. 
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Figure 1. % of Energy Dissipated by the OS 

In this study, we explore the adaptation of processor resources 
to reduce OS power on today’s high-performance superscalar 
processors, which exploit aggressive hardware design to maximize 
performance across a wide range of targeted applications. It has 
been observed that program’s computational requirement, 
generally measured by the instruction per cycle (IPC), varies 
during its execution. By tuning processor resources to be 
appropriate to the actual needs of the program, significant power 
savings can be achieved with minimal impact on performance. 
Figure 2 illustrates the IPC variation over time for jess, a 
SPECjvm98 Java benchmark [19] running on an 8-issue 
superscalar processor. The benchmark’s IPC varies from as low as 
nearly zero to as high as five, indicating the significant 
discrepancy in computational requirement during its execution. 
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One factor that contributes to the widely varying IPC is the 
frequent OS activity: the inherent instruction level parallelism 
(ILP) in the OS has been found to be much lower than user 
applications [6]. The abundant use of serializing instructions and 
highly-optimized instruction sequence in the OS design limit the 
available instruction level parallelism (ILP). Figure 3 compares 
the IPC of user and OS running the 12 studied benchmarks on an 
8-issue machine. The OS IPC is 1.2x to 2.4x lower than the user 
IPC, implying that: (1) the OS does not exploit the superscalar 
capabilities provided by the wide-issue, aggressive processor as 
efficiently as user code does; (2) power savings can be achieved 
by allocating processor resources (with lower computational 
capabilities) matching the OS requirement. 
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Figure 3. IPC of User and OS on an 8-issue Machine 

Current adaptation techniques [3, 4, 5, 11] rely on periodic 
sampling schemes to match program computational requirement 
with processor resources. However, we show in this paper that 
resource adaptation based on sampling window becomes less 
efficient when applied to the exception-driven and short-lived OS 
execution. Moreover, for large and sophisticated programs like 
OS, a naïve sampling scheme does not guarantee the optimal 
solution when both energy and performance are under 
consideration. 

Therefore, we advocate a routine based OS-aware 
microprocessor resource adaptation scheme. The rationale is that 
although modern operating systems are large sophisticated 
software, their complexities are hidden behind a relatively simple 
interface - a set of OS kernel service routines, which provides a 
common interface to exercise the OS. The power and performance 
knowledge of different OS routines can be characterized then 
exposed to the hardware to finely tune the power/performance 
knob of the OS at run-time. 

The proposed innovative technique ensures that processor 
resources match to the computational demands of the OS in a 
timely and optimal fashion yet with low overhead. Compared with 
existing techniques, the proposed scheme has the following 
advantages: (1) OS-aware resource adaptation guarantees the 
timely and fine-grained resolution required to capture the 
exception-driven, short-lived OS activity. (2) Adapting processor 
resources only at OS routine boundaries largely eliminates 
reconfiguration latency. (3) Routine based adaptation selects the 
optimal configuration for individual routine, yielding more 
attractive power and performance trade-off. (4) Aggressive 
optimizations can be safely applied to certain OS routines to 
further save energy without degrading performance. 

This paper is organized as follows: Section 2 describes the 
experimental methodology and executed benchmarks. Section 3 
presents a based line sampling-adaptation scheme and 
demonstrates the challenges in sampling OS activity. Section 4 

proposes the routine based OS-aware microarchitecture adaptation 
scheme and discusses its benefits. Section 5 presents simulation 
results. Section 6 discusses related work. In Section 7, we 
conclude with some final remarks. 

2. EXPERIMENTAL METHODOLOGY 
As described in Table 1, the baseline machine we consider for 

this study is an aggressive, 8-issue superscalar processor. To 
reduce its power consumption, the processor can be reconfigured 
to the 6-issue, 4-issue, 2-issue and 1-issue modes by reducing its 
computational capacity. Previous studies [3, 4, 5] observe that 
power consumption of a high-performance superscalar machine is 
largely determined by the instruction issue width and the scale of 
major microarchitectural structures, such as: instruction window 
(IW), reorder buffer (ROB) and load store queue (LSQ). 
Therefore, in 6-issue mode, we limit the instruction fetch, decode, 
issue and retire width to be 6 and disable 1/4 of the IW, ROB and 
LSQ entries. In the 4-issue, 2-issue and 1-issue modes, we restrict 
the issue width to be 4, 2, and 1 and disable 1/2, 3/4, and 7/8 of 
the above resources (i.e., IW, ROB and LSQ) respectively. 

Table 1. Baseline Machine 

Processor Core 
Technology/Vdd/Frequency 0.18 um/2.0V/900 Mhz
Fetch/Issue/Retire Width 8 
Physical Register File 64 
Instruction Window Size 128 
Reorder Buffer Size 256 
Function Units MIPS R10000 Like
Branch Target Buffer (BTB) 2048-entry, 4-way 
Return Address Stack 32-entry w/ misprediction repair
Branch Prediction/Penalty 24K-entry Hybrid/10 Cycles
Load Store Queue Size 64 

Memory Hierarchy 

MMU 
Fully associative TLB, 48-entries, 
4KB page size 

L1 I-Cache 32KB, 2-way, 64B blocks, 1 cycle 
L1 D-Cache 32KB, 2-way, 32B blocks, 1 cycle 
L2 Cache 512KB, 2-way, 128B blocks, 9 cycle 
Memory 256MB, 180 cycle access 

We use the complete system power simulator SoftWatt [7]. The 
SoftWatt tool, built on top of the SimOS infrastructure [8], 
integrates validated energy model similar to other low level power 
simulator like Wattch [9]. By leveraging the SimOS cycle-
accurate full-system simulation capability, SoftWatt captures both 
the power and performance characteristics of the unmodified OS 
running on the machine model described above. In our study, the 
simulated OS is a full-blown, commercial version of the SGI IRIX 
5.3. 

We use 12 applications that have different characteristics. The 
pmake is a parallel program development workload. The vortex 
and gcc are two benchmarks from the SPECint95. The sendmail 
benchmark forwards emails using the Simple Mail Transport 
Protocol (SMTP). The db, jess, javac and jack are Java programs 
from the SPECjvm98 suite executed on a SGI-ported Sun Java 
Virtual Machine (JVM). We also use two benchmarks that run on 
a relational database management system (DBMS) engine- 
PostgreSQL [10]. The database is populated with relational tables 
for the TPC-C benchmark. The postgres.select performs a 
sequential table scan of a table with 1 million rows and a 
selectivity of 3%. The postgres.update updates to a field of a 
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300,000 row table. The fileman performs popular file management 
activities, such as copy, remove, tar -cvf and tar -xvf operations. 
The osboot executes a complete OS booting sequence from a root 
disk image and then generates a shell for the user. 

Table 2 shows the OS IPC and power consumption (average 
over all benchmarks) on the different modes. It can be seen that 
by reducing processor resources, the 4-issue mode saves 49% of 
power with a performance loss of only 5%. The OS IPC does not 
scale well with the increasing superscalar capability, making it 
ideal candidate for resource adaptation. Given the assumption that 
the OS execution can be timely and accurately detected, 
significant power savings can be achieved (with tolerable 
performance penalty) by catering appropriate processor 
computational resource for it. 

Table 2. OS IPC and Power on Different Modes 

 1-issue 2-issue 4-issue 6-issue 8-issue 
IPC 0.88 1.09 1.15 1.19 1.21 

Power(W) 6.4 12.2 21.7 31.1 42.8 

3. SAMPLING BASED ADAPTATION: 
CHALLENGES FOR OS 

In prior research, the run-time periodic sampling of measurable 
metrics (e.g., IPC) has ubiquitously been used to estimate 
program computational demand and to guide the adaptations. 
Current sampling-adaptation approaches [3, 11] use a finite state 
machine (FSM) to specify the transitions between different 
configurations. For example, Figure 4 shows a FSM for 
transitioning between the normal mode (8-issue) and the low 
power modes (6, 4, 2 and 1-issue) described in Section 2. The 
enabling (ExI) and disabling conditions (DxI) and the IPC 
thresholds are set and extended according to the one proposed by 
Bahar et al. [3]. For example, the enabling conditions for entering 
the 4-issue mode are E4I or !D4I&!E2I or E4I&!E2I&!E1I respectively. 
In this paper, we consider this adaptation technique as the 
baseline scheme. 

1: !E6I&!E4I&!E2I&!E1I 
2: E6I&!E4I&!E2I&!E1I 
3: !D6I&!E4I 
4: E4I 
5: !D4I&!E2I 
6: E2I 
7: !D2I&!E1I 
8: E1I 
9: !D1I 
10: D6I 
11: D4I 
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Figure 4. FMS used in Sampling based Adaptation (Trigger 
Conditions and Thresholds are set and extended according to [3]) 

At run-time, the estimated program IPC within the previous 
sampling window (A) serves as the input of FMS to choose the 
configurations for the current interval (B), as shown in Figure 5.1. 
The basic premise of this sampling algorithm is that past program 
behavior indicates its future needs. The sampling window period 
( sT ) determines the finest granularity at which program phase 
changes can be resolved. Generally, sT  has to be small enough to 
capture the changes of program behavior. 

In practice, accomplishing an adaptation can cause performance 
penalty (latency marked as aT in Figure 5.1). In the superscalar 
processor design, IW, LSQ and ROB are implemented with 
partitioned structure [5]. A reconfiguration has to guarantee that 
there are no instructions left on the partitions that will be 
deactivated. Additional care must be taken in resizing the ROB 
and LSQ because of their circular FIFO like structure [4]. Due to 
these restrictions, whenever an adaptation decision is made, the 
dispatch unit stops pumping instructions into the IW, LSQ and 
ROB until all existing instructions are drained out from the 
partitions to be turned off. This pipeline flushing like action can 
take a non-trivial amount of time, depending on the number of 
instructions already in pipeline and the cycles for them to 
complete [11]. Moreover, compared with single mode only 
execution, adaptations introduce extra latency due to pipeline 
warm-ups after the reconfigurations. As shown in Figure 5.2, 
reducing sampling window period ( sh TT << ) offers capability to 
capture fine-grained phase changes in execution. However, the 
aggregated adaptation overhead can be prohibitive. This fact 
prevents the use of small sampling window without significantly 
slowing down program execution. In [4], a sampling window of 
2048 cycles is set. In [11], an even larger resizing period is 
chosen for the entire program hotspot, which could take several 
million cycles. 

At run-time, user and OS execution appear alternately within 
the sampling windows, as shown in Figure 5. OS is activated with 
voluntarily by a system call from the application, or from a call by 
some other application, or implicitly by some underlying 
periodic/asynchronous (timer/device interrupt) mechanisms. The 
IPC discrepancy between user and OS indicates the different 
computational requirement when the user/OS context switches. 
When program phase shifts (e.g., due to user/OS interactions), the 
prior interval becomes a poor estimate for the next. 

In the traditional and performance-centric OS design, highly 
optimized lightweight routines (e.g., faults and interrupt handlers) 
are usually implemented in order to keep the cycles down. 
Therefore, many OS service routines show short-lived execution 
period. Theoretically, given a sampling interval of sT , in order to 
accurately capture the phase shift caused by an OS service and 
exploit the adapted configuration for at least another sampling 
interval, the duration of that OS service osdT should be at least sT2  
cycles, i.e. sosd TT 2≥ . 

Our characterization shows that there are only 16 OS routines 
satisfy the above restriction on the duration ( ≥ 4096 cycles) 
required by the 2048 cycles sampling interval, a commonly used 
window granularity to avoid the costly reconfiguration overhead. 
Figure 6 further illustrates how OS service routines with different 
duration contribute to the total OS energy dissipation (Note that 
the x-axis uses logarithmic scale). It is observed that even though 
some OS services are very efficiently implemented from the 
execution cycle viewpoint, those lightweight OS services can have 
significant impact on the total OS energy. For example, on 
benchmark postgres.update, the OS service routines with duration 
less than 4096 cycles draw 50% of the OS energy. As described 
earlier, a sampling window which is larger than 2048 cycles can 
not guarantee to resolve these OS activity and adapt processor 
resource timely to reduce that portion of OS energy (shown on the 
left side of the dotted line in Figure 6). 
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To summarize, a long window interval does not provide the 
opportunity to switch mode when the program phases change due 
to the exception-driven, non-deterministic and short-live nature of 
user/OS interactions. On the other hand, the fine-grained 
switching required by the brief OS invocations makes it difficult 
to amortize the performance degradation due to the frequent 
adaptations. To reconfigure processor resource for the short-lived 
OS activity without rising costly adaptation overhead, we propose 
a routine based OS-aware processor adaptation mechanism 
targeting on the run-time OS power savings. 
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4. PROPOSED SOLUTION: OS-AWARE 
ROUTINE BASED ADAPTATION 

Routine based OS-aware adaptation dedicates to reconfigure 
processor upon the OS execution. Separating out OS execution 
can easily be done at run-time by using the Processor Status 
Register. Processor adaptations occur only at the boundaries of 
the user/OS context switches, as shown by Figure 5.3. Today, 
almost all high-performance, out-of-order machines support 
precise exception to ensure the correctness of program execution. 
The OS invocations, either explicitly (e.g. system calls and I/O 
interrupts) or implicitly (e.g. fault handling) are treated as 
exceptions on these processors. Upon receiving an exception, the 
processor completes all previous instructions (specified in 
program order) and then flushes the pipeline [18]. At this point, a 
reconfiguration can be made with zero latency because there is no 
instruction left in the pipeline and the partitioned hardware 
structures. Similarly, when the processor returns from an OS 
service, another adaptation happens immediately by restoring the 
processor to the mode prior to the user/OS context switch. The 
processor then fetches the instructions from the user applications 
and continuously executes using that mode. Therefore, routine 
based OS-aware adaptation is capable to capture all OS activity 
timely and accurately, while retaining a zero adaptation overhead 
in the OS. The separating OS activity out of the regular sampling 
interval creates the “dilated” sampling window (as shown in 

Figure 5.3), diminishing the number of reconfigurations and the 
total execution cycles of the user program. Moreover, this 
technique prevents pathological IPC degradations arising from 
erroneously matching processor configurations catered for OS to 
user program’s requirement (as shown in Figure 5.1, window B 
and C). This is critical since user program after the context 
switched from OS generally requires the full issuing capabilities 
of the machine to operate on new data and working set. Though 
interesting, a detailed analysis of such impact is beyond the scope 
of this paper. 

As described earlier, processor resource adaptation saves power 
and is detrimental to performance. The goal of such adaptation is 
to reduce power with the minimum performance lost. Modern 
operating systems are large, sophisticated software. Individual OS 
routine performs specific functionality and can exhibit vast 
variation in computational requirement. A configuration that is 
good for one piece of code may not turn out to be optimal for 
another. 

The Energy-Delay product (EDP) is a reasonable metric to 
evaluate energy efficiency, namely, the goal of achieving high 
performance while minimizing energy consumption. Figure 7 
shows the Energy×Delay (normalized with 8-issue mode) of 
different OS service routines (clock, COW_fault and read) 
running on different modes. Clock processes timer interrupt. 
COW_fault performs page level copy-on-write operations and 
read transfers data from OS file cache to the user address space. 
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Figure 7 leads to a number of interesting observations. In 

general, the 8-issue mode is not energy efficient by showing the 
highest Energy×Delay on all of the three OS routines. The 
application of the 1-issue, 2-issue, 4-issue and 6-issue modes 
yields better trade-off between power and performance. More 
interesting, the optimal configuration (with the lowest 
Energy×Delay value) changes, depending on the OS routines. For 
example, on the 1-issue mode, the clock shows its best 
Energy×Delay scenario (0.3), while the COW_fault yields an 
Energy×Delay value of 0.8. 

The heterogeneous Energy×Delay behavior of various OS 
routines makes a unified adaptation for the whole OS less 
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attractive. However, it provides an avenue to finely tune the OS 
power/performance knob: the per-OS routine based optimal 
configuration can be exposed to and exploited by the hardware to 
achieve a better OS Energy×Delay trade-off. In practice, a simple 
profile-driven methodology [17] can be used for finding the 
optimal configuration for individual routine in a pre-
characterization stage. At run-time, the hardware selectively 
applies the pre-characterized, optimal configuration to individual 
OS routine instantaneously, eliminating a search of the 
configuration space. 

Having known the nature and functionality of an OS 
invocation, one can apply Energy×Delay optimizations even more 
aggressively. In this paper, we consider the following two 
optimizations: 

(1) Resizing Register File 
Modern superscalar machines exploit register renaming and use 

large register file to eliminate false dependencies between 
instructions. In many hand-tuned and highly optimized OS 
routines, however, the true dependencies dominate. In these 
scenarios, the size of the physical register file can be reduced to 
save more power. Specifically, we observe that disabling half of 
the physical registers for OS routines utlb, timein, clock, close, 
brk, alarm, dup, pipe, ioctl, utsys, prctl, and msync saves 5% - 7% 
of the processor power with no performance loss. Generally, the 
additional complexity for resizing a register file greatly diminishes 
the likelihood to do so [5]. The proposed routine based OS-aware 
adaptation scheme can safely and efficiently resize the register file 
because it guarantees that no physical register is mapped 
whenever a resizing occurs at the user/OS context switch 
boundaries. 

(2) OS-aware Control Flow Speculation 
Control flow speculation has been widely adopted in today's 

microprocessor design to exploit the ILP in programs. 
Nevertheless, the fetches and subsequent processing of 
misspeculated instructions will waste more energy and cycles 
[12]. It has been observed that the conventional branch predictors 
can frequently mispredict the control flow transfers in the 
exception-driven and short-lived OS execution. In [13], Li et al. 
propose an OS-aware control flow speculation scheme which 
allocates dedicated branch prediction resource to the OS to 
improve its branch prediction accuracy. In this study, we integrate 
an OS-aware hybrid predictor [13] with the proposed processor 
adaptation scheme to further optimize its energy efficiency in the 
light of the exception-driven and non-deterministic OS execution. 

5. POWER SAVINGS AND 
PERFORMANCE EVALUATION 

This section presents power savings as well as performance 
evaluations of the proposed technique and the baseline adaptation 
mechanism (described in Section 3) on the OS execution. The 
schemes we compare are: (1) a baseline adaptation scheme with a 
2048-cycle sampling window (ADPT with sw=2048); (2) a 
baseline adaptation scheme with a fine-grained 128-cycle 
sampling window (ADPT with sw=128); (3) the routine based 
OS-aware adaptation (OS-aware ADPT); (4) the routine based 
OS-aware adaptation with aggressive optimizations (OS-aware 
ADPT w/ AO). Figure 8 shows the average power of the 
experimented workloads on different schemes. Figure 9 and 
Figure 10 show the performance (IPC) and Energy×Delay metric 
on the same scenario. All values are normalized with respect to 

the baseline 8-issue machine without implementing any 
adaptation. 

Figure 8 shows that compared with the coarse-grained sampling 
technique (ADPT with sw=2048), the OS-aware ADPT can 
reduce power more aggressively by being able to accurately 
capture the exception-driven, short-lived OS activity and match 
them with appropriate resources in a timely fashion. For the same 
reason, scheme using fine-grained sampling window (ADPT with 
sw=128) is also observed to achieve good power savings. The OS-
aware ADPT w/ AO has a double-fold impact on power savings: 
reducing the size of register file drops power while the improved 
control flow speculation tends to increase power because the 
pipeline flushing stalls happen less frequently. Intuitively, 
optimizations such as OS-aware control-flow speculation could 
increase per-cycle processor power. Nevertheless, it reduces 
program execution cycles and the total clock power, on which 
both the processor and software energy largely depends. 
Therefore, overall it will benefit the targeted program 
Energy×Delay metric that we try to optimize. Moreover, as can be 
seen in the Figure 8, one factor does not dominate another one by 
showing drastic changes in power compared with the OS-aware 
ADPT scheme. 

0

0.2

0.4

0.6

pmak
e

gcc

vo
rte

x

sen
dmail

file
man db

jes
s

java
c

jac
k

postgres
.se

lec
t

pos
tgres

.update
osb

oot AVG

No
rm

al
iz

ed
 P

ow
er

ADPT (sw=2048) ADPT (sw=128)
OS-aware ADPT OS-aware ADPT w/ AO

Figure 8. Normalized Power (ADPT with sw=2048 is sampling-
based adaptation with 2048-cycle window, ADPT with sw=128 is sampling based 
adaptation with 128-cycle window, OS-aware ADPT is OS routine based 
adaptation, and OS-aware ADPT w/ AO is OS routine based adaptation with 
aggressive optimizations) 

0.7

0.8

0.9

1

pmake
gcc

vorte
x

sendmail

file
man db

jess
javac jack

postgres
.selec

t

postgr
es

.update
osb

oot
AVG

No
rm

al
iz

ed
 IP

C

ADPT (sw=2048) ADPT (sw=128)
OS-aware ADPT OS-aware ADPT w/ AO

Figure 9. Normalized IPC 
Looking at Figure 9, one can see that the performance of OS-

aware ADPT is competitive with that of the ADPT (sw=2048), 
despite that the ADPT (sw=2048) favors the OS performance by 
overestimating its computational requirement due to the 
interference of the higher user IPC. Figure 9 also shows that using 
fine-grained window sampling scheme (ADPT with sw=128) 
measurably degrades performance due to the aggregated 
adaptation overhead. As described earlier, the OS-aware ADPT 
does not incur adaptation overheads in OS. The use of the optimal 
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solution for individual routine further eliminates the unnecessary 
adaptations within a routine, leading to a better performance than 
the existing fine-grained adaptation scheme. Another observation 
from Figure 9 is that the OS-aware ADPT w/ AO further increases 
performance by reducing the time spent on processing wrong-path 
instructions. Note that the y-axis begins at 70% normalized IPC in 
Figure 9. 

The results shown in Figure 10 indicate the OS-aware ADPT 
retains performance while reducing power by showing the 
desirable characteristics when both performance and energy are 
under consideration. The OS-aware ADPT w/ AO further 
improves the OS Energy×Delay behavior, implying that although 
the aggressive optimizations such as resizing register file may 
yield unbalanced machine for many user applications, they 
produce more energy savings when judiciously applied to certain 
OS routines. 
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6. RELATED WORK 
Previous research [14] employs the OS to reduce power at 

system level. Recently, the energy behavior of embedded, real-
time operating systems has been studied in [15, 16]. In [7], a full- 
system energy simulator is developed and the necessity of 
simulating OS energy is quantified. So far, techniques for run-
time software power savings exclusively focus on the user-only 
applications. Among those, microarchitecture level power 
management [3, 4, 5, 11] has been demonstrated to be an 
attractive solution for the fine-grained program Energy×Delay 
optimization. In [3], Bahar et al. exploit IPC variations in 
program to reduce power. Our proposed scheme further explores 
the IPC variations between user and OS and the fine-grained 
phase changes due to the user/OS context switches. By varying 
processor fetch and execution rates, Marculescu et al. [17] study 
power-performance trade-off based on a profile-driven 
methodology, which is employed in this study to characterize the 
per-OS routine based Energy×Delay behavior. In [4, 5], the 
authors propose mechanisms for independently monitoring and 
adapting multiple microarchitectural structures in one system. By 
leveraging the pre-characterized Energy×Delay knowledge, our 
approach avoids the complexity in the simultaneous control and 
independent operation of multiple adaptive structures. 

7. CONCLUSION 
Modern applications spend a significant proportion of their 

execution time within the operating system, making OS a major 
power consumer. To save power, we argue that hardware should 
provide resources that closely match the needs of the OS. 

However, with exception-driven and intermittent execution in 
nature, it becomes difficult to accurately predict and adapt 
processor resources in a timely fashion. The novel approach we 
proposed in this paper permits precise hardware reconfigurations 
for the OS with low overhead and allows fine-grained 
performance/power tuning at microarchitectural level. This 
scheme is orthogonal to and can be integrated with existing 
techniques proposed for user-only applications to further enhance 
their efficiency in the light of the prevalent, OS-intensive and 
emerging workloads. With the increasing impact of the leakage 
power, routine customized aggressive adaptation tends to save 
more power by safely turning off more transistors. The proposed 
scheme can be exploited in mobile computing systems for energy 
saving, as well as in conventional systems for dynamic thermal 
management. 
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