Understanding Control Flow Transfer and its Predictability in Java Processing

Tao Li and Lizy Kurian John
Laboratory for Computer Architecture
Department of Electrical and Computer Engineering
The University of Texas at Austin, Austin, TX 78712
{tli3,ljohn}@ece.utexas.edu

Abstract
An in-depth look and understanding of control flow
transfer and its predictability can guide architects to adapt
control flow prediction hardware in Java processing or

finely tune the performance of JVM software .on general

purpose machines. To our knowledge, this paper provides
the first insight of branch behavior on a standard Java
Virtual Machine with real workloads. Employing a
complete system simulation environment, we profile
-branch execution characteristics and quantify the
performance of a wide range of prediction schemes on
both user and kernel code. The impact of different JVM
styles (JIT compiler and interpreter) on branch behavior is
also studied.

We find that: (1) Kernel branches constitute a
significant portion of total branch execution in Java
processing, (2) Kernel and user code favor different
prediction mechanisms; (3) Java processing exercises
Jfairly large number of branch sites and large control flow
Sfootprint compared with the execution of benchmarks such
as SPECInt95; (4) A major part of the dynamic indirect
branches are multiple target (polymorphic) branches.
Target addresses of indirect branches, especially those in
interpreting mode are highly interleaved and cause high
BTB misprediction.

1. Introduction

Java is becoming increasingly important with the
pervasiveness of the World Wide Web and intelligent
mobile devices. Its “write-once run-anywhere” promise
has resulted in portable software for systems spanning
from embedded processors to high-end servers. Recently,
the demanding requirements of the new breed of e-
Business applications (i.e., cost-effective development,
deployment and maintenance, reusability of application
components, and cross-platform support) have also
contributed to the rapid adoption of Java technologies [1].
The execution of Java programs can behave differently
from that of traditional C/C++ and FORTRAN code [15]
because a Java Virtual Machine (JVM) [16] and related
runtime support are involved in exercising the machine
neutral format known as bytecode. Typically, JVM

0-7803-7230-1/00/$10.00 © 2001 IEEE

65

implementations rely on runtime interpretation [17], Just-
in-Time Compilation [5] or a hybrid of the two [10].
Previous research [18, 15] shows that performance of Java
execution is largely dependent on the mode of translation
employed.

Java is designed to support the safe execution of
portable programs across platforms and networks and
hence provides unique language features (e.g. dynamic
class loading and validation, runtime exceptions checking,
automatic garbage collection, multithreading and
synchronization) which are absent in other programming
languages such as C and C++. Moreover, many Java
classes require services provided by the underlying
operating system and can spend a significant amount of
time in exercising the native code interfaces and OS
services [15]. The complexity of Java processing -
dynamic translations (interpretation and compilation),
frequent calls to native interface libraries or OS services,
presence of various JVM components and abundant usage
of virtual methods - can complicate intrinsic control flow
transfer within the instruction stream.

Today, nearly all high performance microprocessors
support instruction level parallelism (ILP). Within such
microprocessors, an instruction fetch unit at the front-end
of the pipeline must continually provide a smooth
instruction stream to the back-end logic stages. Accurate
control flow prediction is imperative for improving ILP
processor performance, especially on wide issue and
deeply pipelined superscalar machines where the
misprediction penalty is high. Consequently, there
continues to be ongoing research to improve branch
prediction accuracy, especially on real-world applications
and emerging workloads whose branch behavior is not
well understood. These motivate us to characterize control
flow transfer in Java technology and understand its
microarchitectural implications.

This paper presents results from an in-depth look at
branch behavior and characteristic of Java runtime
systems. Employing a .complete system simulation
environment, we quantify the performance of branch
prediction structures for both user and kernel executions.
The impact of different JVM styles (JIT compiler and

interpreter) is studied. Our research specifically attempts to
answer the following questions:
eWhat is the control flow transfer characteristic
encountered on a microprocessor with speculative
execution during Java processing? Is it different from that
of applications such as SPECInt95? Is branch behavior
different with different JVM styles (interpretation or JIT
compilation)?
eDoes a Java runtime system spend a significant
portion of time in executing branches from the underlying
JVM and its native interface libraries? Do different
applications use the JVM environment in a similar style?
eWhat is the control flow characteristic of kernel code?
Does a significant part of control flow transfer in Java
execution occur in kernel mode? Are branch behavior
studies in Java without OS activity representative of the
aggregate Java branch behavior?
eHow do Java executions in JIT and interpreting modes
fare with the widely used branch predictors? Do various
JVM implementations favor different branch prediction
“schemes? How suited are the kernel and user parts of the
JVM execution to the underlying prediction hardware?
- What is the optimized prediction scheme for each?
eHow are the targets of the indirect branches
distributed? Will the conventional Branch Target Buffer
(BTB) structure work well with the indirect branch rich
Java runtime system?
The major observations and contributions of this study
are:
eKernel instructions and kernel branches play an
important role in the execution of Java programs. Kernel
has higher control flow transfer frequency than that of user
code. Kernel and user code in a Java runtime system use
the underlying speculative mechanisms in different styles.
eJava execution involves fairly larger number of static
conditional branches (with an average of 37K in JIT mode
and 29K in interpreting mode, as opposed to 4.4K in
SPECInt95), implying its inherently complex control flow
graphs.
eIndirect branch frequency during Java execution is
much higher than that during SPECInt95 execution. These
indirect branches are primarily from switch-case
statements in the JVM interpreter and virtual function calls
in Java code.
eMost of the invoked (dynamic) indirect branches are
polymorphic, meaning control is transferred to multiple
targets. Various JVM styles affect indirect branch target
transfer patterns drastically. In interpreting mode, target
address transfer of indirect branches is highly interleaved
and causes high BTB misprediction. Conventional BTB
structures are not very effective for Java’s indirect
branches.
oThe targets of the polymorphic indirect branches are
clustered with high locality. Thus, Java processing exhibits

66

a new kind of locality in interpreting mode - branch target
address locality, according to which a few target addresses
appear very frequently in polymorphic indirect branch
instances.

These observations can be exploited while designing
microarchitectural structures in future processors. For
instance, the fact that kernel and user code favor different
branch predictors suggests that split branch predictors may
be effective for Java. Similarly, the locality shown by the
targets of the indirect branches suggests that BTB
structures that capture multiple target information from a
few indirect branches may be effective in improving target
prediction in Java applications.

The rest of this paper is organized as follows. Section 2
briefly reviews previous and related research work.
Section 3 describes the simulation environment,
experimental methodology and benchmarks used in this
study. Section 4 characterizes the conditional branch
behavior of user and kernel code. Section S addresses
indirect branch issues in Java processing. Section 6 makes
conclusions and points out future research directions.

2. Related Work

Many schemes have been proposed in the literature to
enhance branch prediction performance on ILP machines
[23, 4, 24, 8, 6]. These studies are largely concentrated on
analysis and optimization of user-only branch prediction
of SPECInt95 and C++ code. The control flow transfer
characteristics of Java processing are not well understood.
A recent paper [18] studies the branch predictability of
SPECjvm98 benchmarks using a limited range of
predictors. They show that predictability of interpreter
branches is low, but they do not investigate the causes or
the intrinsic behavior of branches themselves. This paper
addresses this issue by performing both in-depth branch
behavior characterization and predictability analysis.
Hsieh, Conte and Hwu [12] compare the performance of
Java code run on the Sun JDK 1.0.2 Java interpreter to
code compiled through Caffeine [11]. Java code is also
compared with compiled C/C++ versions of the code. It is
observed that microarchitectural mechanisms, such as
branch target buffers, are not well exploited by Java
interpreters. Translating Java bytecodes to native code
alleviates some of these problems. Compared with their
study, this paper presents results on branch behavior of a
standard JVM running on a commercial OS using real
workloads.

Driesen and Hélzle [6] investigate a wide range of two-
level predictors dedicated exclusively to indirect branches
using programs from the SPECInt95 suite as well as a suite
of large C++ applications. Indirect branch prediction
studies using SPECint95 have been reported in [4]. A
related study [21] examines the effectiveness of using path
history to predict target addresses of indirect branches for

virtual method invocations used in Java applications. The
XOR hashing scheme with a global path history and a 2-bit
update policy is found to perform the best. This result is
shown only for the interpreting mode and small instruction
footprint benchmarks (richards and deltablue) and
does not include kernel code. So far, the indirect branch
characterization of Java processing, including OS and with
different JVM implementations, is not well understood.
Gloy et al. [7] analyze system traces from the
Instruction Benchmark Suite (IBS) and find that user-only
traces yield fidelity when the kernel accounts for less than
5% of the total executed instructions. Their simulation
results show that including kernel branches in the branch
trace worsens the effects of aliasing. In our study, a
complete system simulation environment is used to

accurately capture contro] flow transfer scenario during

Java processing.

To our knowledge, no previous study has looked at
branch prediction issues on Java processing by examining
kernel execution. We provide a detailed characterization
and performance analysis of branch behavior in Java
‘runtime systems, in kernel and user mode.

3. Methodology and Benchmarks

This work is based on simulation analysis of branch
instruction traces generated from a complete system
simulation environment. The simulation-platform used in
our study is SimOS [9], which models hardware
components with enough detail to boot and run a full-
blown commercial -operating system. In this study, the
SimOS version that runs Silicon Graphics IRIXS5.3
operating system is used. Interpreter and JIT compiler
from Sun Microsystems Java Development Kit (JDK) [17]
are simulated on top of IRIX 5.3 operating system. To
characterize both user and kernel branch behavior in Java
processing, we instrument SimOS MXS simulator [2] and
generate full system traces.

Table 1. Benchmarks

Benchmarks Description
Modified Lempel-Ziv method (LZW) to

compress
compress and decompress large file

jess Java expert shell system based on
NASA'’s CLIPS expert system

db Performs multiple database functions on
a memory resident database

javac The JDK 1.0.2 Java compiler compiling
225,000 lines of code

mtrt Dual-threaded raytracer

jack Parser generator with lexical analysis,
early version of what is now JavaCC

Our studies are based on programs from the

SPECjvm98 [20] suite (see Table 1), a set of programs
intended to evaluate performance for the combined

67

hardware (CPU, cache, memory, and other platform-
specific performance) and software aspects (efficiency of
JVM, the JIT compiler, and OS implementations) of the
JVM client platform. In this paper, we exclude benchmark
mpegaudio from our experimental evaluations because it
failed to execute on the MXS model of SimOS. Due to the
large slowdown of complete system simulation using
superscalar model MXS and in order to capture the
execution behavior of entire programs, we use the sl data
set and run each benchmark until completion.

4. Behavior of Conditional Branches in Java
Runtime Systems

The goal of this paper is to understand control flow
transfer while executing Java applications. We begin by
characterizing branch behavior of a Java runtime system
(with different implementation styles and including
operating system activity). Then branch predictability is
investigated in section 4.3,

4.1. Branch Frequency and Mix

Table 2 presents branch profiling results of the studied
Java runtime system and OS running SPECjvm98
benchmarks. Branch instructions are categorized as
conditional branches, direct branches that unconditionally
redirect instruction streams to a statically specified target
encoded in the instruction itself, (non-return) indirect
branches which transfer control to an address stored in a
register, and call/returns which always use jump and link
instruction (e.g. jal, jalr) and a specified architecture
register (e.g., r31 on MIPS machines). For each
benchmark, the table lists branch frequency expressed as
branches per instruction for each category, in both user and
kernel modes. The execution of these benchmarks in both
JIT compiler (jit) and interpreter (intr) is profiled.

In user mode and with a JIT compiler, on the average
conditional branches contribute 77% of total branches, and
the rest represent 0.4% (direct), 10.4%' (call/return) and
12.2% (indirect) of all branches. Compared with kernel
code, the higher indirect branch mix corresponds to virtual
method calls in Java code. Table 2 indicates that the
interpretation increases indirect branch ratio in branch
instructions from 12.2% to 18.4%. The interpreter mode
results in higher frequency of indirect control transfers due
to additional indirect jumps used to implement the switch-
case statements for case by case interpretation [18].
Moreover, Table 2 reveals that kernel has higher number
of branches per instruction than that of user codes. Kernel
branches include loops, error and bounds checking, and
other routine conditionals. Error and bound checking
related branches are abundant in operating system because
it has to be designed to handle all possible situations [22].

Table 2. Branch frequency and mix (jit: JIT compilation, intr: interpretation)

Kernel User
Benchmarks Branches per Insméczsgn Branches per Instrlé:atﬁ)/n

All Cond. | Direct Return Indirect| All Cond. | Direct Return Indirect

compress | 0.202 | 0.184 | 0.008 | 0.009 | 0.001 | 0.177 | 0.153 | 0.000 | 0.009 | 0.015
jess 0.215 1 0.184 | 0.014 | 0.015 | 0.002 | 0.158 | 0.112 | 0.001 | 0.020 [0.025

db 0.261 | 0.232 1 0.013 | 0.014 | 0.002 | 0.156 | 0.114 | 0.002 [0.020 [0.021

% [javac 0.254 | 0.229 [0.012 | 0.012 | 0.002 | 0.155 | 0.119 | 0.001 | 0.017 | 0.019
mtrt 0.227 | 0.206 | 0.010 | 0.010 | 0.001 | 0.171 | 0.138 | 0.000 | 0.015 [0.017
jack 0.164 | 0.144 | 0.009 | 0.010 | 0.002 | 0.165 | 0.124 | 0.000 [0.018 | 0.023
ave 0.221 | 0.197 | 0.011 | 0.012 | 0.002 | 0.164 | 0.127 | 0.001 | 0.017 | 0.020 |
compress | (0,254 | 0.230 | 0.011 | 0.012 | 0.001 } 0.143 { 0.108 | 0.000 | 0.001 | 0.034
jess 0.211 | 0.182 | 0.013 | 0.014 | 0.002 | 0.144 | 0.102 | 0.000 | 0.013 | 0.029

N db 0.260 | 0.231 | 0.013 | 0.014 { 0.002 | 0.153 | 0.107 | 0.002 | 0.019 | 0.026
g javac 0.251 | 0.226 | 0.011 | 0.012 | 0.001 | 0.155 | 0.110 | 0.001 | 0.019 | 0.025
mert 0.230 | 0.209 | 0.010 | 0.011 | 0.001 | 0.137 | 0.108 | 0.000 | 0.006 | 0.023
jack 0.149 | 0.132 | 0.008 | 0.008 | 0.001 { 0.149 | 0.109 | 0.000 | 0.013 | 0.026
IAVG 0.226 | 0.202 | 0.011 | 0.012 | 0.001 | 0.147 | 0.107 [0.001 | 0.012 | 0.027

4.2. User vs. Kernel Branches
Table 3. Characterization of User/Kernel Conditional Branches
(JIT: with JIT compiler, INTR: with interpreter)
User Kernel % of Kemnel

Benchmarks Static Sites El)s'&%[gég Static Sites g{?aﬂg Static Sites {?‘Z{lggg

N JIT 33,957 13,147,512 6,016 19,742,706 15.1% 60.0%
INTR 29,219 11,585,463 6,014 20,576,410 17.1% 64.0%

. JIT 38,654 35,986,299 6,037 28,266,026 13.5% 44.0%
jess INTR 29477 | 39,335,967 | 6,034 28,790,197 17.0% 42.3%
] IIT 38,815 34,766,245 6,070 20,807,714 13.5% 37.4%
Javac INTR 29487 | 25,467,007 | 6,070 21,340,379 17.1% 45.6%
) JIT 40,640 |210,722,195| 6,142 40,451,532 13.1% 16.1%
jack INTR 29,164 | 249,267,660| 6,143 47,513,966 17.4% 16.0%
- JIT 36,629 195,674,102 6,099 23,343,298 14.3% 10.7%

INTR 29373 [284,752,333| 6,148 22,702,360 17.3% 7.4%

compress P22 33,907 |406427219| 6,081 26,101,839 15.2% 6.0%

INTR 28,383 212,303,879 5,995 20,707,607 17.4% 8.9%

spECjvmg8 [JIT 37,100 149,453,929 6,074 26,452,186 14.1% 29.0%
VG INTR 29,184 137,118,718 6,067 26,938,487 17.2% 30.7%

[sPECInt95 ave 4,413 -- 4,150 -- 48.5% 4.3%

Table 3 shows conditional branch characterization of
user and kernel code on the studied Java runtime system.
Statistics are based on simulation of each benchmark
(using sl data sets) on SimOS MXS model until
completion, except for compress invoked with an
interpreter, which takes extremely long time to finish. In
this case, we use the first 2,000M instructions as the
representative execution window based on the profiling of
entire execution on SimOS Mipsy model. Both user and
kernel branch statistics are presented as static branch sites
and dynamic instances. Additionally, the percentages of
kernel branches are tabulated. We run SPECInt95
benchmarks until completion (with scaled test data set) on

the same simulated architecture and the average numbers
are also listed in Table 3.

Considered statically, user code has higher number of
branch sites: on the average, user codes contain 37K static
branches in JIT mode and 29K static branches in
interpreting mode. Compared with SPECInt95 (with an
average of 4.4K static branches in user code), the
execution of SPECjvm98 involves instructions both from
Java applications and JVM (complicated software
designed to support various runtime activities demanded
by Java specification). The relatively small variance (1% -
8%) on the number of static branches across workloads in
user space implies that a significant portion of conditional

€8

branches are workload independent and hence, probably
JVM inherent.

Compared with user code, kernel only exercises 6K
static conditional branch sites, which stem from the highly
localized kernel routine invocation characteristic found in
SPECjvm98 execution [15]. It is found that kernel
branches account for 29% of dynamic branch instances in
JIT mode and 30% in interpreting mode, in comparsion to
4.3% in SPECInt95. This observation-suggests that kernel
instructions and branches constitute a significant portion of
branch execution in Java processing and ignoring them
will not capture complete and accurate branch execution
behavior.

We analyze the dynamic conditional branch distribution
during the entire execution of each benchmark. Figure 1
shows the results for benchmarks db, jess and javac in

both JIT and interpreting modes. The data is plotted as -

13.43 ©.22

2.47

branch identifier (Branch ID) vs. percentage of branch
execution. The branch identifier is uniquely numbered
based on the call site, namely program counter (PC) value
of the branch instruction. For example, in benchmark db
with a JIT compiler, there is only one branch that accounts
for 13.4% of dynamic instances, with the-rest having a
value (percentage of branch execution) less than 2%. A
more interesting observation is that dynamic conditional
instances are distributed in a similar style across different
benchmarks, i.e., the most frequently invoked branches are
clustered together, spanning approximately the same range
of branch sites. This similarity indicates that the studied
applications use JVM and its native libraries in a similar
way and it may be possible to “preoptimize” these heavily
executed JVM parts, using profile-based compiler
optimizations suggested in past research [3].

.04

2 2 242 28
18 1.8k 1.3{ E
1.6 1.6} 1.8} B
8
B4 g 1.4 g 1.4 E
& 3 S
g2 5120 § 1.2
& 1 B 1
= = =
g.o.e %,o.e H g go.a H R
So.sl go.sl . - o.6 -
& &
o.al o.a g o.4 4
oz l M B 0.2 l J 4 o.zj 1 g
o l . VN T |1 P o i L li L b o d Al | .IJ l
© 1) 3 L (<) 3 a C A = 3 4
. Branch 1D (db, T user) x 10° Branch ID (jess jit.user) x 10° Branch ID (Javac.J1T user) x 10°
2, Y44z aae 5 478 e.es 225 2.67 2 232 2.3 e e
+.8| 1.8f s.0e 4 1.8 —4‘
1.6 1.6} q 1.6 B
5 s &
g 1.4/ Fral 4 g 1.4 4
gmz— ‘_g'l,z— g 21.2
b=
F & | 4 8 f
= s =3
Zo.sf So.sf E &0.8| R
E-] £ =
=
Boe §°'6’ - §o.6» B
£ £
0.4 1 o.al R 0.4
0.2 oz 0.2}
A N | | il) I
% 0.5 2.8 3 ° 3 % 0.5

1 1. 2
8ranch (D (db.Intr. .user) x 10"

Branch ID (jess.intr. user)

E 2 2.
Branch ID (javac.iIntr..user)

x 10° x 10°

Figure 1. Dynamic distribution of conditional branches based on call sites
(JIT: with JIT compiler, intr: with interpreter)

Figure 2 provides more insight on branch direction and
runtime behavior by revealing the number of unique
branch sites constituting the given portion of total dynamic
branch instances and the percentage of taken branches that
correspond to that portion. The above statistics are
normalized for user and kernel spaces separately. For
comparison, the average SPECInt95 statistics in user space
are also shown. We ignore the kernel part of SPECInt9S
because of its negligible impact (see Table 3). Figure 2
demonstrates that the execution of SPECjvm98
benchmarks (i.e. jess, db and jack) can contain a fairly
larger number of static conditional branches compared
with that of SPECInt95. However, when the dynamic
branch behavior is examined, a small number of distinct

69

branches contribute to the overwhelming majority of the
branch instances. For example, in user space, less than 200
branch sites accounts for the 50% of dynamic branch
instances. This number further drops to 15 in kernel space.

It is found that the percentage of taken branches
decreases when more dynamic branches are considered.
This implies that a significant portion of branches tends to
be not taken. The abundant runtime checking codes (e.g.
bytecode validation and exception checking) that are rarely
taken contribute to more not taken branches compared
with loop-rich SPECInt95 benchmarks which’show higher
taken percentage. This observation also holds for kernel
branches, where the taken path usually transfers program
counter to exception handling code [19].

compress user
SPECINGS user

0 10 20 30 40 %0 60 70 80 0 100
% of Dynamic Branches

800 1000 1200 1400
of Uniqua Branches

§ é
Ew 2

0 20 400 600

o jess vemel
39 —A- ackomet E -
—B— fackkernol —o—
204 —4— mutkemo! 20 B javac ket
— compress kemal ~B— jackkemal
—%— mulkemel
"1 10 —-— compress kemel
T
o 10 20 30 40 50 & 70 80 80 100

o s 100 150 200 250

of Unique Branches

Figure 2. Static and dynamic branch distributions
(in JIT mode, branches are sorted by their

-dynamic frequency)

% of Dynamic Branches

4.3. Branch Prediction Performance

In this section, various branch prediction schemes are
evaluated for Java code (see Table 4). The examined
branch prediction schemes, ranging from a simple per-
branch 2-bit saturating counter table (2bc) indexed by
branch instruction address to more sophisticated two-level
adaptive schemes which exploit patterns in the recent
global (GAg, GAs and Gshare) or local (SAg and SAs)
branch history, have been shown to be successful at
predicting user-level branches {24, 7].

Table 4. Branch Predictor Configurations

Branch (PC) bits used for | BHSR | Total

bits used| Size of

Scheme for BHT| scheme

size BHSR BHT :

(i=1..6) |selection index index (# of
(path BHT

length) | entries)
2bc.2’K 0 i+10 0 2K
GAg.2'’K 0 0 i+10 2K
GAs.2'K 0 i+6 4 2'K
Gshare2’)K| 0 0 i+10 2'K

)) i+9-) .
SAg.2'K i+8 l_lng Q.(l+%4b_‘ i+9 =2'K
SAs.2'K i+8 i+5 4 2'K
Branch prediction schemes are represented by

“name.size” (as illustrated in [7]), where “name” falls into
the taxonomy proposed by Yeh and Patt [24] and “size” is
number of 2-bit counter entries in the Branch History
Table (BHT). The two-level adaptive schemes use Branch

History Shift Registers (BHSRs) to record the recent
branch history: GAg, GAs and Gshare exploit single
BHSR to record and maintain global history information
while SAg and SAs schemes map each program branch
into a table of BHSRs. The content of the selected BHSR
is combined with a portion of the branch address to select
a BHT entry. For example, SAs.16K contains 4K BHSR
entries of 4-bit history path, and 512 BHT sets, each of
which consists of 16 2-bit counter entries indexed by the 4-
bit history path. In our study, we use a 2K-entry, 4-way
Branch Target Buffer (BTB) with LRU replacement
policy.

Figure 3 shows the prediction performance for
conditional branches with various branch prediction
schemes. The average misprediction rate on all of the
examined SPECjvm98 benchmarks is shown. Note that the
aggregate misprediction rate is broken down and
normalized to user and kernel parts separately for
comparison. It is observed that kernel and user codes favor
various prediction schemes. For example, in user space,
the simple 2bc scheme outperforms Gshare and GAg
predictors while in kernel space the 2bc scheme yields a
misprediction rate as high as 13%. This implies that kernel
code takes more advantage of history pattern than user
code. Another observation is that local history based
predictors (e.g. SAg and SAs) contribute to the protection
of branch history patterns for both kernel and user parts
and hence yield the best prediction performance. For
example, a SAg.8k scheme reduces kernel branch
misprediction rate to less than 2%.

{User,intr)

{User,JIT)

3

SIS
(%)

Mlsprediclian Rate (%)

Sxvwave vao
Misprediction Rate

& o
T E OV LA ave o

{Kernel,JIT)

o)

Mispradlcllon Rate (%)

(%)

22

Mispredicliun Rate

Figure 3. Branch prediction performance of user
and kernel codes (JIT: with JIT compiler, intr:

with interpreter)

70

Statistically, SAs and SAg outperform other prediction
schemes in user space and SAg and Gshare are the favorite
predictors for kernel code. Surprisingly, we find that
kernel has better branch prediction accuracy than user
applications on SAg, SAs, Gshare and GAg predictors in
spite of lacking loop-based codes. Previous study [22, 19]
shows that OS kernel behaves differently from user
applications because: (1) Operating systems are - huge
programs that manage hardware resource and exception
processing; (2) The OS may perform explicit cache and
TLB invalidation, and other operations not common in
user-mode codes. Our study further identifies the
optimized branch prediction schemes in kernel space.

The different JVM implementation styles are found to
have negligible impact on kernel branch prediction
performance due to their similarity in kernel execution
behavior [15]. Figure 3 also shows that in user space, both
JIT and interpreting modes favor the same prediction
schemes although interpreting mode yields lower
misprediction rates for conditional branches because of its
smaller branch sites and algorithm that inherently leads to
‘a simpler control flow graph.

The different branch behavior inherent in user and
kernel codes and the similarity of prediction behavior
between various JVM implement styles suggest that a split
branch prediction scheme can be applied to user and kernel
code separately to achieve accurate branch prediction on
each part, both with JIT and interpreting modes.

5. Indirect Branches in Java Processing

The abundant usage of virtual methods to support the
extension and reuse of classes (object oriented
programming style) and the switch-case statements used to
implement bytecode interpretation potentially cause high
indirect branch frequency in Java processing. Virtual
method calls in Java incur a performance penalty because
the target of these calls can only be determined at run time.
A JIT compiler typically maintains a virtual method table
for each loaded class. A virtual method invocation is then
translated into an indirect function call after two loads
[14]. The switch-case statements, on the other hand, are
transformed to indirect jumps specified by jump tables
created at compiled time [4].

Figure 4 shows the branch frequency (expressed as
instructions per branch) comparison between SPECjvm98
and SPECInt95 benchmarks. Further, instructions per
branch is shown separately for both conditional and
indirect branches. It is observed that the number of
instructions per conditional branch of Java and SPECInt95
are not very much different. However, Java programs have
much less number of instructions per indirect branch (50
with JIT and 37 with interpreter) than SPECInt95 (with an
average of 180). For example, ijpeg and compress in
SPECInt95 have 468 and 246 instructions per indirect

7

branch respectively. perl and 1i have many indirect
branches because these programs essentially perform
interpretation, which is similar to the functionality of a
Java interpreter.

Jiwith a Just-In-Time Compiler,l:with an interpreter

140F
130¢
120
110}
100}

so}

Inet. per Cond. Branch
Inst. per tndir. Branch

Irstructions per Branch

compr jess db javac mtrt jackmB88k gcc ipeg i

pericompras

Figure 4. Instruction per Branch in Java and
SPECInt95 Benchmarks

5.1. Characterization of Indirect Branch Behavior

As the percentage of indirect branches in a Java runtime
system is high, it becomes imperative to examine the
indirect branch behavior. Current processors predict
indirect branches with a branch target buffer (BTB) which
caches the most recent target address of a branch.

Tables 5 shows the profile of (non-return) indirect
branches in user mode in a Java runtime system. Indirect
branches are further categorized as branches with only one
target (monomorphic branches) and those with more than
one target (polymorphic branches). Further, we divide
polymorphic branches based on the number of targets.
Table 5 gives the number of indirect branch sites for each
category, percentage of static branch sites for that
category, and their dynamic instance counterparts. For
example, in benchmark mtrt with a JIT compiler, there
are a total of 24.3 million executed indirect branches (17.4
million with one target and 6.9 million with multiple
targets). The total number of dynamic instances comes
from 6,865 indirect branch sites, of which there are 6,603
(96%) branch sites with one target and 262 (4%) branch
sites with multiple targets.

Considered statically, monomorphic branches constitute
a dominant portion. When the dynamic frequency of these
branches is considered, however, the importance of
polymorphic branches is felt: polymorphic branches which
constitute 4% of static branches in JIT mode and 5% in
interpreter mode lead to 28% of all dynamic branches in
JIT mode and 75% in interpreting mode. Compared with
JIT implementation, interpretation has fewer number of
indirect branch sites. On the average, the 6 studied
benchmarks have 6,597 static indirect branch sites in JIT
mode, while only 3,960 branch sites are found in
interpreting mode.

Table 5. Indirect Branch Profiling (User Mode) in Java Runtime System
(Num.: Number, Per.: Percentage, jit: with JIT Compiler, intr: with Interpreter)

Static Branch Sites Dvnamic Instances
Benchmarks [Single Multiple Target Single Multiple Target
Target | >=2 | >=4 | >=16 | >=64 Target >=2 >=4 >=16 >=64
Mum. 5358 D19 [74 0 1 18.705.704 [17.804.658 [13.242.308 [73.021 58.417
It lper. [96.07% 13.93% [1.33% 10.16% [0.02% [51.23% 48.77% 36.27% 0.20% 0.16%
%i . Mum. 3.650 [166 |56 3 1 1,131,814 [39.662.270 [39.594.738 38.815.571 138,803,333
° M per. [05.65% 14.35% |1.47% 1021% 10.03% 12.77% 97.23% 97.06% 95.15% __ 195.12%
vum. 6722 378 119 [13 3 5205790 1728210 [1.173.233 _[283.601 [177.510
It lber. [04.68% [5.32% |1.68% |0.18% 10.04% 175.08% 24.92% 16.92% 4.09% 2.56%
intr vum. 3.864 191 |63 B 2 4024628 [5.663323 |5.323.622 14.435.293 14232004
" lper. [9520% 14.71% [1.55% 10.20% [0.05% M46.51% 53.49% 50.28% 41.89% __ 39.97%
Ivum. [5424 P17 173 10 1 1.852.952 [399.448 264,882 84,015 58.112
It per.|96.15% [3.85% [1.29% [0.18% [0.02% |82.27% 17.73% 11.76% 3.73% 2.58%
A vum. 3785 [186 |61 3 1 1,715,960 844,660 1683429 477.044 431,208
B ntr . 0532% 14.68% 1.54% 10.20% 10.03% |67.01% 32.09% _ [26.69% 18.63% __|16.84%
Num. 6757 313 121 |13 1 3.922066 |1.145.661 1677.169 [288.405 [223.020
o Pt lper.195.57% 4.43% |1.71% 0.18% [0.01% |77.40% 22.60% 13.36% 5.60% _ 14.40%
% linep Mum. OIS 202 162 B 2 3455111 [1.490420 11.030.649 657,261 |571,703
i lper. [95.00% 14.91% 11.51% 10.19% 10.05% [69.86% 30.14% 20.84% 13.29% __ [11.56%
Num. |[6.603 1262 192 12 1 17.413.166 16.885.721 |5.267.999 1925788 192336
It lper. [96.18% [3.82% |1.34% [0.17% |0.01% [71.66% 28.34% 21.68% 3.81% 0.38%
& Num. 3768 179 |62 3 1 13,476,212 40,878,066 139.972,136 135,161,782 34,906,317
B IR . [05.46% 14.54% |1.57% 10.20% [0.03% [24.79% 7521% __ 173.54% 64.69% __ |64.22%
.. mum.[7071 D60 88 15 3 23.184.753 [7.584.478 |5.603.077 11.283.077 161,538
It lper. 06.45% 3.55% 1.20% [0.20% 10.04% }75.35% 24.65% 1821% 4.17% 0.85%
‘zfmtr INum. [3.679 171 |59 8 1 14,806,299 [15.770,268 (15,046,729 (11,206,312 9.958,788
" lper. 195.56% 14.44% 11.53% 10.21% [0.03% 148.42% 51.58% 4921% 36.65% - B2.57%

5.2. Target Transfer Patterns and Locality

For monomorphic indirect branches, misprediction
comes from aliasing between branches that map to the
same BTB entry. For polymorphic indirect branches,
misprediction also depends on multiple target transfer
patterns. Multiple targets do not necessarily imply loss of
prediction accuracy. For example, if one target address is
accessed 1,000 times followed by the other executing
1,000 times, the loss due to interleaving is negligible.
However, if the two targets alternate in trace order, then
interleaving may cause significant misprediction in a
simple, last seen target bookkeeping mechanism.

To characterize multiple target transfer patterns, we
‘uniquely number both branch sites and their corresponding
targets for each polymorphic branch and show the results
for 0.5 million dynamic branch instances in trace. We
exclude return indirect branches which always use jump
and link instructions (e.g. jal and jalr) and a specified
architecture register (e.g. r31 on MIPS machines) because
these call/return jumps can be efficiently predicted by a
return address stack [13] in superscalar machines.

As shown in Figure 5 and Figure 6, data are visualized
in 3-D formats for both user and kernel executions. Both

72

JIT and interpreting modes are studied. Each dot plotted in
3-D space records an occurrence of the following event: at
time X (represented by number of dynamic instances until
then), a given branch Y (represented by branch ID) jumps
to its target Z (represented by branch target ID).

As shown in Figure 5, the studied benchmarks
demonstrate target transfer patterns ranging from those in
which the indirect branch execution is dominated by a
small group of branches with highly biased targets such as
compress and mtrt in interpreting mode, to those in
which a wide range of branches with random target
transfer patterns constitute most of the indirect branch
execution as in db in JIT mode. For the same benchmark,
the two JVM implementations affect the target transfer
patterns drastically. In interpreting mode, branch sites are
small and target transfer patterns are highly interleaved,
whereas JIT mode usually has more active branch sites
with random and sparse transfer patterns. Benchmarks
compress, mtrt, and jack show interesting patterns in
interpreting mode: the enlarged cut-out sections of these
benchmarks (see Figure 6) show that the jumped target
addresses of an indirect branch are interleaved regularly.

compl:ﬁs‘s/(.[[ff,gier) mtx:t /(J User)

-

Jjavac (J1] *(E?r)

~~.

db(JIT,User)
.,//)T e

jess (Intr,User)
VA ! R

Jack (Intr,User)
| e

Figure 5. Visualization of branch targets transfer patterns for no-return polymorphic indirect
branch invoked in Java runtime system (User mode, JIT: JIT compilation, Intr: interpretation, X:
total number of indirect branch invoked, Y: static indirect branch ID, Z: static indirect branch
target ID, cut-out sections are enlarged and shown in Figure 6)

We observe that the indirect branch execution exhibits a branch instances. As depicted in Figure 6, in the
new kind of locality, the branch target address locality in interpreting mode, a polymorphic indirect branch can
interpreting mode, according to which a few target potentially jump to large set of targets, partially because of
addresses appear very frequently in polymorphic indirect the large switch-case statements for interpretation (with

73

more than 200 cases). But within a limited execution
period, the actually invoked target set is usually
constituted by a small size of heavily reused addresses and
this observation holds true for the entire execution of the
programs.

compress (Inir,User) jack (Intr,User)
160 - 160
agprde e e edeabedoufedan 140
120 120
[}
2100 = 100
) g
’E 80 a A a = as .:! 80
H =
g % 60 Il n L LY e 2 » -
(]
e i 2% [| oo malan e n % -
wels e e e KT " NI N B
REEECR R "
o K- omF
. | -
T o I PR Lok oo
25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200

Dynamic Branch instances Dynamic Branch instances

mirt (Intr,User)
1804
e
160
140
ol
. >
0 120
@
2100
5
s
§ 80
L an asalsm da
5 goprnshas px s P TR Y
e sdvan| mdnosd empusde wmend
40 Ll D - N
20! s - ane
.1 ..t -...1-;--

enedunsl, mda as
25 50 75 100 125 150 175 200
Dynamic Branch Instances

Figure 6. Enlarged cut-out sections in Figure 5

The target locality, a characteristic similar to the
temporal locality found in instruction and data references,
implies that target addresses to which control flow has
been transferred recently have high possibility of reuse in
the very near future. The set of frequent targets remains
quite small and stable over of the execution of some
programs like compress, where branch instances
repeatedly work through a body of 9 distinct address sites.
Not . surprisingly, this highly interleaved branch target
transfer pattern almost always causes mispredictions (with

Incirect Branch (User, with JIT Compiler)

a misprediction rate of 96%) in a BTB where only the
most recently transferred target is recorded.

5.3. BTB Performance

Current processors predict branch targets with a branch
target buffer (BTB) which caches the most recently
resolved target. An indirect branch can always be
predicted “taken” by setting a corresponding “branch type”
bit once it enters the BTB. However, its prediction
performance is largely dependent on the efficiency of
BTB, because the BTB is referred for obtaining the target
address at the fetch cycle of a pipeline.

Will the conventional BTB structure work well with the
indirect branch rich Java runtime system? To answer this
question, we perform a BTB miss rate study (4-way set
associative, with table size varied from 256-entries to 8K-
entries). The BTB performance is examined by executing
each benchmark with both JIT compiler and interpreter.
The results are plotted in Figure 7. We omit the kernel
BTB miss behavior with interpreter because it is similar to
that in JIT mode. The BTB miss rate shown in Figure 7 is
further separated into tag miss caused by BTB entry
absence and target miss caused by incorrect targets in the
BTB entry.

As shown in Figure 7, user code shows higher BTB
miss than kernel code because it is more indirect branch
intensive. The BTB performance is largely dependent on
the JVM style as interpretation significantly increases BTB
miss rate on most studied benchmarks. For example, the
BTB miss rate in benchmark compress increases from 8%
in JIT mode to 96% in interpreting mode. Tag miss rate
becomes negligible as the BTB size increases, however,
increasing BTB size does not reduce BTB target miss rate
significantly. The high frequency of BTB misses in user
code in the interpreting mode is due to the difficulty in
predicting the targets of the indirect branch which
implement the case by case interpretation.

indirect Branch (Kemel, with JIT Compiler)

100+ indirect Branch (User, with Imerpreier).) 0 40-
W TagMiss W Tag-Mss Il Tag-Mss
go4 | [Target-Miss _ 2 [Target-Mss [] Target-Mss
z 1024 IS 20““’4096 [1024 2048
L ~— ~— m
@ 604 1 2 8192 2 !
s 2 8192 & 8ol 256 1
X 0 10
5 2 nﬂ s 2
0 - . " 0 db jess javac jack mtrt compress o p
db jess javac jack mirt compress db jess javac jack mirt compress

Figure 7. BTB Performance on Java Processing

Our analysis shows that polymorphic branches lead to a
high misprediction rate in conventional BTBs, as a simple,
most recently used target bookkeeping and a static hashing
mechanism employed in a BTB design is insufficient to

74

capture an interleaved but highly clustered target sequence.
The use of two-level indirect branch predictors proposed
by Driesen and Holzle [6] may capture the more complex
target access patterns and hence improve the prediction

accuracy. Unfortunately, the 2-level predictors potentially
require larger BTB entries for accurate prediction. The
clustered target sequence (with high locality as shown in
Figure 6) yielded by few polymorphic indirect branches
suggests that a mechanism that can capture multiple targets
for a few branches may be effective for Java.

6. Conclusions and Future Research

The popularity and wide adoption of Java has
necessitated the development of efficient hardware and
software for Java runtime systems. An in-depth look and
understanding of the control flow transfer characteristics in
Java processing can guide architects to design efficient
speculation mechanisms for Java execution. This paper is a

first step in characterizing control flow transfer and -

evaluating the impact of widely used branch prediction
schemes on different JVM techniques. The major
observations and contributions of this research are:

o Kernel branches constitute a significant portion of
total branch execution in Java processing. In JIT mode,
‘kernel branches, which constitute 14% of static branch
sites account for 29% of dynamic branch instances. Kernel
and user code favor different prediction schemes: SAs and
SAg outperforms other prediction schemes in user space
and SAg and Gshare are favorite predictors for kernel
code. v

eCompared with the 4.4K static branch sites found in
SPECInt95 executions, Java processing involves a fairly
larger number of static conditional branches with an
average of 37K in JIT mode and 29K in interpreting mode,
indicating its inherently larger control flow footprint. A
small number of distinct branches contribute to the
overwhelming majority of the branch instances, showing
high locality.

eThe use of virtual method calls to support the
extension and reuse of classes leads Java code to have
much less number of instructions per indirect branch (50
with a JIT compiler) than that of SPECInt95 (an average of
180). The additional indirect jumps used to implement the
switch-case statements for bytecode interpretation further
reduce this number to 37 in the case of interpreting mode,
implying the importance of accurate indirect branch
prediction on ILP performance of Java.

eA significant portion of indirect branches are
polymorphic branches. Polymorphic branches constitute
28% of dynamic indirect branches in JIT mode and 75% of
those in interpreting mode. Various JVM implementations
affect branch target transfer patterns drastically. In
interpreting mode, the number of active branch sites are
small and target address transfers are highly interleaved,
whereas JIT mode usually has more active branch sites
with random and sparse target transfer patterns.

o]t is found that Java processing exhibits a new kind of
locality in interpreting mode - branch target address

75

locality, according to which a few target addresses appear
very frequently in polymorphic indirect branch instances.

These results can provide insight towards designing
architectural support for enhancing the ILP performance of
Java processing. For example, a dedicated yet optimized
branch prediction scheme can be applied to user and kernel
code separately to achieve more accurate branch prediction
because of the different branch behavior inherent in user
and kernel code. A profile-based compiler
“preoptimization” of the heavily executed IJVM
components can improve ILP performance of Java
processing across different applications. The clustered
target sequence (with high locality) generated by
polymorphic indirect branches suggests that a BTB
mechanism that captures multiple target information will
be effective. We plan to apply these observations to design
microarchitectural enhancements to improve ILP
performance in Java processing.

Acknowledgements

This research is supported in part by a State of Texas
Advanced Technology program grant #403, the National
Science Foundation under grants CCR-9796098 and EIA-
9807112, and by Dell, Intel, Microsoft, Tivoli, and IBM.
We also thank Vijay Narayanan for his comments on this

paper.
References

[1] Delivering Real World Benefits with Client Side Java
Technology, An Executive White Paper, Aberdeen Group, Inc.,
June 2000.

[2] J. Bennett and M. Flynn, Performance Factors for Superscalar
Processors, Technical Report CSL-TR-95-661, Computer
Systems Laboratory, Stanford University, Feb. 1995.

[3] B. Calder, D. Grunwald and A. Srivastava, The Predictability
of Branches in Libraries, In Proceedings of the 28th Annual
International Symposium on Microarchitecture, pages 24-34,
1995.

[4] P.-Y. Chang, E. Hao. and Y. N. Patt, Target Prediction for
Indirect Jumps, In Proceedings of the 24th International
Symposium on Computer Architecture, pages 274-283, 1997.

5] T. Cramer, R. Friedman, T. Miller, D. Seberger, R. Wilson
and M. Wolczko, Compiling Java just in time, /EEE Micro, vol.
17, pages 36-43, May 1997.

[6] K. Driesen and U. Holzle, Accurate Indirect Branch
Prediction, In Proceedings of the 25th Annual International
Symposium on Computer Architecture, pages 167-178, 1998.

[7] N. Gloy, C. Young, J. B. Chen and M. D. Smith, An Analysis
of Dynamic Branch Prediction Schemes on System Workloads,
In Proceedings of the 23rd Annual International Symposium on
Computer Architecture, pages 12-21, 1996.

[8] T. H. Heil, Z. Smith and J. E. Smith, Improving Branch
Predictors by Correlating on Data Values, In Proceedings of the
32nd Annual ACM/IEEE Inmternational Symposium on
Microarchitecture, pages 28-37, 1999.

[91 S. Herrod, M. Rosenblum, E. Bugnion, S. Devine, R. Bosch,
J. Chapin, K. Govil, D. Teodosiu, E. Witchel, and B. Verghese,
The SimOS User Guide, http://simos.stanford.edu.

[10} Sun Microsystems, Java2 Platform, Standard Edition
Documentation, http://java.sun.com /docs/index.html.

[11] C. -H. A. Hsieh, J. C. Gyllenhaal, and W.- M. W. Hwu, Java
Bytecode to Native Code Translation: The Caffeine Prototype
and Preliminary Results, In Proceedings of the 29th International
Symposium on Microarchitecture, pages 90-99, 1996.

[12] C.-H. A. Hsieh, M. T. Conte, T. L. Johnson, J. C. Gyllenhaal
and W. W. Hwu, A Study of the Cache and Branch Performance
Issues with Running Java on Current Hardware Platforms, In
Proceedings of COMPCON, pages 211-216, 1997.

[13] D. R. Kaeli, and P. G. Emma, Branch History Table
Prediction of Moving Target Branches due to Subroutine
Returns, In Proceedings of the 18th Annual International
Symposium on Computer Architecture, pages 34-42, 1991,

[14] J. Lee, B.-S. Yang, S. Kim, S. Lee, Y. C. Chung, H. Lee, J.
H. Lee, S.-M. Moonm, K. Ebcioglu, and Erik Altman Reducing
Virtual Call Overheads in a Java VM Just-In-Time Compiler, In
Proceedings of the 4th Annual Workshop on Interaction between
Compilers and Computer Architectures, 2000.

[15] T. Li, L. K. John, N.Vijaykrishnan, A. Sivasubramaniam, J.
-Sabarinathan and A.Murthy, Using Complete System Simulation
to Characterize SPECjvm98 Benchmarks, In Proceedings of
ACM International Conference on Supercomputing, pages 22-33,
2000.

[16] T. Lindholm and F. Yellin, The Java Virtual Machine
Specification, Second Edition, Addison Wesley, 1999.

[17} Overview of Java platform product family,
http://www javasoft.com/products/OV _ jdkProduct.html.

(18] R. Radhakrishnan, N. Vijaykrishnan, L. K. John and A.
Sivasubramaniam, Architectural Issue in Java Runtime Systems,
In Proceedings of the 6th International Conference on High
Performance Computer Architecture, pages 387-398, 2000.

[19] J. Redstone, H. Levy and S. Eggers, An Analysis of
Operating System Behavior on a Simultaneous Multithreaded
Architecture, In Proceedings of 9th International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 245-256, 2000.

[20] SPEC jvm98 Benchmarks, http://www.spec.org/osg/jvm98/.
(211 N. Vijaykrishnan and N. Ranganathan, Tuning Branch
Predictors to Support Virtual Method Invocation in Java, In
Proceedings of the 5th USENIX Conference of Object-Oriented
Technologies and Systems, pages. 217-228, 1999.

[22] C. Xia and J. Torrellas. Comprehensive Hardware and
Software Support for Operating Systems to Exploit MP Memory
Hierarchies. IEEE Transactions on Computers, May 1999.

[23] T. Yeh and Y. N. Patt, Two-Level Adaptive Branch
Prediction, In Proceeding of 24th International Symposium on
Microarchitecture, pages. 51-61, 1991.

[24] T.-Y. Yeh and Y. N. Patt, A Comparison of Dynamic
Branch Predictors that Use Two 'Levels of Branch History, In
Proceedings of the 20th Annual International Symposium on
Computer Architecture, pages 257-266, 1993.

76

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

