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Abstract

Program control flow transfer (branch) prediction is
considered to be a performance hurdle and a key design issue
for current and future microprocessors. Branch prediction
schemes with high prediction accuracy have been proposed to
support longer processor pipelines with higher frequency
clocks. In the previously published literature, the design and
evaluation of branch predictors have been based heavily on
the simulation of only user instructions from scientific and
commercial workloads written in programming languages
such as C or C++. To complement the existing research, this
paper presents a case study of the modeling and evaluation of
advanced branch predictors using full-system simulation of
Java workloads running on a commercial operating system.

The contributions of this paper are: (1) The presentation
of a full system simulation framework to model, simulate and
evaluate the performance of a set of advanced prediction
schemes on emerging Java workloads; (2) An analysis of the
performance and design complexity of advanced branch
predictors in the presence of full system code; (3) An accurate
modeling of user/kernel branch aliasing on a wide range of
branch predictors.

1. Introduction

The current generation of microprocessors uses wide
instruction issue and out-of-order execution to exploit the
inherent instruction level parallelism (ILP) in programs to
improve performance. A processor attempts to issue multiple
decoded instructions to the execution units every cycle in
parallel. To reduce the possibility of pipeline stalls, the
instruction fetch unit must match the issue rate and
continuously provide instructions to the decoder. However, in
the case of a control flow transfer, there may be many cycles
of latency between the fetch of the branch instruction and the
execution and resolution of the branch direction and target.
Without knowing whether the branch is taken or not, the fetch
unit must stall or execute subsequent instructions
speculatively until the branch is executed and the next
instruction in program order is determined.

This research is supported by the National Science Foundation under
grant numbers 0113105 and 9807112, by a State of Texas Advanced
Technology Program grant, and by Tivoli, Motorola, Intel, IBM and
Microsoft Corporations.

Branch prediction is a technique that supports the execution
of speculative instructions that are more often the correct
instructions in program order. Branch prediction hardware
stores and uses past branch behavior to predict the branch
direction accurately. This allows processors to exploit
program ILP correctly more often, allowing more work to be
accomplished in less time and a corresponding enhancement
of performance. However, even with specialized hardware the
prediction is sometimes not correct, and the speculative
instructions previously thought to be next in program order
must be discarded when the branch is resolved. The accuracy
of the control flow predictor is therefore considered to be a
performance hurdle and a key design issue for current and
future microprocessors (e.g. the Intel Pentium-4) in which the
latency between branch prediction and resolution, the
misprediction penalty, is high.

Several highly accurate branch predictors have been
proposed in the literature [15][7][2][14][4]. In those studies,
the specific design of the branch predictors and the
performance evaluation relied heavily on the simulation of
user-mode instructions using traditional workloads (e.g.
SPECint written in C).

The combined impact of kernel code and user code on
overall branch predictor performance has received limited
attention. The effects of operating system context switches
were modeled in user-only simulation studies by flushing
branch prediction tables at regular intervals [8][2]. However,
periodic flushing was found to estimate user/kernel branch
interactions only poorly, and user-mode instructions by
themselves were shown to provide accurate prediction results
only when the kernel accounted for less than 5% of the total
executed instructions [3]. Similarly, there have been few
studies that focused on the predictability of emerging
workloads like Java [9][6] despite the fact that Java has been
shown to have a significant proportion of kernel-mode
branches and to exercise a large number of branch sites
compared to benchmarks such as SPECint95 [5][6]. This
makes Java code more susceptible to a reduction in
performance due to negative interactions in the branch
predictor (branch aliasing) between user code and kernel
code. Conclusions in those papers were based on limited
simulations of simple branch predictors and did not take into
account the ability of advanced predictors to reduce aliasing.

To help quantify these effects, this paper presents a case
study of the modeling and evaluation of advanced branch
predictors using full-system simulation of Java workloads
running on a commercial operating system. The rest of this
paper is organized as follows. Section 2 provides a brief
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background on the branch prediction schemes examined in
this study. Section 3 describes the simulation methodology
and experimental setup. Section 4 discusses the experimental
results. Section 5 models the user/kernel branch aliasing.
Finally, section 6 presents some conclusions.

2. Background
In this section, we give a brief introduction to dynamic

branch predictors and then describe the set of recently
proposed, state-of-the-art predictors that are used in this
study.

2.1 Dynamic Branch Predictors
Figure 1 shows a generalized branch predictor structure. A

branch predictor predicts the future direction (taken or not
taken) of a branch by performing a lookup of the Branch

History Table (BHT), which can be a ]2,2[ jk  finite-state
machine array implemented with 2-bit, up-down saturating
counters. The 2-bit counter encodes the tendency of a branch
to be taken or not taken in the past. It is updated when
branches are executed and the branch direction is resolved.
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Figure 1. Dynamic Branch Predictor
The method of selection of a particular 2-bit counter in the

BHT differentiates most branch predictor schemes. The
simplest predictor, 2bc, chooses a 2-bit counter from a one-
dimensional BHT using a subset of the address bits of the
branch. In the more sophisticated two-level dynamic branch
predictors, a 2-bit counter is selected by row and column [15].
Bits from the branch address select the column, while the row
is chosen using information from the Branch History Shift
Registers (BHSRs), which collect the predicted directions of
previous branches. The BHSR may keep separate local
history buffers for different branch sites or it may use a single
global history buffer for all branches. Global BHSR
predictors exploit correlation in the sequence of branch
predictions in a program. Correlation occurs when the past
prediction sequence for a branch matches the value in the
BHSR. Branches with different execution sequences are
therefore differentiated, leading to better predictions.
Schemes that use multiple local BHSRs map a set of branches
to a BHSR using particular address bits, as shown in Figure 1.
This exploits any repeating patterns in the execution of a
single or a set of program branches (e.g. loop branches).

Table 1 summarizes the configurations of several dynamic
predictors. The scheme name is derived from the taxonomy
proposed in [15]. The size is normalized with respect to the
hardware cost to implement a 2-bit counter. The variable i is
the 2log of the number of BHT entries.

The BHT and BHSRs are updated dynamically at run time
and the updates are used for future branch prediction. The
fixed sizes of branch predictor tables, constrained by chip die
area and access time, however, make it impossible to hold all
dynamic branch information. Consequently, several branches
map to the same entry in the prediction tables, a phenomenon
known as branch aliasing. Previous studies show that branch
aliasing is more likely to be destructive as prediction accuracy
decreases [3][12]. In the following sections Gshare and the
advanced de-aliasing branch predictors used in this study are
described, and their specific features to reduce aliasing are
discussed.

Table 1. Dynamic Branch Predictor
Configurations1
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2bc 1-level 0 i+10 0 2iK
GAg 0 0 i+10 2iK
GAs 0 i+6 4 2iK
Gshare

2-level,
global
BHSR 0 0 i+10 2iK

SAg i+8 i+8- )9(log2 +i i+9 2iK

SAs

2-level,
local

BHSRs i+8 i+5 4 2iK

2.2 Advanced Branch Predictors
Gshare is shown in Figure 2 [7]. To address the aliasing

problem, Gshare uses the exclusive-or (XOR) of a global
BHSR with the low-order address bits of a branch to form a
BHT index. A fixed size global BHT in combination with the
XOR function permits Gshare to use a longer prediction
history, resulting in one of the best one-dimensional BHT
predictors.
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Figure 2. Gshare
Research studies show that the use of a global BHSR to

select from a row of 2-bit counters is an effective branch
prediction strategy for most of the integer benchmarks [15].
This is due in part to the abundant if-else instructions in
integer programs that are often highly correlated. However,

                                                          
1 We omit the small hardware costs of the global BHSR on the GAg,
Gshare and GAs schemes. We assume that two BHSR bits have the same
hardware cost as one 2-bit counter for the SAg and SAs schemes.
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destructive branch aliasing can still seriously deteriorate its
performance [16][12][3]. As a result, more complex
predictors have been proposed to alleviate aliasing effects and
improve prediction accuracy. These are described below.
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Figure 3. Pshare
Pshare, shown in Figure 3, is the per-set version of the

Gshare predictor [2]. Instead of a single global BHSR, branch
set addresses select one of the multiple BHSRs to choose a
BHT entry. Like Gshare, the selected set BHSR is XORed
with branch address bits to index a BHT entry. For our study,
we implement 2K-entry BHSRs, as suggested in [2].
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Figure 4. Agree
The Agree predictor, shown in Figure 4, converts instances

of destructive aliasing into either constructive or neutral
aliasing by attaching a biasing bit to each branch that predicts
the most likely resolution of that branch [14]. The 2-bit BHT
counter indicates whether or not the branch will go in the
direction given by the biasing bit. The idea is that most
branches that map to the same BHT entry but different
Branch Target Buffer (BTB) entries are highly biased in one
direction, i.e. they are always taken or always not taken. The
BTB biasing bit captures the correct direction for the separate
branches mapped to the same BHT, and the separate branches
update the counter in the same direction when they agree with
their biasing bit even if the directions are different. This
reduces mispredictions for branches that would otherwise
update the counter in opposite directions.
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Figure 5. Bi-Mode
In the Agree predictor, the biasing bit is determined by the

direction of the branch when it is initially introduced into the
BTB. The Bi-Mode predictor, shown in Figure 5, uses a
dedicated ’choice’ BHT to dynamically determine the taken or
not taken bias [4]. It uses two ’direction’ BHTs of equivalent

size, one for the taken direction and one for the not taken
direction. When a branch is encountered, both ’direction’
BHTs make predictions and the ’choice’ BHT entry accessed
by bits in the branch address makes the actual prediction. At
resolution, only the ’direction’ BHT chosen by the ’choice’
BHT is updated. As a result of this scheme, branch
predictions stored in a ’direction’ BHT will have the same
bias. Thus this classification helps to alleviate destructive
aliasing while keeping the harmless aliasing together.

The Multi-Hybrid predictor, shown in Figure 6,
instantiates more than two distinct predictors and uses a
predictor selection counter to keep track of the most accurate
component predictor for each branch [2]. This is a
generalization of the classic two-component hybrid predictors
[7]. A priority encoding mechanism is used to select the
appropriate prediction. Using predictors with short training
times (e.g., a simple static, always-taken predictor and 2bc) to
assist the otherwise more accurate predictors (e.g., Gshare
and GAs) during their warm-up phases, Multi-Hybrid
maintains high prediction accuracy even after a loss or
intermingling of branch histories due to context switches.
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Figure 6. Multi-Hybrid
Note that our simulated Multi-Hybrid does not include an

AVG predictor [2] because it requires source recompilation to
provide profile information for accurate prediction of regular
loop branches, which is not as applicable to more complicated
software like an operating system or Java JVMs [1]. As
suggested by [2], we allocate approximately half of the total
area budget for Gshare, a quarter of the total budget for
Pshare, and one-eighth each for 2bc and GAs. The priority
ordering of the component predictors is 2bc, GAs, Gshare,
Pshare and the simple always taken scheme.

All of the advanced predictor schemes examined in this
study consist of a Gshare predictor component and other
resources necessary for branch de-aliasing. These include the
multiple component predictors and the predictor selection
counter table for Multi-Hybrid, the biasing bit table for Agree,
and the ’choice’ BHT for the Bi-Mode predictor. Table 2
summarizes the normalized size of these advanced predictors
as the size of their Gshare component is varied from 8K to
256K.
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Table 2. Hardware Complexity of Advanced Predictors
Predictor Size Normalized to Gshare

Predictor Additional Branch De-aliasing Hardware
8k 16k 32k 64k 128k 256k

Gshare 0 1 1 1 1 1 1
Pshare 2K BHSRs 2.63 1.88 1.47 1.25 1.13 1.07
Agree 2K biasing bits in BTB 1.13 1.06 1.03 1.02 1.01 1
Multi-
Hybrid

additional single-scheme predictors, 5×2K
predictor selection counters in BTB 3.25 2.63 2.31 2.16 2.08 2.04

Bi-Mode additional ’direction’ BHT and a ’choice’ BHT
of equivalent size 3 3 3 3 3 3

3. Simulation Framework and Experimental
Setup

We use simulation of a complete system, including the
operating system and user code, to model and evaluate the
various branch prediction schemes discussed in Section 2.
This section describes the simulation framework, the
experimental setup, and the benchmarks that are used.

3.1 Simulation Framework
We use a full system simulation environment called

SimOS [11] to execute Java workloads in the Java Runtime
Environment, which in turn runs on top of a commercial
operating system. SimOS models the major system hardware
components including the CPU, the cache and memory
system hierarchy, and the various I/O devices. These
components are modeled in enough detail to boot and run the
Silicon Graphics IRIX5.3 operating system. SimOS supports
multiple yet compatible CPU simulators including Embra,
Mipsy and MXS. In this study, the fastest CPU simulator,
Embra, is used to boot the operating system, mount the
simulated workloads disk, and position the workloads for
detailed investigation. Subsequently, each workload is
executed at least once using the Mipsy simulator to warm up
the file system and cache hierarchy. Finally, an individual
starting checkpoint is generated for each workload. The
checkpoint mechanism enables efficient simulation of
different predictor schemes and configurations starting from
an initial hardware state.

All instruction and data accesses for both applications and
the operating system are modeled. A heavily instrumented
version of the SimOS MXS [11] simulator is used to generate
address traces that are then fed into the branch predictor
simulators. The branch predictor configurations and
simulators have been used for prior research and are described
in [5][6]. Each predictor uses a 2K-entry, 4-way set-
associative BTB for the branch target prediction. Full system
simulation enables the collection of accurate data for
predictor simulations without special-purpose hardware or
intrusive modifications to the software.

3.2 Benchmarks
In this study, a Java Development Kit from Sun

Microsystems and the SPECjvm98 benchmarks are simulated
on the top of the SGI IRIX 5.3 operating system. SPECjvm98
is a benchmark suite released by the Standard Performance
Evaluation Corporation (SPEC) to evaluate performance for
the combined hardware and software aspects of Java client
technologies [13].

Table 3 gives a description of the SPECjvm98 benchmarks
and presents some general statistics for each benchmark. The
ability of SimOS to run unmodified applications makes
porting of the Java runtime system and execution of
SPECjvm98 straightforward. Each benchmark is executed
from the SimOS command line, and a Just-In-Time (JIT)
compiler [1] is used to translate Java byte-codes to native
instructions at run time. We set additional annotations in the
SimOS to ensure that each run is complete and accurate.

Table 3. SPECjvm98 Benchmarks2 and Statistics
Conditional Branch

Statistics
Benchmarks Description

Static Sites Dynamic
Instances

% of OS
cycles

Benchmark
Category

db Performs multiple database functions on a memory
resident database 39,973 32,890,218 31

jess Java expert shell system based on NASA’s CLIPS expert
system 44,691 64,252,325 30

G-I

javac The JDK 1.0.2 Java compiler compiling 225,000 lines of
code 44,885 55,573,959 19

jack Parser generator with lexical analysis, early version of
what is now JavaCC 46,782 251,173,727 17

G-II

mtrt Dual-threaded raytracer 42,728 219,017,400 7

compress Modified Lempel-Ziv method (LZW) to compress and
decompress large file 39,988 432,529,058 6

G-III

                                                          
2 The benchmark mpegaudio is excluded from our experiments because it did not run on the detailed CPU model of SimOS.
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Compared with SPECint95 benchmark statistics described
in [6], Java applications contain a much larger number of
static branches. As shown in Table 3, there is a wide
variability in the amount of time different workloads spend in
user and kernel code, with operating system activity ranging
from 6% in compress to 31% in db. This observation suggests
that emerging workloads such as Java can exhibit a stronger
operating system performance component than do SPEC
integer workloads, which in turn motivates the use of full
system simulation to evaluate the performance of branch
prediction schemes. To ease experimental analysis, the
benchmarks are partitioned into three groups (G-I, G-II and
G-III) based on their degree of operating system activity, as
shown in Table 3.

4. Branch Predictor Simulation Results

In this section, full-system simulation experiments are
used to find out: (1) whether the advanced branch predictors
benefit both user and OS code; (2) whether the best prediction
schemes for user code are also the best schemes for both user

and kernel code; and (3) what the most cost-effective
prediction schemes are for user and kernel code.

4.1 Misprediction Rates on Advanced Branch
Predictors

Figure 7 shows the prediction accuracies (represented as
misprediction rates) of the prediction schemes with respect to
the size implied by the Gshare component in each predictor.
As described in Section 2, advanced branch predictors
consume more hardware resources than the simpler Gshare
scheme, due to the additional hardware overhead used to
reduce aliasing. For example, the Multi-Hybrid, Agree and Bi-
Mode predictors with a 64K Gshare component actually
contain 138K (128K+10K), 66K (64K+2K) and 192K
(128K+64K) BHT entries, respectively. We present the
average statistics of the two benchmarks in each G-I, G-II and
G-III group unless especially specified. To gain more insight
into the performance of the predictors in a complete system,
we also break out the misprediction rates into user and
operating system (or kernel) components.
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Figure 7. Misprediction Rates of Advanced De-Aliasing Predictors
for User, OS and Full-system Code
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Figure 7 leads to a number of interesting observations. In
general, advanced de-aliasing techniques benefit both user
and operating system code. For example, on predictors with a
Gshare component of 16K BHT entries, the techniques used
in Pshare, Agree, Multi-Hybrid and Bi-Mode predictors
reduce the misprediction rates on the G-I benchmarks from
2.71% to 2.16%, 2.57%, 1.34% and 0.89% on the operating
system code. The percentages of misprediction reductions are
20%, 5%, 51% and 67%, respectively. For user code, the
corresponding misprediction reduction percentages are 16%,
12%, 32% and 52%, implying that the techniques benefit
operating system code more than user code.

However, the advanced de-aliasing techniques do not
always outperform the simple Gshare scheme. For example,
for operating system code, Pshare and Agree are found to
yield higher misprediction rates for the G-I benchmarks than
Gshare in some cases. Using a single BHSR, the Gshare
predictor exploits global branch correlation in operating
system code in which binary decision tree-based branching
sequences occur frequently. Using local BHSRs, Pshare can
perform worse for operating system code because it does not
use the full global branch correlation. In the Agree predictor,
if the branch does not show strongly biased behavior, there is
still frequent aliasing between instances of a branch that agree
with the biasing bit and instances which do not agree with the
biasing bit. Furthermore, if the biasing bit, which is chosen
the first time the branch is introduced into the BTB, turns out
to be not optimal for performance, it remains in the BTB until
eviction by a different branch. The non-optimal biasing bit
can pollute the BHT with ’disagree’ results. The Multi-Hybrid
and Bi-Mode predictors tend to achieve higher overall
accuracies across benchmarks that exhibit wide variations in
user and kernel activity. Of course, the price for the increased
consistency in performance is the application of additional
hardware resources relative to other schemes.

Also shown in Figure 7, the best dynamic prediction
scheme for user code is always the same as the best scheme
for the operating system code and also the best scheme for
both user and kernel code in a full system. This occurs
despite negative aliasing in the branch predictor caused by
user and operating system code interaction. Section 5
investigates the effects of user/kernel aliasing in more detail.

For benchmarks in groups G-II and G-III, the
misprediction rates in user code give a good approximation of
the overall prediction accuracy, as expected from [3].
However, the aggregate prediction accuracies on G-I
benchmarks with a relatively high operating system activity
component are not well modeled by user instruction
misprediction rates. For example, Multi-Hybrid at a 64K
Gshare component achieves a user misprediction rate of
5.36% while the full-system misprediction rate is 3.17%.
Despite the fact that the operating system code is highly
complicated by both hardware and software management
activities, the kernel code shows higher branch prediction
accuracies than the user code. This observation is consistent
with the results reported in [10], in which the branch
predictability of an operating system running an Apache web
server benchmark is analyzed.

4.2 Performance and Complexity Tradeoffs of
Advanced Branch Predictors

As shown in Figure 7, advanced de-aliasing techniques
enhance predictor accuracies across benchmarks with varying
degrees of user and kernel activity at the cost of additional
hardware and complexity. This introduces the interesting
question of whether the performance improvement justifies
the increased design complexity. Due to their larger sizes,
advanced branch predictors have increased access latencies
and energy consumption.
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To quantify the performance and complexity tradeoffs, we
define the Size Factor (SF) of the branch predictor as its
actual size normalized to the size of its corresponding Gshare
component. We then use the product of the misprediction rate
and the size factor (MR*SF) as a metric that accounts for both
performance and complexity. Figure 8 shows the results
(average statistics) of all studied benchmarks.

Comparing the results in Figures 7 and 8, it is immediately
observed that the most accurate prediction scheme is not
always the most cost-effective. For example, the Agree
predictor in Figure 7 yields higher misprediction rates than
those of Multi-Hybrid and Bi-Mode. However, when both
performance and size issues are considered, the Agree
predictor proves to be a cost-effective design choice. Figure 8
also shows that the optimal performance/complexity
predictors are different for user and operating system code.
For example, the Bi-Mode scheme is the most cost-effective
prediction scheme for medium or large size (4K-256K)
operating system code branch predictors. Even so, it is less
efficient for user code. Summarizing Figure 8, the Gshare
and Agree schemes are the most efficient branch predictors
for the full system when both accuracy and predictor size are
considered.

5. Modeling User/Kernel Branch Aliasing
In this section, we model user/kernel branch aliasing. As

described earlier, aliasing occurs when different branch sites
map to the same entry of prediction hardware structures such
as the BHT. Note that all advanced de-aliasing predictors use
the same Gshare predictor index scheme. To examine a wide

range of predictor index schemes, we model all predictors
shown in Table 1 in our experiment.

5.1 User/Kernel Branch Aliasing in BHT
We instrument our branch prediction simulators to record

the histograms of mappings between branch instructions and
BHT entries. We capture events both per-BHT entry and per-
BHT access reference, and we mark each as a member of one
of the following categories: (1) if a BHT entry or access is
mapped to the same branch site from user (or kernel) space,
we record an instance of a user/user (or a kernel/kernel) hit;
(2) if a BHT entry or access is mapped to different branch
sites from user (or kernel) space, we record user/user (or
kernel/kernel) aliasing; (3) if a BHT entry or access is
mapped to branches from different spaces, we record
user/kernel aliasing; (4) if a BHT entry is never mapped
during the simulation, we treat it as unmapped. Finally, a cold
miss is counted when a BHT entry is first mapped to a
branch. To reduce the effect of capacity misses, we examine
the mapping behavior on a BHT with 8K entries.

The results for benchmark groups G-I, G-II and G-III are
shown in Figures 9 and 10. In a processor with fine-grained
resource sharing like a superscalar machine, the presence of
operating system branches changes the utilization of
microarchitecture resources like the BHT. For example, for
the G-I benchmarks, operating system branches occupy 11%
(SAg predictor) to 22% (GAg predictor) of BHT entries, while
they constitute 49% (GAg predictor) to 52% (GAs predictor)
of BHT references. The impact of kernel branches on
different predictors is found to vary with the variety of
mapping schemes and the degree of operating system activity.
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Kernel/kernel aliasing (less than 10% of total aliasing in
most cases) is found to be less significant than user/user
aliasing (greater than 55% of total aliasing) because of the
smaller number of branch sites in the kernel code.
User/kernel aliasing occurs on all examined predictors. It is
observed that user/kernel aliasing occurs infrequently on the
2bc predictor since the use of address-based indexing
distinguishes different branches within a large sized table.
However, conflict increases in the other predictors and is
more significant in global history based predictors. In Gshare
and GAg predictors, for example, the user/kernel aliasing
occurs in 10%-18% of BHT entries and accounts for 5%-9%
of BHT references and 30%-35% of total reference aliasing.
There is significant user/kernel aliasing in SAg and SAs
predictors despite the local history-based BHT indexing
mechanism.

Exception-driven kernel routines can be invoked at any
time during program execution, which can cause arbitrary
branch sequence information in the BHSR for a branch in the
exception handler. This branch history ambiguity in the
BHSR can further spread to user/kernel branch aliased
references across the BHT counters through indexing. To
demonstrate this effect, we instrumented the Gshare predictor
simulator to capture user/kernel aliased references across the
range of 8K BHT counters, shown in Figure 11. Not
surprisingly, most BHT counters suffer from user/kernel
aliasing, implying that the ambiguous user/kernel history
information recorded in the BHSR and the randomized
indexing mechanism used in Gshare can spread destructive
user/kernel aliasing across many BHT counters.

5.2 Mispredictions Caused by User/Kernel Branch
Aliasing

Aliasing may not directly imply reduced prediction
accuracy since a branch that will eventually be aliased may be
executed enough times to amortize the context switch cost
before the conflict occurs. During the execution of Java
programs, the instruction streams of user applications (e.g.,
JIT compiler and translated native methods) and kernel
instructions (invoked by interrupts, exceptions or system
calls) alternate with each other. So branches from user and
kernel space alternate in trace order.

To analyze how user/kernel branch aliasing impacts
prediction accuracy, simulations were run with various
branch prediction schemes using 8K BHT entries and full-
system, user-only (user), and kernel-only (OS) traces. For the
full-system simulations, the branch prediction simulators
were instrumented to attribute and normalize the aggregate
misprediction rate as perceived by the user (shown as full
system(user) in the figure) and by the kernel (shown as full
system(OS)). The results are shown in Figure 12.

As observed earlier, for a given prediction scheme, the G-I
benchmarks suffer more user/kernel aliasing than G-II and G-
III benchmarks. Unsurprisingly, misprediction rates for user
or kernel code alone are always better than the misprediction
rates as perceived by one with the other causing aliasing. For
example, on benchmark group G-I under Gshare, eliminating
user/kernel aliasing drops the user misprediction rate from
10.5% to 6.3% and kernel misprediction rate from 3.3% to
1.1% respectively. The negative effect of aliasing on
prediction accuracy is more pronounced in the two-level
schemes with large history depths (e.g. GAg and Gshare) than
in locally oriented schemes that rely on smaller history depths
(e.g. SAs). Also, the 2bc results appear similar, indicating that
little user/kernel aliasing is occurring.
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Figure 11. Distribution of User/Kernel Aliasing on Gshare BHT Counters (8K)
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5.3 Reducing the Impact of User/Kernel Branch
Aliasing

The results in Figure 12 imply that eliminating user/kernel
branch aliasing improves prediction accuracies for both user
code and kernel code. A natural way to achieve this goal is to
split the unified predictor resource and provide a dedicated
branch predictor for each mode. Figure 12 also shows that
kernel and user codes favor different branch prediction
schemes. For example, with aliasing, the kernel has better
branch prediction accuracy using SAg and SAs predictors.
Without aliasing, GAg and Gshare predictors also yield
accurate results for kernel code. This implies that splitting
branch predictors and using separate schemes for the two
modes can result in higher performance with reduced
hardware.

Figure 13 compares the performance of unified predictors,
predictors with hardware resources split half-and-half
between user and kernel code, and ’hybridized’ predictors that
use split hardware and separate schemes for each of the two
modes. The results are shown on the 6 studied benchmarks
individually. It is found that the simple half-and-half split
branch predictors using GAg and Gshare reduce
mispredictions for both modes over all benchmarks. For those

two predictors, splitting yields 30% (db) to 90% (jack)
prediction accuracy improvement in kernel code and 9%
(compress) to 50% (jack) in user code. The half-and-half split
also benefits kernel branch prediction for SAg, SAs and GAs
predictors but the percentage of improvement is smaller (less
than 5%). Another observation is that the impact of splitting
on kernel branches varies with different benchmarks. For
example, on benchmark jack, the splitting contributes to
misprediction reduction for all examined schemes. The
simple half-and-half splitting policy is found to penalize
prediction accuracy in user codes on SAg and SAs predictors
by increasing the misprediction rates up to 7%.

Even better predictors can be obtained by combining
hybridizing with splitting. For example, the misprediction
rates of benchmark jack drop from 9.6% on a unified Gshare
predictor with 4K BHT to 4.1% on a hybrid GAs(U)
+Gshare(K) configuration of the same size. The SAs(U)+
Gshare(K) and GAs(U)+ Gshare(K) configurations provide
the best performance on most of the studied benchmarks.
Among other examined hybrid split predictors, we find that
the simple 2bc(U)+Gshare(K), 2bc(U)+GAg(K)
configurations yield performance comparable to that of the
best predictors.
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Figure 13. Performance of Half-and-Half Split and Hybridized Split Predictors
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6. Conclusions
This paper presents the results of extensive simulations of

a variety of state-of-the-art branch predictor schemes on a full
system simulation framework running a commercial
operating system and emerging Java workloads.

We find that branch predictors with the best performance
for user code also have the best performance for kernel code
as well as the best performance for the overall system code.
However, the advanced predictors often benefit operating
system code more than user code, and in some cases may not
outperform simpler predictors. Also, overall system
misprediction rates do not track user misprediction rates in
the presence of high operating system activity, which is the
case for some Java benchmarks. Complexity analysis shows
that simpler prediction schemes may be more cost-effective
than more complicated schemes for emerging workloads such
as Java.

Kernel/kernel aliasing was found to be a smaller
percentage of aliasing than user/user aliasing for all examined
branch predictors. Also, user/kernel aliasing occurs in all
predictors and can be significant. Simulation results indicate
that prediction accuracies can be improved by using split
hardware resources with different prediction schemes for user
and kernel code without consuming additional hardware
resources. Hybrid prediction schemes can also be used to
identify attractive tradeoffs between predictor performance
and complexity. As future work, we plan to model the power
consumption and access latencies of hybrid split branch
predictors.
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