

Copyright

by

Tao Li

2004

The Dissertation Committee for Tao Li

Certifies that this is the approved version of the following dissertation:

OS-aware Architecture for Improving Microprocessor

Performance and Energy Efficiency

Committee:

Lizy K. John, Supervisor

Jacob A. Abraham

Douglas C. Burger

Tess J. Moon

Nur A. Touba

OS-aware Architecture for Improving Microprocessor

Performance and Energy Efficiency

by

Tao Li, B.S.E, M.S.E.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2004

Dedication

To my wife Lan

and

my parents

Acknowledgements

In my research, I have received assistance from many people.

First, I would like to thank my advisor, Dr. Lizy John for her support, advice,

guidance, and good wishes. Lizy has had a profound influence not only as my graduate

advisor in Austin, but also on my life. Her availability at all times including weekends,

dedication towards work and family, professional integrity, and pursuit of perfection

helped me become a better individual. Lizy has made it her responsibility to make sure

that I, as well as all of her other students, have had the financial support we need to

accomplish our goals. I am grateful to her for the freedom and flexibility she gave me

throughout my Ph. D. study.

My gratitude goes to the committee members (in alphabetical order), Dr. Jacob

Abraham, Dr. Doug Burger, Dr. Tess Moon, and Dr. Nur Touba, for their invaluable

comments, productive suggestions, and the time for reading the draft of my thesis.

Dr. Vijay Narayanan, and Dr. Anand Sivasubramaniam at Department of

Computer Science and Engineering, the Pennsylvania State University have contributed

several distinctive insights to my research.

I would like to thank the students (past and current) at the Laboratory for

Computer Architecture (LCA) – Ramesh Radhakrishnan , Deepu Talla, Ravi Bhargava,

Juan Rubio, Madhavi Valluri, Rob Bell, Yue Luo, Shiwen Hu, Byeong Kil Lee, Saket

 v

Kumar, Sriram Sambamurthy, and Aashish Phansalkar. They have contributed to my

research by providing valuable comments on drafts of my paper submissions and useful

feedback at practice talks.

Rob Bell, a doctoral candidate in Computer Engineering, provided useful

suggestions and feedback on drafts of papers through many fruitful discussions.

Sudhanva Gurumurthi, a graduate student at Department of Computer Science

and Engineering, the Pennsylvania State University has helped me with the SoftWatt

tools.

Dr. Zhao Zhang (Iowa State University), Dr. Zhichun Zhu (University of Illinois

at Chicago), and Xiaodong Zhang (College of William & Mary) have helped me with

setting up a database workload used for this research.

During the course of my research, I have submitted several papers to peer-

reviewed conferences. The anonymous reviewers have provided valuable insights,

pointers to literature, and criticisms that I have used to make my research stronger.

Thanks to Linda, Shirley, Debi, Melanie, and other administrative assistants who

worked in Computer Engineering in the past years.

I would like to thank my parents, my parents-in-law, and friends who have had a

tremendous influence on my life.

Last, but not least, my wife Lan Luo, has endured the several years of my

graduate career with more cheer than I could have expected. She is my best friend and the

source of my strength. I am grateful to her consistent love, trust, inspiration, and support.

This is not something I could have accomplished alone.

TAO LI

The University of Texas at Austin

August 2004

 vi

OS-aware Architecture for Improving Microprocessor

Performance and Energy Efficiency

Publication No._____________

Tao Li, Ph. D.

The University of Texas at Austin, 2004

Supervisor: Lizy John

The Operating System (OS) which manages both hardware and software

resources, constitutes a major component of today’s complex systems implemented with

high-end and general-purpose microprocessors, memory hierarchy and heterogeneous I/O

devices. Modern and emerging applications (e.g., database, web servers and file/e-mail

workloads) exercise the OS significantly. However, microprocessor designs and

(performance/power) optimizations have largely ignored the impact of OS. This

dissertation characterizes the OS activity in emerging applications execution and

demonstrates the necessity, advantages, and benefits of integrating OS component in

processor architecture design.

It is essential to understand the characteristics of today’s emerging workloads in

order to design efficient architectures for them. Given the facts that modern and emerging

applications involve system activities significantly, this research uses complete system

evaluation. These evaluations result in several system performance and power

optimizations targeting for emerging applications that have heavier OS activity.

 vii

The OS dissipates a significant portion of total power in many modern application

executions. Therefore, modeling OS power is imperative for accurate software power

evaluation, as well as power management (e.g. dynamic thermal control and equal energy

scheduling). This research characterizes the power behavior of a modern, commercial OS

across a wide spectrum of applications to understand OS energy profiles and then

proposed various models to cost-effectively estimate its run-time energy dissipation.

To reduce software power, hardware can provide resources that closely match the

needs of the software. However, with exception-driven and intermittent execution in

nature, it becomes difficult to accurately predict and adapt processor resources in a timely

fashion for OS power savings without significant performance degradation. This

dissertation proposes a methodology that permits precise processor adaptations for the

operating system with low overhead.

Low power has been considered as an important issue in instruction cache (I-

cache) designs. This research goes beyond previous work to explore the opportunities to

design energy-efficient I-cache by exploiting the interactions of hardware-OS-

applications. This dissertation presents two techniques (OS-aware cache way lookup and

OS-aware cache set drowsy mode) to reduce the dynamic and the static power

consumption of I-cache. The proposed mechanisms require minimal hardware

modification and addition.

The OS component affects the control flow transfer in the execution environment

because the exception-driven, intermittent invocation of OS code significantly increases

the misprediction in both user and kernel code. This indicates that to improve

microprocessor performance, adapting branch prediction hardware for OS has become

very important now. This research proposes two OS-aware branch prediction techniques

to alleviate this destructive impact.

 viii

Table of Contents

List of Tables .. xii

List of Figures .. xiii

Chapter 1: Introduction ...1
1.1 Processor Architecture Design: the New Challenges1

1.1.1 Emerging Applications ...1
1.1.2 Power Dissipation ...2

1.2 Arena for Architecture Design and Optimization.....................................3
1.3 OS Cycle and Power Dissipation..4

1.3.1 Traditional and Technical Workloads...4
1.3.2 Modern and Emerging Applications...5

1.4 The Problems and Proposed Solutions ...6
1.5 Thesis Statement ...6
1.6 Contributions...7
1.7 Organization..10

Chapter 2: Experimental Methodology...11
2.1 Framework ..11

2.1.1 SimOS...11
2.1.2 SoftWatt ..12

2.2 Benchmarks...13
2.3 Simulated Microprocessor and System Configuration14

Chapter 3: Characterizing OS Activity: A Case Study of SPECjvm98................16
3.1 Motivation...16
3.2 Kernel Activity Of SPECjvm98..17
3.3 Cache and Memory Performance..28
3.4 ILP Issues..33
3.5 Summary ...36

 ix

Chapter 4: Run-time OS Power Estimation ..38
4.1 Software Power Estimation Techniques ...38

4.1.1 Instruction Level Power Modeling ...38
4.1.2 Characterization-based Macro-modeling....................................40
4.1.3 Performance Counter-based Run-time Power Estimation41
4.1.4 Cycle-accurate Architectural Level Simulation..........................42

4.2 Challenges in OS Power Modeling...43
4.3 Routine Level OS Power Characterization ...44

4.3.1 Power Behavior of OS Routines ...45
4.3.2 Energy-Performance Correlation ..47

4.4 Routine Level OS Power Model ...49
4.5 Run-time OS Power Modeling..52
4.6 Summary ...55

Chapter 5: OS Power Saving ..57
5.1 Program Phases and IPC Variance ...57
5.2 Sampling based Adaptation: Challenges for OS.....................................60
5.3 The Proposed Solution: OS-aware Routine based Adaptation65
5.4 Power Savings and Performance Evaluation ..70
5.5 Related Work ..74
5.6 Summary ...75

Chapter 6: OS-aware Low Power Instruction Cache..76
6.1 Motivation...76
6.2 User/OS I-Cache Accesses Characterization ..78
6.3 OS-aware I-Cache Tuning ..83

6.3.1 OS-aware Cache Way Lookup..83
6.3.2 OS-aware Cache Set Drowsy Mode ...86

6.4 Power and Performance Evaluation..93
6.5 Related Work ..95
6.6 Summary ...97

 x

Chapter 7: OS-aware Branch Prediction...99
7.1 Motivation...99
7.2 Characterizations of OS Branches ..101

7.2.1 Context Switch Profile and Branch Distribution102
7.2.2 OS Branch Execution Profile..104
7.2.3 Characteristics of OS Branches ..106

7.2.3.1 Weakly Biased Branches ..106
7.2.3.2 How Correlated are Kernel Branches?108
7.2.3.3 Impact of Intermittent Kernel Execution109
7.2.3.4 Characterization of User/OS Aliasing110

7.3 Alleviating Impact of User/OS Interference ...112
7.3.1 Split BHSR Predictor..113
7.3.2 Split Predictor ...113
7.3.3 Integrating with Other Predictors..115

7.4 Performance Evaluation..120
7.5 Discussion ...123
7.6 Related Work ..125
7.7 Summary ...127

Chapter 8: Conclusions and Future Work...128
8.1 Conclusions...129
8.2 Future Work ..133

Appendices...135

Bibliography ..139

Vita 148

 xi

List of Tables

Table 2.1: Benchmarks...13

Table 2.2: System Configuration ...14

Table 3.1: Execution Time Percentages (with JIT compiler)22

Table 3.2: OS Characterization of SPECjvm98 (JIT compiler, s1 dataset)24

Table 3.3: OS Characterization of SPECjvm98 (contd.)25

Table 3.4: OS Characterization of SPECjvm98 (JIT compiler, s100 dataset) ...26

Table 3.5: OS Characterization of SPECjvm98 (interpreter, s100 dataset).......27

Table 3.6: Memory Stall Time Percentages (with JIT compiler).......................28

Table 4.1: Hardware Counter Schemes..54

Table 5.1: OS IPC and Power ..59

Table 6.1: I-Cache Accesses Categorized by User/OS Residency81

Table 6.2: % of I-Cache Accesses to Drowsy Sets and Average Number of

Reinstated Drowsy Sets ..90

Table 6.3: % of I-Cache Accesses to Drowsy Sets and Average Number of

Reinstated Drowsy Sets using Access-Based Classification93

Table 6.4: Normalized Leakage Power and Run-time Increase.........................95

Table 7.1: Complete System Branch Execution Statistics102

Table 7.2: OS Routine Branch Characterization..106

Table 7.3: Characterization of Branch Aliasing...111

Table 7.4: Characterization of Misprediction due to Branch Aliasing112

Table 7.5: A Comparison of Several Branch De-aliasing Schemes.................116

Table 7.6a: Misprediction Reduction by Introducing OS-aware Prediction......118

Table 7.6b: OS-aware Prediction: Breakdown of Misprediction Reduction119

 xii

List of Figures

Figure 1.1: Software Technology Evolution: Emerging Applications..................2

Figure 1.2: Power Density of Intel Microprocessors [63].....................................3

Figure 1.3: Arena for Architecture Design and Optimization...............................4

Figure 1.4: OS Activities in Two Emerging Workloads5

Figure 1.5: OS Cycles and Power..5

Figure 2.1: Simulation Flow Chart..12

Figure 3.1: Execution Profile of SPECjvm98 (JIT compiler, s1 dataset)18

Figure 3.2: Execution Profile of SPECjvm98 (interpreter, s1 dataset)19

Figure 3.3: Execution Profile of SPECjvm98 (JIT compiler, s100 dataset)20

Figure 3.4: Execution Profile of SPECjvm98 (interpreter, s100 dataset)21

Figure 3.5: Impact of Cache Capacity and Line Size..30

Figure 3.6: Memory Stall Time in Kernel and User..32

Figure 3.7: ILP Speedup (JIT)...34

Figure 3.8: IPC Breakdown for 4-issue and 8-issue Superscalar Processors35

Figure 4.1: Average and Standard Deviations of OS Routines Power................45

Figure 4.2: Routine Level Energy Distributions in OS47

Figure 4.3: Correlation between OS Routines Power and IPC48

Figure 4.4: Breakdown of Power Dissipation of OS Routines............................48

Figure 4.5: Model Estimation Accuracy (Routine Average Power)50

Figure 4.6: Estimation Accuracy (IPC Correlated Routine Average Power)......51

Figure 4.7: Model Estimation Accuracy (OS Average Power)...........................51

Figure 4.8: OS Power Estimations (Single Power/IPC Correlation Model)52

Figure 4.9: A Comparison of Run-time Per-routine based Estimation Error......53

 xiii

Figure 4.10: A Comparison of Different Hardware Counter Schemes55

Figure 5.1: IPC Variation in the SPECjvm98 Benchmark jess57

Figure 5.2: Sampling Window ..61

Figure 5.3: FMS used in Sampling based Adaptation...61

Figure 5.4: Implications of Sampling Window Sizes..63

Figure 5.5: Average Duration of OS Services...64

Figure 5.6: Accumulative OS Energy vs. OS Service Duration..........................65

Figure 5.7: Routine based OS-aware Adaptation ..66

Figure 5.8: Effectiveness of Energy×Delay Tradeoffs is Program Dependent ...67

Figure 5.9: Energy×Delay of Different OS Services...68

Figure 5.10: Routine Based Energy×Delay Ranking of Different Modes69

Figure 5.11: The Baseline Microarchitecture..71

Figure 5.12: Normalized Power ..72

Figure 5.13: Normalized IPC ..73

Figure 5.14: Normalized Energy×Delay ...73

Figure 6.1: I-Cache Power Breakdown: User vs. OS..77

Figure 6.2: User/OS Instruction Blocks Residency...79

Figure 6.3: User and OS I-Cache Accesses...82

Figure 6.4: Hardware Modification/Addition Required to Implement OS-aware

Cache Way Lookup...84

Figure 6.5: I-Cache Way Accesses Reduction ..86

Figure 6.6: Implementation of OS-aware Cache Set Drowsy Mode...................88

Figure 6.7: % of I-cache Sets can be put into Drowsy State by Using Leakage

Control Illustrated in Figure 6.6..89

 xiv

Figure 6.8: The 2-bit Counter and Finite State Machine to Implement User/OS

Access-biased Classification...91

Figure 6.9: % of I-cache Sets put into Drowsy State by using User/OS Access-

biased Classification ...92

Figure 6.10: % of I-Cache Dynamic Power Savings by Incorporating OS-aware

Cache Way Lookup...94

Figure 7.1: Impact of User/OS Execution on Branch Prediction100

Figure 7.2: Average Number of Executed Branches (User vs. Kernel)103

Figure 7.3: Executed Branches in User and OS Contexts103

Figure 7.4: Where do the OS Dynamic Branches Come from?104

Figure 7.5: User and OS Branch Directions..107

Figure 7.6: Branch Correlation in OS Code ..109

Figure 7.7: Impact of User/Kernel Inference ..110

Figure 7.8: Gshare with Split BHSR ...113

Figure 7.9: Split Gshare Predictor ...114

Figure 7.10: K-BHT Size Trade-off ..115

Figure 7.11: Integrating with Other Predictors..117

Figure 7.12: IPC Improvement of OS-aware Predictors121

Figure 7.13: Impact of OS-aware Split BHSR Predictor123

Figure 7.14: Impact OS-aware Split Predictor ..124

 xv

Chapter 1: Introduction

Advances in VLSI technology enable architects to design more and more

powerful microprocessors and computer systems. However, emerging computer

applications and software technology evolutions constantly challenge hardware design.

Additionally, today’s high-complexity design has already raised many critical issues,

such as the increasingly constrained power budget.

The Operating System (OS) which manages both hardware and software

resources, constitutes a major component of today’s complex systems implemented with

high-end and general-purpose microprocessors, memory hierarchy and heterogeneous I/O

devices. Modern and emerging applications (e.g., database, web servers and file/e-mail

workloads) exercise the OS significantly. However, microprocessor designs and

(performance/power) optimizations have largely ignored the impacts of OS. This chapter

describes (1) the necessity for considering OS component in processor architecture

design, and (2) the objectives and contributions of this dissertation.

1.1 PROCESSOR ARCHITECTURE DESIGN: THE NEW CHALLENGES

Microprocessor performance has been drastically improved during past three

decades. Today’s high performance processors integrate millions of transistors and

operate at Giga Hertz frequency. Despite of the performance achievement, processor

architecture designs still face challenges.

1.1.1 Emerging Applications

Historically, microprocessor architecture designs have been largely driven by the

traditional and technical workloads, such as applications from the science and

engineering computation domains. As software technologies evolve, new computer

 1

applications and programming paradigms (as shown in Figure 1.1) are constantly

emerging. Therefore, current and future generation of microprocessors have to handle a

wide range of applications.

Applications

File/e-mail
Server

Database
Internet
& Web

MultimediaJava
.NET, C#

Bio-
informatics

E-commerce

Networking

Security
Commercial

Graphics
Multi-

threaded

Scientific Engineering

ApplicationsApplications

File/e-mail
Server

Database
Internet
& Web

MultimediaJava
.NET, C#

Bio-
informatics

E-commerce

Networking

Security
Commercial

Graphics
Multi-

threaded

Scientific Engineering

Figure 1.1: Software Technology Evolution: Emerging Applications

1.1.2 Power Dissipation

The high-complexity microprocessor design driven by the quest for greater

performance has resulted in many critical issues, such as longer verification time, less

scalability etc. Among those, the increasingly constrained power budget has become a big

concern. Figure 1.2 shows the power trend of the mainstream processors from Intel. One

can see that when moving from one generation to the next, the microprocessor power

density increases exponentially. The microprocessor power budget impacts many issues,

such as the cost of cooling and packaging, circuit reliability, battery-life time and the

utility cost for operating sever farms and data center. Therefore, today’s and future

processor designs have to manage and minimize power dissipation.

 2

Figure 1.2: Power Density of Intel Microprocessors [63]

1.2 ARENA FOR ARCHITECTURE DESIGN AND OPTIMIZATION

It has been well known that in order to deliver high performance and efficiency,

both hardware and software in a computing system need to be tightly collaborated.

Processor architecture design and optimization have been largely driven by the

application component. For instance, the SIMD extensions are designed to accelerate

multimedia applications execution. In the past, researchers have also found that compilers

can affect architecture design. For example, the explicit instruction and data parallelisms

identified by the compiler analysis can be packed and exposed to the VLIW architecture,

eliminating the hardware complexity for exploiting ILP at runtime. Recently, there has

been much research effort on characterizing the behavior of emerging applications (such

as database, OLTP, web/file/e-mail servers) and new programming paradigms (such as

Java, multithreading) to understand their impacts on the underlying hardware design.

Researchers have found that modern and emerging applications can behave differently

compared with the traditional and technical workloads: the execution of modern and

emerging workloads may involve heavier OS activities. This dissertation focuses on

 3

understanding and exploiting the interactions between architecture and OS to achieve

higher performance and better energy efficient microprocessor design.

Architecture

Application

Architecture

Application Compiler

OSOS--aware Architectureaware Architecture

architecture
compiler

Architecture

Application

Architecture

Application

Architecture

Application Compiler

Architecture

Application Compiler

Architecture

Application Compiler

OSOS--aware Architectureaware Architecture

architecture
compiler

OSOS--aware Architectureaware ArchitectureOSOS--aware Architectureaware Architecture

architecture
compiler

architecture
compiler

OSOSOSOS
applicationapplicationapplicationapplication

Figure 1.3: Arena for Architecture Design and Optimization

1.3 OS CYCLE AND POWER DISSIPATION

To motivate the necessity of considering the OS component in architecture

design, this dissertation characterizes the OS activity during different program execution.

Using a cycle accurate full-system simulation environment, the total machine cycles can

be broken down into those spent on user application execution and those spent on the OS

execution. The user part can be further subdivided into the time spent on user instruction

execution and the time stalled on pipeline and memory accesses. The OS portion further

contains time spent on kernel synchronization.

1.3.1 Traditional and Technical Workloads

Technical workloads such as SPECInt95 are profiled. Overall, the SPECInt95

benchmarks spend less than 1% of their execution time in OS. The impacts of OS on the

traditional and technical workloads execution can be ignored due to its insignificance.

 4

1.3.2 Modern and Emerging Applications

However, these scenarios are changed during modern and emerging workloads

execution. Figure 1.4 shows two execution profiles of programs sendmail and

postgres.update. Sendmail is the UNIX e-mail agent forwarding e-mails to the local user

accounts. Postgres.update simulates the open source Database engine Postgres running a

table update query. The processor spends a significant portion of the execution cycles in

the OS.

Figure 1.4: OS Activities in Two Emerging Workloads

Figure 1.5 further shows the percentage of CPU cycles and power spent on the OS

across a wide range of applications. No surprisingly, the OS highly impact on processor

cycle and power on many modern and emerging workloads such as e-mail and file

management applications, Java and Database applications.

0%
10%
20%
30%
40%
50%
60%

pmak
e

SPE
CInt.g

cc

SPECInt.v
orte

x

se
ndm

ail

file
man

Ja
va

.db

Ja
va

.je
ss

Ja
va

.ja
va

c

Ja
va

.ja
ck

Ja
va

.m
trt

Ja
va

.co
mpr

es
s

DBMS.se
lec

t

DBMS.up
date

DBMS.jo
in

% of OS Cycles
% of OS Ener

92% 89%

gy

Figure 1.5: OS Cycles and Power
 5

1.4 THE PROBLEMS AND PROPOSED SOLUTIONS

The evidence of the significant OS activity on many modern and emerging

applications execution plus the trend that the importance of OS is continuously growing

in modern computer systems due to the increasing demands on system administration

clearly indicate the necessity for good collaboration between the architecture design and

the OS.

Unfortunately, processor architecture design has paid less attention to the needs of

the OS. The existing mechanisms such as context switch, dual mode execution, precise

exception handling, and virtual memory protection all guarantee correctness but not

efficiency. The OS is designed to manage both hardware and software resources in a

system. Should architecture design be more OS-friendly? What are the benefits of doing

that? Those are the questions that this dissertation tries to answer.

There are primarily three problems:

• The OS activity in emerging applications execution and the implications of OS

execution on processor performance and power dissipation are not well

understood.

• Low power processor architecture designs have not considered the interactions of

hardware, application, and OS.

• Conventional processor microarchitecture designs have not paid attention to the

effect of OS. Performance degrades due to the interference between user

applications and OS.

1.5 THESIS STATEMENT

Many modern and emerging workloads execution invoke heavy OS activities.

Microprocessor designs that incorporate the OS-aware architectural components can

 6

improve the performance and energy efficiency of modern and emerging applications

execution.

1.6 CONTRIBUTIONS

This dissertation makes several contributions to the characterization of OS

activity in modern and emerging workloads, implications of OS execution, power

behavior of OS, and explicit hardware support for exploiting the interactions of OS and

computer architecture to improve processor performance and energy efficiency. The

summary of the contributions is listed below.

1. There is abundant variety among applications running on today’s computer

systems. However, the using of user-only technical workloads has dominantly

driven evaluating architectural designs/optimizations. It is essential to understand

the characteristics of today’s emerging workloads in order to design efficient

architectures for them. Given the facts that modern and emerging applications

involve system activities significantly, this research uses complete system

evaluation to understand the workloads behavior and interactions of hardware,

applications and OS.

2. The increasing constraints on power consumption in today’s computing systems

point to the need for power modeling and estimation for all components of a

system. The OS constitutes a major software component and dissipates a

significant portion of total power in many modern application executions.

Therefore, modeling OS power is imperative for accurate software power

evaluation, as well as power management (e.g. dynamic thermal control and equal

energy scheduling). This dissertation characterizes the power behavior of a

modern, commercial OS across a wide spectrum of applications to understand OS

energy profiles and then proposed various models to cost-effectively estimate its
 7

run-time energy dissipation. The proposed models rely on a few simple

parameters and have various degrees of complexity and accuracy. Compared with

cycle-accurate full-system simulation, the model can predict cumulative OS

energy to within 1% accuracy for a set of benchmark programs evaluated on a

high-end superscalar microprocessor.

3. To reduce software power, hardware can provide resources that closely match the

needs of the software. However, with exception-driven and intermittent execution

in nature, it becomes difficult to accurately predict and adapt processor resources

in a timely fashion for OS power savings without significant performance

degradation. This dissertation proposes a methodology that permits precise

processor adaptations for the operating system with low overhead. Compared with

existing techniques, this scheme has the following advantages: (1) The proposed

adaptation scheme guarantees the timely and fine-grained resolution required to

capture the exception-driven, short-lived OS activity; (2) The adaptation

techniques eliminate significant portion of adaptation overhead; (3) The

adaptation scheme has the capability to select the optimal configuration for

different OS code, yielding more attractive power and performance trade-off; (4)

This scheme is orthogonal to and can be integrated with existing scheme proposed

for user-only applications.

4. Low power has been considered as an important issue in instruction cache (I-

cache) designs. Several studies have shown that the I-cache can be tuned to

reduce power. These techniques, however, exclusively focus on user-level

applications. This study goes beyond previous work to explore the opportunities

to design energy-efficient I-cache by considering the interactions of hardware-

application-OS. This dissertation presents two techniques (OS-aware cache way

 8

lookup and OS-aware cache set drowsy mode) to reduce the dynamic and the

static power consumption of I-cache. The proposed OS-aware cache way lookup

reduces the number of parallel tag comparisons and data array read-outs for cache

accesses to save dynamic I-cache power in a given operation mode. The proposed

OS-aware cache set drowsy mode puts I-cache regions that are only heavily used

by another operation mode to reduce leakage power. The proposed mechanisms

require minimal hardware modification and addition. Simulation based

experiments show that with no or negligible impact on performance, applying OS-

aware tuning techniques yields significant dynamic and static power savings

across the experimented applications.

5. For current high performance microprocessors, the delivered ILP and pipelining

performance is critically dependent on being able to accurately predict the control

(branch) flow in the program. The OS component affects the control flow transfer

in the execution environment because the exception-driven, intermittent

invocation of OS code significantly increases the misprediction in both user and

kernel code. This dissertation proposes two OS-aware branch prediction

techniques to alleviate this destructive impact. Incorporating OS-aware techniques

with existing branch prediction mechanisms yields up to 34%, 23%, 27% and 9%

prediction accuracy improvement on four state-of-the-art branch predictors. The

integrated OS-aware predictors consume equivalent or even less hardware

resource. These advantages are valuable in the light of power and clock frequency

constraints in future microprocessor and branch predictor designs.

 9

1.7 ORGANIZATION

Chapter 2 presents the performance evaluation methodology used in this

dissertation. A detailed description of the tools, benchmarks, evaluation environment, and

performance measures is presented.

Chapter 3 presents a case study of emerging workloads and OS activity

characterization.

Chapter 4 characterizes the power behavior of OS and proposes the model and

methodology for run-time OS power modeling.

Chapter 5 proposes the routine based OS-aware microprocessor resource

adaptation for OS power savings. Compared with sampling based mechanism, the

proposed solution allow microprocessor to adapt its resource to complex software like OS

in a timely and accurately fashion without paying high adaptation overhead.

Chapter 6 investigates the low power instruction cache design by incorporating

the OS-aware design philosophy.

Chapter 7 characterizes the impact of OS on the microprocessor control flow

prediction mechanism, one of the performance critical issues for today’s wide issue and

highly speculative microprocessor. The hardware solutions, which can significant

improve the prediction accuracy due to the exception driven and non-deterministic OS

execution, are then proposed.

Chapter 8 concludes the dissertation by summarizing the contributions and

suggesting future opportunities.

 10

Chapter 2: Experimental Methodology

The experimental results in this dissertation are obtained by detailed simulation of

a complete system. This chapter discusses the simulation tools and process. The baseline

microarchitecture and benchmark programs are also explained.

2.1 FRAMEWORK

This dissertation uses software-based simulation framework.

2.1.1 SimOS

The experimental platform used to perform this study is SimOS [28][71], a

complete simulation environment that models hardware components with enough detail

to boot and run a full-blown commercial OS. In this dissertation, the SimOS version that

runs the Silicon Graphics IRIX5.3 operating system was used.

SimOS includes multiple processor simulators (Embra, Mipsy, and MXS) that

model the CPU at different levels of detail [28]. This research uses the fastest CPU

simulator, Embra [85] to boot the OS and perform initialization, and then uses Mipsy and

MXS, the detailed CPU models of SimOS to conduct performance measurements (as

shown in Figure 2.1). For the large and complex workloads, the booting and initialization

phase may cause the execution of several tens of billions of instructions [72].

SimOS has a checkpointing ability which allows the hardware execution status

(e.g. contents of register file, main memory and I/O devices) to be saved as a set of files

(dubbed as a checkpoint), and simulation may resume from the checkpoint. This feature

allows us to conduct multiple runs from identical initial status. To ensure that SimOS

accurately simulates a complete execution of each workload, annotations are used to

allow SimOS to automatically invoke a studied workload after a checkpoint is restored

and to exit simulation as soon as the execution completes and OS prompt is returned.

 11

This techniques, which avoid the need of interactive input to control the simulation after

it begins and before it completes, make each run complete, accurate, and comparable.

 SPECint95

SimOS
Embra

Annotation

Machine
Architecture

Booting OS
Setting run-time system
Mounting disk

Workload

Warming-up file cache
Profiling execution
Positioning applications

Executing applications
Dumping simulation result

Checkpoint

SimOS
Mipsy

SimOS
MXS

 SPECjvm98

Figure 2.1: Simulation Flow Chart

The performance results presented in this study are generated by Mipsy and MXS,

the detailed CPU models of SimOS. Mipsy models a simple, single-issue pipelined

processor with one-cycle result latency and one-cycle repeat rate [28]. Although Mipsy is

not an effective model from the perspective of detailed processor performance

investigations, it does provide valuable information such as TLB activities, instruction

counts, and detailed memory system behavior. In this study, Mipsy is used to generate the

basic characterization knowledge and memory system behavior of studied workloads.

2.1.2 SoftWatt

The complete system power simulator SoftWatt [25], which models the power

dissipation of the CPU, memory hierarchy and a low-power disk subsystem is used to

investigate the power behavior of OS. The SoftWatt tool, built on top of the SimOS

 12

infrastructure [28], uses validated energy models similar to other low-level power

simulators like Wattch [13]. By leveraging the SimOS cycle-accurate and full-system

simulation capability, SoftWatt captures power dissipation of both applications and OS

running on a detailed system model.

2.2 BENCHMARKS

Table 2.1: Benchmarks

Name
Num.

Of Inst.
(M)

Description
% of OS
Cycles

(on SimOS
Mipsy Model)

pmake 1,117 Two parallel compilation processes compile the Modified
Andrew Benchmark 17

gcc 1,036 Compiles pre-processed source into optimized SPARC
assembly code 8

vortex 1,811 A full object oriented database 8
sendmail 1,494 UNIX electronic mail transport agent 54
fileman 177 File management 92
db 201 Performs multiple database functions on a memory resident

database 31

jess 467 Java expert shell system based on NASA’s CLIPS expert
system 30

javac 366 The JDK 1.0.2 Java compiler compiling 225,000 lines of
code 19

jack 1,782 Parser generator with lexical analysis 17
mtrt 1,431 Dual-threaded raytracer 7
compress 2,428 Modified Lempel-Ziv method (LZW) to compress and

decompress files 6

postgres.select 1,516 Object -Relational DBMS PostgreSQL executes a select
query 38

postgres.update 1,438 Object-Relational DBMS PostgreSQL executes an update
query 55

postgres.join 1,849 Object-Relational DBMS PostgreSQL executes a join query 15
osboot 48 A complete OS boot sequence 93

We use 15 applications (see Table 2.1) that have different characteristics. The

pmake is a parallel program development workload [60]. The gcc and vortex are two

benchmarks from the SPECint95. The sendmail benchmark forwards emails using the

Simple Mail Transport Protocol (SMTP) [47]. The fileman performs file management

activities, such as copy, remove, tar and untar. The db, jess, javac, jack, mtrt and

compress are Java programs from the SPECjvm98 suite executed with s1 dataset on a

 13

Sun Java virtual machine [35]. We also use three benchmarks that run on a relational

database management system (DBMS) engine- PostgreSQL [67]. The database is

populated with relational tables for the TPC-C benchmark [83]. The postgres.select

performs a sequential table scan of a table with 1 million rows and a selectivity of 3%.

The postgres.update updates to a field of a 300,000 row table and the postgres.join

executes a nested loop join query involving two tables of sizes 11MB and 24KB. The

osboot executes a complete OS booting sequence form the root disk image and then

generates a shell.

2.3 SIMULATED MICROPROCESSOR AND SYSTEM CONFIGURATION

Table 2.2: System Configuration

Processor Core
Fetch/Decode/Issue/Retire Width 8
Instruction Window Size 128
Reorder Buffer Size 128
Number and Latency of Function Units MIPS R10000 Like
Branch Target Buffer (BTB) 2048-entry, 4-way
Return Address Stack 32-entry w/ misprediction repair
Branch Predictor/Misprediction Penalty 8K-entry Gshare/10 cycles
Load Store Queue Size 64

Memory Hierarchy
MMU Fully associative TLB, 48-entries, 4KB page size

L1 I-Cache 32KB, 4-way(LRU), 64B blocks, 4MSHRs, 2
ports, 1 cycle latency

L1 D-Cache 32KB, 4-way(LRU), 32B blocks, 4MSHRs, 2
ports, 1 cycle latency

L2 Cache 512KB, 4-way(LRU), 128B blocks, 4MSHRs, 2
ports, 9 cycle latency

Memory 256MB, 4 banks, 180 cycle access
I/O

Disk Scaled HP97560 SCSI Disk

The performance evaluation of microarchitectural characterizations are done with

MXS [11], which models a superscalar microprocessor with multiple instruction issue,

register renaming, dynamic scheduling, and speculative execution with precise

exceptions. The baseline architectural model is an 8 issue superscalar processor with

 14

MIPS R10000 [57][89] instruction latencies. Unlike the MIPS R10000, our processor

model has a 128-entry instruction window, a 128-entry reorder buffer and a 64-entry

load/store buffer. Additionally, all functional units can handle any type of instructions.

Branch prediction is implemented as an 8192-entry table Gshare predictor. Indirect

branches and call/return are handled by a 2048-entry BTAC (branch target address cache)

and a 32-entry RAS (return address stack) respectively. By default, the branch prediction

algorithm allows fetch unit to fetch through up to 4 unresolved branches.

The memory subsystem consists of a split L1 instruction and data cache, a unified

L2 cache, and main memory. The L1 instruction cache is 32KB, and has a cache line size

of 64-bytes. The L1 data cache is 32KB, and has 32-byte lines. The L2 cache is 512KB

with 128-byte lines. A hit in the L1 cache can be serviced in one cycle, while a hit in the

L2 cache is serviced in 10 cycles. All caches are 4-way associative, with LRU

replacement and write back write miss allocation policies and have four miss status

handling registers (MSHR). Main memory consists of 256 MB DRAM with a 180-cycle

access time. Our simulated machine also includes a validated HP disk model and a single

console device. The described architecture is simulated cycle by cycle. The instruction

and data accesses of both applications and OS are modeled.

 15

Chapter 3: Characterizing OS Activity: A Case Study of SPECjvm98

Complete system simulation to understand the influence of architecture and OS

on application execution has been identified to be crucial for systems design. This

problem is particularly interesting in the context of modern and emerging workloads. To

investigate these issues, this chapter uses complete system simulation of the emerging

SPECjvm98 benchmarks on the SimOS simulation platform.

3.1 MOTIVATION

It is becoming increasingly clear [7][28][71][72] that accurate performance

analysis requires an examination of complete system - architecture and OS - behavior.

While complete system simulation has been used to study several workloads [7][71][72],

it has not been used in the context of emerging Java programs. A Java Virtual Machine

(JVM) environment can be significantly different from that required to support traditional

C or FORTRAN based code. The major differences are due to: 1) object-oriented

execution with frequent use of virtual method calls (dynamic binding), dynamic object

allocation and garbage collection; 2) dynamic linking and loading of classes; 3) program-

level multithreading and consequent synchronization overheads; and 4) software

interpretation or dynamic compilation of byte-codes. These differences can affect the

behavior of the OS kernel in a different manner than conventional applications. For

instance, dynamic linking and loading of classes can result in higher file and I/O

activities, while dynamic object allocation and garbage collection would require more

memory management operations. Similarly, multithreading can influence the

synchronization behavior in the kernel.

This chapter presents results from an in-depth look at complete system profiling

of the SPECjvm98 benchmarks, focusing on the OS activity. Of the different JVM

 16

implementation styles [29][18][42][78][55], this chapter focuses on two popular

techniques - interpretation and Just-In-Time (JIT) compilation. Interpretation [29] of the

portable Java byte codes was the first approach that was used, and is, perhaps, the easiest

to implement. In contrast, JIT compilers [18][42][78], which represent the state-of-the-

art, translate the byte-codes to machine native code at runtime (using sophisticated

techniques) for direct execution.

The rest of this chapter is organized as follows. Section 3.2 presents the execution

time and detailed statistics for the user and kernel activities in these workloads. Section

3.3 investigates cache and memory performance. Section 3.4 explores the ILP issues.

Finally, section 3.5 summarizes the contributions and implications of this work.

3.2 KERNEL ACTIVITY OF SPECJVM98

Figure 3.1 and 3.2 show the execution time profile of the SPECjvm98

benchmarks for JIT compiler and interpreter modes of execution on s1 input dataset (The

results on s100 dataset are shown in Figure 3.3 and 3.4). The measured period includes

time for loading the program, verifying the class files, compiling on the fly by JIT

compiler and executing native instruction stream on simulated hardware. The profile is

presented in terms of the time spent in executing user instructions, stalls incurred during

the execution of these instructions (due to memory and pipeline stalls), the time spent in

kernel instructions, the stalls due to these kernel instructions, synchronization operations

within the kernel and any remaining idle times.

Figure 3.2 shows that compress and mtrt have flat and steady execution profile. In

these workloads, the bulk of execution time is made up by steady state execution region

that consists of a single outer loop or a set of loops iterating on a given data size. In

contrast, jess, db and javac make heavy but erratic use of kernel services, which makes

their execution behaviors irregular. Additionally, we observe negligible (less that 3%)
 17

synchronization time in all of the SPECjvm98 benchmarks' execution. This is partially

due to some Java runtime library functions are designed to be thread safe, therefore, are

synchronized.

 idle
 user stall
 user instr
 kernel sync
 kernel stall
 kernel instr

|

0.0
|

2.5
|

5.0
|

7.5
|

10.0
|

12.5

|0

|20

|40

|60

|80

|100 | | | |

|
|

|
|

|
|

 Time (seconds)

 P
e
rc

e
n
t
o
f
E

xe
cu

tio
n
 T

im
e

 201 compress
 idle
 user stall
 user instr
 kernel sync
 kernel stall
 kernel instr

|

0.0
|

0.5
|

1.0
|

1.5
|

2.0
|

2.5

|0

|20
|40

|60

|80

|100 | | |

|
|

|
|

|
|

 Time (seconds)

 P
e
rc

e
n
t
o
f
E

xe
cu

tio
n
 T

im
e

 202 jess

 idle
 user stall
 user instr
 kernel sync
 kernel stall
 kernel instr

|

0.00
|

0.25
|

0.50
|

0.75
|

1.00

|0

|20

|40

|60

|80

|100 | | |

|
|

|
|

|
|

 Time (seconds)

 P
e
rc

e
n
t
o
f
E

xe
cu

tio
n
 T

im
e

 209 db
 idle
 user stall
 user instr
 kernel sync
 kernel stall
 kernel instr

|

0.00
|

0.25
|

0.50
|

0.75
|

1.00
|

1.25
|

1.50
|

1.75
|

2.00

|0

|20

|40

|60

|80

|100 | | |

|
|

|
|

|
|

 Time (seconds)

 P
e
rc

e
n
t
o
f
E

xe
cu

tio
n
 T

im
e

 213 javac

 idle
 user stall
 user instr
 kernel sync
 kernel stall
 kernel instr

|

0
|

1
|

2
|

3
|

4
|

5
|

6
|

7
|

8

|0

|20

|40

|60

|80
|100 | | | |

|
|

|
|

|
|

 Time (seconds)

 P
e
rc

e
n
t
o
f
E

xe
cu

tio
n
 T

im
e

 227 mtrt
 idle
 user stall
 user instr
 kernel sync
 kernel stall
 kernel instr

|

0.0
|

2.5
|

5.0
|

7.5
|

10.0

|0

|20

|40

|60

|80

|100 | |

|
|

|
|

|
|

 Time (seconds)

 P
e
rc

e
n
t
o
f
E

xe
cu

tio
n
 T

im
e

 228 jack

| | | | |

| | | | | | | |

| | | | | | | |

The execution time of each workload is separated into the time spent in user, kernel, and idle (idle) modes on
the SimOS Mipsy CPU model. User and kernel modes are further subdivided into instruction execution (user
instr, kernel instr), memory stall (user stall, kernel stall), and synchronization (kernel sync, only for
kernel mode).

Figure 3.1: Execution Profile of SPECjvm98 (JIT compiler, s1 dataset)

 18

 idle
 user stall
 user instr
 kernel sync
 kernel stall
 kernel instr

|

0.0
|

0.5
|

1.0
|

1.5
|

2.0
|

2.5
|

3.0

|0

|20

|40

|60

|80

|100 | | | |

|
|

|
|

|
|| | |

 Time (seconds)

 P
e
rc

e
n
t
o
f
E

xe
cu

tio
n
 T

im
e

 202 jess nojit

 idle
 user stall
 user instr
 kernel sync
 kernel stall
 kernel instr

|

0.00
|

0.25
|

0.50
|

0.75
|

1.00

|0

|20

|40

|60

|80

|100 | |

|
|

|
|

|
|| | |

 Time (seconds)

 P
e

rc
e

n
t

o
f

E
xe

cu
tio

n
 T

im
e

 209 db nojit
 idle
 user stall
 user instr
 kernel sync
 kernel stall
 kernel instr

|

0.00
|

0.25
|

0.50
|

0.75
|

1.00
|

1.25
|

1.50
|

1.75

|0

|20

|40

|60

|80

|100 | | | | |

|
|

|
|

|
|| | |

 Time (seconds)

 P
e
rc

e
n
t
o
f
E

xe
cu

tio
n
 T

im
e

 213 javac nojit

 idle
 user stall
 user instr
 kernel sync
 kernel stall
 kernel instr

|

0.0
|

2.5
|

5.0
|

7.5
|

10.0
|

12.5

|0

|20

|40

|60

|80

|100 | |

|
|

|
|

|
|| | | |

 Time (seconds)

 P
e
rc

e
n
t
o
f
E

xe
cu

tio
n
 T

im
e

 227 mtrt nojit
 idle
 user stall
 user instr
 kernel sync
 kernel stall
 kernel instr

|

0.0
|

2.5
|

5.0
|

7.5
|

10.0
|

12.5

|0

|20

|40

|60

|80

|100 | | |

|
|

|
|

|
|| | |

 Time (seconds)

 P
e

rc
e

n
t

o
f

E
xe

cu
tio

n
 T

im
e

 228 jack nojit

The execution time of each workload is separated into the time spent in user, kernel, and idle (idle) modes on the
SimOS Mipsy CPU model. User and kernel modes are further subdivided into instruction execution (user instr,
kernel instr), memory stall (user stall, kernel stall), and synchronization (kernel sync, only for kernel
mode).

Figure 3.2: Execution Profile of SPECjvm98 (interpreter, s1 dataset)

 19

The execution time of each workload is separated into the time spent in user, kernel, and idle (idle) modes
on the SimOS Mipsy CPU model. User and kernel modes are further subdivided into instruction execution
(user instr, kernel instr), memory stall (user stall, kernel stall), and synchronization (kernel sync,
only for kernel mode).

Figure 3.3: Execution Profile of SPECjvm98 (JIT compiler, s100 dataset)

 20

The execution time of each workload is separated into the time spent in user, kernel, and idle (idle) modes
on the SimOS Mipsy CPU model. User and kernel modes are further subdivided into instruction
execution (user instr, kernel instr), memory stall (user stall, kernel stall), and synchronization
(kernel sync, only for kernel mode).

Figure 3.4: Execution Profile of SPECjvm98 (interpreter, s100 dataset)

 21

Table 3.1 summarizes the breakdown of execution time spent in kernel, user and

idle for each SPECjvm98 benchmark on three different input datasets. For the small input

dataset s1, the kernel activity is seen to constitute 6% (compress) to 31% (db) of the

overall execution time. On the average, the SPECjvm98 programs spend 17% of their

execution time in kernel. This fact implies that ignoring kernel instructions in

SPECjvm98 workloads study may not represent complete and accurate execution

behavior.

Table 3.1: Execution Time Percentages (with JIT compiler)

Benchmarks Input User User
Inst.

User
Stall Kernel Kernel

Inst.
Kernel
Stall

Kernel
Sync. Idle

S1 92.25 87.13 5.12 6.06 4.67 1.20 0.19 1.69

S10 83.57 78.50 5.07 5.44 4.31 0.97 0.16 10.99 compress

S100 92.81 87.19 5.62 4.30 3.78 0.49 0.03 2.89
S1 61.95 51.49 10.46 30.28 21.71 6.50 2.07 7.77

S10 79.10 70.70 8.40 16.99 13.61 2.66 0.72 3.91 jess

S100 84.95 73.63 11.32 14.90 14.19 0.66 0.05 0.15
S1 52.07 44.19 7.88 30.91 20.12 8.23 2.56 17.02

S10 79.08 70.45 8.63 15.89 12.69 2.45 0.75 5.03 db

S100 87.10 77.50 9.60 12.64 11.91 0.69 0.04 0.26
S1 71.18 62.08 9.10 18.56 12.17 5.13 1.26 10.26

S10 73.06 62.50 10.56 11.99 9.89 1.82 0.28 14.95 javac

S100 84.31 70.92 13.39 14.92 13.85 1.03 0.04 0.77
S1 89.99 81.23 8.76 7.27 5.08 1.87 0.32 2.74

S10 91.98 82.50 9.48 6.71 5.37 1.18 0.16 1.31 mtrt

S100 91.22 80.34 10.88 8.60 7.86 0.71 0.03 0.18
S1 80.53 70.34 10.19 17.36 13.31 3.46 0.59 2.11

S10 81.47 71.34 10.13 17.27 13.46 3.30 0.51 1.26 jack

S100 82.94 72.51 10.43 16.90 13.51 2.96 0.43 0.16

An interesting observation is the fact that idle times (due to file reads) can be seen

with the smaller data sets. As mentioned earlier, idle times are due to disk activity when

the operation misses in the file cache. In most applications, the operation is invoked

repeatedly to the same files/blocks leading to a higher hit percentage in the file cache

 22

while using the s100 data sets. As a result, we observed that the percentage of kernel time

spent in the read call goes up as compared to the smaller data sets.

The above execution profiling reveals kernel behavior on the execution of

SPECjvm98 workloads at a coarse level. We further decompose kernel time at service

level and characterize the corresponding kernel routines for this behavior. SimOS uses a

set of state machines and annotations to track the current kernel processes, such as page

fault routine, interrupt hander, disk driver, or hardware exception [28][72]. This allows us

to attribute kernel execution time to the specific service performed.

Tables 3.2 and 3.3 further break down the kernel activities (on s1 dataset and with

JIT compiler) into specific services. These tables give the number of invocation of these

services, the number of cycles spent in executing each routine on the average, a break

down of these cycles between actual instruction execution, stalls and synchronization.

The memory cycles per instruction (MCPI) while executing each of these services is also

given together with its breakdown into instruction and data portions. The read or write

kernel service may involve disk accesses and subsequent copying of data between file

caches and user data structures. It should be noted that the time spent in disk accesses is

not accounted for within the read or write kernel calls, but will figure as idle times in the

execution profile (because the process is blocked on I/O activity). So the read and write

overheads are mainly due to memory copy operations. utlb fault reloads the TLB for user

addresses. demand_zero is a block clear operation occurs when the OS allocates a page

for data. (The page has to be zeroed out before being used.) The read system calls is

responsible for transferring data from kernel address space to application address space.

Clock and vfault are clock interrupt and page fault handler respectively.

 23

Table 3.2: OS Characterization of SPECjvm98 (JIT compiler, s1 dataset)

B
en

ch
.

Se
rv

ic
e

%
K

er
ne

l

N
um

.

C
yc

le
s

%
Ex

ec

%
St

al
l

%
Sy

nc

M
C

PI

d-
M

C
PI

i-M
C

PI

utlb 52.48% 6283123 13.15 99 1 0 0.01 0.01 0
read 18.23% 5884 4875.49 58 34 8 0.53 0.34 0.19
demand_zero 12.13% 2818 6774.88 44 53 3 1.13 0.99 0.14
clock 2.27% 1299 2750.31 40 57 3 1.4 1.05 0.36
cacheflush 1.96% 1573 1960.03 52 44 4 0.81 0.34 0.48
open 1.72% 190 14265.09 56 30 14 0.43 0.15 0.28
vfault 1.25% 975 2016.53 70 23 8 0.3 0.08 0.22

c
o
m
p
r
e
s
s

execve 1.12% 12 146681 55 34 11 0.52 0.31 0.21
read 41.42% 20368 3487.03 67 23 11 0.3 0.04 0.26
utlb 22.91% 2884313 13.62 95 5 0 0.05 0.05 0
BSD 10.90% 28911 646.24 85 11 4 0.13 0.03 0.1
demand_zero 5.26% 1276 7065.17 42 55 3 1.24 1.02 0.22
open 3.03% 327 15882.84 55 31 14 0.46 0.18 0.27
cacheflush 2.90% 2368 2099.78 49 47 3 0.93 0.45 0.48
tlb_miss 1.66% 24510 115.89 76 23 1 0.29 0.11 0.18
write 1.45% 126 19770.29 55 26 19 0.35 0.09 0.26
vfault 1.15% 974 2019.95 69 23 7 0.3 0.08 0.23

j
e
s
s

execve 1.02% 12 145632.8 56 34 11 0.51 0.31 0.2
read 41.41% 8580 3598.14 66 24 10 0.32 0.08 0.25
utlb 10.17% 564866 13.42 94 6 0 0.06 0.06 0
demand_zero 8.75% 945 6902.83 42 54 3 1.19 1 0.19
write 4.96% 218 16971.67 59 23 19 0.3 0.05 0.24
BSD 4.70% 5604 624.97 85 10 5 0.12 0.02 0.1
cacheflush 4.24% 1583 1996.56 52 45 4 0.84 0.36 0.48
open 3.60% 189 14200.4 56 29 14 0.42 0.15 0.28
tlb_miss 3.04% 20455 110.85 81 18 1 0.22 0.09 0.12
vfault 2.62% 969 2019.38 70 23 8 0.3 0.08 0.23
execve 2.34% 12 145520.3 56 33 11 0.51 0.31 0.2
COW_fault 2.04% 146 10435.04 41 56 3 1.3 1.16 0.14
exit 1.41% 11 95447.45 56 31 12 0.46 0.28 0.18
fork 1.14% 25 34015.16 49 39 12 0.65 0.43 0.22

d
b

du_poll 1.02% 1038 735.42 64 12 25 0.13 0.01 0.13
utlb 53.69% 14147861 13.71 95 5 0 0.06 0.05 0
read 26.73% 23013 4196.86 55 36 9 0.57 0.1 0.47
BSD 7.83% 34562 818.12 67 30 3 0.43 0.13 0.3
demand_zero 2.71% 1353 7230.78 41 56 3 1.29 1.03 0.25
cacheflush 1.21% 2039 2143.02 50 47 3 0.91 0.43 0.48
clock 1.06% 1040 3668.18 29 68 2 2.21 0.91 1.3

j
a
c
k

tlb_miss 1.05% 31643 120.19 77 22 1 0.27 0.1 0.17

 24

Table 3.3: OS Characterization of SPECjvm98 (contd.)

B
en

ch
.

Se
rv

ic
e

%
K

er
ne

l

N
um

.

C
yc

le
s

%
Ex

ec

%
St

al
l

%
Sy

nc

M
C

PI

d-
M

C
PI

i-M
C

PI

read 28.28% 6029 3733.47 66 24 10 0.33 0.1 0.23
utlb 21.15% 1227572 13.71 94 6 0 0.07 0.07 0
demand_zero 11.26% 1280 7000.35 42 55 3 1.22 1 0.21
open 6.15% 315 15543.07 59 25 16 0.34 0.12 0.23
cacheflush 5.61% 2042 2185.23 50 46 3 0.89 0.45 0.44
tlb_miss 3.21% 21413 119.44 75 24 1 0.32 0.11 0.21
xstat 2.48% 119 16573.25 63 22 15 0.28 0.13 0.16
vfault 2.47% 980 2010.19 70 23 8 0.3 0.07 0.23
execve 2.21% 12 146486.2 55 34 11 0.52 0.32 0.2
COW_fault 1.91% 146 10389.38 41 56 3 1.28 1.15 0.13
brk 1.59% 240 5275.11 44 42 14 0.75 0.23 0.52
exit 1.45% 11 104609.7 56 31 12 0.46 0.29 0.17
close 1.43% 287 3976.12 44 43 12 0.77 0.24 0.54
write 1.40% 81 13803.63 58 25 17 0.33 0.05 0.28

j
a
v
a
c

fork 1.09% 25 34618.28 48 40 12 0.67 0.44 0.23
utlb 41.36% 3473933 13.9 93 7 0 0.07 0.07 0
read 19.54% 6081 3750.62 65 25 10 0.34 0.1 0.24
demand_zero 13.68% 2141 7458.19 40 57 3 1.34 1.08 0.26
cacheflush 2.94% 1688 2035.74 51 45 4 0.85 0.38 0.47
clock 2.81% 803 4077.04 27 71 2 2.58 1.23 1.35
open 2.57% 207 14497.26 55 31 14 0.44 0.15 0.29
tlb_miss 2.12% 16569 149.47 69 29 2 0.4 0.14 0.27
vfault 1.74% 1018 1989.27 70 23 8 0.3 0.07 0.23

m
t
r
t

execve 1.51% 12 146549.1 55 34 11 0.52 0.31 0.21

In the execution profile graphs, we see that the bulk of the time is spent in

executing user instructions. This is particularly true for compress. While I/O (read) is

needed for these benchmarks, subsequent executions are dominated by user operations.

These operations are mainly compute intensive with substantial spatial and temporal

locality (as can be seen in the lower user stalls compared to other applications in Table

3.1). This locality also results in high TLB hit rates making the TLB handler (utlb)

invocation infrequent.

 25

Table 3.4: OS Characterization of SPECjvm98 (JIT compiler, s100 dataset)

B
en

ch
.

Se
rv

ic
e

%
K

er
ne

l

N
um

.

C
yc

le
s

%
Ex

ec

%
St

al
l

%
Sy

nc

M
C

PI

d-
M

C
PI

i-M
C

PI

utlb 80.85 8.64E+07 13 99 1 0 0.01 0.01 0
read 9.51 6317 21140 39 58 3 1.42 1.32 0.1
clock 3.41 16328 2934 37 60 3 1.56 1.07 0.49
demand_zero 2.33 4807 6813 44 53 3 1.13 1 0.13

c
o
m
p
r
e
s
s

other 3.90 -- -- -- -- -- -- -- --
utlb 95.10 3.69E+08 13 98 2 0 0.02 0.02 0
clock 1.48 17342 4396 26 72 2 2.77 1.44 1.33
read 1.40 20889 3474 67 22 11 0.3 0.04 0.26 j

e
s
s

other 2.02 -- -- -- -- -- -- -- --
utlb 94.17 5.60E+08 13 97 3 0 0.03 0.03 0
clock 1.95 31439 4917 23 75 2 3.21 1.64 1.57
read 1.44 30048 3804 61 29 10 0.41 0.1 0.31 d

b

other 2.44 -- -- -- -- -- -- -- --
utlb 91.39 4.71E+08 13 96 4 0 0.04 0.04 0
DBL_FAULT 3.82 2812267 94 90 10 0 0.11 0.07 0.04
clock 1.60 23302 4786 23 74 3 3.1 1.41 1.69
read 1.0 10652 6386 48 46 6 0.89 0.41 0.48 j

a
v
a
c

other 2.19 -- -- -- -- -- -- -- --
utlb 93.41 1.61E+08 13 95 5 0 0.05 0.05 0
clock 2.45 13745 4222 26 71 3 2.64 1.26 1.38
read 1.19 7403 3804 64 26 10 0.36 0.11 0.25 m

t
r
t

other 2.95 -- -- -- -- -- -- -- --
utlb 63.13 2.38E+08 13 95 5 0 0.05 0.05 0
read 25.21 296866 4401 52 40 8 0.67 0.09 0.58
BSD 9.32 585482 825 67 30 3 0.44 0.14 0.3
clock 1.09 15332 3686 30 68 2 2.2 0.92 1.28 j

a
c
k

other 1.25 -- -- -- -- -- -- -- --

In benchmarks db, jess and javac, one can observe spikes in the kernel activity in

the execution. The spikes are introduced by the file activities that can be attributed to

both the application behavior (loading of files) as well as the JVM characteristics. Most

of the time spent in these spikes (read) is in memory stalls. Other kernel routines such as

demand_zero that is used to initialize new pages before allocation, and the process clock

interrupt (clock) routines also contribute to the stalls. In addition to the spikes, we also

see a relatively uniform presence of kernel instructions during the course of execution. As

 26

evident from Tables 3.2 and 3.3, this is due to the handling of TLB misses and processing

memory copy & clear operations. OS kernel characterizations of SPECjvm98 workloads

on s100 dataset (with both JIT compiler and an interpreter) are shown in Table 3.4 and

3.5 respectively.

Table 3.5: OS Characterization of SPECjvm98 (interpreter, s100 dataset)

B
en

ch
.

Se
rv

ic
e

%
K

er
ne

l

N
um

.

C
yc

le
s

%
Ex

ec

%
St

al
l

%
Sy

nc

M
C

PI

d-
M

C
PI

i-M
C

PI

utlb 73.46 1.39E+08 13 98 2 0 0.02 0.02 0
clock 13.64 152657 2245 49 48 3 0.94 0.67 0.27
read 5.32 6324 21119 39 58 3 1.42 1.32 0.10
runqproc 3.20 1 80269930 54 43 3 0.76 0.35 0.41
timein 1.15 9336 3107 54 36 10 0.60 0.30 0.30
demand_zero 1.02 3767 6786 44 53 3 1.12 0.99 0.13 c

o
m
p
r
e
s
s

other 2.21 -- -- -- -- -- -- -- --
utlb 94.20 4.17E+08 13 99 1 0 0.01 0.01 0
clock 2.38 38068 3656 31 67 2 2.14 1.13 1.01
read 1.30 20896 3625 65 25 10 0.35 0.04 0.31 j

e
s
s

other 2.12 -- -- -- -- -- -- -- --
utlb 96.64 1.38E+09 13 98 2 0 0.02 0.02 0
clock 1.21 56665 4008 28 70 2 2.44 1.33 1.11 d

b

other 2.15 -- -- -- -- -- -- -- --
utlb 93.67 5.53E+08 14 96 4 0 0.04 0.04 0
clock 1.82 36676 3972 28 70 2 2.40 1.21 1.19
DBL_FAULT 1.76 1487739 95 91 9 0 0.10 0.07 0.03

j
a
v
a
c

other 2.75 -- -- -- -- -- -- -- --
utlb 83.04 7.95E+07 17 77 23 0 0.29 0.29 0
clock 9.13 47562 3096 36 61 3 1.66 1.06 0.6
read 1.77 7410 3848 63 27 10 0.38 0.11 0.27
runqproc 1.75 1 28216870 47 50 3 0.99 0.41 0.58
demand_zero 1.0 2173 7375 40 57 3 1.31 1.09 0.22

m
t
r
t

other 3.31 -- -- -- -- -- -- -- --
utlb 70.21 3.51E+08 14 95 5 0 0.05 0.05 0
read 20.30 296873 4672 49 43 8 0.77 0.09 0.68
BSD 7.48 585470 872 63 33 4 0.52 0.21 0.31
clock 1.08 21211 3495 31 66 3 2.03 0.85 1.18 j

a
c
k

other 0.93 -- -- -- -- -- -- -- --

 27

3.3 CACHE AND MEMORY PERFORMANCE

Table 3.6 shows the percentages of memory stall time spent for data and

instruction for each workload. For completeness, we show data in both user and kernel

modes on different datasets. For example, in user mode (with s100 dataset), data stall

time dominates the total memory stall in compress (99%), db (98%), mtrt (81%), and

javac (80%). Jack is the only application which demonstrate uniform distribution

between data and instruction stall time (56%/44%). In kernel, a significant fraction of the

OS time spends waiting for data in compress, jess, db, and javac. Mtrt has approximately

equal instruction and data stall time. Jack, on the other hand, has more instruction stall

than data stall.

Table 3.6: Memory Stall Time Percentages (with JIT compiler)

User Stall Kernel Stall
Benchmarks Input Data

(%)
Inst.
(%)

Data
(%)

Inst.
(%)

S1 94% 6% 69% 31%
S10 95% 5% 68% 32% compress
S100 99% 1% 82% 18%
S1 48% 52% 38% 62%
S10 71% 29% 45% 55% jess
S100 75% 25% 71% 29%
S1 45% 55% 45% 55%
S10 86% 14% 44% 56% db
S100 98% 2% 73% 28%
S1 53% 47% 52% 48%
S10 74% 26% 58% 42% javac
S100 80% 20% 76% 24%
S1 82% 18% 59% 41%
S10 82% 18% 63% 37% mtrt
S100 81% 19% 78% 22%
S1 56% 44% 40% 60%
S10 55% 45% 41% 59% jack
S100 56% 44% 36% 65%

Note that the use of simplistic Mipsy processor model necessarily introduces

variance in the results compared with using out of order superscalar model MXS.

 28

However, the much faster Mipsy model allows the simulation of complex SPECjvm98

benchmarks with large input size to be completed within acceptable simulation time.

Previous study [8] shows that the overall performance improvements of the superscalar

model apply to both user and kernel code and is preferable to increase kernel execution

time. So, we expect an increased kernel execution fraction on the more complex out of

order superscalar model.

We examine how cache miss behavior changes as cache size increases by

changing the L1 data and instruction cache from 4KB to 512KB and L2 unified cache

form 64KB to 4MB (as shown in Figure 3.5). All caches are two-way set associative

caches with LRU replacement policy. Cache miss behavior is presented as cache misses

per 100 non-idle instructions. The miss number includes cache misses occur in both

kernel and user modes.

The performance of L1 data cache when varying the configuration from 4KB to

512KB is summarized in Figure 3.5 (a). The number of L1 data cache misses is higher in

javac, jess, and mtrt than that of the other benchmarks. Another observation is that for all

of the SPECjvm98 workloads, cache misses decrease drastically as cache size increases

from 4KB to 32KB. L1 data cache misses continue to decrease further as the cache size is

increased up to 512KB. This suggests that even larger L1 caches could be beneficial for

most of the SPECjvm98 workloads.

Figure 3.5 (b) presents instruction misses for SPECjvm98 workloads. The

benchmarks jack, jess, javac and db have higher miss number due to the larger instruction

footprint caused by frequent branches to runtime libraries as well as OS calls. Compress,

and mtrt show fewer misses. In these workloads, either a single or a set of tight loops

work through a given data set, consuming the bulk of computation time while

constituting a small instruction footprint. Figure 3.5 (b) shows that instruction related L1

 29

cache misses can be nearly satisfied by a 256KB L1 instruction cache and a larger/set

associative instruction cache would not be as beneficial for the instruction cache

performance as for the performance of data caches.

 compress jess db javac mpeg mtrt jack

compress jess db javac mpeg mtrt jack

compress jess db javac mpeg mtrt jack compress jess db javac mpeg mtrt jack

L1 Data Cache

12
8k

25
6k

12
8k

64
k

32
k

16
k

8k
4k

25
6k

51
2k

12
8k

64
k

16
k

8k
4k

51
2k

25
6k64

k
32

k
16

k
8k

4k

12
8k32
k

4k

4k
8k

16
k

32
k

64
k

12
8k

25
6k

51
2k 8k

16
k

51
2k

4k
8k

16
k

32
k

64
k

12
8k

25
6k

51
2k

32
k

64
k

12
8k

51
2k

25
6k

4k
8k

16
k

32
k

64
k

25
6k

51
2k

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
is

se
s

on
 1

00
 N

on
-Id

le
 In

st
ru

ct
io

ns

User Misses L1 Inst. Cache

12
8k

25
6k

12
8k

64
k

32
k

16
k

8k
4k

25
6k

51
2k

12
8k

64
k 16

k
8k

4k

51
2k

25
6k64

k
32

k
16

k
8k

4k

12
8k

32
k

4k

4k
8k

16
k

32
k

64
k

12
8k

25
6k

51
2k 8k

16
k

51
2k

4k
8k

16
k

32
k

64
k

12
8k

25
6k

51
2k 32

k
64

k
12

8k
51

2k
25

6k

4k
8k

16
k

32
k

64
k

25
6k

51
2k

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
is

se
s

on
 1

00
 N

on
-Id

le
 In

st
ru

ct
io

ns

User Misses

L2 Cache

4M

2M
1M 4M4M

2M
1M

51
2k

25
6k

12
8k

64
k

4M
2M

1M 1M

64
k

4M 4M

25
6k

64
k

12
8k2M

51
2k

51
2k

64
k

64
k

12
8k

25
6k

51
2k

1M
2M

4M
12

8k
25

6k

64
k

12
8k 2M

25
6k

51
2k

12
8k

1M

51
2k

25
6k

64
k

12
8k

51
2k

25
6k

1M
2M

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

M
is

se
s

on
 1

00
 N

on
-Id

le
 In

st
ru

ct
io

ns

User Misses

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

M
is

se
s

on
 1

00
 n

on
-id

le
 u

se
r i

ns
tr

uc
tio

ns

Instruction
Data

0

0.1

0.2

0.3

0.4

0.5

0.6

M
is

se
s

on
 1

00
 n

on
-id

le
 k

er
ne

l i
ns

tr
uc

tio
ns Instruction

Data

compress jess db javac mpeg mtrt jack

(d)

(a) (b)

(c)

(e)

3.5 4.5

Kernel Misses Kernel Misses

Kernel Misses

Figure 3.5: Impact of Cache Capacity and Line Size

 30

Overall L2 cache misses, as shown in Figure 3.5 (c), decrease by 51% as L2 cache

size increases from 64KB to 128KB, and by another 52%, as the size is increased further

to 256KB. Both L1 instruction cache and L2 cache miss behaviors follow the rule of

thumb that doubling of the cache size gives about half the benefit seen with the previous

doubling. The instruction stream can be effectively cached while the data accesses are

more difficult to absorb, because the data footprint is much larger than the instruction

footprint for most of SPECjvm98 benchmarks.

To investigate the impact on cache performance by increasing line sizes while

keeping cache size constant, we model a 1MB 2-way associative L2 cache with line sizes

varying from 32 bytes to 256 bytes.

Figure 3.5 (d) and (e) show the L2 cache performance with increasing line size in

user and kernel mode respectively. As the Figure 3.5 (d) and (e) shows, SPECjvm98

workloads are able to take the advantage of larger L2 cache block sizes. However, the

performance benefit for larger block sizes is highly dependent on the block size and

branching behavior of the particular application. Compress and mtrt obviously realizes

more instruction cache miss rate improvement due to their looping characteristic and

sequential accessing nature. In contrast, jess, db, javac and jack workloads exhibit more

random branching patterns and their codes are more likely to traverse decision trees than

perform tight iterative loops. Additionally, many SPECjvm98 workloads compute across

arrays of data. Hence, large block sizes improve data misses behavior in compress and

mtrt. For example, mtrt workload almost reduces 40% of L2 miss in user mode when the

line size is increased from 32 bytes to 64 bytes. These Figures also show that the

efficiency of reducing instruction related L2 cache misses is not as effective as that for

data misses. In jess, db, javac and jack, L2 instruction misses become stable when cache

line size is increased from 64 bytes to 256 bytes.

 31

For kernel codes, the conclusions from the previous line size discussion still held.

Another observation is operating system kernel experiences higher instruction and data

miss than user application. Symbolic codes like OS, where processors read linked lists

and often use complex data structures with indirection have low spatial locality .

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
em

or
y

cy
cl

es
 p

er
 in

st
ru

ct
io

n
(M

C
P

I)

co
m

p
r-

K

co
m

p
r-

U

je
ss

-K

je
ss

-U

d
b

-K

d
b

-U

ja
va

c-
K

ja
va

c-
U

m pe g-K

m
p

e
g

-U m
tr

t-
K m

tr
t-

U ja
ck

-K

ja
ck

-U

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
em

or
y

cy
cl

es
 p

er
 in

st
ru

ct
io

n
(M

C
P

I)

co
m

p
r-

K

co
m

p
r-

U

je
ss

-K

je
ss

-U

d
b

-K

d
b

-U

ja
va

c-
K

ja
va

c-
U

m pe g-K

m
p

e
g

-U

m
tr

t-
K

m
tr

t-
U

ja
ck

-K

ja
ck

-U

L2-I
L1-I
L2-D
L1-D

(b) intr
(a) jit

L2-I
L1-I
L2-D
L1-D

Figure 3.6: Memory Stall Time in Kernel and User

Figure 3.6 shows the memory stall time expressed as memory stall time per

instruction (MCPI). The stall time is shown separately for the both the kernel (-K) and

user (-U) modes (with s100 dataset) and is also decomposed into instruction (-I) and data

(-D) stalls. Further, the stalls are shown as that occurring due to L1 or L2 caches. For

both the JIT compiler and interpreter modes of execution, it is observed that the kernel

routines can experience much higher MCPI than user code for 3 of the benchmarks,

indicating the worse memory system behavior of the kernel. Fortunately, the kernel

portion forms a maximum of only 17% of the overall execution time among all the

SPECjvm98 benchmarks and this mitigates the impact on overall MCPI. It can also be

observed from Figure 3.6 that the MCPI in the user mode is less for the interpreter mode

as compared to the JIT mode. The bursty writes during dynamic compilation and the

additional non-memory instructions executed while interpreting the bytecodes result in

 32

this behavior. It is also observed that the stalls due to data references are more significant

than that due to the instruction accesses. The MCPI due to L2 cache accesses is quite

small for the compress that exhibit a significant data locality. The other SPECjvm98

benchmarks can, however, benefit from stall reduction techniques employed for the L2

cache.

3.4 ILP ISSUES

This section analyzes the impact of ILP techniques on SPECjvm98 suite by

executing the complete workload on the detailed superscalar CPU simulator MXS. The

effectiveness of microarchitectural features such as wide issuing and retirement are

studied. Due to the large slowdown of MXS CPU simulator, we use the reduced data size

s1 as the data input in this section. Just as before, we model instruction and data accesses

in both application and OS.

Figure 3.7 illustrates the kernel, user, and aggregate execution speedup for a

single pipelined (SP), a four-issue superscalar (SS) and an eight-issue superscalar

microprocessor (normalized to the corresponding execution time on the SP system). The

eight-issue SS uses more aggressive hardware to exploit ILP. Its instruction window and

reorder buffer can hold 128 instructions, the load/store queue can hold 64 instructions,

and the branch prediction table has 2048 entries. Furthermore, its L1 caches support up to

four cache accesses per cycle. To focus the study on the performance of the CPU, there

are no other differences in the memory subsystem.

Figure 3.7 shows that microarchitectural techniques to exploit ILP reduce the

execution time of all SPECjvm98 workloads on the four-issue SS. The total ILP speedup

(in JIT mode), nevertheless, shows a wide variation (from 1.66x in jess to 2.05x in mtrt).

The average ILP speedup for the original applications is 1.81x (for user and kernel

integrated). We see that kernel speedup (average 1.44x) on an ILP processor is somewhat
 33

lower than that of the speedup for user code (average 2.14x). When the issue width is

increased from four to eight, we observe a factor of less than 1.2x on performance

improvement for all of SPECjvm98 applications. Compared with the 1.6x (in SPECInt95)

and 2.4x (in SPECfp95) performance gains obtained from wider issuing and retirement

[59], the results suggest that aggressive ILP techniques are less efficient for SPECjvm98

applications than for workloads such as SPEC95. Several features of SPECjvm98

workloads help explain this poor speedup: The stack based ISA results in tight

dependencies between instructions. Also, the execution of SPEC Java workloads, which

involve JIT compiler, runtime libraries and OS, tends to contain more branches to

runtime library routines, OS calls, and exceptions. The benchmark db has a significant

idle component in the s1 data set, which causes the aggregate IPC to be low although

both kernel and user code individually exploit reasonable ILP.

c o m p r e je s s d b j a va c m t r t j a c k c o m p r e j e s s d b ja va c m t r t j a c k c o m p r e je s s d b ja va c m t r t j a c k
0

0 . 5

1

1 . 5

2

2 . 5

3

S P : S i m p le P i p e l i n e d , S S : S u p e r s c a l a r

IL
P

 S
p

e
e

d
u

p

S P
4 - Is s u e S S
8 - Is s u e S S

Total

Kernel
User

Figure 3.7: ILP Speedup (JIT)

To give a more detailed insight, we breakdown the ideal IPC into actual IPC

achieved, IPC lost on instruction and data cache stall, and IPC lost on pipeline stall. We

use the classification techniques described in [72][59] to attribute graduation unit stall

time to different categories: a data cache stall happens when the graduation unit is stalled

by a load or store which has an outstanding miss in data cache. If the entire instruction

 34

window is empty and the fetch unit is stalled on an instruction cache miss, an instruction

cache stall is recorded. Other stalls, which are normally caused by pipeline dependencies,

are attributed to pipeline stall. Figure 3.8 shows the breakdown of IPCs on four-issue and

eight-issue superscalar processors.

compress jess db javac mpeg mtrt jack
0

0.5

1

1.5

2

2.5

3

3.5

4

IP
C

compress jess db javac mpeg mtrt jack

0

1

2

3

4

5

6

7

8

IP
C

D Cache Stall

 I Cache Stall

 Pipeline Stall

 Actua

TKUTKUTKUTKUTKUTKUTKU TKUTKUTKUTKUTKUTKUTKU

l IPC

Figure 3.8: IPC Breakdown for 4-issue and 8-issue Superscalar Processors

(T: Total; K: Kernel; U: User, with s1 dataset and JIT compiler)

On four-issue superscalar microprocessor, one can see jess, db, javac and jack lost

more IPC on instruction cache stall. This is partially due to high indirect branch

frequency which tends to interrupt control flow. All studied applications show some IPC

loss on data cache stall. The data cache stall time includes misses for byte-codes during

compilation by the JIT compiler and those during the actual execution of compiled code

on a given data set. Figure 3.8 shows that a significant amount of IPC is lost due to

pipeline stalls and the IPC loss in pipeline stall on an eight-issue processor is more

significant than that of four-issue processor. This fact implies that the more aggressive

and complex ILP hardware may not achieve the desired performance gains on

SPECjvm98 due to the inherent ILP limitation of these applications. All applications

show limited increase in instruction cache IPC stall and data cache IPC stall on eight-

issue processor.

 35

3.5 SUMMARY

This chapter has provided insights into the interaction of the emerging Java

workloads with the underlying system (both hardware and OS). The major findings from

this chapter are:

• The kernel activity of SPECjvm98 applications constitutes up to 17% of the

execution time in the large (s100) data set and up to 31% in the small (s1) data

set. Generally, the JIT compiler mode consumes a larger portion of kernel

services during execution.

• The SPECjvm98 benchmarks spend most of their time in executing instructions in

the user mode and spend less than 10% of the time in stall cycles during the user

execution. The kernel stall mode in all SPECjvm98 benchmarks, except jack that

has a significantly higher file activity, is small. However, the MCPI of the kernel

execution is found to be much higher than that of the user mode.

• The kernel activity in the SPECjvm98 benchmarks is mainly due to the invocation

of the utlb, read and demand_zero service routines. It is also observed that the

dynamic class-loading behavior influences the kernel activity more significantly

for smaller datasets (s1 and s10) and increases the contribution of the read service

routine.

• The average ILP speedup on a four-issue superscalar processor for the

SPECjvm98 benchmarks executed in the JIT compiler mode was found to be 1.81

times. Further it is found that the speedup of the kernel routines (average 1.44

times) is lower than that of the speedup of the user code (average 2.14 times).

• Aggressive ILP techniques such as wider issue and retirement are less effective

for SPECjvm98 benchmarks than for SPEC95. We observe that the performance

improvement for SPECjvm98, when moving from 4 issue to 8 issue width is 1.2

 36

times as compared to the 1.6 times and 2.4 times performance gains achieved by

the SPECint95 and SPECfp95 benchmarks, respectively. The pipeline stalls due

to dependencies are the major impediment to achieving higher speedup with

increase in ILP issue width. Also, the SPECjvm98 workloads, which involve the

dynamic compiler, runtime libraries and the OS, tend to contain more control

transfers to runtime library routines and OS services.

 37

Chapter 4: Run-time OS Power Estimation

This chapter characterizes the power behavior of a commercial OS across a wide

spectrum of applications to understand OS energy profiles and then proposes various

models to cost-effectively estimate its run-time energy dissipation. The proposed models

rely on a few simple parameters and have various degrees of complexity and accuracy.

Therefore, the models can estimate run-time OS power for run-time dynamic thermal and

energy management.

This chapter is organized as follows: Section 4.1 introduces software power

estimation techniques. Section 4.2 describes the challenges in OS power modeling.

Section 4.3 provides routine level OS power characterization. Section 4.4 proposes the

routine based OS power models and evaluates their estimation accuracies. Section 4.5

discusses the issues of applying the proposed model to run-time power estimation.

Finally, Section 4.6 concludes with some final remarks and comments.

4.1 SOFTWARE POWER ESTIMATION TECHNIQUES

In microprocessor-based systems, one can model power dissipation as a function

of the software (instructions) being executed on the underlying hardware platforms.

Software power estimation techniques from past literature can be sorted into the

following four categories:

4.1.1 Instruction Level Power Modeling

The instruction level power modeling [82] has been proposed to evaluate the

power dissipation of a given piece of software. The basic idea is to explicitly associate

the consumed power with individual instruction execution. An instruction level software

power model can be generally described as:

 38

∑∑∑ +×+×=
k

kji
ji

jii
i

i SNONBE)()(,
,

, (1),

where is the base energy cost to process the individual instruction .

reflects the dissipated power due to the circuit switching between each pair of

consecutively executed instructions . The term accounts for other energy

overhead due to the k-types of inter-instruction effects, such as write buffer stalls and

cache misses. For a given program, its overall energy cost,

iB i jiO ,

),(ji kS

E , can then be calculated by
multiplying the and the O with the dynamic instances of the individual instruction

() and the instruction pair () correspondingly.

iB ji,

iN ,iN j

To get and , an exhaustive power characterization of the entire ISA

(Instruction Set Architecture) and an inter-instruction effects measurement for any

possible instruction pairs have to be conducted. For example, for the Intel IA-32 ISA [32]

with 331 unique instructions, the number of possible instruction pairs need to be

measured are 109,561 (331), which makes the instruction level power characterization

effort non-trivial.

iB jiO ,

2

To compute power dissipation, the above methodology favors an off-line analysis

of the complete trace of the program. Although it is feasible to produce and store

complete instruction traces for the simple and embedded software, the volumes of

complete instruction traces from large applications would easily overwhelm the disk

space. Additionally, without significantly merging, approximation and therefore paying
the cost of accuracy lost, it is infeasible to fit all the and into a small (hardware)

table for a live, just-in-time power estimation, a feature which is imperative to support
many run-time power management. One solution is to store the and into a

software-based table and uses a dedicated software trap to trigger table lookup and then

compute power consumption. Unfortunately, this scheme can also significantly dilate the

iB jiO ,

iB jiO ,

 39

execution time of an estimated program, due to the overhead of the software trap handler

and its invocations at individual instruction (or instruction sequence) granularity.

Therefore, run-time instruction level power modeling is intrusive and computation

intensive.

4.1.2 Characterization-based Macro-modeling

Instead of evaluating power at instruction level, software function level macro-

modeling techniques [79][68] treat application functions or sub-routines as “black boxes”

and construct macro-models that correlate power with a set of characteristics of interest.

Such power characteristics of interest can be obtained and collected by using a low-level

energy simulation framework [81]. Under this philosophy, a software function or sub-

routine’s power template can be represented by a linear formula with respective to the n

power interest metrics [as:],...,, 21 nccc

j
j

j cwP ×= ∑ (2),

where are the macro-modeling coefficients to be determined.

Regression analysis is then applied to identify the optimal [with the least

mean square fitting error based on a set of known input and output pairs.

],...,,[21 nwww

],...,, 21 nwww

The key issue on the above macro-modeling is how to choose [, which

can effectively capture the power characteristics of a given software sub-routine under

various circumstances. In [79], Tan et al. suggested the use of algorithm complexity and

trace-based basic-block correlation information as the power metrics. These techniques

are proposed for embedded software and targeted for embedded processors. It should be

noticed that while embedded software like the DSP kernels have more intensive and

regular looping patterns, the operating systems which are designed to manage both

software and hardware systems can lead to far more complicated and unpredictable

],...,, 21 nccc

 40

control flow [46][47] that can not be easily captured by a naive metric such as algorithm

complexity. The trace-based basic-block correlation analysis is more suitable for

processors that execute instruction in order [58]. The data dependency and speculative

execution effects have a more significant impact and greater variation in the case of wide-

issue and deeply pipelined superscalar processors. For example, even for exactly the

same input data set, speculative execution along the wrong path followed by a

mispredicted branch will cause more energy dissipation compared with the scenario that

has the correctly predicted control flow [52].

On the other hand, the use of basic-block correlation metric relies on storing

complete control flow graph (CFG) for each software sub-routine and counting the

number of each correlated path whenever that sub-routine is invoked. Like instruction

level power modeling, this macro-modeling technique necessitates off-line trace analysis

because finding basic-blocks and counting correlated paths will be computation intensive

and intrusive to the estimated software execution when they are applied to the on-line

power estimation. The feature of just-in-time power modeling necessitates the use of

simpler metrics.

4.1.3 Performance Counter-based Run-time Power Estimation

Run-time software power estimation [34][9] derives an estimate of live power

dissipation by leveraging the existing processor hardware and an analytical power model

of the target microprocessor. The idea is that the amount of power dissipated on software

execution is appropriate to the amount of accesses and switching activities within

processor units. Most modern microprocessors have already embedded programmable

event counters [12] to monitor microarchitectural events for the performance

measurement purpose. Heuristics can be chosen from the available counters to infer

 41

power relevant events and further feed to an analytical processor power model to

calculate the power.

Joseph et al. [34] showed that the performance counters can be quite useful in

providing good power estimation for programs as they run. Considering about 12

performance measures, they estimated power within 2% of the actual power. However, in

general and for a given processor, the availability of heuristics is limited by the types of

the performance counters and the number of events that can be measured simultaneously.

For example, the Alpha 21264 has only 9 performance counters and the Intel Pentium III

processor can only simultaneously observe 2 out of the 77 total events. OS and many

large software are non-deterministic in nature and their behavior can vary significantly

over time and different runs [2]. Therefore, random sampling of counters with different

configured event types does not apply to the on-line OS energy profiling. On the other

hand, due to the “black box” power modeling approaches taken in [34][9], fine-grained

(e.g. function level) power distribution, which provides insight into the software power

behavior, is not available. Meanwhile, due to the observed drastic phase changes during

application execution [74], the accuracy of using a simpler, flat model to track the run-

time software power behavior is largely unknown.

4.1.4 Cycle-accurate Architectural Level Simulation

It has been widely accepted that circuit and gate level simulations are infeasible to

evaluate power consumption of large software executing on complex computing systems.

A complementary set of approaches is based on the use of cycle-accurate architectural

level power simulators [13][88][25]. Architectural level power simulations have been

shown to be applicable to modern superscalar processor (with deep pipelines, out-of-

order and speculative execution). However, cycle-accurate simulation causes simulation

speed to be extremely slow, preventing the efficiency of the design space searching. This
 42

is especially true when simulating large and complex applications using detailed

processor models. Because of that, simulation based power model can not be used to

support run-time software power estimation.

Moreover, most of the existing architectural level power simulators (e.g. Wattch

[13] and SimplePower [88]) do not include the effect of the OS in their software power

analysis. The OS execution can either be invoked explicitly (e.g. system calls) or

implicitly (e.g. paging and faults handling) and the occurrence of the OS execution can be

either synchronous (e.g. timer interrupt) or asynchronous (e.g. scheduling). Therefore, the

power dissipation of OS due to its run-time, exception-driven and non-deterministic

nature can not be completely captured without using a power-aware, timing-accurate and

full-system simulation framework. In [25][80][17], such full-system energy simulators

are developed and the necessity of simulating OS energy is quantified. Detailed and full-

system simulation further suffers from potentially long run times when simulating

complete system activities using complicated processor, memory and I/O device

modules.

4.2 CHALLENGES IN OS POWER MODELING

For an OS power estimation technique to be applicable to run-time thermal/power

management, it must have the following properties:

• High fidelity and fast speed: The model should be able to estimate the OS energy

dissipation accurately. Power estimation should avoid the extremely slow cycle

by cycle full-system simulation as much as possible.

• Run-time estimation capability, non-intrusive and low overhead: The model

should support on-the-fly OS power estimation. The run-time power estimation

overhead should be low to avoid disturbing the normal OS execution.

 43

• Simplicity, availability and generality: The model should only rely on a few

power metrics of interest that is widely available across different hardware

platforms.

This dissertation explores techniques to efficiently estimate OS power dissipation

while providing the above valuable features. The observation is that in a given computing

system, OS is a commonly used software layer exercised by all applications. OS power

dissipation is usually dominated by a set of limited but heavily invoked kernel service

routines. Just as instructions are the fundamental units of software execution, the OS

service routines can be though as the fundamental unit of OS execution. Provided that the

most frequently invoked OS service routines have the similar or predictable power

dissipation behavior across various benchmarks, one can evaluate the power

characteristics of these OS routines and use such information to derive the aggregated OS

power consumption across various applications. OS routine based power characterization

and estimation thus avoid the computationally expensive full-system simulation for each

estimated application.

4.3 ROUTINE LEVEL OS POWER CHARACTERIZATION

The complete system power simulator SoftWatt [25], which models the power

dissipation of the CPU, memory hierarchy and a low-power disk subsystem, is used to

investigate the power behavior of OS. The simulated microprocessor and system

configurations can be found in Table 2.2. The CPU model runs at 900 MHz on 2.0 V

supply voltage and uses 0.18 micron processing technology. The disk model is a SCSI

HP97560 incorporated with low power feature.

For the OS power modeling and estimation, the experimented benchmarks (as

shown in Table 2.1) are partitioned into two groups, namely, profiling and test. The

profiling group (pmake, gcc, vortex, javac, jack, mtrt, compress, postgres.join, db.s10,
 44

jess.s10, javac.s10, jack.s10, mtrt.s10, compress.s10) is used to generate data needed to

build the models. The test group (sendmail, fileman, db, jess, postgres.select,

postgres.update, osboot) is used to examine the accuracy of the proposed models. The

test group was selected to contain some of the programs that contain significant OS

activity.

4.3.1 Power Behavior of OS Routines

The average power and its standard deviation for each OS routine across different

benchmarks are measured. As shown in Figure 4.1, these OS routines are classified into

interrupts, process and inter-process control, file system and miscellaneous services (see

Appendix A for more information).

0
10
20
30
40
50
60

utlb
pfault

vfau
lt

COW_fault

demand_zero

sim
scsi_in

tr

if_
etin

tr

du_poll
clock

Av
g.

Po
we

r (
W

)

0
2
4
6
8
10
12
14
16

St
d.

De
v.

(%
)

Avg. Power (W) Std. Dev.(%)

0
10
20
30
40
50
60

ex
it

fo
rk

ge
tp

id

ge
tu

id
ala

rm pip
e

ge
tg

id

ex
ec

ve

sig
re

turn

ge
tso

ck
nam

e

ge
td

om
ain

na
me

se
tre

uid
sp

ro
c
pr

ctl

ks
iga

ct
ion

sig
pr

oc
m

as
k

BSDse
tp

gr
p

sig
su

sp
en

d

ge
tco

ntex
t

se
tco

ntex
t

A
vg

. P
ow

er
 (W

)

0
2
4
6
8
10
12

S
td

. D
ev

. (
%

)Avg. Power (W) Std. Dev.(%)

(a) Interrupts (b) Process and Inter-process Control

0
10
20
30
40
50
60

rea
d
writeopen

clo
se
unlin

k
lse

ek

ac
ce

ss dup
ioctl

fcn
tl

getden
ts

xs
tat

lxs
tat

fxs
tat

Av
g.

 P
ow

er
 (W

)

0
2
4
6
8
10
12

St
d.

 D
ev

. (
%

)

Avg. Power (W) Std. Dev.(%)

0

10

20

30

40
50

60

brk
syssgi

utssys
ulim

it
mmap

mprotect
msync

getrli
mit

cacheflu
sh

waits
ys

tim
ein

tim
e

Av
g.

Po
we

r (
W)

0
2
4
6
8
10
12
14
16
18

St
d.

De
v.

(%
)Avg. Power (W)

Std. Dev.(%)

(c) File System (d) Miscellaneous Services

Figure 4.1: Average and Standard Deviations of OS Routines Power

(Standard deviations indicated on the right side y-axis in each graph)

 45

One can see that there can be a great variance in power consumption between

different OS routines. For example, while the power dissipation on the OS copy-on-write

fault handler COW_fault is as high as 54W, the setreuid routine (set real and effective

user id) only consumes 14W of power. This implies that estimating the energy cost of

various OS calls without resorting to detailed simulation will cause measurable error.

Each OS service involves specific instruction processing across various units of

the processor, which results in circuit activity that is characteristic of each OS service and

can vary with OS services. Memory access intensive OS routines, such as vfault,

COW_fault, demand_zero, cacheflush show higher power consumption than computation

intensive services, such as utlb and clock. Some I/O interrupts (simscsi_intr and if_etintr),

process scheduling (getcontext), file I/O (fcntl, lseek and getdents) show higher standard

derivation in power consumption because their execution is largely dependent on system

status. On the other hand, OS routines such as utlb, utssys and cacheflush perform certain

amount of work in each invocation, resulting in negligible power consumption variation.

Figure 4.2 further reveals the run-time routine-level OS energy distribution across

different benchmarks. The x-axis indicates the serial numbers of unique OS service

routines and the y-axis shows the percentage of run-time OS energy dissipated by that

specific OS routine. In this study, a total number of 186 OS service routines were

identified. Figure 4.2 shows that different benchmarks invoke different OS services and

hence show different energy distribution patterns. For example, on benchmarks filename,

db, jess and postgres.select, the OS energy dissipation is dominated by a small fraction of

highly invoked service routines while on benchmarks sendmail, postgres.update and

osboot, OS energy consumption is contributed by a wide range of service routines. The

above observation, combined with the fact that individual routine shows different power

behavior, implies that: (1) overall, the OS power behavior can vary from one application

 46

to another; (2) the use of single “average OS power” number across various applications

will lead to significant estimation errors.

sendmail

0%

2%

4%

6%

8%

10%

12%

1 100 199
Unique OS Service Routine

Serial No.

%
 in

 T
ot

al

Di
ss

ip
at

ed
 E

ne
rg

y fileman

0%

10%

20%

30%

40%

50%

1 100 199
Unique OS Service Routine

Serial No.

%
 in

 T
ot

al
 D

is
si

pa
te

d
En

er
gy

db

0%

10%

20%

30%

40%

50%

1 100 199
Unique OS Service Routine

Serial No.

%
 in

 T
ot

al
 D

is
si

pa
te

d
En

er
gy

jess

0%

10%

20%

30%

40%

1 100
Unique OS Service Routine

Serial No.

%
 in

 T
ot

al
 D

is
si

pa
te

d
En

er
gy

199

postgres.
select

0%

10%

20%

30%

40%

50%

60%

1 100 199
Unique OS Service Routine

Serial No.

%
 in

 T
ot

al

Di
ss

ip
at

ed
 E

ne
rg

y postgres.
update

0%

10%

20%

1 100 199
Unique OS Service Routine

Serial No.

%
 in

 T
ot

al

Di
ss

ip
at

ed
 E

ne
rg

y osboot

0%

10%

20%

1 100
Unique OS Service Routine

Serial No.
%

 in
 T

ot
al

 D
is

si
pa

te
d

En
er

gy

199

Figure 4.2: Routine Level Energy Distributions in OS

4.3.2 Energy-Performance Correlation

Figure 4.3 further shows how a set of OS routine’s power varies on different

profiling benchmarks. In the cases of utlb and cacheflush, the OS power varies in a very

restricted range. However, on simscsi_intr, the OS routine power can span with in a range

from 8W to 59W. Interestingly, we observe that OS routine’s power is strongly correlated

with its performance. We investigate the use of IPC (Instructions per Cycle) as the metric

to characterize the performance of modern processors, as pointed out in [61]. Valluri [84]

and Chen [17] also had observed a similar correlation.

The explanation for this correlation lies in the fact that in a complex, high

performance superscalar processor, a dominant portion of the power is consumed by

circuits used to exploit the ILP. The pie chart in Figure 4.4 shows how various

components in the CPU and memory systems contribute to the total OS routine power.

 47

Data-path and pipeline structures, which support multiple issue and out-of-order

execution, are found to consume 50% of total power on the examined OS routines. Figure

4.4 shows that clock is the second largest power consuming component: the capacitive

load to the clock network switches on every clock tick, causing significant power

consumption.

0.9 0.95 1 1.05 1.1
27

28

29

30

31

32

33

IPC

A
ve

ra
ge

 P
ow

er
(W

at
t)

utlb

1 1.1 1.2 1.3 1.4 1.5
30

35

40

45

50

55

IPC

A
ve

ra
g

e
P

o
w

er
(W

at
t)

cacheflush

0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

IPC

A
ve

ra
ge

 P
ow

er
(W

at
t)

simscsi_intr

0 0.5 1 1.5 2
0

10

20

30

40

50

60

IPC

A
ve

ra
ge

 P
ow

er
(W

at
t)

demand_zero

0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

IPC

A
ve

ra
ge

 P
ow

er
(W

at
t)

read

0 0.5 1 1.5 2
0

10

20

30

40

50

60

IPC

A
ve

ra
ge

 P
ow

er
(W

at
t)

lseek

Figure 4.3: Correlation between OS Routines Power and IPC

Clock
34%

L-1
Cache
14%

L-2
Cache

1%

Memory
1%

Datapath
&

Pipeline
50%

Figure 4.4: Breakdown of Power Dissipation of OS Routines

 48

The energy consumed in data-path during execution usually depends on the

number of instructions that flow through. The ILP performance measured by IPC,

certainly impacts circuit switching activities in those microprocessor components and can

result in significant variation in power. High IPC reflects the scenario in which most of

the processor structures are busy. On the other hand, main pipeline stalls or bubbles,

which lead to low IPC and can be easily clock gated, will drastically reduce power

dissipation. For a given piece of code, similar IPC usually indicates similar circuit

switching activities and therefore, similar power consumption.

The above correlation implies that one can use a simple linear regression model

01 kIPCkP +×= (3),

to track the OS routine power showing different performance. Appendix A lists the

regression model parameters (and the regression model fitting errors for the

examined OS routines.

), 01 kk

4.4 ROUTINE LEVEL OS POWER MODEL

This section presents routine level profiling based energy estimation models. The

objective is to provide simple and easily computable techniques that can be used for run-

time energy estimation of operating system software.

Energy consumption of a given piece of software can be estimated as: ,

where P is the average power and T is the execution time of that program. If average

power of different OS routines can be determined, it can be used to compute the OS

energy. A routine level OS energy estimation model can be represented as:

TPE ×=

)(,_,_ iroutineos

i
iroutineosOS TPE ×= ∑ (4),

where is the power of the iiroutineosP ,_ th OS routine invocation and T is the

execution time of that invocation.

iroutineos ,_

 49

The can be computed in many ways. It can be an average power based

on all invocations of that routine in the programs (as shown in Figure 4.2). Figure 4.5

illustrates the accuracy of this estimation model. The profiling based average power

values at the routine level are found to yield estimation errors within 5% in 6 out of the 7

test benchmarks. On benchmark fileman, however, this scheme can underestimate the OS

power by as much as 32%.

iroutineosP ,_

-3
2%

-30% -20% -10% 0%

sendmail

fileman

db

jess

postgres.select

postgres.update

osboot

Estimation Error (%)

Figure 4.5: Model Estimation Accuracy (Routine Average Power)

Exploiting the interesting observation presented in section 4.3.2 on the correlation

between IPC and OS routine average power, this research investigates the potential of

this correlation in estimating energy consumption of programs based on IPC. This

approach is similar to the one used in [34], where approximately a dozen performance

counters are used to estimate power. However, the model proposed here only utilizes 2

pieces of information, namely, instruction count and cycles. Also, it uses a profiling

approach by which information based on some benchmarks can be used to predict the

energy of a different application. To investigate the usefulness of this approach, we use

per-routine based OS power models built on profiling benchmarks (Appendix A) to

 50

estimate OS power on the test benchmarks. The accuracy of the energy estimation is

within 1% (as illustrated in Figure 4.6).

-2%

-1%

0%

1%

2%

se
nd

m
ail

file
m

an db jes
s

po
st

gr
es

.se
lec

t

po
st

gr
es

.u
pd

at
e

os
bo

ot

Es
tim

at
io

n
Er

ro
r (

%
)

Figure 4.6: Estimation Accuracy (IPC Correlated Routine Average Power)

If instead of routine-based estimation, a flat average is used, the errors are high.

This approach is also used to estimate energy of OS execution on the test programs. Not

surprisingly, Figure 4.7 illustrates that there is 20% to 50% error if energy is estimated

with a flat average OS power for all programs. Therefore, the paradigm of blindly

treating the OS as monolithic software is unlikely to yield highly accurate estimation.

-50% -40% -30% -20% -10% 0%

sendmail

fileman

db

jess

postgres.select

postgres.update

osboot

Estimation Error (%)

Figure 4.7: Model Estimation Accuracy (OS Average Power)

 51

4.5 RUN-TIME OS POWER MODELING

As discussed in section 4.2, live power estimation is valuable for run-time power

management and optimizations. The proposed routine level power estimation technique

characterizes the power behavior of each OS routine at profiling stage and uses that

information to compute the run-time power dissipation. The overhead of estimation is the

computation needed for a first order linear processing of the IPC at OS routine

boundaries, which is low.

The linear regression model parameters can be stored in a smaller look-up table

and the OS can dynamically compute power and energy at run-time. If the routine of

interest is not found in the table, a single performance correlated average power

number can be used. The maximum error that could occur by using such an approach

is shown in Figure 4.8. Generally, the OS power correlates well with IPC and the

cumulative power estimation error using the power model is seen to

yield errors less than 10%.

OSP

01 osOS kIPCkP +×=

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
20

25

30

35

40

45

50

IPC

A
ve

ra
ge

 P
ow

er
(W

at
t) P= 36.7 × IPC - 5.95

-15%

-10%

-5%

0%

5%

10%

15%

se
nd

m
ai

l

fil
em

an db

je
ss

po
st

gr
es

.s
el

ec
t

po
st

gr
es

.u
pd

at
e

os
bo

ot

Es
tim

at
io

n
Er

ro
r (

%
)

(a) Regression
Model: 01 kIPCkP osOS +×= (b) Estimation Errors

Figure 4.8: OS Power Estimations (Single Power/IPC Correlation Model)

 52

In some cases, cumulative (average) power estimation is insufficient and power

has to be modeled and estimated on a fine-grained basis. Generating accurate and fine

grained power estimation of an OS on a given system is important to computer architects

as well as OS developers who need insight into machine’s power efficiency to tune their

code.

(a) Single Regression Model (b) Routine based Regression Models

Names of OS Service Routines
1:utlb 2:pfault 3:vfault 4:COW_fault 5:demand_zero 6:timein 7:simscsi_intr 8:if_etintr 9:du_poll 10:clock
11:fchmod 12:exit 13:fork 14:read 15:write 16:open 17:close 18:unlink 19:time 20:brk
21:lseek 22:getpid 23:getuid 24:alarm 25:access 26:syssgi 27:dup 28:pipe 29:getgid 30:ioctl
31:utssys 32:execve 33:fcntl 34:ulimit 35:getdents 36:sigreturn 37:getsockname 38:getdomainname 39:setreuid 40:sproc
41:prctl 42:mmap 43:mprotect 44:msync 45:BSDsetpgrp 46:getrlimit 47:cacheflush 48:xstat 49:lxstat 50:fxstat
51:ksigaction 52:sigprocmask 53:sigsuspend 54:getcontext 55:setcontext 56:waitsys 57:setrlimit

Figure 4.9: A Comparison of Run-time Per-routine based Estimation Error

To evaluate the run-time suitability of the proposed routine level power modeling

approach, this chapter performed a comparative study of the flat and routine level power

modeling schemes in terms of per-module accuracy. As it can be seen, routine level

modeling (Figure 4.9b) consistently produces results that are less than 6% away from the

exact, cycle-accurate values, while the flat model (Figure 4.9a) scheme can generate up to

178% error in some cases. Modeling power behavior at OS service routine level

drastically reduces the run-time estimation error, implying the good power tracking

ability of this model. On the other hand, building single model for the whole operating
 53

system, although achieves acceptable cumulative power estimation accuracy, can lead to

measurable estimation error when applied to track the fin-grained run-time power

behavior. This fact implies that the “black box” power modeling approaches taken in

[34][9] are unlikely to be effective for run-time power tracking.

As described earlier, many hardware platforms have restrictions on the member of

counters that can be configured simultaneously to count events. Therefore, a good power

model should rely on minimal number of hardware event counters but must still maintain

high accuracy. Table 4.1 lists energy accounting mechanisms [9] that rely on 2, 3, 5, and

7 types of counters respectively. For example, the 5-CS uses 5 hardware counters,

namely, cycles, graduated instructions, L1 data cache accesses, L2 data cache accesses

and main memory references to build regression power model and evaluate power.

Table 4.1: Hardware Counter Schemes

Schemes
Events 2-CS 3-CS 5-CS 7-CS

Cycles + + + +
Graduated + + + +
L1-D Cache + + +
L1-I Cache Accesses +
L2-D Cache + +
L2-I Cache Accesses +
Main Memory + +

Figure 4.10 compares the estimation accuracy of the proposed routine level OS

power model that uses 2 counters (RL 2-CS) with flat modeling schemes that rely on

more hardware counters. While the 3-CS, 5-CS and 7-CS outperform the 2-CS scheme in

some cases in terms of accuracy, they show unpredictable behavior, depending on the

benchmarks. The RL 2-CS scheme is the only one that offers consistent low error. One

can see that the RL 2-CS model outperforms the flat regression models that use more

 54

hardware counters, indicating the benefit of combining hardware and software knowledge

in energy modeling.

-15

-10

-5

0

5

10

15

sendm
ail

filem
an

db jess

postgres.select

postgres.update

osboot
Es

tim
at

io
n

Er
ro

r (
%

) 2-CS
3-CS
5-CS
7-CS
RL 2-CS

Figure 4.10: A Comparison of Different Hardware Counter Schemes

The proposed technique requires initial energy profiling of OS routines, which

necessitate a full-system power-aware simulator such as SoftWatt [25]. However, the

models described in this paper are independent of the actual method used to profiling. If

sophisticated data acquisition based measurements are available, the measurement

method can be used. The OS routine level power characterization is computation

intensive. However, the power estimation does not require power simulation once that

information is built, making it outperform other simulation-based approaches in terms of

efficiency. The scheme also needs run-time measurement of cycles and IPC. All high-end

microprocessors provide these counters and hence obtaining the information is not a

problem, making it generally applicable to all hardware platforms. The run-time OS

power estimation involves a first order linear operation on a single power metric,

reducing estimation overhead.

4.6 SUMMARY

Modern computer systems are characterized by the presence of high performance,

general-purpose processors and software (OS and user applications) running on it. Power

 55

modeling is increasingly becoming a critical issue during system designs, as well as run-

time power/performance optimizations.

This chapter proposes power models for the OS, a major power consumer in many

modern application executions. The proposed models rely on a few metrics of interest for

power evaluation. Profiling of several Java, Database, file/e-mail workloads illustrated a

strong correlation between IPC and OS routine power. Exploiting this correlation, we

built a model to estimate energy consumption of OS activity. Profiling done on one set of

programs is used to estimate energy of another set of programs and yields a high

accuracy within 1%. The proposed routine level power model not only offers superior

accuracy when compared to a simpler, flat OS power model, but also provides per-

routine estimation errors of less than 6% when applied to track the run-time OS energy

profile.

The integrated OS performance/power characterization not only leads to efficient

power estimation for OS-intensive applications but also provides hint to reduce OS power

consumption. Having known the routine based power dissipation behavior, hardware can

be adapted for power minimization. For example, to save power, the size of a banked

instruction window or reorder buffer can be dynamically reconfigured when OS routines

with low IPC are detected. In another scenario, dynamic voltage scaling or frequency

throttling can be applied to the OS code that performs intensive I/O when the processor

ILP dose not really matter.

 56

Chapter 5: OS Power Saving

This chapter advocates a routine based OS-aware microprocessor resource

adaptation mechanism to save run-time OS power. This approach permits precise

hardware reconfigurations for the OS with low overhead and allows fine-grained

performance/power tuning at microarchitectural level.

5.1 PROGRAM PHASES AND IPC VARIANCE

This chapter explores the adaptation of processor resources to reduce OS power

on today’s high-performance superscalar processors, which exploit aggressive hardware

design to maximize performance across a wide range of targeted applications. It has been

observed that program’s computational requirement, generally measured by the

instruction per cycle (IPC), varies during its execution [3]. By tuning processor resources

to be appropriate to the actual needs of the program, significant power savings can be

achieved with minimal impact on performance. Figure 5.1 illustrates the IPC variation

over time for jess, a SPECjvm98 Java benchmark [35] running on an 8-issue superscalar

processor. The benchmark’s IPC varies from as low as nearly zero to as high as five,

indicating the significant discrepancy in computational requirement during its execution.

0
1
2
3
4
5
6

0.00 0.07 0.13 0.20 0.26
Execution Time (seconds)

IP
C

Figure 5.1: IPC Variation in the SPECjvm98 Benchmark jess

 57

One factor that contributes to the widely varying IPC is the frequent OS activity:

the ILP in the OS has been found to be much lower than user applications

[70][38][45][17]. The nature of OS code limits the available instruction level parallelism.

For example, to maximize the amount of time the peripheral has to clear the interrupt

before the processor executes the interrupt return sequence, the OS usually uses a

serializing instruction between a LOAD/STORE and an IRET (interrupt return

instruction) to force a LOAD before the IRET. In another scenario, the OS uses caches to

speed up reads, but it requires synchronous disk I/O for operations that modify files. A

serializing instruction requires that all other instructions in the pipeline complete before it

executes. Moreover, many architectures treat privilege instructions, such as move to/from

special register, TLB management, explicit cache operations, and interrupt/exception

return, as serialization instructions. Processor switches mode to OS upon handing an

exception or interrupt or upon handling a TRAP instruction (usually used to implement

all system calls by OS), which all raises an exception. To handle precise exceptions, the

processor pipeline must drain before OS code execution can begin. Serializing

instructions, interrupts and privilege level changes may spend considerable cycles in

execution, forcing the decoder to wait and increasing the resource stalls, limiting the

available ILP. The OS IPC is much lower than the user IPC, implying that the OS does

not exploit the superscalar capabilities provided by the wide-issue, aggressive processor

as efficiently as user code does.

Today’s high-performance microprocessor designs attempt to push the

performance envelope by employing aggressive out-of-order execution mechanisms [61].

As a result, in a complex, high performance superscalar processor, circuits used to exploit

the ILP consume a dominant portion of the power [64][84]. The ILP performance

measured by IPC, certainly impacts circuit switching activities in those microprocessor

 58

components and can result in significant variation in power. High IPC reflects the

scenario in which most of the processor structures are busy. On the other hand, main

pipeline stalls or bubbles, which lead to low IPC and can be easily clock gated, will

drastically reduce power dissipation.

Table 5.1: OS IPC and Power

 1-issue 2-issue 4-issue 6-issue 8-issue
IPC 0.88 1.09 1.15 1.19 1.21

Power (W) 6.4 12.2 21.7 31.1 42.8

To reduce power, hardware can be dynamically adapted to provide appropriate

resource to the program’s computational demand. Table 5.1 shows the OS IPC and power

consumption (average over all benchmarks) on 8-issue, 6-issue, 4-issue, 2-issue, and 1-

issue machines respectively. It can be seen that by reducing processor resources, the 4-

issue machine saves 49% of power with a performance loss of only 5%. The OS IPC does

not scale well with the increasing superscalar capability, making it ideal candidate for

resource adaptation. Given the assumption that the OS execution can be timely and

accurately detected, significant power savings can be achieved (with tolerable

performance penalty) by catering appropriate processor computational resource that

matches the OS requirement.

Current adaptation techniques [5][64][20][33] rely on periodic sampling to match

program computational requirement with processor resources. However, research in this

chapter shows that resource adaptation based on sampling window becomes less efficient

when applied to the exception-driven and short-lived OS execution [47]. Moreover, for

large and sophisticated programs like OS, a naïve sampling scheme does not guarantee

the optimal solution when both energy and performance are under consideration.

Therefore, this chapter advocates a routine based OS-aware microprocessor resource

adaptation scheme. The rationale is that although modern operating systems are large

 59

sophisticated software, their complexities are hidden behind a relatively simple interface -

a set of OS kernel service routines, which provides a common interface to exercise the

OS. The power and performance knowledge of different OS routines can be characterized

then exposed to the hardware to finely tune the power/performance knob of the OS at

run-time.

The proposed innovative technique ensures that processor resources match to the

computational demands of the OS in a timely and optimal fashion yet with low overhead.

Compared with existing techniques, the proposed scheme has the following advantages:

(1) OS-aware resource adaptation guarantees the timely and fine-grained resolution

required to capture the exception-driven, short-lived OS activity. (2) Adapting processor

resources only at OS routine boundaries largely eliminates reconfiguration latency. (3)

Routine based adaptation selects the optimal configuration for individual routine,

yielding more attractive power and performance trade-off. (4) Aggressive optimizations

can be safely applied to certain OS routines to further save energy without degrading

performance.

This chapter is organized as follows: section 5.2 presents a based line sampling-

adaptation scheme and demonstrates the challenges in sampling OS activity. Section 5.3

proposes the routine based OS-aware microarchitecture adaptation scheme and discusses

its benefits. Section 5.4 presents performance and energy-efficiency evaluation results.

Section 5.5 discusses related work. Section 5.6 concludes with some final remarks.

5.2 SAMPLING BASED ADAPTATION: CHALLENGES FOR OS

In prior research, the run-time periodic sampling of measurable metrics (e.g., IPC)

has ubiquitously been used to estimate program computational demand and to guide the

adaptations. In the sampling based techniques, program execution cycles are partitioned

into fixed period intervals as in Figure 5.2. The duration of each interval is called a
 60

sampling window. The performance metric, such as IPC, is measured within a sampling

window to estimate the program computation demand for the next execution interval

window. At the boundaries of each sampling window, adaptation decisions are made.

Cycles

Sampling
Window

IPC (Inst. Per Cycle)

Adaptation

A B C D E F CyclesCycles

Sampling
Window

IPC (Inst. Per Cycle)

Adaptation

A B C D E F

Figure 5.2: Sampling Window

Current sampling-adaptation approaches [5][33] use a finite state machine (FSM)

to specify the transitions between different configurations. For example, Figure 5.3 shows

a FSM for transitioning between the normal mode (8-issue) and the low power modes (6,

4, 2 and 1-issue) described in Section 5.3. The enabling (ExI) and disabling conditions

(DxI) and the IPC thresholds are set and extended according to the one proposed by

Bahar et al. [5]. For example, the enabling conditions for entering the 4-issue mode are

E4I or !D4I&!E2I or E4I&!E2I&!E1I respectively. In this chapter, this adaptation technique

is considered as the baseline scheme.
1: !E6I&!E4I&!E2I&!E1I
2: E6I&!E4I&!E2I&!E1I
3: !D6I&!E4I
4: E4I
5: !D4I&!E2I
6: E2I
7: !D2I&!E1I
8: E1I
9: !D1I
10: D6I
11: D4I

2
issue

1
issue

8
issue

4
issue

6
issue

1

2

3

4

8

5

6

7 9

16

15

14

13

10

11

12

12: D2I

E6I : IPC<4.5 D6I : IPC>5.0 13: D1I
E4I : IPC<3.0 D4I : IPC>3.2 14: E4I&!E2I&!E1I
E2I : IPC<1.5 D2I : IPC>1.8 15: E2I&!E1I
E1I : IPC<0.5 D1I : IPC>0.8 16: E1I

Figure 5.3: FMS used in Sampling based Adaptation

(Trigger Conditions and Thresholds are set and extended according to [5])

 61

At run-time, the estimated program IPC within the previous sampling window

serves as the input of FMS to choose the configurations for the current interval, as shown

in Figure 5.2. The basic premise of this sampling algorithm is that past program behavior

indicates its future needs. The sampling window period (T) determines the finest

granularity at which program phase changes can be resolved. Generally, T has to be

small enough to capture the changes of program behavior.

s

s

In practice, accomplishing an adaptation can cause performance penalty (latency

marked as T in Figure 5.4). In the superscalar processor design, IW, LSQ and ROB are

implemented with partitioned structure [20]. A reconfiguration has to guarantee that there

are no instructions left on the partitions that will be deactivated. Additional care must be

taken in resizing the ROB and LSQ because of their circular FIFO like structure [64].

Due to these restrictions, whenever an adaptation decision is made, the dispatch unit

stops pumping instructions into the IW, LSQ and ROB until all existing instructions are

drained out from the partitions to be turned off. This pipeline flushing like action can take

a non-trivial amount of time, depending on the number of instructions already in pipeline

and the cycles for them to complete [33]. Moreover, compared with single mode only

execution, adaptations introduce extra latency due to pipeline warm-ups after the

reconfigurations. As shown in Figure 5, reducing sampling window period (

a

sh TT <<)

offers capability to capture fine-grained phase changes in execution. However, the

aggregated adaptation overhead can be prohibitive. This fact prevents the use of small

sampling window without significantly slowing down program execution. In [64], a

sampling window of 2048 cycles is set. In [33], an even larger resizing period is chosen

for the entire program hotspot, which could take several million cycles.

 62

OS UserUser OS User

User User UserOS OS User

sampling window

smaller sampling
window

I II III
Ta

Ts

Th

Figure 5.4: Implications of Sampling Window Sizes

At run-time, user and OS execution appear alternately within the sampling

windows, as shown in Figure 5.4. The IPC discrepancy between user and OS indicates

the different computational requirement when the user/OS context switches. When

program phase shifts (e.g., due to user/OS interactions), the prior interval becomes a poor

estimate for the next.

In the traditional and performance-centric OS design, highly optimized

lightweight routines (e.g., faults and interrupt handlers) are usually implemented in order

to keep the cycles down. Figure 5.5 characterizes the average duration in cycles of

individual OS service (Note that the y-axis uses logarithmic scale). One can see that

many OS service routines show short-lived execution period. Theoretically, given a

sampling interval of T , in order to accurately capture the phase shift caused by an OS

service and exploit the adapted configuration for at least another sampling interval, the

duration of that OS service T should be at least cycles, i.e. T .

s

osd sT2 sosd T2≥

Figure 5.5 shows that there are only 16 OS routines satisfy the above condition on

the duration (4096 cycles) required by the 2048 cycles sampling interval, a commonly

used window granularity to avoid the costly reconfiguration overhead. Figure 5.6 further

illustrates how OS service routines with different duration contribute to the total OS

energy dissipation (Note that the x-axis uses logarithmic scale). It is observed that even

though some OS services are very efficiently implemented from the execution cycle

≥

 63

viewpoint, those lightweight OS services can have significant impact on the total OS

energy. For example, on benchmark postgres.update, the OS service routines with

duration less than 4096 cycles draw 50% of the OS energy. As described earlier, a

sampling window which is larger than 2048 cycles can not guarantee to resolve these OS

activity and adapt processor resource timely to reduce that portion of OS energy (shown

on the left side of the dotted line in Figure 5.6).

1 10 100 1,000 10,000 100,000

utlb

pfault

vfault

COW_fault

demand_zero

timein

simscsi_intr

if_etintr

du_poll

clock

syscall

exit

fork

read

write

open

close

unlink

Duration (in Cycles)

4,096

1 10 100 1,000 10,000 100,000

time

brk

lseek

getpid

getuid

alarm

access

dup

pipe

getgid

ioctl

utssys

execve

fcntl

getdents

sigreturn

tsockname

sproc

Duration (in Cycles)

4,096

1 10 100 1,000 10,000 100,000

prctl

mmap

mprotect

msync

getrlimit

cacheflush

fchmod

sysinfo

xstat

lxstat

fxstat

ksigaction

sigprocmask

sigsuspend

getcontext

setcontext

waitsys

Duration (in Cycles)

4,096

Figure 5.5: Average Duration of OS Services

(x-Error Bars Show the Maximum and Minimum Cycles)

 64

To summarize, a long window interval does not provide the opportunity to switch

mode when the program phases change due to the exception-driven, non-deterministic

and short-live nature of user/OS interactions. On the other hand, the fine-grained

switching required by the brief OS invocations makes it difficult to amortize the

performance degradation due to the frequent adaptations. To reconfigure processor

resource for the short-lived OS activity without rising costly adaptation overhead, this

chapter proposes a routine based OS-aware processor adaptation mechanism targeting on

the run-time OS power savings, as described in the next section.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

10 100 1,000 10,000 100,000
Duration of OS Services (in Cycles)

A
cc

um
ul

at
iv

e
O

S
En

er
gy

pmake
gcc
vortex
sendmail
fileman
db

4,096 0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

10 100 1,000 10,000 100,000
Duration of OS Services (in Cycles)

A
cc

um
ul

at
iv

e
O

S
En

er
gy

jess
javac
jack
postgres.select
postgres.update
osboot

4,096

Figure 5.6: Accumulative OS Energy vs. OS Service Duration

5.3 THE PROPOSED SOLUTION: OS-AWARE ROUTINE BASED ADAPTATION

Routine based OS-aware adaptation dedicates to reconfigure processor upon the

OS execution. Modern microprocessors and OS provide two separate modes of operation:

user mode and privileged mode. Processor executes user processes in user mode.

Whenever the OS is invoked, the hardware switches to privileged mode. The OS always

switches back to user mode before passing control to a user program. The current

machine execution mode is stored in the Processor Status Register (PSR). Therefore,

separating out OS execution can easily be done at run-time by looking the PSR.

Processor adaptations occur only at the boundaries of the user/OS context switches, as

shown by Figure 5.7. Today, almost all high-performance, out-of-order machines support

precise exception to ensure the correctness of program execution. The OS invocations,

either explicitly (e.g. system calls and I/O interrupts) or implicitly (e.g. fault handling)

are treated as exceptions on these processors. Upon receiving an exception, the processor

completes all previous instructions (specified in program order) and then flushes the

pipeline [27]. At this point, a reconfiguration can be made with zero latency because

there is no instruction left in the pipeline and the partitioned hardware structures.

Similarly, when the processor returns from an OS service, another adaptation happens
 65

immediately by restoring the processor to the mode prior to the user/OS context switch.

The processor then fetches the instructions from the user applications and continuously

executes using that mode.

disable
sampling

User User UserOS OS User

disable
sampling

User UserOS OS User

sampling window

dilated sampling windowAdaptation
overhead

I II III
Ta

Ts

OS Routine-based
Optimal Adaptations

Adaptations with
Minimum Overhead

Figure 5.7: Routine based OS-aware Adaptation

Therefore, routine based OS-aware adaptation is capable of capturing all OS

activity timely and accurately, while retaining a zero adaptation overhead in the OS.

Separating OS activity out of the regular sampling interval creates the “dilated” sampling

window (as shown in Figure 5.7), diminishing the number of reconfigurations and the

total execution cycles of the user program. Moreover, this technique prevents

pathological IPC degradations arising from erroneously matching processor

configurations catered for OS to user program’s requirement (as shown in Figure 5.7,

window II and III). This is critical since user program after the context switched from OS

generally requires the full issuing capabilities of the machine to operate on new data and

working set.

As described earlier, processor resource adaptation saves power and is detrimental

to performance. The goal of such adaptation is to reduce power with the minimum

performance lost. The Energy-Delay product (EDP) is a reasonable metric to evaluate

energy efficiency, namely, the goal of achieving high performance while minimizing

energy consumption. However, due to the different characteristics of programs, a solution

that is good for one program may not turn out to be the optimal one for another program.

 66

For example, as illustrated in Figure 5.8, given the power budget (Powerth),

Energy×Delay Tradeoff-1 (T1) works better than Energy×Delay Tradeoff-2 (T2) does on

program 1 (Perf11>Perf12). However, the observation does not hold on program 2

(Perf21<Perf22).

Performance

Po
w

er

Program1(T1)
Program1(T2)
Program2(T1)
Program2(T2)

Perf 11

Perf 21

Perf 22

Perf 12

Power th

Figure 5.8: Effectiveness of Energy×Delay Tradeoffs is Program Dependent

Individual OS routine performs specific functionality and can exhibit vast

variation in computational requirement. A configuration that is good for one routine code

may not turn out to be optimal for another. For example, Figure 5.9 shows the

Energy×Delay (normalized with 8-issue mode) of different OS service routines (clock,

COW_fault and read) running on different modes. Clock processes timer interrupt.

COW_fault performs page level copy-on-write operations and read transfers data from

OS file cache to the user address space. Figure 5.9 leads to a number of interesting

observations. In general, the 8-issue mode is not energy efficient by showing the highest

Energy×Delay on all of the three OS routines. The application of the 1-issue, 2-issue, 4-

issue and 6-issue modes yields better trade-off between power and performance. More

interesting, the optimal configuration (with the lowest Energy×Delay value) changes,

depending on the OS routines. For example, on the 1-issue mode, the clock shows its best

Energy×Delay scenario (0.3), while the COW_fault yields an Energy×Delay value of 0.8.

 67

0

0.2

0.4

0.6

0.8

1

clock COW_fault read

N
or

m
al

iz
ed

 E
ne

rg
y-

D
el

ay
 P

ro
du

ct 1-issue
2-issue
4-issue
6-issue
8-issue

Figure 5.9: Energy×Delay of Different OS Services

Figure 5.10 further shows the Energy×Delay ranking of different modes across a

wider range of the OS routines we characterized. In Figure 5.10, Energy×Delay values of

all modes (i.e., 1i, 2i, 4i and 6i) are ranked on the per OS service basis. We omit the 8-

issue because it always shows the highest Energy×Delay value.

The heterogeneous Energy×Delay behavior of various OS routines makes a

unified adaptation for the whole OS less attractive. However, it provides an avenue to

finely tune the OS power/performance knob: the per-OS routine based optimal

configuration can be exposed to and exploited by the hardware to achieve a better OS

Energy×Delay trade-off. In practice, a simple profile-driven methodology [53] can be

used for finding the optimal configuration for individual routine in a pre-characterization

stage. At run-time, the hardware selectively applies the pre-characterized, optimal

configuration to individual OS routine instantaneously, eliminating a search of the

configuration space. The optimal adaptation solution can be encoded into each routine

with ISA extension. A performance degradation tolerance setting that specifies how

aggressively to tradeoff additional delay for lower energy can be used to guide

configuration selection.

 68

 1i 2i 4i 6i
utlb

pfault
vfault

COW_fault
demand_zero

timein
simscsi_intr

if_etintr
du_poll

clock
syscall

exit
fork
read

write
open
close

unlink

 1i 2i 4i 6i
time
brk

lseek
getpid
getuid
alarm
access

dup
pipe

getgid
ioctl

utssys
execve

fcntl
getdents

sigreturn
getsockname

sproc

 1i 2i 4i 6i
prctl

mmap
mprotect

msync
getrlimit

cacheflush
fchmod
sysinfo

xstat
lxstat
fxstat

ksigaction
sigprocmask

sigsuspend
getcontext
setcontext

waitsys

E-D Product: < < <

Figure 5.10: Routine Based Energy×Delay Ranking of Different Modes

Having known the nature and functionality of an OS invocation, one can apply

Energy×Delay optimizations even more aggressively. This chapter considers the

following two optimizations (dubbed as OS-aware SDPT w/AO in section 5.4):

• Resizing Register File

Modern superscalar machines exploit register renaming and use large register file

to eliminate false dependencies between instructions. In many hand-tuned and highly

optimized OS routines, however, the true dependencies dominate. In these scenarios, the

size of the physical register file can be reduced to save more power. Specifically, we

observe that disabling half of the physical registers for OS routines utlb, timein, clock,

close, brk, alarm, dup, pipe, ioctl, utsys, prctl, and msync saves 5% - 7% of the processor

power with no performance loss [49]. Generally, the additional complexity for resizing a

register file greatly diminishes the likelihood to do so [20]. The proposed routine based

OS-aware adaptation scheme can safely and efficiently resize the register file because it

guarantees that no physical register is mapped whenever a resizing occurs at the user/OS

context switch boundaries.

 69

• OS-aware Control Flow Speculation

Control flow speculation has been widely adopted in today's microprocessor

design to exploit the ILP in programs. Nevertheless, the fetches and subsequent

processing of misspeculated instructions will waste more energy and cycles [52]. It has

been observed that the conventional branch predictors can frequently mispredict the

control flow transfers in the exception-driven and short-lived OS execution [46]. In [47],

Li et al. propose an OS-aware control flow speculation scheme which allocates dedicated

branch prediction resource to the OS to improve its branch prediction accuracy. In this

study, we integrate an OS-aware hybrid predictor [47] with the proposed processor

adaptation scheme to further optimize its energy efficiency in the light of the exception-

driven and non-deterministic OS execution.

5.4 POWER SAVINGS AND PERFORMANCE EVALUATION

In this study, we use the complete system power simulator SoftWatt [25]. Figure

5.11 depicts the superscalar microarchitecture that I consider for this study. The baseline

machine considered for this study is an aggressive, 8-issue superscalar processor. To

reduce its power consumption, the processor can be reconfigured to the 6-issue, 4-issue,

2-issue and 1-issue modes by reducing its computational capacity. Previous studies

[5][64][20] observe that power consumption of a high-performance superscalar machine

is largely determined by the instruction issue width and the scale of major

microarchitectural structures, such as: instruction window (IW), reorder buffer (ROB)

and load store queue (LSQ). Therefore, in 6-issue mode, we limit the instruction fetch,

decode, issue and retire width to be 6 and disable 1/4 of the IW, ROB and LSQ entries. In

the 4-issue, 2-issue and 1-issue modes, I restrict the issue width to be 4, 2, and 1 and

disable 1/2, 3/4, and 7/8 of the above resources (i.e., IW, ROB and LSQ) respectively.

 70

I-Cache Fetch Decode/Rename/
Dispatch

In
st

ru
ct

io
n

W
in

do
w

Load Store
Queue

FU1

FU2

FUm R
eo

rd
er

 B
uf

fe
r

D-Cache

Register
File

Branch
Prediction

Figure 5.11: The Baseline Microarchitecture

(Run-time Energy×Delay Optimizations are made in the Shaded Components)

This section presents power savings as well as performance evaluations of the

proposed technique and the baseline adaptation mechanism (described in section 5.2) on

the OS execution. The schemes we compare are: (1) a baseline adaptation scheme with a

2048-cycle sampling window (ADPT with sw=2048); (2) a baseline adaptation scheme

with a fine-grained 128-cycle sampling window (ADPT with sw=128); (3) the routine

based OS-aware adaptation (OS-aware ADPT); (4) the routine based OS-aware

adaptation with aggressive optimizations (OS-aware ADPT w/ AO, see section 5.3).

Figure 5.12 shows the average power of the experimented workloads on different

schemes. Figure 5.13 and Figure 5.14 show the performance (IPC) and Energy×Delay

metric on the same scenario. All values are normalized with respect to the baseline 8-

issue machine without implementing any adaptation.

Figure 5.12 shows that compared with the coarse-grained sampling technique

(ADPT with sw=2048), the OS-aware ADPT can reduce power more aggressively by

being able to accurately capture the exception-driven, short-lived OS activity and match

them with appropriate resources in a timely fashion. For the same reason, scheme using

fine-grained sampling window (ADPT with sw=128) is also observed to achieve good

power savings. The OS-aware ADPT w/ AO has a double-fold impact on power savings:

 71

reducing the size of register file drops power while the improved control flow speculation

tends to increase power because the pipeline flushing stalls happen less frequently.

Intuitively, optimizations such as OS-aware control-flow speculation could increase per-

cycle processor power. Nevertheless, it reduces program execution cycles and the total

clock power, on which both the processor and software energy largely depends.

Therefore, overall it will benefit the targeted program Energy×Delay metric that we try to

optimize. Moreover, as can be seen in the Figure 5.12, one factor does not dominate

another one by showing drastic changes in power compared with the OS-aware ADPT

scheme.

0

0.2

0.4

0.6

pmake
gcc

vorte
x

sendmail

file
man db

jess
javac jack

postgres
.selec

t

postgres
.update

osb
oot

AVG

No
rm

al
ize

d
Po

we
r ADPT (sw=2048) ADPT (sw=128)

OS-aware ADPT OS-aware ADPT w/ AO

Figure 5.12: Normalized Power

(ADPT with sw=2048 is sampling-based adaptation with 2048-cycle window,
ADPT with sw=128 is sampling based adaptation with 128-cycle window, OS-
aware ADPT is OS routine based adaptation, and OS-aware ADPT w/ AO is
OS routine based adaptation with aggressive optimizations)

Looking at Figure 5.13, one can see that the performance of OS-aware ADPT is

competitive with that of the ADPT (sw=2048), despite that the ADPT (sw=2048) favors

the OS performance by overestimating its computational requirement due to the

interference of the higher user IPC. Figure 5.13 also shows that using fine-grained

window sampling scheme (ADPT with sw=128) measurably degrades performance due

to the aggregated adaptation overhead. As described earlier, the OS-aware ADPT does
 72

not incur adaptation overheads in OS. The use of the optimal solution for individual

routine further eliminates the unnecessary adaptations within a routine, leading to a better

performance than the existing fine-grained adaptation scheme. Another observation from

Figure 5.13 is that the OS-aware ADPT w/ AO further increases performance by reducing

the time spent on processing wrong-path instructions. Note that the y-axis begins at 70%

normalized IPC in Figure 5.13.

0.7

0.8

0.9

1

pmake
gcc

vorte
x

sendmail

file
man db

jess
javac jack

postgres
.selec

t

postgres
.update

osb
oot

AVG

No
rm

al
iz

ed
 IP

C

ADPT (sw=2048) ADPT (sw=128)
OS-aware ADPT OS-aware ADPT w/ AO

Figure 5.13: Normalized IPC

0

0.2

0.4

0.6

0.8

pmake
gcc

vorte
x

sendmail

file
man db

jess
javac jack

postgres
.selec

t

postgres
.update

osb
oot

AVG

No
rm

al
iz

ed
 E

ne
rg

y.
De

la
y ADPT (sw=2048) ADPT (sw=128)

OS-aware ADPT OS-aware ADPT w/ AO

Figure 5.14: Normalized Energy×Delay

 73

The results shown in Figure 5.14 indicate the OS-aware ADPT retains

performance while reducing power by showing the desirable characteristics when both

performance and energy are under consideration. The OS-aware ADPT w/ AO further

improves the OS Energy×Delay behavior, implying that although the aggressive

optimizations such as resizing register file may yield unbalanced machine for many user

applications, they produce more energy savings when judiciously applied to certain OS

routines.

5.5 RELATED WORK

Previous research [10] employs the OS to reduce power at system level. Recently,

the energy behavior of embedded, real-time operating systems has been studied in

[8][80][81][19]. In [25][17], a full- system energy simulator is developed and the

necessity of simulating OS energy is quantified. There have been plentiful research

[5][64][20][33][52][14][82][76] focusing on reducing the runtime software (mostly, user

applications) power consumption. So far, techniques for run-time software power savings

exclusively focus on the user-only applications. Among those, microarchitecture level

power management [5][64][20] has been demonstrated to be an attractive solution for the

fine-grained program Energy×Delay optimization. It has been observed that by allocating

appropriate microarchitectural resource required by the actual program, significant power

saving can be achieved with a tolerable performance lost. In [5], Bahar et al. exploit IPC

variations in program to reduce power. By varying processor fetch and execution rates,

Marculescu et al. [53] study power-performance trade-off based on a profile-driven

methodology. In [64][20], the authors propose mechanisms for independently monitoring

and adapting multiple microarchitectural structures in one system.

 74

5.6 SUMMARY

Modern applications spend a significant proportion of their execution time within

the operating system, making OS a major power consumer. To save power, hardware can

provide resources that closely match the needs of the software. However, with exception-

driven and intermittent execution in nature, it becomes difficult to accurately predict and

adapt processor resources in a timely fashion. The novel approach proposed in this

chapter permits precise hardware reconfigurations for the OS with low overhead and

allows fine-grained performance/power tuning at microarchitectural level. This scheme is

orthogonal to and can be integrated with existing techniques proposed for user-only

applications to further enhance their efficiency in the light of the prevalent, OS-intensive

and emerging workloads. With the increasing impact of the leakage power, routine

customized aggressive adaptation tends to save more power by safely turning off more

transistors. The proposed scheme can be exploited in mobile computing systems for

energy saving, as well as in conventional systems for dynamic thermal management.

 75

Chapter 6: OS-aware Low Power Instruction Cache

Low power has been considered as an important issue in instruction cache (I-

cache) designs. This chapter low power I-cache design techniques by exploiting the

interactions of hardware-application-OS. The proposed mechanisms require minimal

hardware modification and addition.

6.1 MOTIVATION

Caches account for a sizeable fraction of the total power consumption of

microprocessors. High performance cache accesses dissipate significant dynamic power

due to charging and discharging highly capacitive bit lines and sense amps [36].

Moreover, on-chip caches constitute a significant portion of the transistor budget of

current microprocessors. With the continued scaling down of threshold voltages, static

power due to leakage current in caches grows rapidly. Clearly, with the increasingly

constrained power budget of today’s high performance microprocessors, low power has

been considered as an important issue in cache designs. This chapter focuses on

techniques to reduce both dynamic and static power of instruction cache (I-cache).

In general, processor I-cache is designed to accommodate a wide range of

applications. Nevertheless, it has been observed that the performance of a given I-cache

architecture is largely determined by the behavior of the application using that cache

[95][69]. To reduce power, previous studies [4][6][20][30][31][41][65][66][86][43][94]

[23][37] proposed adapting I-cache to the need of application’s demand. These

techniques, however, exclusively focus on user-level applications, even though there is

evidence that many system workloads often involve heavy use of the OS

[51][70][47][50]. For example, on the average, the OS accounts for 30% of total I-cache

(32KB, 4-way set associative and 32-byte cache line) power across the experimented

 76

workloads (as shown in Figure 6.1). Therefore, it is necessary to consider the OS for I-

cache power modeling and optimization.

0

20

40

60

80

100

pmak
e

gcc
vo

rte
x

se
ndm

ail

file
man db

jes
s

jav
ac jac

k
mtrt

co
mpres

s

postg
re

s.s
ele

ct

postg
re

s.u
pd

ate

postg
re

s.j
oin

osb
oot

AVERAGE

%
 o

f L
1

I-C
ac

he
 P

ow
er

User OS

Figure 6.1: I-Cache Power Breakdown: User vs. OS

Adhering to this philosophy, this chapter explores the opportunities to design low

power I-cache by considering the interactions of application-OS-hardware. It starts from

characterizing user and OS I-cache access behavior to identify power saving

opportunities. It is observed that in a system that frequently invokes OS activity,

instruction blocks from user applications and OS often interleave and co-exist within I-

cache that is shared by all processes.

To ensure proper operation and protect the OS from errant users, modern

processors and operating systems provide two separate modes of operation: user mode

and privileged mode. Processor executes user processes in user mode. Whenever the OS

is invoked (by a trap or an interrupt/exception), the hardware switches to privileged

mode. The OS always switches back to user mode before passing control to a user

program.

The semantics of dual mode operation provides opportunities to save the dynamic

power of I-cache access: without affecting the performance and the correctness of

program execution, I-cache lookups for user applications can bypass caches lines that

 77

store OS code and vice-versa. Therefore, the number of parallel tag comparisons and data

array read-outs needed to fulfill a set-associative I-cache access can be reduced, implying

less dynamic power dissipation per access. Moreover, It is found that a significant

fraction of I-cache regions are only heavily accessed in one operation mode. This

characteristic can be exploited to reduce I-cache leakage power: when processor executes

in one mode, cache regions that are only frequently accessed in another mode can be put

into lower power state.

To explore these power saving opportunities, this chapter proposes two OS-aware

tuning techniques - OS-aware cache way lookup and OS-aware cache set drowsy mode -

to improve the I-cache energy efficiency for system workloads. With very simple

hardware modification and addition, OS-aware I-cache tuning exhibits promising

dynamic and static power reduction. More attractively, the OS-aware tuning yields no or

negligible impacts on performance. Since system performance is sensitive to that of the

OS, the proposed techniques preserve merits especially valuable for the energy-efficient,

high performance server processor I-cache designs.

The rest of this chapter is organized as follows: Section 6.2 characterizes user

applications and OS I-cache access behavior to identify power saving opportunities.

Section 6.3 proposes two OS-aware tuning techniques to improve I-cache energy

efficiency. Section 6.4 evaluates the impact of proposed techniques on power and

performance. Section 6.5 discusses related work. Section 6.6 concludes with some final

remarks.

6.2 USER/OS I-CACHE ACCESSES CHARACTERIZATION

During system workload execution, instructions from user applications and OS

are fetched into I-cache and exercise on the processor alternately, as shown in Figure

6.2(a). Among multiple processes that must all share the same I-cache, instruction blocks
 78

from the OS co-exist with those from user processes. Previous studies analyzed the

impact of inter-mingling of user and OS instructions in the I-cache and found that

interferences between the two degrade performance. The interest of this characterization,

however, is to identify the power saving opportunities.

User

OS

User

User

OS
 … …. …. ….

 … …. …. ….

Cache Set 0

Cache Set 1

Cache Set i

Cache Set i+1

Cache Set n-1

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

Tag Data Array

(a) Dynamically
Executed Inst. Stream

on Processor

(b) User/OS Instruction Blocks
Residency in I-Cache (4-Way)

User(2)+OS(2)

User(0)+OS(4)

User(4)+OS(0)

User(1)+OS(3)

User(3)+OS(1)

Figure 6.2: User/OS Instruction Blocks Residency

(Assuming a 4-way I-Cache)

To achieve low miss rates, modern microprocessors employ set-associative I-

Caches. In a system that frequently invokes OS, there is a high possibility that user and

OS code simultaneously reside within the same cache set. As illustrated in Figure 6.2(b),

in a 4-way set-associative I-cache, based on user/OS instruction block residency, cache

sets can be classified as: (1) user code occupies all of the four cache lines

(User(4)+OS(0)); (2) user occupies three cache lines and OS resides in one cache line

(User(3)+OS(1)); (3) user and OS each occupy two cache lines (User(2)+OS(2)); (4)

user resides in one cache line and OS occupies three cache lines (User(1)+OS(3)); and

(5) OS dominates all of the four cache lines (User(0)+OS(4)).

 79

To protect OS from malfunctioning programs, modern processor architectures

support user and privileged mode operations. Processor executes user applications in user

mode and OS instructions can only be exercised in privileged mode. At any time,

processor runs in one of the two modes. Therefore, OS instructions in I-cache will not be

selected when processor runs in user mode and vice versa. The semantic of dual-mode

operation implies opportunities to save the dynamic power of set-associative I-cache

accesses: when processor runs in one mode, the number of parallel cache way lookups

can be reduced by filtering out accesses to cache lines holding instruction blocks that are

only executed in another mode. For example, to access cache sets in the User(2)+OS(2)

category, processor really needs to only perform two parallel cache way lookups.

Similarly, in the OS mode, if the processor is aware of user/OS instruction block

residency, 75% of parallel cache way lookups can be reduced when the processor

accesses cache sets in the User(3)+OS(1) category.

To evaluate the opportunities to reduce cache way lookups by exploiting the

information of user/OS cache blocks residency within cache sets, the frequencies of I-

cache accesses to each cache set category during program execution are counted. The

results are summarized in Table 6.1.

Not surprisingly, during system workload execution, a significant fraction of I-

cache accesses encounters cache sets in which both user and OS instruction blocks reside

(marked with categories II, III, and IV in Table 6.1). On benchmarks gcc and vortex, user

mode dominates execution cycles. Still, more than 25% of I-cache references access

cache sets in categories II, III, and IV. Interestingly, on benchmark compress, 97% of I-

cache accesses encounter OS cache lines, even though OS accounts for only 6% of

program execution time. This is because compress has small I-cache footprint and a few

most frequently accessed cache sets (hot-spot) are mapped by codes from both user and

 80

kernel spaces. On benchmarks fileman and osboot where OS mode dominates, there are

still 35% and 16% of I-cache references that touch user blocks. Table 6.1 shows that on

the average, 56% of program I-cache references access cache sets in categories II, III and

IV, indicating there are abundant opportunities to reduce the number of parallel cache

way lookups (and associated dynamic power) by incorporating user/OS operation mode

in I-cache designs.

Table 6.1: I-Cache Accesses Categorized by User/OS Residency

% of I-Cache Accesses
I II III IV V Benchmarks

User(4)
+OS(0)

User(3)
+OS(1)

User(2)
+OS(2)

User(1)
+OS(3)

User(0)
+OS(4)

pmake 33 26 25 11 5
gcc 73 17 7 2 1
vortex 72 20 6 1 0
sendmail 1 8 28 33 30
fileman 0 0 2 33 65
db 19 17 28 27 10
jess 32 21 23 20 5
javac 32 22 24 18 4
jack 26 34 26 14 1
mtrt 27 17 11 44 1
compress 2 8 25 64 1
postgres.select 25 27 21 22 4
postgres.update 28 19 17 20 17
postgres.join 55 18 13 12 1
osboot 0 2 4 9 84
AVERAGE 28 17 17 22 16

Previous research [23][37] found that during program execution, not all cache

regions are accessed frequently. To save energy, the less frequently accessed cache

regions can be put into lower power state with tolerable performance loss. The dual-mode

operation provides yet another opportunity: if cache regions are heavily accessed by

processor in only one operation mode, then those cache regions can be put into lower

power state when the processor runs in another mode. To identify cache regions heavily

accessed only in one of the two operation modes, the characterization shown in Table 6.1

 81

is further broken down into user and OS parts. The results are shown by Figure 6.3 (a)

and (b).

0
20
40
60
80

100

pmak
e

gcc

vo
rte

x

se
ndmail

file
man db

jes
s

jav
ac jac

k
mtrt

co
mpres

s

postg
res

.se
lec

t

postg
res

.update

postg
res

.jo
in

osb
oot

AVERAGE

%
 o

f L
1

I-C
ac

he
 A

cc
es

s
V: User(0)+OS(4)
IV: User(1)+OS(3)
III: User(2)+OS(2)
II: User(3)+OS(1)
I: User(4)+OS(0)

(a) User I-Cache Accesses

0
20
40
60
80

100

pmak
e

gcc

vo
rte

x

se
ndmail

file
man db

jes
s

jav
ac jac

k
mtrt

co
mpres

s

postg
res

.se
lec

t

postg
res

.update

postg
res

.jo
in

osb
oot

AVERAGE

%
 o

f L
1

I-C
ac

he
 A

cc
es

s

V: User(0)+OS(4)
IV: User(1)+OS(3)
III: User(2)+OS(2)
II: User(3)+OS(1)
I: User(4)+OS(0)

(b) OS I-Cache Accesses

Figure 6.3: User and OS I-Cache Accesses

Figure 6.3 (a) and (b) show both user and OS access cache sets in categories II, III

and IV frequently. Interestingly, it is found find that cache sets in the category

User(4)+OS(0) are heavily accessed only in user mode. In contrast, cache sets in the

category User(0)+OS(4) are heavily accessed in OS mode but they are rarely accessed in

user mode. On the average, only 0.08% of user I-cache accesses touch cache sets in the

category User(0)+OS(4). The percentile of OS I-cache accesses that encounter cache sets

in the category User(4)+OS(0) is merely 0.11%. The above characterization implies that

during user execution, cache sets in the category User(0)+OS(4) can be put into lower

 82

power state. On the other hand, when processor runs in OS, cache sets in the category

User(4)+OS(0) can remain in lower power state.

To summarize, in this section, the user/OS I-cache accesses are categorized by the

user/OS residency. It is found that dual-mode operation opens additional opportunities to

save processor I-cache power. These opportunities to achieve low power are exploited in

the following sections.

6.3 OS-AWARE I-CACHE TUNING

This section proposes two simple mechanisms to improve I-cache energy

efficiency for system workloads.

6.3.1 OS-aware Cache Way Lookup

In a set associative cache, the number of parallel cache way lookups largely

determines the dynamic power of a cache access. A conventional 4-way set associative

cache requires four tag comparisons and four data array read-outs for a cache access.

Nevertheless, during user execution, performing tag comparisons and data array read-outs

for OS cache blocks are unnecessary and waste extra dynamic power. Therefore,

processor operation mode can be integrated with I-cache design to reduce the number of

parallel cache way lookups (and hence dynamic power) on cache accesses.

Figure 6.4 illustrates architectural modifications to support OS-aware cache way

lookup. A bit called cache way mode bit is attached with each cache line. With the cache

way mode bit (e.g., 0 for OS and 1 for user), it is able to differentiate between cache

block stores instructions on behalf of the OS, and of one that stores instructions on behalf

of the user applications. When a cache line is uploaded to I-cache the first time, its cache

way mode bit is generated, depending on the processor operation mode. The cache way

mode bit will keep unchanged unless the associated cache line is replaced. The current

 83

machine execution mode in processor status register (PSR) is used to compare with cache

way mode bit to decide whether a cache way needs to be accessed in a given operation

mode. The results of comparisons are used to generate enable signals (assuming active

low) to circuitry such as tag and data array access logic, tag comparators, data array sense

amps and output drivers. As can be seen from Figure 6.4, the hardware modification and

addition needed to support OS-aware cache way lookup is simple.

C
ac

he
 w

ay
 m

od
e

bi
t Tag Data

execution mode bit

Cache line (way 0)
Cache line (way 1)
Cache line (way 2)
Cache line (way 3)

Way selcection
 logic

Hit/Miss

Data

Address (Tag)

Enable signals for tag
comparators, data array
sense amps and output
drivers

C
ache Set

Enable signals for tag and
data array access

Processor Status Register (PSR)

Figure 6.4: Hardware Modification/Addition Required to Implement OS-aware Cache
Way Lookup

The generation of above enable signals is not in the critical path of I-cache access

because once generated, they remain unchanged (due to the one-to-one hard-wired

mapping between each cache way mode bit and each cache block) unless a cache line

replacement (due to a cache miss) occurs or the processor switches mode. When a cache

miss occurs, the requested cache line is retrieved from the next level of memory

hierarchy and is immediately forwarded to processor for execution. The corresponding

cache mode bit needs to be accessed and then updated. The latency to access and update

cache way mode bit array and regenerate cache way access enable signals can be

overlapped with processor execution. Similarly, the latency of regenerating cache way

 84

access enable signals due to processor mode changes can be easily hidden as well due to

the inherent cost and the low frequency of user/OS context switches.

Note that the correctness of OS-aware cache way lookup is ensured by the dual-

mode operation semantic and the precise exception handling mechanism. Processor

switches mode to OS upon handing an exception or interrupt or upon handling a TRAP

instruction (usually used to implement all system calls by OS), which all raises an

exception. To handle precise exceptions, the processor pipeline must drain before OS

code execution can begin. To return the processor to user/unprivileged mode, most

architectures use a privileged instruction (return-from-exception) that performs this step

in an atomic manner. Therefore, even on processors with out-of-order and speculative

execution, instructions from user and OS will not be fetched from I-cache and executed

in pipeline simultaneously.

For some systems, there could be certain circumstances where user-defined signal

handlers were performed within the OS. Also, it is possible that certain runtime

actions/exceptions of user code, may be trapped by the hardware, given to the OS, and

the OS executes the user code in OS mode. For user code that dedicatedly runs in OS

mode, OS-aware cache way lookups treat it as if it was OS code. However, for user code

that can run in both user and OS mode, additional attention is required to ensure

correctness. For example, a special purpose register (1 bit) can be added to enable/disable

OS-aware cache way lookup by gating the cache way lookup enable signals. An

instruction writes to that special purpose register to set (or reset) OS-aware cache way

lookup. Two such instructions are placed at the boundaries of the above code region so

that OS-aware cache way lookups are disabled before the code region execution starts

and are resumed after the code region execution completes. During the above code region

execution, full cache way lookups are required and no power saving is achieved. Because

 85

this situation happens infrequently, its impact on performance as well as energy saving is

negligible.

The reduction of cache way accesses on a 4-way set-associative I-cache by

employing OS-aware cache way lookup is measured, as shown in Figure 6.5. The results

are shown for user, OS and the aggregated cache accesses on each benchmark. On

benchmarks gcc and vortex where the OS frequently accesses cache sets in the category

User(3)+OS(1), OS-aware cache way lookup reduces the number of cache way accesses

in OS significantly. On the other hand, the number of cache way lookups during the user

execution on benchmark sendmail is largely reduced due to its high access frequencies to

cache sets in the categories User(1)+OS(3) and User(2)+OS(2). On the average, the

proposed technique reduces cache way lookups in user, OS and aggregated I-cache

accesses by 34%, 35% and 35% respectively, implying significant I-cache dynamic

power saving.

0
10
20
30
40
50
60
70
80

pmak
e

gcc
vo

rte
x

se
ndm

ail

file
man db

jes
s

jav
ac jac

k
mtrt

co
mpres

s

postg
re

s.s
ele

ct

postg
re

s.u
pd

ate

postg
re

s.j
oin

osb
oot

AVERAGE%
 o

f R
ed

uc
ed

 I-
C

ac
he

W
ay

 A
cc

es
s

User
OS
Overall

Figure 6.5: I-Cache Way Accesses Reduction

6.3.2 OS-aware Cache Set Drowsy Mode

Caches comprise a large portion of the on-chip transistor budget. Due to CMOS

technology scaling, static power due to leakage current is gaining in importance in I-

 86

cache power dissipation. For example, Agarwal et al. [1] report that leakage energy

accounts for 30% of L1 cache energy for a 0.13-micro process technology. In a 0.07

micron process, ITRS predicts leakage may constitute as much as 50% of total power

budget. These make efforts at leakage control essential to maintain control of I-cache

power on current and next generations of processors.

To reduce cache leakage power, researchers [37][96] have proposed turning off

the unlikely used cache lines using gated-Vdd technique [65]. While the gated-Vdd

technique is efficient in saving leakage, the disconnected cache line loses its state and

needs to be fetched from L2 cache, causing performance penalty and dynamic power

consumption due to an extra L2 access. Alternatively, cache lines can be put into a low-

leakage drowsy mode to save power by exploiting the short-channel effects on dynamic

voltage scaling [23]. Unlike the gated-Vdd, in drowsy mode, the information in the cache

line is preserved. However, the cache line in drowsy mode must be reinstated to a high-

power mode before its contents can be accessed. The performance penalty of accessing a

drowsy cache line is an extra cycle to restore the full voltage for that cache line.

Recent studies show that state-preserving drowsy cache techniques are preferable

for leakage control in L1 caches where high performance is a must. Since system

performance is sensitive to that of the OS, our objective here is to reduce power yet

preserve high performance. Therefore, in this chapter, We explore the opportunity of

integrating OS-aware cache tuning with a state-preserving, leakage control mechanism.

The rationale is to put cache regions that heavily accessed in only one operation mode

into drowsy state when processor runs in another mode. A key issue is to classify or

identify which cache regions are “hot” in one operation mode but stay “cool” in another

operation mode.

 87

The user/OS I-cache accesses on system workloads show that the intra-cache set

user/OS residency can be used as proximity for the above classification. During OS

execution, cache sets in the category User(4)+OS(0) are infrequency accessed and can be

put into drowsy state. Similarly, during user mode execution, cache sets in the category

User(0)+OS(4) can remain in drowsy state.

C
ac

he
 w

ay
 m

od
e

bi
t

drw

 !drw

Vdd Low
(0.3V)

Vdd (1V)

worldline

power supply

word line
Cache line (Way 0)

power supply

word line
Cache line (Way 1)

power supply

word line
Cache line (Way 2)

power supply

word line
Cache line (Way 3)

worldline gate

drowsy bit

voltage
controller

Processor Status Register (PSR)
execution mode bit

Cache Set

set / wake-up

Figure 6.6: Implementation of OS-aware Cache Set Drowsy Mode

Figure 6.6 illustrates the control circuitry to implement OS-aware cache set

drowsy mode. To control memory cells leakage power, the circuit technique proposed in

[23] is used. A drowsy bit is used to control the supply voltages to the memory cells

within a cache set. For a 0.07 micron process with normal supply voltage (Vdd) of 1.0V,

the threshold voltage (Vdd Low) needed to preserve the state of memory cells is about

0.3V [23]. Depending on the state of the drowsy bit, all cache lines within a cache set can

be put into either the high power active state or the low leakage drowsy state.

In Figure 6.6, if all cache way mode bits within a cache set are identical (e.g.,

0000 or 1111) and they are different with the current processor mode, the whole cache set

is put into drowsy mode. This control logic puts cache sets in the category

User(4)+OS(0) to drowsy mode during OS execution. When context switches back to

 88

user, cache sets in the category User(4)+OS(0) are waken up and cache sets in the

category User(0)+OS(4) are then put into drowsy state. Moreover, if an OS (or a user)

cache miss occurs on a cache set in the category User(4)+OS(0) (or User(0)+OS(4)), the

cache set is waken up due to the change of intra-cache set user/OS residency.

Whenever a cache set is accessed, the drowsy bit associated with it is checked. If

the cache set stays in active mode, the ongoing cache access acts normally. Otherwise, if

a drowsy cache set is encountered, the drowsy bit is cleared; causing the supply voltage

resorted back to the normal Vdd during the next cycle. The data can be accessed during

consecutive cycles. The wordline gating circuit is used to prevent unchecked accesses to

a drowsy set which could destroy the memory’s contents.

0
10
20
30
40
50
60

pmak
e

gcc
vo

rte
x

se
ndm

ail

file
man db

jes
s

jav
ac jac

k
mtrt

co
mpres

s

postg
re

s.s
ele

ct

postg
re

s.u
pd

ate

postg
re

s.j
oin

osb
oot

AVERAGE

%
 o

f I
-C

ac
he

 S
et

s
pu

t i
nt

o
D

ro
w

sy
 M

od
e

User Exec. OS Exec. Overall Exec.

74% 89% 69% 73%

Figure 6.7: % of I-cache Sets can be put into Drowsy State by Using Leakage Control
Illustrated in Figure 6.6

In Figure 6.6, OS-aware cache set drowsy mode uses a shared source (cache way

mode bit) to control leakage, reducing the cost of drowsy I-cache implementation. The

percentile of cache sets can be put into drowsy state on user, OS and aggregated

execution by employing the leakage control method described are counted. The results

are shown in Figure 6.7. On the average, 17% of I-cache sets can be put into drowsy

mode during user execution while the percentage of I-cache sets remain in drowsy state

 89

during OS execution is 35%. Overall, 22% of I-cache sets can be put into drowsy mode

during program execution. On most benchmarks, It is observed that larger fraction of

cache regions can remain in drowsy mode during OS execution. This is because that

although OS is large and sophisticated software, OS execution is usually dominated by a

small fraction of highly invoked service routines [50]. Therefore, a sizeable fraction of

the I-cache is not accessed by the OS during its execution.

Table 6.2: % of I-Cache Accesses to Drowsy Sets and Average Number of Reinstated
Drowsy Sets

Benchmarks
% of User Accesses
to Drowsy Sets (in
the category
User(0)+OS(4))

Avg. Num. of
Drowsy Sets
Reinstated in User

% of OS Accesses
to Drowsy Sets (in
the category
User(4)+OS(0))

Avg. Num. of
Drowsy Sets
Reinstated in OS

pmake 0.01 0.18 0.10 0.16
gcc 0.00 0.01 0.21 0.04
vortex 0.00 0.00 0.05 0.01
sendmail 0.15 1.40 0.01 0.10
fileman 0.22 0.92 0.00 0.01
db 0.05 0.10 0.09 0.09
jess 0.04 0.04 0.09 0.04
javac 0.02 0.04 0.14 0.07
jack 0.01 0.01 0.28 0.06
mtrt 0.00 0.02 0.11 0.03
compress 0.00 0.01 0.03 0.01
postgres.select 0.04 0.15 0.23 0.26
postgres.update 0.20 0.30 0.20 0.33
postgres.join 0.01 0.03 0.08 0.04
osboot 0.47 2.17 0.00 0.11

As described earlier, an extra cycle is needed to access cache sets in drowsy

mode, implying a performance penalty. To effectively save power while maintaining high

performance, both the number of accesses to the drowsy sets and the number of drowsy

cache sets reinstated to the high power mode should be small. Table 6.2 summarizes the

percentage of I-cache accesses to the drowsy sets and the average number of drowsy sets

that are waken-up. The data are shown for both user and OS execution. As can be seen

from Table 6.2, the possibilities to access a drowsy cache set in both operation modes are

 90

extremely low (< 0.1% in most cases), indicating negligible performance lost due to

drowsy cache sets wake ups. Additionally, most of the drowsy sets remain in the low

power state during a given mode execution by showing very small fraction of reinstated

drowsy sets.

It should be noticed that although the intra-cache set user/OS residency provides a

good approximation on user/OS access frequencies to that cache set, this heuristic may be

too conservative from the perspective of power saving. We further explore the directly

using of cache set access frequencies from different operation mode as the metric to

control cache set drowsy mode.

00 01 1110

OS

User

UserUserUser

OSOSOS

OS Access
Biased

User Access
Biased

Figure 6.8: The 2-bit Counter and Finite State Machine to Implement User/OS Access-
biased Classification

This user/OS access-biased classification is similar to the one that has been used

in classifying the biases of branches. To be more specific, a finite state machine formed

by a 2-bit saturating up/down counter is used by each cache set to keep tracking the

accesses from user and OS execution, as shown in Figure 6.8. Whenever an access to that

cache set comes from user mode, the associated counter is increased by 1. On the other

hand, when an access to that cache set from the OS mode occurs, the counter is decreased

by 1. As a result, cache sets with counter’s value equals to 3 indicate they are user access-

biased and cache sets with counter’s value equals to 0 are classified as OS access-biased.

During user execution, the OS access-biased cache sets are put into drowsy mode. On the

 91

other hand, when processor runs in OS, the user access-biased cache sets are put into

drowsy mode.

0
20
40
60
80

100

pmak
e

gcc
vo

rte
x

se
ndm

ail

file
man db

jes
s

jav
ac jac

k
mtrt

co
mpres

s

postg
re

s.s
ele

ct

postg
re

s.u
pd

ate

postg
re

s.j
oin

osb
oot

AVERAGE

%
 o

f I
-C

ac
he

 S
et

s
pu

t i
nt

o
D

ro
w

sy
 M

od
e

User Exec. OS Exec. Overall Exec.

Figure 6.9: % of I-cache Sets put into Drowsy State by using User/OS Access-biased
Classification

Figure 6.9 shows the percentile of cache sets can be put into drowsy state on user,

OS and aggregated execution by employing the less restricted user/OS access-biased

leakage control mechanism. One can see that the access-based classification has the

capability of putting more cache sets into drowsy state. This is because access-based

scheme can identify all cache sets that can be classified by the residency-based scheme.

Additionally, access-based scheme captures more scenarios. For example, it could be

possible that a cache set has both user and OS blocks reside in it but are accessed

frequently only in one operation mode. On the average, 29% of I-cache sets can be put

into drowsy mode during user execution while the percentage of I-cache sets can be put

into drowsy state during OS execution is 71%. Overall, 42% of I-cache sets can remain in

the drowsy state during program execution.

 92

Table 6.3 further summarizes the percentage of I-cache accesses to the drowsy

sets and the average number of drowsy sets that are waken-up by using the access-based

classification. As can be seen, both numbers are higher than the residency-based

classification but are still low enough to incur observable performance degradation.

Table 6.3: % of I-Cache Accesses to Drowsy Sets and Average Number of Reinstated
Drowsy Sets using Access-Based Classification

Benchmarks
% of User Accesses
to Drowsy Sets
(User(0)+OS(4))

Avg. Num. of
Drowsy Sets
Reinstated in User

% of OS Accesses
to Drowsy Sets
(User(4)+OS(0))

Avg. Num. of
Drowsy Sets
Reinstated in OS

pmake 0.06 1.06 0.69 1.07
gcc 0.05 0.17 0.81 0.16
vortex 0.03 0.04 0.32 0.04
sendmail 0.44 4.13 0.50 4.14
fileman 3.05 12.79 0.34 11.15
db 0.69 1.33 1.31 1.30
jess 0.68 0.70 1.44 0.67
javac 0.26 0.58 1.18 0.57
jack 0.26 0.28 1.26 0.26
mtrt 0.07 0.25 0.98 0.25
compress 0.15 0.54 2.59 0.53
postgres.select 0.24 0.82 0.70 0.82
postgres.update 0.45 0.67 0.41 0.68
postgres.join 0.04 0.20 0.42 0.21
osboot 1.18 5.45 0.11 5.42

6.4 POWER AND PERFORMANCE EVALUATION

This section provides results showing the I-cache power savings as well as the

performance impact due to the proposed OS-aware I-cache tuning. By default, the power

and performance numbers are normalized to the base line I-cache and machine

configuration. In the simulation, the energy overhead due to hardware modification and

addition to implement the proposed OS-aware tuning is also accounted.

Figure 6.10 shows the normalized I-cache dynamic power after employing the

OS-aware cache way lookup scheme. On the average, the OS-aware cache way lookup

can save 29% and 30% of I-cache dynamic power on user and OS execution respectively.

The aggregated dynamic power saving of this technique is 30%. Looking at Figure 6.5

and Figure 6.10, one can see that dynamic power saving is largely correlated with the

reduced cache way accesses. It should be noticed that this 30% of dynamic power saving

is achieved without any impact on performance. This feature is especially valuable for the

 93

OS since system performance is sensitive to that of the OS and the processor energy

overhead caused by performance degradation can easily offset the benefit of power

saving in I-cache.

0.0
0.2
0.4
0.6
0.8
1.0

pmak
e

gcc
vo

rte
x

se
ndm

ail

file
man db

jes
s

jav
ac jac

k
mtrt

co
mpres

s

postg
re

s.s
ele

ct

postg
re

s.u
pd

ate

postg
re

s.j
oin

osb
oot

AVERAGE

N
or

m
al

iz
ed

 I-
C

ac
he

D
yn

am
ic

 P
ow

er

User
OS
Overall

Figure 6.10: % of I-Cache Dynamic Power Savings by Incorporating OS-aware Cache
Way Lookup

Table 6.4 summarizes the I-cache leakage power savings as well as the run-time

increases due to the OS-aware cache leakage control. One can see that both policies (i.e.,

residency-based and access-based) lead to a significant leakage power reduction. The

residency-based drowsy mode scheme is more conservative, resulting in 5% - 50% of

leakage power saving on the experimented applications. Access-based drowsy mode

scheme, on the other hand, yields greater leakage power reduction by putting larger

fraction of cache regions in to drowsy state, resulting in an average of 37% of overall

leakage power reduction.

Table 6.4 also shows that both OS-aware cache set drowsy policies incur

negligible (<1% in most case) run-time increase. This is because: (1) the cost of wrongly-

putting a cache set into drowsy mode that is accessed thereafter is relatively small, and

(2) using the proposed cache set drowsy policies makes the possibilities of accessing

drowsy cache sets become extremely low. Therefore, the proposed leakage control

 94

techniques again preserve merits especially valuable for designing the power efficient,

high performance server processor I-cache targeting on modern and commercial

applications that heavily invoke OS activities.

Table 6.4: Normalized Leakage Power and Run-time Increase

(Using the OS-aware Cache Set Drowsy Mode)

Residency-based Access-based
Normalized

Leakage Power
Increased Execution

Cycle
Normalized

Leakage Power
Increased Execution

Cycle
User OS Over-

all User OS Over-
all User OS Over-

all User OS Over-
all

pmake 0.96 0.34 0.90 0.03% 0.19% 0.04% 0.89 0.21 0.84 0.15% 1.15% 0.23%
gcc 1.00 0.20 0.95 0.02% 0.32% 0.04% 0.98 0.12 0.93 0.09% 1.22% 0.15%
vortex 0.99 0.38 0.94 0.03% 0.11% 0.04% 0.97 0.14 0.90 0.08% 0.84% 0.14%
sendmail 0.67 0.98 0.82 0.21% 0.05% 0.14% 0.41 0.70 0.55 0.71% 1.23% 0.95%
fileman 0.35 1.00 0.93 0.45% 0.04% 0.09% 0.24 0.89 0.81 4.95% 0.47% 0.98%
db 0.93 0.85 0.91 0.12% 0.23% 0.16% 0.72 0.40 0.61 1.06% 2.48% 1.54%
jess 0.97 0.62 0.86 0.09% 0.12% 0.10% 0.81 0.30 0.65 0.97% 2.05% 1.31%
javac 0.98 0.69 0.93 0.07% 0.19% 0.09% 0.87 0.25 0.76 0.61% 1.97% 0.85%
jack 0.99 0.74 0.95 0.03% 0.36% 0.08% 0.90 0.21 0.79 0.45% 2.08% 0.72%
mtrt 0.97 0.64 0.95 0.02% 0.24% 0.03% 0.92 0.20 0.88 0.11% 1.42% 0.19%
compress 0.47 0.99 0.50 0.05% 0.09% 0.05% 0.45 0.70 0.46 0.42% 4.09% 0.61%
postgres.
select 0.96 0.79 0.92 0.07% 0.35% 0.14% 0.85 0.26 0.70 0.24% 0.70% 0.36%

postgres.
update 0.97 0.53 0.74 0.49% 0.33% 0.41% 0.90 0.20 0.53 0.99% 0.65% 0.81%

postgres.
join 0.99 0.56 0.95 0.05% 0.13% 0.06% 0.97 0.13 0.89 0.12% 0.76% 0.18%

osboot 0.52 0.99 0.95 0.98% 0.03% 0.11% 0.30 0.82 0.78 2.46% 0.34% 0.52%
AVERAGE 0.85 0.69 0.80 0.18% 0.19% 0.18% 0.75 0.37 0.63 0.89% 1.43% 1.05%

6.5 RELATED WORK

A great deal of research work in the architecture community has focused on

reducing power in caches. Selective cache ways [4] reduce cache access energy by

turning off unneeded ways in a set-associative cache. Recently, Zhang [95] proposed a

reconfigurable cache architecture using way concatenation to adapt cache associativity

for embedded applications. To use these techniques, the designers have to determine the

 95

appropriate configurations for a given program by exhaustively searching all possible

configurations. The caches are reconfigured for the entire program execution.

Researchers have proposed several cache lookup variations to reduce set-

associative cache access energy. Phased-lookup cache [26] uses a two-phase lookup,

where all tag arrays are accessed in the first phase, but then only the one hit data way is

accessed in the second phase. The employing of phased-lookup cache results in less data-

way access energy at the expense of longer access time.

Way prediction [31][66] speculatively selects a way to access initially, and only

access the other arrays if that initial array did not result in a match. To support way

prediction, processor branch prediction mechanism has to be extended. Adding way-

prediction to the branch prediction mechanism may affect the processor cycle time

because the branch prediction access is often on one of the critical path. Way prediction

scheme incurs a performance penalty by spending an extra cycle to access the other ways

when a prediction fails. Moreover, way predicting of all I-cache accesses is non-trivial. In

[66], Powell reported that even an elegant way predictor could make no prediction for a

sizable fraction of I-cache accesses. Compared with way prediction, the proposed OS-

aware cache way lookups do not cause performance degradation and is easier to

implement because no predictor is involved. Moreover, way prediction still needs full tag

comparisons to verify the correctness of a prediction.

In [43], Lee et al. proposed region-based caching by re-organizing the first level

cache to more efficiently exploit memory region (stack, global, heap) reference

characteristics produced by programming language semantics. In [40], Kim et al.

investigated ways of splitting the cache into several smaller units, each of which is a

cache by itself (called a sub-cache). However, implementing region-based caching or

 96

sub-caching scheme requires substantial amount of modifications to be made in cache

and other structures (e.g. TLB).

Approaches for reducing static power consumption of caches by turning off cache

lines using the gated-Vdd technique have been described in [37][96]. The drawback of

this approach is that the state of the cache line is lost when it is turned off and reloading it

from the L2 cache has a significant impact on performance.

In [94], the using of compiler to insert power mode instructions to control cache

leakage power was proposed. However, this approach requires the re-compilation of

program source code, which is not generally applicable to the OS as well as many

commercial applications. To reduce leakage energy dissipation, Yang [87] proposed a

dynamically resizing I-cache. Compared with resizable cache, the proposed OS-aware

cache tuning reduces power while still utilizing the full cache capacity. The drowsy

instruction cache [39] uses dynamic voltage scaling and cache sub-bank prediction to

achieve leakage power reduction. Like way prediction, a misprediction on cache sub-

bank incurs a performance penalty. When applied to large, set-associative cache, an

aggressive cache sub-bank predictor yields mediocre prediction accuracies [39]. The area

as well as power overhead of the memory sub-bank prediction buffers, which yield better

prediction accuracies, can be significant.

6.6 SUMMARY

This chapter explores the opportunities of employing the three subsystems –

application, OS and hardware – to improve I-cache energy efficiency. It starts from

characterizing user/OS I-cache accesses on system workloads to identify power saving

opportunities due to dual-mode operation. Two simple OS-aware techniques

incorporating processor operation mode are proposed to improve I-cache energy

efficiency on system workloads. The proposed OS-aware cache way lookup reduces the
 97

number of parallel tag comparisons and data array read-outs for cache accesses and saves

dynamic power. Integrating with a state preserving, leakage control mechanism, OS-

aware tuning effectively reduces static power, which is gaining in importance due to

CMOS technology scaling. Unlike other proposed schemes, OS-aware tuning achieves

both dynamic and static power savings but requires minimal hardware modification and

addition.

 98

Chapter 7: OS-aware Branch Prediction

Chapter 3 demonstrates that many modern applications result in a significant OS

activity. The OS execution can affect architectural states. This chapter focuses on one

specific issue that has long been considered as an important issue for performance

optimization of state-of-the-art processors - control flow prediction.

Detailed characterization shows that the exception-driven, intermittent invocation

of OS code and the user/OS branch history interference increase the misprediction in both

user and kernel code.

Two simple OS-aware control flow prediction philosophies are proposed in this

chapter to alleviate the destructive impact of user/OS branch interference.

7.1 MOTIVATION

Current high performance processors provision aggressive support for ILP and

have deep pipelines to keep cycle times low. The delivered ILP and pipelining

performance is critically dependent on being able to accurately predict the control

(branch) flow in the program, so that the processor can execute more useful instructions

and avoid stalling/squashing the pipeline.

Branch predictors for control flow prediction have been studied extensively with

user-level programs [90][92][73][56]. The OS affects control flow predictability by

introducing the additional user/OS branch aliasing in branch predictor tables. It is

observed that user/OS execution can significantly increase the mispredictions in each part

(Figure 7.1). For example, as shown in Figure 7.1a, kernel code nearly doubles the

misprediction rates in 7 out of 13 of our benchmarks in a Gshare predictor. On the other

hand, the interferences of user code significantly increase the OS misprediction rates on

all benchmarks, as shown in Figure 7.1b.
 99

0
2
4
6
8

10
12

db
(1

6k
)

db
(6

4k
)

je
ss

(1
6k

)

je
ss

(6
4k

)

ja
va

c(
16

k)

ja
va

c(
64

k)

ja
ck

(1
6k

)

ja
ck

(6
4k

)

m
trt

(1
6k

)

m
trt

(6
4k

)

co
m

pr
es

s(
16

k)

co
m

pr
es

s(
64

k)

gc
c(

16
k)

gc
c(

64
k)

vo
rte

x(
16

k)

vo
rte

x(
64

k)

se
nd

m
ai

l(1
6k

)

se
nd

m
ai

l(6
4k

)

po
st

gr
es

.s
el

ec
t(1

6k
)

po
st

gr
es

.s
el

ec
t(6

4k
)

po
st

gr
es

.u
pd

at
e(

16
k)

po
st

gr
es

.u
pd

at
e(

64
k)

po
st

gr
es

.jo
in

(1
6k

)

po
st

gr
es

.jo
in

(6
4k

)

Benchmark(Gshare Predictor Size)

M
is

pr
ed

ic
tio

n
R

at
e

(%
) Extra Caused by OS Execution

User Only

(a) User

0
2
4
6
8

10
12
14

db
(1

6k
)

db
(6

4k
)

je
ss

(1
6k

)

je
ss

(6
4k

)

ja
va

c(
16

k)

ja
va

c(
64

k)

ja
ck

(1
6k

)

ja
ck

(6
4k

)

m
trt

(1
6k

)

m
trt

(6
4k

)

co
m

pr
es

s(
16

k)

co
m

pr
es

s(
64

k)

gc
c(

16
k)

gc
c(

64
k)

vo
rte

x(
16

k)

vo
rte

x(
64

k)

se
nd

m
ai

l(1
6k

)

se
nd

m
ai

l(6
4k

)

po
st

gr
es

.s
el

ec
t(1

6k
)

po
st

gr
es

.s
el

ec
t(6

4k
)

po
st

gr
es

.u
pd

at
e(

16
k)

po
st

gr
es

.u
pd

at
e(

64
k)

po
st

gr
es

.jo
in

(1
6k

)

po
st

gr
es

.jo
in

(6
4k

)

Benchmark(Gshare Predictor Size)

M
is

pr
ed

ic
tio

n
R

at
e

(%
)

Extra Caused by User Execution
OS Only

(b) OS

Figure 7.1: Impact of User/OS Execution on Branch Prediction

Branch aliasing characterization shows that user/OS aliasing contributes to up to

24% of all misprediction and 46% of aliasing misprediction in the benchmarks studied in

this chapter. There are numerous branch predictors that have been proposed to address

different situations [91][54][22][77][44][16][56][21]. These prediction mechanisms have

paid less attention to the OS requirements and no particular scheme was proposed on

tuning control flow prediction hardware for the OS.

This chapter investigates what causes the execution of a spectrum of applications

with significant OS involvement to give worse branch prediction in the user and kernel

modes by characterizing their execution using complete system simulation. This

investigation shows that the interference between the branches in the user and kernel

modes is leading to this poor performance. User and kernel branches have different

 100

characteristics (such as the direction bias) that cause the history information used by the

predictors - and shared by both the user and kernel - to become polluted. Such pollution

would not have happened if we had a separate predictor for each mode.

These observations motivate to separate out branch prediction logic for user and

kernel modes. This approach can be easily integrated into existing prediction schemes

without significantly complicating the logic.

The rest of this chapter is organized as follows. Section 7.2 characterizes kernel

branch behavior in different applications. The effect of user/OS branch aliasing or

interference is also quantified. Section 7.3 introduces OS-aware prediction designed

specifically to reduce user/OS branch aliasing. Section 7.4 evaluates the improvement

contributed by the OS-aware philosophies to various branch prediction strategies. Section

7.5 revisits the efficiency of OS-aware branch prediction. Section 7.6 discusses the

related work. Finally, conclusions are provided in Section 7.7.

7.2 CHARACTERIZATIONS OF OS BRANCHES

In this section, simulation of complete system activity is used to characterize OS

branch execution and evaluate its impact on branch predictability. Table 7.1 summarizes

the complete system branch execution statistics of each studied benchmark.

As illustrated in Table 7.1, the kernel portion of dynamic branch instances can be

found to constitute a significant part in these applications. On the average, kernel

branches, which include loops, error/bound checking, and other routine conditionals,

constitute 27% of branch sites and 30% of dynamic branch instances in benchmark

executions. Branches are more frequent in OS (than in user mode) [70] because it has to

be designed to handle all possible situations (i.e., abundant error and bound checking).

Further, the OS functions are performed not just for one process/application but also for

the system as a whole (other daemons, periodic book-keeping duties etc.).
 101

Table 7.1: Complete System Branch Execution Statistics

Conditional Branch Statistics
User OS Benchmarks

of Context
Switches
between
User/OS

Static
Sites

Dynamic
Instances

Static
Sites

Dynamic
Instances

db 935,783 33,957 13,147,512 6,016 19,742,706
jess 4,852,221 38,654 35,986,299 6,037 28,266,026
javac 2,039,387 38,815 34,766,245 6,070 20,807,714
jack 23,530,133 40,640 210,722,195 6,142 40,451,532
mtrt 5,949,357 36,629 195,674,102 6,099 23,343,298
compress 11,819,663 33,907 406,427,219 6,081 26,101,839
gcc 4,975,087 13,570 138,915,436 4,696 13,845,466
vortex 21,486,430 4,108 133,545,812 1,189 11,976,141
pmake 1,018,543 11,651 122,460,692 5,273 33,821,182
sendmail 1,438,961 4,516 139,259,991 5,553 75,069,918
postgres.select 5,632,788 8,417 107,228,678 6,201 93,551,585
postgres.update 6,385,224 8,144 83,362,599 6,325 149,084,522
postgres.join 5,858,258 8,606 220,730,099 6,099 72,657,859

7.2.1 Context Switch Profile and Branch Distribution

During the execution, branch instructions from user and OS code get interspersed.

OS is activated either voluntarily by a system call from the application, or from a call by

some other application, or implicitly by some underlying periodic/asynchronous

(timer/device interrupt) mechanism. The inter-mingling of user and kernel branches can

affect their behavior, compared to the execution when they were isolated from each other.

Figure 7.2 shows the average number of executed branches in each mode per context

invocation on the studied benchmarks. In all benchmarks except db and postgres.update1,

OS exercises fewer branches than user code in each visit to that mode.

We tracked the distribution of the number of executed branches for each context

switch and the profiling results for a 5,000 context switch sample of benchmark jack are

shown in Figure 7.3 for user and kernel code separately. Comparing Figure 7.3a and 7.3b,

one can see that the user contexts can execute far more branches than the OS contexts do.

 102

1 For benchmarks db and postgres.update, OS service read and write, which consists of far more branch instructions,
dominates OS execution, causing higher average number of executed branches in OS.

Further analysis indicates that most of these OS contexts are caused by exception driven

OS routines (e.g. TLB miss and page fault) that execute very few branches. The

distributions in Figure 7.3 for the kernel are a cause for concern since it indicates the

possibility that the branch history may be not accurate for correct predictions (with

interference from user mode branches). On the other hand, the user branch distribution

suggests that this problem may not be as severe for the user mode. Kernel invocations are

more short-lived, while user execution has reasonable time quanta to work with and build

history.

0

100

200

300

db
jess

jav
ac jack mtrt

co
mpre

ss gcc
vo

rte
x

pmak
e

se
nd

mail

po
stg

res.s
elec

t

po
stg

res.u
pd

ate

pos
tgr

es
.jo

in
AVG

Av
er

ag
e

Nu
m

be
r o

f
Ex

ec
ut

ed
 B

ra
nc

he
s OS

User

Figure 7.2: Average Number of Executed Branches (User vs. Kernel)

user

1

10

100

1000

0 1000 2000 3000 4000 5000

User Context Serial No.

N
um

be
r o

f E
xe

cu
te

d
B

ra
nc

he
s

(a)

OS

1

10

100

1000

0 1000 2000 3000 4000 5000

OS Context Serial No.

N
um

be
r o

f E
xe

cu
te

d
B

ra
nc

he
s

(b)

Figure 7.3: Executed Branches in User and OS Contexts

 103

7.2.2 OS Branch Execution Profile

We next examine what are the dominant kernel branches, and how their

performance can be affected by the user code executing between OS operations. The pie

chart of Figure 7.4 shows the percentage of OS branches (the average of all the

experimented benchmarks) executed in the different services. The result of individual

benchmark can be found in Appendix B. The top five components include: OS

scheduling (scheduling); TLB miss (TLB miss); idle looping (idle); performing file and

I/O services (I/O & file system), and paging (paging).

Miscellaneous
5%

I/O & file system
5%

Synchronization
3%

Idle
6%

Paging
5%

Exception
handling

1%

System calls
1%

TLB miss
18%

Scheduling
56%

Figure 7.4: Where do the OS Dynamic Branches Come from?

These results show that we really need to focus mainly on the TLB handler (it is

done in software on the given MIPS platform to facilitate the use of flexible page table

structure and simplify the handling of sparse address spaces.) and the scheduler. Further,

it should be noted that other services such as file system, synchronization etc., are

directly invoked by the user code. Hence, their behavior (including that for branches) is

influenced by the current state of the invoking application and the parameters of the call.

So one would not like to associate the term “interference” for such services. On the other

 104

hand, TLB handling and scheduler invocations are not necessarily voluntary. It is useful

to understand how the branches in these OS subsystems are invoked and whether history

would have any bearing on their behavior for predictability – so that we can better

understand if the predictability of these branches would be affected by the user code

getting in-between.

Table 7.2 further shows the OS routine based branch distribution. The utlb is the

OS TLB miss handler. The checkRunq routine performs scheduling (picking the next

process to run). The idle does idle looping. Explicit system calls from user code are

handled by syscall. The io_splock routine manipulates I/O spin locks to ensure that all

operations to a particular I/O device are synchronized. The exception_ip12 is the OS

general exception handler. The bcopy is a memory copy routine used for paging and

buffer copying in OS. The mrlock routine gets the states of locks and semaphores. Table

7.2 gives further evidence of the significance of the TLB handling and scheduler

subsystems on the overall branches within the OS. Though utlb and checkRunq both have

high dynamic branch instances, the number of actual branch sites is quite small. We

briefly go over these routines below identifying the branches in these routines and their

anticipated behavior qualitatively.

The utlb handler has only 1 branch, and the reason for its high dynamic instance is

because this routine is invoked frequently. The utlb routine is invoked directly by the

hardware which is the only entity that can invoke this operation. On the other hand, the

scheduler (checkRunq) is invoked from several places. First, this operation is needed for

scheduling decisions (by consulting the ready queue) whenever the time quantum expires

(triggered by timer interrupt), when I/O device activity completes (there are usually

priority boosts and rescheduling may be needed) and idle looping, or even voluntarily

during blocking (making semaphore, I/O requests etc.) or other process state change

 105

activities (such as termination). Consequently, it is to be noted that, while utlb

invocations are only the consequence of application behavior, the scheduler actions are

invoked from all over the OS and are invoked either asynchronously (by hardware

events) or voluntarily due to system load/behavior. In all, it is found there are more than

23 events that can cause checkRunq to be invoked.

Table 7.2: OS Routine Branch Characterization

OS Routine % Dynamic
Branches

Active
Branch

Sites
utlb 38.7 1
checkRunq 34.2 6
idle 3.89 3
syscall 2.8 14
io splock 2.38 5
exception ip12 2.08 6
bcopy 1.5 6
mrlock 1.17 8
vsema 0.65 5
uiomove 0.6 10
findchunk 0.48 8
blkclr 0.48 1
ufget 0.48 8
mrunlock 0.45 3
copyout 0.42 3
getff 0.42 7
psema 0.42 6

7.2.3 Characteristics of OS Branches

This subsection investigates specific properties of OS branches and their

architectural implications.

7.2.3.1 Weakly Biased Branches

 106

It is well known that branches often have biased behavior and many branches are

either usually “taken” or usually “not taken”. The conventional branch history table

(BHT) counters exploit this behavior to predict future outcomes of that branch. However,

when branches showing different biases are mapped into the same entry of the predictor

table, aliased branches update BHT counters with different directions, leading to aliasing

mispredictions.

We measure branch direction distribution in order to gain more insight on bias

behavior of the user and OS branches. Figure 7.5 shows the result based on the average of

all benchmarks. The result of individual benchmark can be found in Appendix C. The

branch sites are categorized into 100% “taken” (always-taken), 0% “taken” (always-not-

taken) and groups between them. For example, the marker “70%-79%” on X-axis implies

that branch sites that fall into this category have a possibility of 70% to 79% to be

“taken”.

25.4

13.7 13.4

4.2
1.8

23.9

19.9

30.4

0

5

10

15

20

25

30

always-ta
ke

n (1
00%)

90%-99%

80%-89%

70%-79%

60%-69%

50%-59%

40%-49%

30%-39%

20%-29%

10%-19%
1%-9%

always-not-ta
ken (0

%)

Branch Direction

%
 o

f D
yn

am
ic

Br
an

ch
es AVG-user

AVG-OS

Figure 7.5: User and OS Branch Directions

The results show that user and OS branches behave differently in terms of the bias

or direction distribution. For example, on benchmark jack, 46% of dynamic branches in

kernel are “always taken” while their counterparts in user code are only 15%. On the

other hand, 18% of dynamic branches in kernel are “always not taken” and that number

in user mode can be as high as 42%. This implies that even when the strongly biased user

and kernel branches are mapped into the same BHT counter, it is likely that they will lead

to aliasing misprediction.

 107

Another interesting observation is that while the dominant portion of branch sites

is strongly biased (i.e. always taken or always not taken) in user code, a significant

number of branches are weakly biased in OS code. More precisely, it is observed that

13.4% of dynamic branches that contribute to the weakly biased (with the category of

40%-49%) branches shown in Figure 7.5, come from a wide range of 22 kernel service

routines. The weakly biased OS branches showing interleaved directions are also found

on other benchmarks, as shown in Appendix C. Among these is the checkRunq routine

that is frequently invoked. This routine checks through queues to find out if a

rescheduling decision needs to be made. Intuitively, it can be hypothesized that the

execution characteristics of such a routine are more a function of the load on the system

more than anything else. Even when the load does not change very much during the

course of this execution, there are bursts of I/O, synchronization activity and other events

that can exercise the checkRunq differently, causing its branch to vary direction. Weakly

biased branches can be a problem to many branch predictors, which rely on the persistent

history and saturated 2-bit counter for accurate branch prediction.

7.2.3.2 How Correlated are Kernel Branches?

I observe that many OS branches are very correlated and hence benefit from two-

level predictors that exploit global history correlation. It should be noted that the utlb

routine has a single branch that is nearly always taken. While static predictors would

suffice for this branch, previous history is also a very good indicator for this particular

branch that accounts for a large portion of the kernel’s dynamic branches. Further, OS

exception handlers frequently use binary decision trees to classify and dispatch vectored

interrupts from the trap entry point to the specific fault handler. Figure 7.6a shows an

example use of such a structure in the general exception handler exception_ip12 OS code.

This handler dispatches an exception to the corresponding kernel processing routine
 108

based on the value of the exception vector. The binary decision tree based branch

sequence of this handler is given in Figure 7.6b. It can be observed that the branches in

the OS routine inttrap will be correlated with a NNT branching sequence while the

branches in systrap will be correlated with a NNNT branching sequence. Hence Gshare

[54] and GAg [90] predictors work extremely well with these branches.

0x80007dd4: <exception_ip12>
andi $k0,$k0,0x7c
li $k1,124
beq $k0,$k1,0x80007d0c <handle_vced>
li $k1,56
beq $k0,$k1,0x80007cec <handle_vcei>
li $k1,32
beqz $k0,0x800080f0 <inttrap>
sw $at,-24524($zero)
beq $k0,$k1,0x80008770 <systrap>
li $at,8
beq $k0,$at,0x80007e78 <kmiss>
li $at,12
beq $k0,$at,0x80007e78 <kmiss>
li $at,92
beq $k0,$at,0x80007e60 <exception_ip12+8c>
li $at,36
bne $k0,$at,0x80008274 <longway>
mfc0 $k0,$12
andi $k0,$k0,0x18
bnez $k0,0x80008274 <longway>
mfc0 $k0,$13
bgez $k0,0x80007e48 <exception_ip12+74>
. . .
jr $at

beq

handle_vcedbeq

handle_vceibeqz

inttrapbeq

beq

beq

beq

bne

bnez

systrap

kmiss

kmiss

exception_ip12+8c

longway

longwaybgez

exception_ip12+74...

T

T

T

T

T

T

T

T

N

N

N

N

N

N

N

N

N

N

T

T

NNT

NNNT

(a) OS Assembly Code to Perform General
Exception Handling

(b) Binary Decision Tree based Branching
Sequence Corresponding to Code Shown in (a)

Figure 7.6: Branch Correlation in OS Code

7.2.3.3 Impact of Intermittent Kernel Execution

Even strongly biased OS branches can experience mispredictions due to the user

code interference. An example for this can be obtained from the utlb routine from the OS.

Since the utlb handler needs to be very efficient, this code is usually written in assembly

and is hand-optimized. There are exactly 13 instructions in this routine, with the bulk of

the instructions used to read the page table entry from the memory system and load it into

the TLB. There is exactly 1 branch within this code that is strongly taken. But intervening

user code interference can result in mispredictions in even such strongly biased branches.

 109

Consider a correlation based branch predictor, and two scenarios of branch history shift

register (BHSR) contents in Figure 7.7. In the absence of user code intervention, the

correlation shift register may look like (a), and leads to correct prediction, whereas the

intervening user code may result in the correlation information to look like (b) and result

in aliasing misprediction.

BHSR

k k k k .. k k k k

BHSR

1 ..1 10
k u u u .. u k u k

0 11 1 1 1 .. 1 1 1 1 0 1

(a) (b)

Figure 7.7: Impact of User/Kernel Inference

7.2.3.4 Characterization of User/OS Aliasing

It is well known that branch aliasing, namely, several branches mapping to the

same entry in the prediction tables, impacts the branch prediction accuracy. Although

some of the aliasing can be neutral or constructive, a large part of the aliasing is often

destructive. The branch aliasing characterization is performed to understand the impact of

user/OS aliasing. In order to do that, the branch prediction simulators is instrumented to

track the mapping between branch instructions and the BHT entries. Branch aliasing is

recorded whenever the branch instruction being mapped to a given BHT entry is different

from what is already present at that entry. Branch aliasing is attributed to user (User/User

Aliasing), kernel (OS/OS Aliasing) and the interaction between them (User/OS Aliasing).

The percentages of misprediction and correct prediction caused by different aliasing

categories are shown in Table 7.3.

In experiments with a Gshare predictor of size 8K BHT entries, user/OS aliasing

on the average contributes to the 14.2% and 2.5% of misprediction and correct prediction

respectively, implying most of the user/OS aliasing are negative. The percentage of

misprediction caused by user/OS aliasing does not change significantly when the

 110

predictor size is increased from 8K entries to 64K entries. This indicates that just

increasing the capacity of the branch predictor will not effectively solve the user/OS

aliasing problem.

Table 7.3: Characterization of Branch Aliasing

(8K BHT Eentries Gshare, MR: Misprediction Rate)

Benchmarks Metric OS/OS
Aliasing

User/User
Aliasing

User/OS
Aliasing

% of Misprediction 6.2 28.2 19.4 db
(MR=4.8%) % of Correct Prediction 1.4 2.7 2.1

% of Misprediction 3.3 37.3 20.1 jess
(MR=8.8%) % of Correct Prediction 1.4 6.5 3.9

% of Misprediction 3.1 34.7 16.4 javac
(MR=7.1%) % of Correct Prediction 0.7 5.2 2.4

% of Misprediction 1.3 35.7 18.8 jack
(MR=8%) % of Correct Prediction 0.6 7.9 4.7

% of Misprediction 1.3 23.5 10.2 mtrt
(MR=4%) % of Correct Prediction 0.2 3.8 1.1

% of Misprediction 0.7 12.0 2.5 compress
(MR=3.1%) % of Correct Prediction 0.1 4.7 0.2

% of Misprediction 0.3 41.5 6.2 gcc
(MR=10.2%) % of Correct Prediction 0.1 10.5 1.9

% of Misprediction 0.1 39.4 11.7 vortex
(MR=7.8%) % of Correct Prediction 0 11.8 3.8

% of Misprediction 3.6 25.1 9.4 pmake
(MR=6.6%) % of Correct Prediction 0.5 4.6 1

% of Misprediction 22.2 9 23.7 sendmail
(MR=9.3%) % of Correct Prediction 3.8 1.7 2.9

% of Misprediction 7.4 16 19.7 postgres.select
(MR=3.1%) % of Correct Prediction 0.9 2.4 2.2

% of Misprediction 7.8 18.4 22.4 postgres.update
(MR=5.7%) % of Correct Prediction 1.7 3.3 3.8

% of Misprediction 1.1 15 4.5 postgres.join
(MR=5.6%) % of Correct Prediction 0.2 5.3 1.1

 111

The user/user aliasing that many previous studies have evaluated is still important

as the results observed from Table 7.3 indicate. However, user/OS aliasing is also a big

source for mispredictions. Table 7.4 characterizes the impact of branch aliasing on

misprediction in user and OS component. With an 8K BHT entry Gshare, approximately

22-62% of mispredictions in OS code are found to be from user/OS aliasing, suggesting

that it is essential to protect kernel branch predictors from interference from user code.

Table 7.4: Characterization of Misprediction due to Branch Aliasing

(8K BHT Entries Gshare, MR: Misprediction Rate)

Benchmarks OS/OS
Aliasing

User/User
Aliasing

User/OS
Aliasing MR%

User -- 39.0 13.5 8.6db OS 22.3 -- 34.9 2.3
User -- 47.3 12.8 12.3jess OS 15.5 -- 47.7 4.3
User -- 42.0 10.0 9.3javac OS 17.9 -- 47.0 3.5
User -- 43.9 11.6 7.8jack OS 6.9 -- 50.4 9.4
User -- 26.6 5.8 3.9mtrt OS 11.5 -- 44.0 4.7
User -- 12.5 1.3 3.1compress OS 16.8 -- 32.0 2.1
User -- 43.6 3.3 10.6gcc OS 6.7 -- 62 5.8
User -- 44.7 6.6 7.5vortex OS 1 -- 49.5 11.3
User -- 28.8 5.4 7.2pmake OS 28 -- 36.2 4.3
User -- 19.9 26.2 6.3sendmail OS 40.5 -- 21.6 14.9
User -- 26.7 16.5 3.5postgres.select OS 18.4 -- 24.5 2.6
User -- 29.3 17.9 9.6postgres.update OS 21 -- 29.9 3.5
User -- 16.1 2.4 7postgres.join OS 16.2 -- 33.5 1.6

7.3 ALLEVIATING IMPACT OF USER/OS INTERFERENCE

It is clear from the prior sections that user and kernel code possess different

branch behavior, often resulting in conflicts in unified structures that capture branch

history. In subsections 7.3.1 and 7.3.2, two philosophies that aim to alleviate the

destructive impact of OS branch execution on branch predictability are presented.

 112

During the initial period of a context switch, both user and kernel history patterns

coexist in history capturing structures. In Gshare and any correlation based predictor, this

can happen in shift registers (BHSRs) that capture correlation between branches and/or

branch history tables (BHTs). One solution is to use separate shift registers to

individually keep track of branch correlation and another solution is to use separate

BHTs.

7.3.1 Split BHSR Predictor

The OS-aware techniques are illustrated in the context of a Gshare predictor, but

it can be applied to other correlation-based predictors as well. A Gshare predictor with

split correlation history shift registers (i.e. split BHSR predictor) is illustrated in Figure

7.8. The split BHSR predictor functions exactly the same as a conventional Gshare

predictor except that two dedicated BHSRs (i.e., U-BHSR for user and K-BHSR for

kernel) are used to gather branch correlation patterns and to generate BHT indexing. By

using K-BHSR for kernel branches, the split BHSR predictor overcomes the loss of

branch history patterns in kernel mode. Meanwhile, the split BHSR predictor

dynamically switches between BHSRs when a context switch occurs, preventing the BHT

indexing ambiguity during the initial stages of a context switch.

K-BHSR

branch address

X
O
R

i bits

i bits

i bits

..

..

BHT of 2i Entries
pr

ed
ic

tio
n

execution mode bit

U-BHSR

...

Processor Status Register

Figure 7.8: Gshare with Split BHSR

7.3.2 Split Predictor

The proposed split BHSR predictor aims to preserve accurate BHT counter

indexing during a context switch. However, user/OS aliasing can still occur when user

and kernel branches have the same XORed global history pattern, but opposite biases.

Due to their different branch bias distribution, user and kernel branches can update BHT
 113

counters in different manners. To reduce the destructive user/OS branch aliasing in BHT,

we propose the use of split BHT for each, which yields split predictor, as shown in Figure

7.9. This predictor eliminates the destructive user/OS aliasing by using separate

correlation and history information for user mode and kernel mode. It is also observed

that when branch history tables are split into user and kernel parts, the kernel BHT can be

smaller than the user BHT because of the fewer active branch sites in kernel (as shown in

Table 7.1).

K-BHSR

X
O
R

i bits K-BHT of 2i Entries

execution mode bit

branch address
i bits

X
O
R

...

..
j bits

j bits

U-BHSR

pr
ed

ic
tio

n

...
U-BHT of 2j Entries

Processor Status Register

..

Figure 7.9: Split Gshare Predictor

In this study, we only consider the design space in which the proposed schemes

are cost-effective than the baseline model. Therefore, we allocate U-BHT with half size

of that used by conventional Gshare predictor for user code and allocate a smaller K-BHT

for kernel code. To understand performance trade-off on K-BHT sizes, we simulate the

split Gshare schemes that have varied K-BHT sizes, i.e., 1K, 2K, 4K and equivalent to

that of U-BHT. Figure 7.10 shows misprediction rates (average number of benchmarks)

yielded by split Gshare predictors with different K-BHT sizes. Note that in Figure 7.10,

the misprediction rates on conventional Gshare are also shown for illustration. The value

 114

x shown on X-axis is the predictor size of conventional Gshare. The size of

corresponding split OS-Gshare is x/2+K-BHT-size.

Figure 7.10 shows that resource constrained split Gshare with 1K K-BHT causes

higher misprediction rates than its conventional Gshare counterpart with large BHT

configuration. The 2K K-BHT configuration outperforms Gshare. Further increasing K-

BHT beyond 2K does not gain significant performance improvement. Therefore, we kept

the user BHT at half the size of the original Gshare and allocate kernel BHT with a fixed

size of 2K entry in our experiment.

0

1

2

3

4

5

6

7

8k 16k 32k 64k 128k 256k 512k

Number of BHT Entries

M
is

pr
ed

ic
tio

n
R

at
e

(%
)

Gshare
1/2 Gshare + 1K K-BHT
1/2 Gshare + 2K K-BHT
1/2 Gshare + 4K K-BHT
Half-Half Splitting

Figure 7.10: K-BHT Size Trade-off

7.3.3 Integrating with Other Predictors

 115

Splitting user and kernel prediction resources is a technique suggested by the

characterization study, not necessarily a particular predictor. We surveyed literature to

identify branch predictors, which may be poised to handle branches with the

characteristics unveiled in the earlier sections. Although not targeted for OS-user branch

interference, Multi-Hybrid [22], Agree [77] and Bi-Mode schemes [44] do contain

mechanisms tailored for branches with heterogeneous characteristics and/or de-aliasing.

Table 7.5 summarizes these schemes, and the additional cost used for branch de-aliasing.

The sizes of all the predictors are normalized to Gshare to give an indication of the

associated area cost.

Table 7.5: A Comparison of Several Branch De-aliasing Schemes

Predictor Description of feature to exploit heterogeneous branches or
De-aliasing

Additional
Branch

De-aliasing
Hardware

Predictor
Size

Normalized
to Gshare
(8k-256k)

Gshare
[54]

Consists of one correlation shift register (BHSR) and one
BHT. BHSR is XORed with branch address bits of a
branch address to index BHT entry. The XORing helps to
reduce aliasing effects.

0 1

Multi-Hybrid 1, 2
[22]

Consists of multiple single-scheme components: simple 2-
bit (2bc), GAs, Gshare, Pshare and always taken predictor.
Use of simple 2-bit predictors (2bc) and static predictors as
components of the multi-hybrid predictor provides quick
warm up after a context switch.

5×2K predictor
selection
counters in
BTB

1.04-2.25

Agree
[77]

Converts instances of destructive aliasing into either
constructive or neutral aliasing by attaching each branch
with a biasing bit that predicts the most likely outcome of
that branch.

2K biasing bits
in BTB 1-1.13

Bi-Mode
[44]

Uses separate history tables for taken and not-taken
branches, and a selection branch history table. This
classification helps to alleviate destructive aliasing while
keeping the harmless aliasing together.

the third BHT
for dynamic
bias selection

1.5

OS-aware split
BHSR predictor
[this research]

OS-aware Gshare predictor uses separate shift registers (U-
BHSR and K-BHSR) for capturing path history patterns. 1 shift register 1

OS aware split
predictor
[this research]

OS-aware Gshare predictor that uses separate branch
history tables for user and kernels. Kernel-BHT is 2K and
User-BHT is 50% of Gshare.

consumes less
BHT resource
than Gshare

0.51-1

1. The simulated Multi-Hybrid does not include AVG predictor [15] because it needs source recompilation which often is
difficult for commercial and complicated software like OS.
2. As indicated by [22], we allocate half of the total budget for Gshare, a quarter of the total budget for Pshare, and 1/8 for 2bc
and Gas respectively. The priority ordering of the component predictors is 2bc, GAs, Gshare, Pshare and always taken scheme.

As shown in Figure 7.11, all these predictors contain a Gshare predictor or a

Gshare indexing [22][77][44]. To integrate the proposed techniques, we simply replace

the conventional Gshare component used in the above predictors with the proposed OS-

aware split-BHSR Gshare predictor and split Gshare predictor.

Table 7.6a shows the average (of the 13 studied benchmarks) misprediction rates

of each baseline predictor and the percentage of misprediction reduction by incorporating

the OS-aware techniques proposed in this paper. Table 7.6b further illustrates the

 116

breakdown of the misprediction reduction in user and OS parts, for each individual

benchmark.

branch address

X
O
R

..

BHT

BHSR

...
BTB

bia
sin

g b
it

agree/disagree

pr
ed

ic
tio

n

 (b) Agree

Predictor Selection Counters BTB

pr
ed

ic
tio

n

branch address

X
O
R

..
BHSR

...

BHT

branch address

...

BHT

1

Priority Encoder
branch address

...

...

...

...

...

BHSR
..

BHT

branch address

X
O
R ...

BHSRs

BHT

 ...

2bc (1/8)

GAs (1/8)

Gshare (1/2)

Pshare (1/4)

Always taken (0)

 (a) Multi-Hybrid

branch address

X
O
R

..

Direction BHT (T)

BHSR

pr
ed

ict
ion

...

...

...

Choice BHT

Direction BHT (NT)

 (c) Bi-Mode

Replace with OS-
aware Gshare

Figure 7.11: Integrating with Other Predictors

As described in subsection 7.4.1, split BHSR predictor only separates the branch

history shift registers. The partitioning of the BHT for user or OS happens dynamically.

The resource available for the code is not less than that in the baseline. Hence, split

BHSR predictor is never inferior to the baseline. Split predictor is at times worse than the

baseline. In split predictor, the partitioning of the BHT between user and kernel code is

done statically. Both the user and kernel BHTs are smaller than the unified BHT in the

baseline configuration. In the configurations studied in this paper, the user BHT is only

50% of the baseline BHT, and the K-BHT is fixed at 2K in all cases. Hence, the overall

size of the philosophy 2 BHT is not much greater than 50% of the BHT in the baseline. A

2K K-BHT is seen to be sufficient to capture all history patterns in the OS code and

except in postgres.update, the mispredictions in OS code goes down. For the user part,

 117

the small size of the U-BHT (4K BHT entries) can detrimentally affect the performance

on benchmarks compress, gcc, pmake, postgres.select and postgres.join.

Table 7.6a: Misprediction Reduction by Introducing OS-aware Prediction

Schemes Size (Number of BHT entries, not including de-
aliasing overhead)

 8k 16k 32k 64k 128k 256k
14.03 12.35 10.89 9.64 8.66 8

Gshare+OS-aware Split BHSR
Predictor % of Misprediction Reduction 31% 32% 31% 29%

Gshare+OS-aware Split Predictor % of Misprediction Reduction 20% 24% 22% 20%
Multi-Hybrid Misprediction(in %) 10.87 9.53 8.58 7.66 6.96 6.3

21% 22% 23% 23% 22% 22%
Multi-Hybrid+OS-aware Split
Predictor % of Misprediction Reduction 13%

Metric

Misprediction(in %) Gshare

33% 34%

17% 15%

Multi-Hybrid+OS-aware Split BHSR
Predictor % of Misprediction Reduction

12% 13% 11% 10% 8%

Agree Misprediction(in %) 12.59 11.41 10.46 9.66 9.13 8.78

% of Misprediction Reduction 27% 27% 27% 26% 25% 24%

Agree+OS-aware Split Predictor % of Misprediction Reduction 19% 20% 20% 19%
Bi-Mode Misprediction(in %) 7.7 6.95 6.42 6.07
Bi-Mode+OS-aware Split BHSR
Predictor % of Misprediction Reduction 10% 9% 9% 9% 9% 9%

4% 2% 1% 1% 0% 0%

On the average, with a 32K BHT entry Gshare, incorporating OS-aware split

BHSR predictor and split predictor reduces 34% and 22% of the misprediction. OS-aware

predictions also reduce the misprediction of Multi-Hybrid, Agree and Bi-Mode

predictors. For instance, compared with the 32K BHT entry baseline predictors, OS-

aware Multi-Hybrid, Agree and Bi-Mode predictors yield up to 23%, 27% and 9%

prediction accuracy improvement respectively, implying that OS-aware predictions still

provide significant improvements on some of the most powerful predictors.

As shown in Table 7.6a and Table 7.6b, split BHSR predictor outperforms split

predictor on most of the de-aliasing predictors examined. Considering overall

performance, in more than half the cases, the performance gain due to the elimination of

user/OS aliasing by split predictor outweighs the performance loss due to individually

using smaller prediction tables for each part. More precisely, for example, the OS-aware

Agree+OS-aware Split BHSR
Predicor

22% 22%
5.79 5.57

% of Misprediction Reduction Bi-Mode+OS-aware Split Predictor

 118

split p predictor reduces 22% of misprediction on a conventional Agree predictor of 32K

BHT entries, using only 18K entries BHT consisting of a 16K entries U-BHT and a 2k

entries K-BHT.

Table 7.6b: OS-aware Prediction: Breakdown of Misprediction Reduction

Gshare
+ OS-aware

Multi-Hybrid
+ OS-aware

Agree
+OS-aware

Bi-Mode
+ OS-aware

Split
BHSR

Predictor

Split
Predictor

Split
BHSR

Predictor

Split
Predictor

Split
BHSR

Predictor

Split
Predictor

Split
BHSR

Predictor

Split
Predictor

23% 20% 15% 21% 17% 9% 8%
OS 8% 7% 11% 15% 7% 7% 10% db
Full-System 28% 14% 20% 16% 8% 8%
User 39% 31% 34% 27% 13% 8%
OS 52% 42% 12% 36% 13% 20% jess
Full-System 42% 34% 28% 23% 29% 13% 10%
User 28% 19% 20% 13% 24% 4%
OS 40% 36% 10% 20% 42% 41% javac
Full-System 30% 22% 18% 14% 27% 21% 8%
User 57% 47% 47% 39% 51% 42% 21% 13%
OS 79% 82% 29% 49% 64% 70% 43% 53% jack

61% 53% 46% 40% 53% 46% 23% 17%
15% 27% 19% 20% 11% 7% 4%

OS 59% 15% 23% 49% 48% 19% 27% mtrt
Full-System 31% 19% 22% 15% 8% 6%
User 11% -27% 7% -30% 3% 2%
OS 43% 29% 7% 12% 8% 13% compress
Full-System 12% -25% 10% 1% 3% 3%
User 16% 2% 10% -1% 12% -1%
OS 46% 55% 3% 26% 62% 68% 31% gcc
Full-System 18% 5% 10% 0% 15% 7% 10%
User 76% 63% 71% 48% 73% 65% 35% 28%
OS 96% 97% 30% 54% 98% 99% 67% 77% vortex

78% 68% 70% 48% 78% 72% 37% 31%
-6% 4% -11% 6% -7% 4% -6%

OS pmake

% of Misprediction Reduction for Different Schemes (8K BHT Entries)

Benchmarks

28% User
28%

19% 16%
31% 25%

15% 44%
36%

17% 8%
9% 18%

6%

Full-System
27% User
60%

20% 25%
10% -3%

11% 19%
7% -29%

2% 10%
14%

1%

Full-System
8% User
11% 2% 2% 8% 7% 13% 3% 8%

-4% 4% -8% 6% -5% 4% -4%
User 5% 3% 1% 0% 3% 1%
OS 5% 1% 3% 2% 2% 2%
Full-System 5% 1% 2% 0% 2% 2%
User 47% 12% 50% 48% 36%
OS 27% 8% 17% 29% 14% 13% postgres.select

30% 35% 16% 40% 40% -14%
User 35% 30% 25% 25% 23% 21%

14% -10% 6% 6% 9% 5% 5% postgres.update
Full-System 27% 17% 19% 22% 16% 15%
User 12% -6% 8% -1% -6% 3% -6%
OS 15% 26% 35% 44% 26%
Full-System 14% -4% 9%

8% Full-System
2% 2%

0% 3% sendmail
3% 2%

56% 45% -34%
22% 26%

45% 26% Full-System
25% 24%

17% OS
14% 17%

10%
42% 32% 34% postgres.join

0% 12% -3% 4% -5%

 119

7.4 PERFORMANCE EVALUATION

The benefits of integrating the above predictors with OS-aware predictions on a

dynamically scheduled superscalar processor are evaluated using a full-system simulator

that captures OS behavior as well. The SimOS MXS model [11], which simulates a

superscalar microprocessor with multiple instruction issue, register renaming, dynamic

scheduling, and speculative execution with precise exceptions, is used. The simulated

architectural model is an 8-issue superscalar processor with instruction latencies as in the

MIPS R10000 [89]. By default, the branch prediction algorithm allows fetch unit to fetch

through up to 4 unresolved branches. In the model, a misprediction will cause a 10-cycle

penalty. BHSR is speculatively updated and later corrected after a misprediction. BHT

counter update takes place in order at instruction commit time.

Figure 7.12 shows the IPC performance for this scenario. Since instruction counts

are the same, IPC improvement is indicative of execution cycle improvement. Results are

depicted for the 13 evaluated programs. Comparison of predictors integrating OS-aware

prediction techniques with Gshare, Multi-Hybrid, Agree and Bi-Mode predictors is

presented. The scale of Y-axis is varied for each benchmark due to their differences in

IPC. Split BHSR predictors improve IPC performance on all of the benchmarks for all of

the four types of base predictors. This benefit is particularly substantial in those programs

where user/OS aliasing is significant, such as jess, jack, vortex, and postgres.update (as

was illustrated in Figure 7.1). The same trend can be observed in programs such as javac

and db. For those programs where the impact of user/OS aliasing on misprediction is less

significant (for instance, compress and pmake), the integration of OS-aware techniques

show only limited improvement.

 120

db

1.5

1.55

1.6

1.65

1.7

32K BHT Entries

IP
C

jess

1.3

1.35

1.4

1.45

1.5

1.55

1.6

32K BHT Entries

IP
C

javac

1.5

1.55

1.6

1.65

1.7

32K BHT Entries

IP
C

Gshare
Gshare+Split BHSR Predictor
Gshare+Split Predictor
Multi-Hybrid
Multi-Hybrid+Split BHSR Predictor
Multi-Hybrid+Split Predictor
Agree
Agree+Split BHSR Predictor
Agree+Split Predictor
Bi-Mode
Bi-Mode+Split BHSR Predictor
Bi-Mode+Split Predictor

jack

1.4

1.45

1.5

1.55

1.6

32K BHT Entries

IP
C

mtrt

1.8

1.85

1.9

1.95

2

32K BHT Entries

IP
C

compress

1.7

1.75

1.8

1.85

1.9

32K BHT Entries

IP
C

Gshare
Gshare+Split BHSR Predictor
Gshare+Split Predictor
Multi-Hybrid
Multi-Hybrid+Split BHSR Predictor
Multi-Hybrid+ Split Predictor
Agree
Agree+Split BHSR Predictor
Agree+ Split Predictor
Bi-Mode
Bi-Mode+Split BHSR Predictor
Bi-Mode+ Split Predictor

gcc

1.2

1.25

1.3

1.35

1.4

1.45

1.5

32K BHT Entries

IP
C

vortex

1.5

1.55

1.6

1.65

1.7

1.75

1.8

32K BHT Entries

IP
C

pmake

1.5

1.55

1.6

1.65

1.7

1.75

1.8

32K BHT Entries
IP

C

Gshare
Gshare+Split BHSR Predictor
Gshare+Split Predictor
Multi-Hybrid
Multi-Hybrid+Split BHSR Predictor
Multi-Hybrid+ Split Predictor
Agree
Agree+Split BHSR Predictor
Agree+ Split Predictor
Bi-Mode
Bi-Mode+Split BHSR Predictor
Bi-Mode+ Split Predictor

sendmail

1.3

1.35

1.4

1.45

1.5

32K BHT Entries

IP
C

postgres.select

1.2

1.25

1.3

1.35

1.4

32K BHT Entries

IP
C

postgres.update

1.1

1.15

1.2

1.25

1.3

32K BHT Entries

IP
C

Gshare
Gshare+Split BHSR Predictor
Gshare+Split Predictor
Multi-Hybrid
Multi-Hybrid+Split BHSR Predictor
Multi-Hybrid+ Split Predictor
Agree
Agree+Split BHSR Predictor
Agree+ Split Predictor
Bi-Mode
Bi-Mode+Split BHSR Predictor
Bi-Mode+ Split Predictor

postgres.join

1.5

1.55

1.6

1.65

1.7

32K BHT Entries

IP
C

Gshare
Gshare+Split BHSR Predictor
Gshare+Split Predictor
Multi-Hybrid
Multi-Hybrid+Split BHSR Predictor
Multi-Hybrid+ Split Predictor
Agree
Agree+Split BHSR Predictor
Agree+ Split Predictor
Bi-Mode
Bi-Mode+Split BHSR Predictor
Bi-Mode+ Split Predictor

Figure 7.12: IPC Improvement of OS-aware Predictors

Integration of split predictor results in improvement in many cases, even though

the predictor size is not much more than 50% of the baseline predictor. In most of the

cases in Gshare, Multi-Hybrid and Agree predictors, despite the small size, split predictor

still results in improvement. In the case of the Bi-Mode predictors, split predictor-

 121

integrated case is inferior to the baseline for 5 of 13 benchmarks. However, if one

compares them to a baseline that is comparable in size (i.e., 16K BHT entries), OS-aware

split predictor with 18K BHT entries (16K U-BHT + 2K K-BHT) outperforms 16K BHT

entries baseline predictor in all cases, resulting up to 10% of IPC speedup [48].

Compared with a Gshare predictor, the two proposed techniques – split BHSR

predictor and split predictor yield up to 8% and 7% of IPC improvement respectively.

This improvement is a result of the removal of aliasing mispredictions. The integration of

OS-aware prediction into Multi-Hybrid predictor yields up to 5% of IPC gain. As

described earlier, Multi-Hybrid allocates the largest prediction resource to its Gshare

component and its overall prediction accuracy is more impacted by Gshare than any other

predictor. Hence, the replacement of the conventional Gshare with the proposed OS-

aware Gshare predictors improves performance.

By introducing OS-aware philosophies on the Agree predictor, up to 7% of IPC

improvement can be achieved. The performance of Agree predictor is largely dependent

on branch biases and possibility of identifying the biased behavior the first time the

branch is introduced into the BTB. If the branch does not show strongly biased behavior,

there is still frequent aliasing between instances of a branch that do not comply with the

biasing bit and instances which do comply with the biasing bit. Once we incorporate OS-

aware policies into the Agree predictor, the filtering out of the visible portion of weakly

biased kernel branches leads more U-BHT entries to reach “agree” status.

The IPC improvement of OS-aware Bi-Mode is marginal (1%), but it should be

noted that the OS-aware Bi-Mode consumes only equivalent or less resource to achieve

this performance enhancement. Thus, OS-aware prediction leads to the same performance

with less hardware.

 122

The results shown in Figure 7.12 also indicate that the combination of the OS-

aware prediction and a simple predictor (for instance, Gshare) can outperform

sophisticated predictors (e.g., Multi-Hybrid and Agree) with larger size configuration.

Current and next generation microprocessors are becoming increasingly sensitive

to branch prediction accuracy due to the use of deeper pipelines and wider issue

microarchitecture. The proposed techniques are expected to yield more ILP performance

benefit on aggressive implementations with higher misprediction penalties.

7.5 DISCUSSION

0
2
4
6
8

10
12

db
(1

6k
)

db
(6

4k
)

je
ss

(1
6k

)

je
ss

(6
4k

)

ja
va

c(
16

k)

ja
va

c(
64

k)

ja
ck

(1
6k

)

ja
ck

(6
4k

)

m
trt

(1
6k

)

m
trt

(6
4k

)

co
m

pr
es

s(
16

k)

co
m

pr
es

s(
64

k)

gc
c(

16
k)

gc
c(

64
k)

vo
rte

x(
16

k)

vo
rte

x(
64

k)

se
nd

m
ai

l(1
6k

)

se
nd

m
ai

l(6
4k

)

po
st

gr
es

.s
el

ec
t(1

6k
)

po
st

gr
es

.s
el

ec
t(6

4k
)

po
st

gr
es

.u
pd

at
e(

16
k)

po
st

gr
es

.u
pd

at
e(

64
k)

po
st

gr
es

.jo
in

(1
6k

)

po
st

gr
es

.jo
in

(6
4k

)

Benchmark(Gshare Predictor Size)

M
is

pr
ed

ic
tio

n
R

at
e

(%
) Eliminated by Split BHSR Predictor

Extra Caused by OS Execution
User Only

0
2
4
6
8

10
12
14

db
(1

6k
)

db
(6

4k
)

je
ss

(1
6k

)

je
ss

(6
4k

)

ja
va

c(
16

k)

ja
va

c(
64

k)

ja
ck

(1
6k

)

ja
ck

(6
4k

)

m
trt

(1
6k

)

m
trt

(6
4k

)

co
m

pr
es

s(
16

k)

co
m

pr
es

s(
64

k)

gc
c(

16
k)

gc
c(

64
k)

vo
rte

x(
16

k)

vo
rte

x(
64

k)

se
nd

m
ai

l(1
6k

)

se
nd

m
ai

l(6
4k

)

po
st

gr
es

.s
el

ec
t(1

6k
)

po
st

gr
es

.s
el

ec
t(6

4k
)

po
st

gr
es

.u
pd

at
e(

16
k)

po
st

gr
es

.u
pd

at
e(

64
k)

po
st

gr
es

.jo
in

(1
6k

)

po
st

gr
es

.jo
in

(6
4k

)

Benchmark(Gshare Predictor Size)

M
is

pr
ed

ic
tio

n
R

at
e

(%
)

Eliminated by Split BHSR Predictor
Extra Caused by User Execution
OS Only

(a) User

(b) OS

Figure 7.13: Impact of OS-aware Split BHSR Predictor

We motivated the research in this chapter using Figure 7.1, which showed that

kernel interference increases user misprediction from 1.1x to 6x (with an average of

2.1x). Similarly, it is observed that user interference increases OS misprediction from

 123

1.3x to 129x (with an average of 13x). In this subsection, we revisit this characterization

in the presence of the OS-aware prediction.

Figure 7.13 illustrates the impact of user/OS execution on branch prediction after

OS-aware split BHSR predictor is integrated with Gshare. Compared with Figure 7.1,

OS-aware split BHSR predictor significantly reduces the negative impact of user/OS

interference on branch prediction, resulting in the drop of mispredictions from 2.1x to

1.2x and from 13x to 2x in user and OS space respectively.

0
2
4
6
8

10
12

db
(1

6k
)

db
(6

4k
)

je
ss

(1
6k

)

je
ss

(6
4k

)

ja
va

c(
16

k)

ja
va

c(
64

k)

ja
ck

(1
6k

)

ja
ck

(6
4k

)

m
trt

(1
6k

)

m
trt

(6
4k

)

co
m

pr
es

s(
16

k)

co
m

pr
es

s(
64

k)

gc
c(

16
k)

gc
c(

64
k)

vo
rte

x(
16

k)

vo
rte

x(
64

k)

se
nd

m
ai

l(1
6k

)

se
nd

m
ai

l(6
4k

)

po
st

gr
es

.s
el

ec
t(1

6k
)

po
st

gr
es

.s
el

ec
t(6

4k
)

po
st

gr
es

.u
pd

at
e(

16
k)

po
st

gr
es

.u
pd

at
e(

64
k)

po
st

gr
es

.jo
in

(1
6k

)

po
st

gr
es

.jo
in

(6
4k

)

Benchmark(Gshare Predictor Size)

M
is

pr
ed

ic
tio

n
R

at
e

(%
) Eliminated by Split Predictor

Extra Caused by Less (50%) U-BHT
User Only

0
2
4
6
8

10
12
14
16

db
(1

6k
)

db
(6

4k
)

je
ss

(1
6k

)

je
ss

(6
4k

)

ja
va

c(
16

k)

ja
va

c(
64

k)

ja
ck

(1
6k

)

ja
ck

(6
4k

)

m
trt

(1
6k

)

m
trt

(6
4k

)

co
m

pr
es

s(
16

k)

co
m

pr
es

s(
64

k)

gc
c(

16
k)

gc
c(

64
k)

vo
rte

x(
16

k)

vo
rte

x(
64

k)

se
nd

m
ai

l(1
6k

)

se
nd

m
ai

l(6
4k

)

po
st

gr
es

.s
el

ec
t(1

6k
)

po
st

gr
es

.s
el

ec
t(6

4k
)

po
st

gr
es

.u
pd

at
e(

16
k)

po
st

gr
es

.u
pd

at
e(

64
k)

po
st

gr
es

.jo
in

(1
6k

)

po
st

gr
es

.jo
in

(6
4k

)

Benchmark(Gshare Predictor Size)

M
is

pr
ed

ic
tio

n
R

at
e

(%
)

Eliminated by Split Predictor
Extra Caused by Fixed 2K K-BHT
OS Only

(a) User

(b) OS

Figure 7.14: Impact OS-aware Split Predictor

Similarly, Figure 7.14 revisits the impact of user/OS on branch misprediction

after an OS-aware split predictor is integrated. Compared with Figure 7.1, OS-aware split

predictor cost-effectively reduces the negative impact of kernel code on branch

misprediction in user part. The misprediction reduction by OS interference removal

outweighs the extra misprediction caused by using less (50%) BHT resource on all
 124

benchmarks except compress and pmake. In the OS part, the fixed size 2K K-BHT still

outperforms the performance of a unified 16K BHT on benchmarks jess, javac, jack,

mtrt, gcc, vortex and postgres.join.

7.6 RELATED WORK

There have been limited studies on the impact of OS activity on branch predictors.

Flushing branch prediction tables (i.e., BHT, BHSRs) at a given interval of instructions

have been used to model the effects of context switch in user-code-only simulation by

several research studies [62][22]. However, periodic flushing has been found to

inaccurately estimate user/kernel branch interactions [24] because a short switch does not

necessarily flush the branch history state and such a methodology can unfairly penalize

predictors with large table sizes. The negative impact of kernel branches on branch

prediction has been reported in [24]. However, little research has been done on hardware

optimization to alleviate the destructive user/kernel branch aliasing problem.

Past research has shown that destructive branch aliasing can seriously deteriorate

the performance of branch predictors [92][73][24]. To address the aliasing problem,

Gshare [54] uses “exclusive or” (XOR) of the global history with the low-order address

bits of a branch to form a more randomized BHT index, leading it to be one of the best

single-scheme predictors.

There have been several other proposals to reduce aliasing problems

[16][22[56][77][44]. Evers and Patt propose Multi-Hybrid predictor [22] and show that it

is more accurate than classic two-component hybrid predictors [54] in the presence of

context switch. Multi-Hybrid uses more than two single-scheme predictors and associates

a predictor selection counter with each single-scheme predictor to keep track of the most

accurate component predictor for each branch. A priority encoding mechanism is used to

select the appropriate prediction. Using predictors with short training time (e.g., static
 125

predictor, 2bc) to assist the otherwise more accurate predictors (e.g., Gshare, GAs) during

their warm-up phases, Multi-Hybrid maintains high prediction accuracy after a loss of

branch histories due to context switches.

The Agree predictor [77] converts instances of destructive aliasing into either

constructive or neutral aliasing by attaching each branch with a biasing bit that predicts

the most likely outcome of that branch. The 2-bit BHT counter is then interpreted as

whether or not the branch will go in the direction indicated by the biasing bit. The idea

behind the Agree predictor is that most branches are highly biased. If the behavior can be

captured by biasing bits, those branches using the same BHT entry are more likely to

update the counter in the same direction - towards the “agree” state, which will not result

in mispredictions.

In Agree predictor, the biasing bit is determined by the direction of that branch

when it is initially introduced into the branch target buffer (BTB). The Bi-Mode predictor

[44] proposed by Lee and Mudge uses a dedicated choice BHT to dynamically determine

the “taken” or “not-taken” bias. The Bi-Mode predictor splits the conventional BHT table

into two parts; one is a “taken” direction BHT and the other is a “not-taken” direction

BHT. The direction BHTs are indexed by the branch address XORed with the global

history. When a branch is encountered, both direction BHTs make predictions and a

choice BHT entry pointed by branch address is used to choose the final prediction. Later,

only the direction BHT chosen by the choice BHT is updated. As a result of this scheme,

branch predictions stored in a direction BHT will have the same bias. Thus, this

classification helps to alleviate destructive aliasing while keeping the harmless aliasing

together.

There are other branch de-aliasing techniques which trade conflict and capacity

aliasing by introducing multiple BHT banks [56] or use a branch filtering mechanism

 126

[16]. Usually, most of existing branch de-aliasing schemes consume extra resources due

to the additional overhead used for branch de-aliasing, such as multiple component

predictor and predictor selection counter table in Multi-Hybrid, biasing bit table in agree

predictor and choice BHT in Bi-Mode predictor.

7.7 SUMMARY

Control flow prediction is one of the key issues in the design of high performance

processors. It is extremely important that processor hardware, software and the operating

system collaborate with each other to deliver high performance. The operating system

affects control flow predictability by introducing the additional user/OS branch aliasing

in predictor hardware. Compared to the branches in user code, the OS branches are

usually invoked by the exception-driven and intermittently executed kernel routines and

may have different biased behavior caused by performing operations not common in user

mode. Thus, when interacted with user branches, the OS branches increase misprediction

significantly.

The proposed OS-aware prediction is a technique that advocates orchestrating

branch correlation information and/or branch history information for user and kernel

branches individually. The proposed OS-aware prediction can be incorporated into any

other predictor, ranging from a naïve Gshare to the more sophisticated Multi-Hybrid,

Agree and Bi-Mode predictors, to further improve prediction accuracy. More precisely,

on the 32K BHT entry predictors, incorporating OS-aware strategies into previously

proposed Gshare, Multi-Hybrid, Agree and Bi-Mode predictors yields up to 34%, 23%,

27% and 9% prediction accuracy improvement and up to 8%, 5%, 7% and 1% execution

speedup respectively.

 127

Chapter 8: Conclusions and Future Work

It is a very exciting time to do research in computer architecture area because

VLSI technology continues to provide increasing numbers of transistors and clock speeds

to allow computer architects to build even more powerful microprocessors and computer

systems than those we have seen today.

However, as software technologies evolve, new computer applications and

programming paradigms are constantly emerging to challenge the traditional hardware

designs. Moreover, the high-complexity design driven by the quest for greater

performance has resulted in many critical issues, such as higher power dissipation.

Therefore, there are at least two challenges in high performance microprocessor design:

(1) How to maximize performance across different applications, and (2) How to mange

power dissipation.

It has been proved that in order to achieve higher performance and better energy

efficiency, software behavior and characteristics should be carefully considered during

hardware design. Adhering to this philosophy, previous work extensively exploited the

interactions of applications-compilers-hardware. The Operating System (OS) is a major

software component of today’s complex systems. Nevertheless, its effects on hardware

have largely been ignored.

This dissertation advocates the incorporation of OS component in processor

hardware design. This is particularly interesting because modern and emerging

applications tend to invoke heavier OS activity than traditional and technical workloads.

This trend is likely to continue in the near future and it is very important to consider the

OS not only for performance evaluations, but also when attempting to optimize the

performance and power of hardware.

 128

This dissertation demonstrates that with minimal and simple hardware

modifications or additions, OS-aware design philosophy can cost-effectively achieve

higher performance and better energy efficiency.

8.1 CONCLUSIONS

This dissertation makes important contributions to several key areas:

• Complete system, emerging workloads and OS characterization

There is abundant variety among applications running on today’s computer

systems. However, the using of user-only technical workloads has dominantly

driven evaluating architectural designs/optimizations. It is essential to understand

the characteristics of today’s emerging workloads in order to design efficient

architectures for them. Given the facts that emerging and commercial applications

involve system activities significantly, it is nature to consider the using of

complete system evaluation. This dissertation conducts research on full-system

workload characterization to understand the implications of emerging and system

workloads from the system perspective. By exploring interactions of architecture,

applications, OS and managed run-time environments, this dissertation proposes

several system performance and power optimizations targeting for emerging

workloads.

• Run-time OS power estimation

Power modeling is increasingly becoming a critical issue during system designs,

as well as run-time power/performance optimizations. The OS constitutes a major

software component and dissipates a significant portion of total power in many

modern application executions. Therefore, modeling OS power is imperative for

accurate software power evaluation, as well as power management (e.g. dynamic

thermal control and equal energy scheduling) in the light of emerging workload
 129

execution. This dissertation conducts research to characterize the power behavior

of a modern, commercial OS across a wide spectrum of applications to understand

OS energy profiles and then proposed various models to cost-effectively estimate

its run-time energy dissipation. Profiling of several Java, Database, file/e-mail

workloads illustrated a strong correlation between IPC and OS routine power.

Exploiting this correlation, we built a model to estimate energy consumption of

OS activity. The proposed models rely on a few simple parameters and have

various degrees of complexity and accuracy. Compared with cycle-accurate full-

system simulation, the model can predict cumulative OS energy to within 1%

accuracy for a set of benchmark programs evaluated on a high-end superscalar

microprocessor. The proposed routine level power model not only offers superior

accuracy when compared to a simpler, flat OS power model, but also provides

per-routine estimation errors of less than 6% when applied to track the run-time

OS energy profile. The integrated OS performance/power characterization not

only leads to efficient power estimation for OS-intensive applications but also

provides hint to reduce OS power consumption. Having known the routine based

power dissipation behavior, hardware can be adapted for power minimization.

• OS power saving

To reduce OS power, hardware can provide resources that closely match the

needs of the OS. However, with exception-driven and intermittent execution in

nature, it becomes difficult to accurately predict and adapt processor resources in

a timely fashion for OS power savings without significant performance

degradation. The OS-aware routine based microprocessor resource adaptation

proposed in this dissertation permits precise hardware reconfigurations for the OS

with low overhead and allows fine-grained performance/power tuning at

 130

microarchitectural level. Compared with sampling based techniques, this scheme

has the following advantages: (1) The proposed adaptation scheme guarantees the

timely and fine-grained resolution required to capture the exception-driven, short-

lived OS activity; (2) The adaptation techniques eliminate significant portion of

adaptation overhead; (3) The adaptation scheme has the capability to select the

optimal configuration for different OS code, yielding more attractive power and

performance trade-off; (4) This scheme is orthogonal to and can be integrated

with existing scheme proposed for user-only applications. With the increasing

impact of the leakage power, routine customized aggressive adaptation tends to

save more power by safely turning off more transistors. The proposed scheme can

be exploited in mobile computing systems for energy saving, as well as in

conventional systems for dynamic thermal management.

• OS-aware low power I-cache

Low power has been considered as an important issue in instruction cache (I-

cache) designs. Several studies have shown that the I-cache can be tuned to

reduce power. These techniques, however, exclusively focus on user-level

applications. This study goes beyond previous work to explore the opportunities

of employing the three subsystems – application, OS and hardware – to improve

I-cache energy efficiency. User/OS I-cache accesses on system workloads are

characterized to identify power saving opportunities due to dual-mode operation.

Two techniques, OS-aware cache way lookup and OS-aware cache set drowsy

mode, are proposed to reduce the dynamic and the static power consumption of I-

cache. The OS-aware cache way lookup reduces the number of parallel tag

comparisons and data array read-outs for cache accesses and saves dynamic

power. Integrating with a state-preserving, leakage control mechanism, OS-aware

 131

tuning effectively reduces static power, which is gaining in importance due to

CMOS technology scaling. Unlike other proposed schemes, OS-aware tuning

achieves both dynamic and static power savings but require minimal hardware

modification and addition. Simulation based experiments show that with no or

negligible impact on performance, applying OS-aware tuning techniques to a 32

KB, 4-way set-associative I-cache yields significant dynamic and static power

savings across the experimented applications. The proposed techniques can be

implanted into sever processor I-caches mostly targeting on OS-intensive

commercial applications.

• OS-aware control flow prediction

Control flow prediction is one of the key issues in the design of high performance

processors. It is extremely important that processor hardware, software and the

OS collaborate with each other to deliver high performance. The OS affects

control flow predictability by introducing the additional user/OS branch aliasing

in predictor hardware. Compared to the branches in user code, the OS branches

are usually invoked by the exception-driven and intermittently executed kernel

routines and may have different biased behavior caused by performing operations

not common in user mode. Thus, when interacted with user branches, the OS

branches increase misprediction significantly. Current branch predictors have paid

less attention to the OS requirements and therefore, do not contain mechanisms to

specifically alleviate the user/OS aliasing. This dissertation proposes OS-aware

branch prediction designed to reduce user/OS branch aliasing without adding

extra hardware for branch de-aliasing. The proposed OS-aware prediction can be

incorporated into any other predictor, ranging from a naïve Gshare to the more

sophisticated Multi-Hybrid, Agree and Bi-Mode predictors, to further improve

 132

prediction accuracy. Simulation results also show that the combination of the OS-

aware prediction and a simple predictor (for instance, Gshare) can outperform

sophisticated predictors (e.g., Multi-Hybrid and Agree) with larger size

configuration. OS-aware techniques provide opportunities for catering user and

kernel branches with differently tuned structures. For example, compared with a

conventional design, the OS-aware split predictor requires access to only one of

the smaller prediction tables for a given branch instruction mode (kernel or user),

which can result in energy savings and low-latency access. These advantages are

valuable in the light of power and clock frequency constraints in emerging

processor and branch predictor designs.

8.2 FUTURE WORK

• OS-aware / OS-friendly computer architecture

In the near future, I am interested in the extending of my thesis work to design the

OS-aware and OS friendly architecture to improve the system performance and

energy efficiency on emerging application execution. For example, I intend to

look at how OS-aware architecture can help with other performance critical

microarchitecture designs, such as value prediction, register file, and data caches.

I would also like to extend the emerging workload oriented microarchitecture

optimizations from superscalar paradigm to CMP and SMT systems. I believe

there is significant room to improve system performance, energy-efficiency,

quality of service, and security by providing OS-friendly, emerging application-

oriented architecture.

• Software power models supporting run-time energy and thermal

management

 133

As a natural extension of the research on OS power modeling, I intend to look

how general software knowledge with various granularities can be combined with

simple, run-time hardware metrics to produce efficient power estimation, a first

step toward run-time, system wide energy and thermal management. I would like

to further extend the SoftWatt full-system power estimation framework co-

developed with my collaborators to support CMP and SMT architecture. I also

plan to do research on reactive system for power savings by exploiting the

behaviors of human-computer interactions.

• Adaptable computer and system architecture for heterogeneous applications,

OS and run-time environments

The long-term research plan is to design and develop techniques to support

systems that automatically analyze heterogeneous workloads, extra workload

feature from applications, and dynamically respond to the changes in application

demands by reconfiguring its components to match application needs. The

systems can accommodate the needs of different application categories with a

uniform design, instead of the current practice of optimizing the system for a

particular application class. I intend to achieve this goal by applying an integrated

hardware-software approach, including adaptable hardware microarchitecture,

lightweight operating system and managed run-time supports, innovative

middleware, intelligent compiler and programming environments. I believe that

adaptability will enhance the technical efficiency of the system, its ease of use,

and its commercial viability by accommodating a large set of commercial and

high performance computing workloads.

 134

Appendices

Appendix A: Power Characterization of OS Routines
(ε: Regression Model Fitting Error)

Interrupts
IPC Power Regression Model

P = k1×IPC+k0
OS

Services
Avg.

Cycles Avg. Std. Dev.
(%)

Avg.
(W)

Std. Dev.
(%) k1 k0 ε

Comment

utlb 13 0.92 0 28 0.1 23.6 6.2 0.17% TLB miss handler
pfault 1,100 1.16 19 40 6.2 32.8 1.9 0.48% protection fault
vfault 971 1.43 11 47 3.4 23.9 12.9 4.89% virtual memory fault
COW_fault 2,574 1.65 8 54 2.6 32.1 1.1 0.19% copy-on-write fault
demand_zero 1,939 1.54 16 44 4.5 27.6 1.5 0.40% zero fill page faults
simscsi_intr 993 0.98 37 35 12.6 33.9 1.3 1.94% SCSI disk I/O interrupt
if_etintr 241 1.38 51 42 15.0 29.4 1.1 1.57% Ethernet interrupt
du_poll 481 0.95 26 35 9.3 35.7 0.8 5.04% input/output multiplexing
clock 2,457 0.53 26 20 9.5 36.4 0.6 2.68% clock interrupts

Process and Interprocess Control
IPC Power Regression Model

P = k1×IPC+k0
OS

Services
Avg.

Cycles Avg. Std. Dev.
(%)

Avg.
(W)

Std. Dev.
(%) k1 k0 ε

Comment

exit 63,492 1.08 12 39 4.3 36.0 0.6 0.42% terminate a process
fork 16,154 1.28 6 45 2.3 36.5 -1.7 0.99% create a new process

getpid 226 1.51 23 48 7.7 33.6 -2.7 0.75% return the process ID of the
calling process

getuid 248 1.34 5 42 1.8 33.6 -3.1 0.17% return the real user ID of the
calling process

alarm 594 0.77 9 26 2.9 32.8 0.6 0.14% set a process alarm clock
pipe 4,188 0.71 11 25 3.8 35.4 0.4 0.50% create an interprocess channel

getgid 240 1.41 21 43 6.5 30.5 0.4 0.10% return the real group ID of the
calling process

execve 64,401 1.23 4 43 1.2 31.0 4.6 0.20% execute a file
sigreturn 924 1.17 7 39 2.4 34.5 -1.4 0.56% returns from a signal handler
getsockname 1,137 0.74 10 25 3.1 32.4 1.2 0.57% get socket name

getdomainname 590 0.70 18 22 5.6 31.2 0.3 0.04% get name of current NIS
domain

setreuid 1,455 0.43 6 14 2.2 34.7 -0.9 0.08% set real and effective user ID's

sproc 51,775 1.24 4 41 0.1 15.7 21.1 0.12% create a new share group
process

prctl 813 0.48 12 15 3.8 31.8 -0.2 0.89% operations on a process

ksigaction 624 1.17 7 38 2.3 32.8 0.1 0.70% used to implement all type
signal routines

sigprocmask 364 1.46 29 47 9.2 31.4 0.9 0.03% alter and return previous state
of the blocked signals

BSDsetpgrp 2,565 0.41 4 15 1.6 35.4 0.3 0.55% set process group ID

sigsuspend 9,901 0.30 15 11 5.0 33.7 0.7 0.94% release blocked signals and
wait for interrupt

getcontext 679 1.38 31 43 9.6 30.6 0.2 0.19% get current user context
setcontext 1,025 0.97 14 32 4.5 33.1 0.1 0.48% set current user context

 135

File System
IPC Power Regression Model

P = k ×1 IPC+k0
OS

Services
Avg.

Cycles Avg. Std. Dev.
(%)

Avg.
(W)

Std. Dev.
(%) k1 k0 ε

Comment

read 2,614 1.36 19 45 6.1 29.6 4.7 4.53% read file
write 9,344 0.91 9 33 3.2 34.3 1.5 1.27% write file

open 8,626 0.97 10 35 3.5 34.3 1.2 0.41% opens a file, serial port or
command pipeline

close 2,131 0.77 21 27 6.5 30.4 3.9 2.61% close an open channel
unlink 8,904 1.00 7 36 2.0 30.0 5.5 0.11% remove a link to a file
lseek 536 1.01 22 33 7.3 33.1 -0.5 2.49% move read/write file pointer

access 6,547 1.11 18 39 5.9 33.3 1.7 0.57% determine accessibility of a
file

dup 1,074 0.74 18 25 5.7 32.4 1.2 0.56% duplicate an open file
descriptor

ioctl 5,230 0.51 3 18 1.0 32.5 1.1 0.52% perform a variety of control
functions on devices

fcntl 613 1.39 25 45 8.3 33.2 -0.9 0.95% file and descriptor control

getdents 5391 1.00 35 34 11.3 32.4 1.8 0.58%
read directory entries and put
in a file system independent
format

xstat 5,990 1.22 14 43 4.8 35.0 0 0.85% obtain file attributes

lxstat 3,517 1.52 3 53 1.0 34.9 -0.2 0.20% obtain symbolic link file
attributes

fxstat 1,293 0.85 18 28 5.4 30.5 2.0 2.01%
obtain information about an
open file known by the file
descriptor

Miscellaneous Services
IPC Power Regression Model

P = k ×1 IPC+k0
OS

Services
Avg.

Cycles Avg. Std. Dev.
(%)

Avg.
(W)

Std. Dev.
(%) k1 k0 ε

Comment

brk 2,974 0.80 18 30 6.3 35.8 1.1 1.03% change data segment space
allocation

syssgi 2,377 1.06 3 37 1.0 34.4 0.3 0.29% system interface specific to
SGI

utssys 1,833 0.47 2 16 0.5 31.9 0.7 0.22% set/get system's hostname
ulimit 364 1.08 52 34 15.9 30.4 1.0 0.02% get and set user limits
mmap 7,311 0.74 12 26 4.2 34.5 0.6 1.08% map pages of memory

1,703 0.99 3 35 1.1 35.3 0.3 0.50% set protection of memory
mapping

msync 23,107 0.61 3 23 0.1 36.8 0 0.36% synchronize memory with
physical storage

getrlimit 1,045 0.42 2 14 0.2 18.0 6.1 0.42% control maximum system
resource consumption

cacheflush 867 1.22 2 41 0.8 33.4 0.1 0.41% flush contents of instruction
and/or data cache

waitsys 3,338 0.63 65 22 1.9 32.7 1.4 0.55% underlying system call for all
wait-like calls

timein 1,185 0.65 15 23 5.0 34.3 0.4 2.89% set timer
time 478 0.97 7 32 2.3 33.2 -0.6 0.85% count elapsed time

mprotect

 136

Appendix B: Breakdown of Dynamic OS Branches based on Services

db

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

jess

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

javac

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

jack

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

mtrt

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

compress

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

gcc

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

vortex

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

pmake

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

sendmail

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Buffer Copying
System calls
Exception handling
Miscellaneous

postgres.select

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

postgres.update

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

postgres.join

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

 137

Appendix C: Illustration of Weakly Biased Branches in OS

21.2

17.0 16.8 16.1

1.24.9

19.0

28.8

0

5

10

15

20

25

30

alw
ays

-ta
ke

n (
10

0%)

90
%-99%

80
%-89%

70
%-79%

60
%-69%

50
%-59%

40
%-49%

30
%-39%

20
%-29%

10%-19%
1%

-9%

alw
ays

-no
t-ta

ke
n (

0%)

Branch Direction

%
 o

f D
yn

am
ic

Br
an

ch
es db-user

db-OS
21.5

26.2

13.5 12.4

19.8

2.8
3.4

25.9

0

5

10

15

20

25

30

alw
ays

-ta
ke

n (
10

0%)

90
%-99%

80
%-89%

70
%-79%

60
%-69%

50
%-59%

40
%-49%

30
%-39%

20
%-29%

10
%-19%

1%
-9%

alw
ays

-no
t-ta

ke
n (

0%)

Branch Direction

%
 o

f D
yn

am
ic

 B
ra

nc
he

s jess-user
jess-OS

17.1 17.0
21.0 17.6

3.3
2.6

27.3

21.0

0

5

10

15

20

25

30

alw
ays

-ta
ke

n (
10

0%)

90
%-99%

80
%-89%

70
%-79%

60
%-69%

50
%-59%

40
%-49%

30
%-39%

20
%-29%

10
%-19%

1%
-9%

alw
ays

-no
t-ta

ke
n (

0%)

Branch Direction

%
 o

f D
yn

am
ic

 B
ra

nc
he

s javac-user
javac-OS

42.346.2

9.5 8.8

1.8 0.9

14.7 17.5

0

5

10

15

20

25

30

alw
ays

-ta
ke

n (
10

0%)

90
%-99%

80
%-89%

70
%-79%

60
%-69%

50
%-59%

40
%-49%

30
%-39%

20
%-29%

10
%-19%

1%
-9%

alw
ays

-no
t-ta

ke
n (

0%)

Branch Direction

%
 o

f D
yn

am
ic

Br
an

ch
es jack-user

jack-OS

28.1

15.3 15.1

17.9

6.1 7.3

23.2
24.1

0

5

10

15

20

25

30

alw
ays

-ta
ke

n (
10

0%)

90
%-99%

80
%-89%

70%-79%

60
%-69%

50
%-59%

40%-49%

30
%-39%

20
%-29%

10%-19%
1%

-9%

always
-no

t-ta
ke

n (
0%)

Branch Direction

%
 o

f D
yn

am
ic

Br
an

ch
es mtrt-user

mtrt-OS

7.6

71.935.3

13.5 13.4

0.9
2.9

21.3

0

5

10

15

20

25

30

alw
ays

-ta
ke

n (
10

0%)

90
%-99%

80
%-89%

70
%-79%

60
%-69%

50
%-59%

40
%-49%

30
%-39%

20
%-29%

10
%-19%

1%
-9%

alw
ay

s-n
ot-ta

ke
n (

0%)

Branch Direction

%
 o

f D
yn

am
ic

 B
ra

nc
he

s compress-user
compress-OS

35.2

15.6 15.5

7.0
1.75.7

31.5

23.8

0

5

10

15

20

25

30

alw
ays

-ta
ke

n (
10

0%)

90
%-99%

80
%-89%

70
%-79%

60
%-69%

50
%-59%

40
%-49%

30
%-39%

20
%-29%

10
%-19%

1%
-9%

alw
ays

-no
t-ta

ke
n (

0%)

Branch Direction

%
 o

f D
yn

am
ic

 B
ra

nc
he

s gcc-user
gcc-OS

35.3

0.9
0.4 0.0

36.0

0.0 0.9

87.8

0

5

10

15

20

25

30

alw
ays

-ta
ke

n (
10

0%)

90
%-99%

80
%-89%

70
%-79%

60
%-69%

50
%-59%

40
%-49%

30
%-39%

20
%-29%

10
%-19%

1%
-9%

alw
ays

-no
t-ta

ke
n (

0%)

Branch Direction

%
 o

f D
yn

am
ic

 B
ra

nc
he

s vortex-user
vortex-OS 24.0

17.1 17.2

3.8
2.2

11.9

27.7

18.8

0

5

10

15

20

25

30

alw
ays

-ta
ke

n (
10

0%)

90
%-99%

80
%-89%

70
%-79%

60
%-69%

50
%-59%

40
%-49%

30
%-39%

20
%-29%

10
%-19%

1%
-9%

alw
ays

-no
t-ta

ke
n (

0%)

Branch Direction

%
 o

f D
yn

am
ic

 B
ra

nc
he

s pmake-user
pmake-OS

24.1

3.0 1.7
5.11.1

4.3

27.2

19.1

0
5

10

15
20
25
30

35
40
45

alw
ays

-ta
ke

n (
10

0%)

90
%-99%

80
%-89%

70
%-79%

60
%-69%

50
%-59%

40
%-49%

30
%-39%

20
%-29%

10
%-19%

1%
-9%

alw
ays

-no
t-ta

ke
n (

0%)

Branch Direction

%
 o

f D
yn

am
ic

 B
ra

nc
he

s sendmail-user
sendmail-OS

45.8

16.9 16.9

1.3
0.0

25.9

8.4

17.0

0

5

10

15

20

25

30

alw
ay

s-t
ak

en (
10

0%)

90
%-99%

80
%-89%

70
%-79%

60
%-69%

50
%-59%

40
%-49%

30
%-39%

20
%-29%

10
%-19%

1%
-9%

alw
ays

-no
t-ta

ke
n (

0%)

Branch Direction

%
 o

f D
yn

am
ic

 B
ra

nc
he

s postgres.select-user
postgres.select-OS

33.4

18.4 17.7

4.0
1.8

20.9

7.8

17.3

0

5

10

15

20

25

30

alw
ays

-ta
ke

n (
10

0%)

90
%-99%

80
%-89%

70
%-79%

60
%-69%

50
%-59%

40
%-49%

30
%-39%

20
%-29%

10
%-19%

1%
-9%

alw
ays

-no
t-ta

ke
n (

0%)

Branch Direction

%
 o

f D
yn

am
ic

 B
ra

nc
he

s postgres.update-user
postgres.update-OS

28.4

20.8 20.8

13.8

0.2

13.6

26.7

19.4

0

5

10

15

20

25

30

alw
ays

-ta
ke

n (
10

0%)

90
%-99%

80
%-89%

70
%-79%

60
%-69%

50
%-59%

40
%-49%

30
%-39%

20
%-29%

10
%-19%

1%
-9%

alw
ays

-no
t-ta

ke
n (

0%)

Branch Direction

%
 o

f D
yn

am
ic

Br
an

ch
es

postgres.join-user
postgres.join-OS

 138

Bibliography

[1] A. Agarwal, H. Li, and K. Roy, DRG-Cache: A Data Retention Gated-Ground
Cache for Low Power, In Proceedings of the International Design Automation
Conference, 2002.

[2] A. R. Alameldeen and D. A. Wood, Variability in Architectural Simulations of
Multi-threaded Workloads, In Proceedings of the International Symposium on
High Performance Computer Architecture, 2003.

[3] D.H. Albonesi, Dynamic IPC/Clock Rate Optimization, In Proceedings of
International Symposium on Computer Architecture, 1998.

[4] D. H. Albonesi, Selective Cache Ways: On-Demand Cache Resource Allocation,
Journal of Instruction Level Parallelism, May 2000.

[5] R. I. Bahar and S. Manne, Power and Energy Reduction Via Pipeline Balancing,
In Proceedings of the International Symposium on Computer Architecture, 2001.

[6] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and S. Dwarkadas,
Memory Hierarchy Reconfiguration for Energy and Performance in General-
Purpose Processor Architectures, In Proceedings of the International Symposium
on Microarchitecture, 2000.

[7] L. A. Barroso, K. Gharachorloo, and E. Bugnion, Memory System
Characterization of Commercial Workloads, In Proceedings of the 25th Annual
International Symposium on Computer Architecture, pages 3-14, 1998.

[8] K Baynes, C. Collins, E. Fiterman, B. Ganesh, P. Lohout, C. Smit, T. B. Zhang
and B. Jacob, The Performance and Energy Consumption of Three Embedded
Real-Time Operating Systems, In Proceedings of the International Conference on
Compilers, Architecture and Synthesis for Embedded Systems, 2001.

[9] F. Bellosa, The Benefits of Event-driven Energy Accounting in Power-sensitive
Systems, In Proceedings of 9th ACM SIGOPS European Workshop, 2000.

[10] L. Benini, A. Bogliolo, S. Cavallucci and B. Ricco, Monitoring System Activity
for OS-directed Dynamic Power Management, In Proceedings of the International
Symposium on Low Power Electronics and Design, 1998.

[11] J. Bennett and M. Flynn, Performance Factors for Superscalar Processors,
Technical Report CSL-TR-95-661, Computer Systems Laboratory, Stanford
University, Feb. 1995.

 139

[12] R. Berrendorf and B. Mohr, PCL - The Performance Counter Library Version 2.2,
http://www.fz-juelich.de/zam/PCL/, Jan. 2003.

[13] D. Brooks, V. Tiwari and M. Martonosi, Wattch: A Framework for Architectural-
level Power Analysis and Optimizations, In Proceedings of the International
Symposium on Computer Architecture, 2000.

[14] D. Brooks and M. Martonosi, Dynamic Thermal Management for High-
Performance Microprocessors, In Proceedings of the International Symposium on
High Performance Computer Architecture, 2001.

[15] P. Chang and U. Banerjee, Profile-guided Multi-heuristic Branch Prediction, In
Proceedings of the International Conference on Parallel Processing, 1995

[16] P. -Y. Chang, M. Evers, and Y. Patt, Improving Branch Prediction Accuracy by
Reducing Pattern History Table Interference, In Proceedings of International
Conference on Parallel Architectures and Compilation Techniques, pages 48-57,
1996

[17] J. W. Chen, M. Dubois and P. Stenström, Integrating Complete-System and User-
level Performance/Power Simulators: The SimWattch Approach, In Proceedings
of International Symposium on Performance Analysis of Systems and Software,
2003.

[18] T. Cramer, R. Friedman, T. Miller, D. Seberger, R. Wilson and M. Wolczko,
Compiling Java Just-In-Time, IEEE Micro, vol. 17, pages 36-43, May 1997.

[19] R. P. Dick, G. Lakshminarayana, A. Raghunathan, and N. K Jha, Power Analysis
of Embedded Operating Systems, In Proceedings of the Design Automation
Conference, June 2000.

[20] S. Dropsho, A. Buyuktosunoglu, R. Balasubramonian, D. H. Albonesi, S.
Dwarkadas, G. Semeraro, G. Magklis and M. L. Scott, Integrating Adaptive On-
Chip Storage Structures for Reduced Dynamic Power, In Proceedings of the
International Conference on Parallel Architectures and Compilation Techniques,
2002.

[21] A. N. Eden and T. Mudge, The YAGS Branch Prediction Scheme, In Proceedings
of the 31st Annual ACM/IEEE International Symposium on Microarchitecture,
pages 69 - 77, 1998

[22] M. Evers, P. Y. Chang and Y. N. Patt, Using Hybrid Branch Predictors to
Improve Branch Prediction Accuracy in the Presence of Context Switches, In
Proceedings of the 23rd Annual International Symposium on Computer
Architecture, pages 3-11, 1996

 140

[23] K. Flautner, N. S. Kim, S. Martin, D. Blaauw and T. Mudge, Drowsy Caches:
Simple Techniques for Reducing Leakage Power, In Proceedings of the
International Symposium on Computer Architecture, 2002.

[24] N. Gloy, C. Young, J. B. Chen and M. D. Smith, An Analysis of Dynamic Branch
Prediction Schemes on System Workloads, In Proceedings of the 23rd Annual
International Symposium on Computer Architecture, pages 12-21, 1996

[25] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan, M.
Kandemir, T. Li and L. K. John, Using Complete Machine Simulation for
Software Power Estimation: The SoftWatt Approach, In Proceedings of the
International Symposium on High Performance Computer Architecture, 2002.

[26] A. Hasegawa, I.Kawasaki, K.Yamada, S.Yoshioka, S. Kawasaki, and P. Biswas,
SH3: High Code Density, Low Power, IEEE Micro, Dec. 1995.

[27] J. L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative
Approach, Morgan Kaufman Publishers, 1996

[28] S. A. Herrod, Using Complete Machine Simulation to Understand Computer
System Behavior, Ph.D. Thesis, Stanford University, Feb. 1998.

[29] C.-H. A. Hsieh, J. C. Gyllenhaal and W. W. Hwu, Java Bytecode to Native Code
Translation: the Caffeine Prototype and Preliminary Results, In Proceedings of
the 29th International Symposium on Microarchitecture, pages 90-97, 1996.

[30] M. Huang, J. Renau, S. M. Yoo, and J. Torrellas, L1 Data Cache Decomposition
for Energy Efficiency, In Proceedings of the International Symposium on Low
Power Electronics and Design, 2001.

[31] K. Inoue, T. Ishihara, and K. Murakami, Way-Predictive Set-Associative Cache
for High Performance and Low Energy Consumption, In Proceedings of the
International Symposium on Low Power Electronics and Design, 1999.

[32] Intel Pentium 4 Processors - Manuals, Intel Corporation, 2002.

[33] A. Iyer and D. Marculescu, Microarchitecture Level Power Management, IEEE
Transactions on Very Large Scale Integration Systems, Vol. 10, No. 3, 2002.

[34] R. Joseph and M. Martonosi, Run-Time Power Estimation in High Performance
Microprocessors, In Proceeding of the International Symposium on Low Power
Electronic Device, 2001.

[35] SPEC Jvm98 Benchmarks, http://www.spec.org/osg/jvm98/

 141

http://www.ece.cmu.edu/~aiyer
http://www.spec.org/osg/jvm98/

[36] M. B. Kamble and K. Ghose, Energy-Efficiency of VLSI Caches: A Comparative
Study, In Proceedings of the IEEE 10th International Conference on VLSI
Design, 1997.

[37] S. Kaxiras, Z. G. Hu and M. Martonosi, Cache Decay: Exploiting Generational
Behavior to Reduce Cache Leakage Power, In Proceedings of the International
Symposium on Computer Architecture, 2001.

[38] K. Keeton, D. A. Patterson, Y. Q. He, R. C. Raphael and W. E. Baker,
Performance Characterization of a Quad Pentium Pro SMP using OLTP
Workloads, In Proceedings of the International Symposium on Computer
Architecture, 1998.

[39] N. S. Kim, K. Flautner, D. Blaauw, and T. Mudge, Drowsy Instruction Caches, In
Proceedings of the International Symposium on Microarchitecture, 2002.

[40] S. Kim, N. Vijaykrishnan, M. Kandemir, A. Sivasubramaniam and M. J. Irwin,
Partitioned Instruction Cache Architecture for Energy Efficiency, ACM
Transactions on Embedded Computing Systems, Vol. 2, Issue 2, May 2003.

[41] J. Kin, M. Gupta and W. H. Mangione-Smith, The Filter Cache: An Energy
Efficient Memory Structure, In Proceedings of the International Symposium on
Microarchitecture, 1997.

[42] A. Krall, Efficient JavaVM Just-In-Time Compilation, In Proceedings of the
International Conference on Parallel Architectures and Compilation Techniques,
pages 54-61, 1998.

[43] H.-H. S. Lee, G. S. Tyson, Region-Based Caching: An Energy-Delay Efficient
Memory Architecture for Embedded Processors, In Proceedings of the
International Conference on Compilers, Architecture and Synthesis for Embedded
Systems, 2000.

[44] C.-C. Lee, I.-C. K. Chen, and T. Mudge, The Bi-Mode Branch Predictor, In
Proceedings of the 30th Annual IEEE/ACM International Symposium on
Microarchitecture, pages 4 - 13, 1997

[45] T. Li, L. John, N. Vijaykrishnan, A. Sivasubramaniam, J. Sabarinathan, and A.
Murthy, Using Complete System Simulation to Characterize SPECjvm98
Benchmarks, In Proceedings of the International Conference on Supercomputing
(ICS), 2000.

[46] T. Li and L. K. John, Understanding Control Flow Transfer and its Predictability
in Java Processing, In Proceedings of International Symposium on Performance
Analysis of Systems and Software, 2001.

 142

[47] T. Li, L. John, A. Sivasubramaniam, N. Vijaykrishnan and J. Rubio,
Understanding and Improving Operating System Effects in Control Flow
Prediction, In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems, page 68-80, 2002

[48] T. Li, L. K. John, A. Sivasubramaniam, N.Vijaykrishnan and J. Rubio,
Understanding and Improving Operating System Effects in Control Flow
Prediction, Technical Report, Department of Electrical and Computer
Engineering, University of Texas at Austin, June 2002.
http://www.ece.utexas.edu/projects/ece/lca/ps/tao-TR-june-2002.pdf

[49] T. Li and L. K. John, Routine based OS-aware Microprocessor Resource
Adaptation for Run-time Operating System Power Saving, In Proceedings of the
International Symposium on Low Power Electronics and Design, 2003.

[50] T. Li and L. K. John, Run-time Modeling and Estimation of Operating System
Power Consumption, In Proceedings of the International Conference on
Measurement and Modeling of Computer Systems, 2003.

[51] Y. Luo, P. Seshadri, J. Rubio, L. K. John and A. Mericas, A Case Study of 3
Internet Server Benchmarks on 3 Superscalar Machines, IEEE Computer, Feb.
2003.

[52] S. Manne, A. Klauser and D. Grunwald, Pipeline Gating: Speculation Control for
Energy Reduction, In Proceedings of the International Symposium on Computer
Architecture, 1998.

[53] D. Marculescu, Profile-Driven Code Execution for Low Power Dissipation, In
Proceedings of the International Symposium of Low Power Electronics and
Design, 2000.

[54] S. McFarling, Combining Branch Predictors, WRL Technical Note TN-36,
Digital Equipment Corporation, June 1993

[55] H. McGhan and M. O'Connor, PicoJava: A Direct Execution Engine for Java
Bytecode , IEEE Computer, pages 22-30, Oct. 1998.

[56] P. Michaud, A. Seznec and R. Uhlig, Trading Conflict and Capacity Aliasing in
Conditional Branch Predictors, In Proceedings of the 24th International
Symposium on Computer Architecture, pages 292 - 303, 1997

[57] MIPS Technologies, Incorporated, R10000 Microprocessor Product Overview,
MIPS Open RISC Technology, Oct. 1994.

 143

[58] D. Ofelt and J. L. Hennessy, Efficient Performance Prediction for Modern
Microprocessors, In Proceedings of the International Conference on Measurement
and Modeling of Computer Systems, 2000.

[59] K. Olukotun, B.A. Nayfeh, L. Hammond, K. Wilson and K.-Y. Chang, The Case
for a Single-Chip Multiprocessor, In Proceedings of the 7th International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 1-4, 1996

[60] J. Ousterhout, Why aren’t Operating Systems Getting Faster as Fast as
Hardware?, In Proceedings of the Summer 1990 USENIX Conference, pages 247-
256, 1990

[61] S. Palacharla, N. P. Jouppi and J. E. Smith, Quantifying the Complexity of
Superscalar Processors, CS-TR-1996-1328, University of Wisconsin, Nov. 1996.

[62] C. Perleberg and A. Smith, Branch Target Buffer Design and Optimization, IEEE
Transactions on Computers, 42(4): 396-412, 1993

[63] F. Pollack, Slides from talk, “New Microarchitecture Challenges in the Coming
Generations of CMOS Process Technologies,” University of Texas Computer
Architecture Seminar Series, April 2000.

[64] D. Ponomarev, G. Kucuk and K. Ghose, Reducing Power Requirements of
Instruction Scheduling through Dynamic Allocation of Multiple Data-path
Resources, In Proceedings of the International Symposium on Microarchitecture,
2002.

[65] M. Powell, S. H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar, Gated-Vdd: A
Circuit Technique to Reduce Leakage in Deep-Submicron Cache Memories, In
Proceedings of the International Symposium on Low Power Electronics and
Design, 2000.

[66] M. Powell, A. Agarwal, T. N. Vijaykumar, B. Falsafi, and K. Roy, Reducing Set-
Associative Cache Energy via Way-Prediction and Selective Direct-Mapping, In
Proceedings of the International Symposium on Microarchitecture, 2001.

[67] "PostgreSQL", http://www.us.postgresql.org/

[68] G. Qu, N. Kawabe, K. Usami and M. Potkonjak, Function-Level Power
Estimation Methodology for Microprocessors, In Proceedings of the Design
Automation Conference, 2000.

[69] P. Ranganathan, S. Adve and N.P. Jouppi, Reconfigurable Caches and their
Application to Media Processing, In Proceedings of the International Symposium
on Computer Architecture, 2000.

 144

[70] J. A. Redstone, S. J. Eggers and H. M. Levy, An Analysis of Operating System
Behavior on a Simultaneous Multithreaded Architecture, In Proceedings of the
9th International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 245-256, 2000

[71] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta, Complete Computer
System Simulation: the SimOS Approach, IEEE Parallel and Distributed
Technology: Systems and Applications, vol.3, no.4, pages 34-43, Winter 1995.

[72] M. Rosenblum, E. Bugnion, S. A.Herrod, E. Witchel, and A. Gupta, The Impact
of Architectural Trends on Operating System Performance, In Proceedings of the
15th ACM Symposium on Operating System Principles, pages 285-298, 1995.

[73] S. Sechrest, C-C. Lee, and T. Mudge, Correlation and Aliasing in Dynamic
Branch Predictors, In Proceedings of the 23rd Annual International Symposium
on Computer Architecture, pages. 22-32. 1996

[74] T. Sherwood, E. Perelman, G. Hamerly and B. Calder, Automatically
Characterizing Large Scale Program Behavior, In Proceedings of the International
Conference on Architectural Support for Programming Languages and Operating
Systems, 2002.

[75] SIA. International Technology Roadmap for Semiconductors, 2001.

[76] A. Sinha, A. Wang, and A. P. Chandrakasan, Algorithmic Transforms for
Efficient Energy Scalable Computation, In Proceedings of the International
Symposium on Low Power Electronics and Design, 2000.

[77] E. Sprangle, R. S. Chappell, M. Alsup and Y. N. Patt, The Agree Predictor: A
Mechanism for Reducing Negative Branch History Interference, In Proceedings
of the 24th Annual International Symposium on Computer Architecture, pages
284-291, 1997

[78] A. Adl-Tabatabai, M. Cierniak, G. Lueh, V. M. Parakh and J. M. Stichnoth, Fast
Effective Code Generation in a Just-In-Time Java Compiler, In Proceedings of
Conference on Programming Language Design and Implementation, pages 280-
290, 1998.

[79] T. K. Tan, A. Raghunathan, G. Lakshminarayana and N. K. Jha, High-level
Software Energy Macro-modeling, In Proceedings of the Design Automation
Conference, 2001.

[80] T. K. Tan, A. Raghunathan and N. Jha, Embedded Operating System Energy
Analysis and Macro-modeling, In Proceedings of the International Conference on
Computer Design, 2002.

 145

[81] T. K. Tan, A. Raghunathan and N. Jha, EMSIM: An Energy Simulation
Framework for an Embedded Operating System, In the Proceedings of the
International Conference on Circuits and Systems, 2002.

[82] V. Tiwari, S. Malik, A. Wolfe and M. T. C. Lee, Instruction Level Power
Analysis and Optimization of Software, Journal of VLSI Signal Processing, 1-18,
1996.

[83] Transaction Processing Council, The TPC-C Benchmark,
http://www.tpc.org/tpcc/

[84] M. Valluri and L. K. John, Is Compiling for Performance == Compiling for
Power?, In Proceedings of the 5th Annual Workshop on Interaction between
Compilers and Computer Architectures, 2001.

[85] E. Witchel and M. Rosenblum, Embra: Fast and Flexible Machine Simulation, In
Proceedings of ACM SIGMETRICS '96: Conference on Measurement and
Modeling of Computer Systems, 1996.

[86] J. Yang and R. Gupta, Energy Efficient Frequent Value Data Cache Design, In
Proceedings of the International Symposium on Microarchitecture, 2002.

[87] S. H. Yang, M. Powell, B. Falsafi and T. N. Vijay, Exploiting Choice in Resizable
Cache Design to Optimize Deep-submicron Processor Energy-delay, In
Proceedings of the International Symposium on High-Performance Computer
Architecture, 2002.

[88] W. Ye, N. Vijaykrishnan, M. Kandermir and M. J. Irwin, The Design and Use of
SimplePower: A Cycle-accurate Energy Estimation Tool, In Proceedings of
Design Automation Conference, 2000.

[89] K. C. Yeager, MIPS R10000, IEEE Micro, vol.16, no.1, pages 28-40, Apr. 1996.

[90] T. Yeh and Y. N. Patt, Two-Level Adaptive Branch Prediction, In Proceeding of
24th International Symposium on Microarchitecture, pages. 51-61, 1991

[91] T.-Y. Yeh, and Y. N. Patt, A Comparison of Dynamic Branch Predictors that Use
Two Levels of Branch History, In Proceedings of the 20th Annual International
Symposium on Computer Architecture, pages 257-266, 1993

[92] C. Young, C. Gloy and M. D. Smith, A Comparative Analysis of Schemes for
Correlated Branch Prediction, In Proceedings of the 22nd Annual International
Symposium on Computer Architecture, pages 276-286, 1995

[93] H. Zeng, X. B. Fan, C. Ellis, A. Lebeck and A. Vahdat, ECOSystem: Managing
Energy as a First Class Operating System Resource, In the Proceedings of the

 146

International Symposium on Architecture Support for Program Language and
Operating System, 2002.

[94] W. Zhang, J. S. Hu, V. Degalahal, M. Kandemir, N. Vijaykrishnan, M. J. Irwin,
Compiler-Directed Instruction Cache Leakage Optimization, In Proceedings of
the International symposium on Microarchitecture, 2002.

[95] C. Zhang, F. Vahid and W. Najjar, A Highly Configurable Cache Architecture for
Embedded Systems, In Proceedings of the International Symposium on Computer
Architecture, 2003.

[96] H. Y. Zhou, M. C. Toburen, E. Rotenberg and T. M. Conte, Adaptive Mode
Control: a Static Power-Efficient Cache Design, In Proceedings of the
International Conference on Parallel Architectures and Compilation Techniques,
2001.

 147

Vita

Tao Li was born in Beijing, China, on June 25, 1972, as the son of Zhixin Li and

Yunhua Qi. After completing his high school education at School of Institute 602 in

Jingdezhen, China, he entered the Department of Computer Science and Technology,

Northwestern Polytechnic University in Xi’an, China in September 1989. He received the

degree of Bachelor of Science in Computer Science and Engineering from Northwestern

Polytechnic University in July 1993. He joined the graduate program for Computer

Science and Engineering at Beijing Institute of Data Processing Technology, Beijing,

China in September 1993 and obtained the degree of Master of Science in Computer

Engineering in May 1996. From June 1996 to August 1998, he was a researcher at

Beijing Institute of Data Processing Technology. In September 1998, he entered the

Ph.D. program in Computer Engineering at The University of Texas at Austin. He will

join the Department of Electrical and Computer Engineering, University of Florida as an

assistant professor in Fall 2004. He is a student member of IEEE, IEEE Computer

Society, ACM, and ACM SIGARCH.

Permanent address: Room 101, Suite 1007, Institute of 602

 Jingdezhen, Jiangxi. China 333001

This dissertation was typed by the author.

 148

	List of Tables
	List of Figures
	Chapter 1: Introduction
	1.1 Processor Architecture Design: the New Challenges
	1.1.1 Emerging Applications
	
	
	
	Figure 1.1:Software Technology Evolution: Emerging Applications

	1.1.2 Power Dissipation
	
	
	
	Figure 1.2:Power Density of Intel Microprocessors [63]

	1.2 Arena for Architecture Design and Optimization
	
	
	
	
	Figure 1.3:Arena for Architecture Design and Optimization

	1.3 OS Cycle and Power Dissipation
	1.3.1 Traditional and Technical Workloads
	1.3.2 Modern and Emerging Applications
	
	
	
	Figure 1.4:OS Activities in Two Emerging Workloads
	Figure 1.5:OS Cycles and Power

	1.4 The Problems and Proposed Solutions
	1.5 Thesis Statement
	1.6 Contributions
	1.7 Organization

	Chapter 2: Experimental Methodology
	2.1 Framework
	2.1.1 SimOS
	
	
	
	Figure 2.1:Simulation Flow Chart

	2.1.2 SoftWatt

	2.2 Benchmarks
	
	
	
	Table 2.1:Benchmarks

	2.3 Simulated Microprocessor and System Configuration
	
	
	
	Table 2.2:System Configuration

	Chapter 3: Characterizing OS Activity: A Case Study of SPECjvm98
	3.1 Motivation
	3.2 Kernel Activity Of SPECjvm98
	
	
	
	
	Figure 3.1:Execution Profile of SPECjvm98 (JIT compiler, s1 dataset)
	Figure 3.2:Execution Profile of SPECjvm98 (interpreter, s1 dataset)
	Figure 3.3:Execution Profile of SPECjvm98 (JIT compiler, s100 dataset)
	Figure 3.4:Execution Profile of SPECjvm98 (interpreter, s100 dataset)

	Table 3.1:Execution Time Percentages (with JIT compiler)
	Table 3.2:OS Characterization of SPECjvm98 (JIT compiler, s1 dataset)
	Table 3.3:OS Characterization of SPECjvm98 (contd.)
	Table 3.4:OS Characterization of SPECjvm98 (JIT compiler, s100 dataset)
	Table 3.5:OS Characterization of SPECjvm98 (interpreter, s100 dataset)

	3.3 Cache and Memory Performance
	
	
	
	Table 3.6:Memory Stall Time Percentages (with JIT compiler)
	Figure 3.5:Impact of Cache Capacity and Line Size
	Figure 3.6:Memory Stall Time in Kernel and User

	3.4 ILP Issues
	
	
	
	
	Figure 3.7:ILP Speedup (JIT)
	Figure 3.8:IPC Breakdown for 4-issue and 8-issue Superscalar Processors

	3.5 Summary

	Chapter 4: Run-time OS Power Estimation
	4.1 Software Power Estimation Techniques
	4.1.1 Instruction Level Power Modeling
	4.1.2 Characterization-based Macro-modeling
	4.1.3 Performance Counter-based Run-time Power Estimation
	4.1.4 Cycle-accurate Architectural Level Simulation

	4.2 Challenges in OS Power Modeling
	4.3 Routine Level OS Power Characterization
	4.3.1 Power Behavior of OS Routines
	
	
	
	Figure 4.1:Average and Standard Deviations of OS Routines Power
	Figure 4.2:Routine Level Energy Distributions in OS

	4.3.2 Energy-Performance Correlation
	
	
	
	Figure 4.3:Correlation between OS Routines Power and IPC
	Figure 4.4:Breakdown of Power Dissipation of OS Routines

	4.4 Routine Level OS Power Model
	
	
	
	
	Figure 4.5:Model Estimation Accuracy (Routine Average Power)
	Figure 4.6:Estimation Accuracy (IPC Correlated Routine Average Power)
	Figure 4.7:Model Estimation Accuracy (OS Average Power)

	4.5 Run-time OS Power Modeling
	
	
	
	
	Figure 4.8:OS Power Estimations (Single Power/IPC Correlation Model)
	Figure 4.9:A Comparison of Run-time Per-routine based Estimation Error

	Table 4.1:Hardware Counter Schemes
	Figure 4.10:A Comparison of Different Hardware Counter Schemes

	4.6 Summary

	Chapter 5: OS Power Saving
	5.1 Program Phases and IPC Variance
	
	
	
	
	Figure 5.1:IPC Variation in the SPECjvm98 Benchmark jess

	Table 5.1:OS IPC and Power

	5.2 Sampling based Adaptation: Challenges for OS
	
	
	
	
	Figure 5.2:Sampling Window
	Figure 5.3:FMS used in Sampling based Adaptation
	Figure 5.4:Implications of Sampling Window Sizes
	Figure 5.5:Average Duration of OS Services
	Figure 5.6:Accumulative OS Energy vs. OS Service Duration

	5.3 The Proposed Solution: OS-aware Routine based Adaptation
	
	
	
	
	Figure 5.7:Routine based OS-aware Adaptation
	Figure 5.8:Effectiveness of Energy(Delay Tradeoffs is Program Dependent
	Figure 5.9:Energy(Delay of Different OS Services
	Figure 5.10:Routine Based Energy(Delay Ranking of Different Modes

	5.4 Power Savings and Performance Evaluation
	
	
	
	
	Figure 5.11:The Baseline Microarchitecture
	Figure 5.12:Normalized Power
	Figure 5.13:Normalized IPC
	Figure 5.14:Normalized Energy(Delay

	5.5 Related Work
	5.6 Summary

	Chapter 6: OS-aware Low Power Instruction Cache
	6.1 Motivation
	
	
	
	
	Figure 6.1:I-Cache Power Breakdown: User vs. OS

	6.2 User/OS I-Cache Accesses Characterization
	
	
	
	
	Figure 6.2:User/OS Instruction Blocks Residency

	Table 6.1:I-Cache Accesses Categorized by User/OS Residency
	Figure 6.3:User and OS I-Cache Accesses

	6.3 OS-aware I-Cache Tuning
	6.3.1 OS-aware Cache Way Lookup
	
	
	
	Figure 6.4:Hardware Modification/Addition Required to Implement OS-aware Cache Way Lookup
	Figure 6.5:I-Cache Way Accesses Reduction

	6.3.2 OS-aware Cache Set Drowsy Mode
	
	
	
	Figure 6.6:Implementation of OS-aware Cache Set Drowsy Mode
	Figure 6.7:% of I-cache Sets can be put into Drowsy State by Using Leakage Control Illustrated in Figure 6.6

	Table 6.2:% of I-Cache Accesses to Drowsy Sets and Average Number of Reinstated Drowsy Sets
	Figure 6.8:The 2-bit Counter and Finite State Machine to Implement User/OS Access-biased Classification
	Figure 6.9:% of I-cache Sets put into Drowsy State by using User/OS Access-biased Classification

	Table 6.3:% of I-Cache Accesses to Drowsy Sets and Average Number of Reinstated Drowsy Sets using Access-Based Classification

	6.4 Power and Performance Evaluation
	
	
	
	
	Figure 6.10:% of I-Cache Dynamic Power Savings by Incorporating OS-aware Cache Way Lookup

	Table 6.4:Normalized Leakage Power and Run-time Increase

	6.5 Related Work
	6.6 Summary

	Chapter 7: OS-aware Branch Prediction
	7.1 Motivation
	
	
	
	
	Figure 7.1:Impact of User/OS Execution on Branch Prediction

	7.2 Characterizations of OS Branches
	
	
	
	Table 7.1:Complete System Branch Execution Statistics

	7.2.1 Context Switch Profile and Branch Distribution
	
	
	
	Figure 7.2:Average Number of Executed Branches (User vs. Kernel)
	Figure 7.3:Executed Branches in User and OS Contexts

	7.2.2 OS Branch Execution Profile
	
	
	
	Figure 7.4:Where do the OS Dynamic Branches Come from?

	Table 7.2:OS Routine Branch Characterization

	7.2.3 Characteristics of OS Branches
	7.2.3.1 Weakly Biased Branches
	
	
	Figure 7.5:User and OS Branch Directions

	7.2.3.2 How Correlated are Kernel Branches?
	
	
	Figure 7.6:Branch Correlation in OS Code

	7.2.3.3 Impact of Intermittent Kernel Execution
	
	
	Figure 7.7:Impact of User/Kernel Inference

	7.2.3.4 Characterization of User/OS Aliasing
	
	Table 7.3:Characterization of Branch Aliasing
	Table 7.4:Characterization of Misprediction due to Branch Aliasing

	7.3 Alleviating Impact of User/OS Interference
	7.3.1 Split BHSR Predictor
	
	
	
	Figure 7.8:Gshare with Split BHSR

	7.3.2 Split Predictor
	
	
	
	Figure 7.9:Split Gshare Predictor
	Figure 7.10:K-BHT Size Trade-off

	7.3.3 Integrating with Other Predictors
	
	
	Table 7.5:A Comparison of Several Branch De-aliasing Schemes
	Figure 7.11:Integrating with Other Predictors

	Table 7.6a:Misprediction Reduction by Introducing OS-aware Prediction
	Table 7.6b:OS-aware Prediction: Breakdown of Misprediction Reduction

	7.4 Performance Evaluation
	
	
	
	
	Figure 7.12:IPC Improvement of OS-aware Predictors

	7.5 Discussion
	
	
	
	
	Figure 7.13:Impact of OS-aware Split BHSR Predictor
	Figure 7.14:Impact OS-aware Split Predictor

	7.6 Related Work
	7.7 Summary

	Chapter 8: Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work

	Appendices
	Bibliography
	Vita

