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The Operating System (OS) which manages both hardware and software 

resources, constitutes a major component of today’s complex systems implemented with 

high-end and general-purpose microprocessors, memory hierarchy and heterogeneous I/O 

devices. Modern and emerging applications (e.g., database, web servers and file/e-mail 

workloads) exercise the OS significantly. However, microprocessor designs and 

(performance/power) optimizations have largely ignored the impact of OS. This 

dissertation characterizes the OS activity in emerging applications execution and 

demonstrates the necessity, advantages, and benefits of integrating OS component in 

processor architecture design.  

It is essential to understand the characteristics of today’s emerging workloads in 

order to design efficient architectures for them. Given the facts that modern and emerging 

applications involve system activities significantly, this research uses complete system 

evaluation. These evaluations result in several system performance and power 

optimizations targeting for emerging applications that have heavier OS activity. 
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The OS dissipates a significant portion of total power in many modern application 

executions. Therefore, modeling OS power is imperative for accurate software power 

evaluation, as well as power management (e.g. dynamic thermal control and equal energy 

scheduling). This research characterizes the power behavior of a modern, commercial OS 

across a wide spectrum of applications to understand OS energy profiles and then 

proposed various models to cost-effectively estimate its run-time energy dissipation.  

To reduce software power, hardware can provide resources that closely match the 

needs of the software. However, with exception-driven and intermittent execution in 

nature, it becomes difficult to accurately predict and adapt processor resources in a timely 

fashion for OS power savings without significant performance degradation. This 

dissertation proposes a methodology that permits precise processor adaptations for the 

operating system with low overhead. 

Low power has been considered as an important issue in instruction cache (I-

cache) designs. This research goes beyond previous work to explore the opportunities to 

design energy-efficient I-cache by exploiting the interactions of hardware-OS-

applications. This dissertation presents two techniques (OS-aware cache way lookup and 

OS-aware cache set drowsy mode) to reduce the dynamic and the static power 

consumption of I-cache. The proposed mechanisms require minimal hardware 

modification and addition. 

The OS component affects the control flow transfer in the execution environment 

because the exception-driven, intermittent invocation of OS code significantly increases 

the misprediction in both user and kernel code. This indicates that to improve 

microprocessor performance, adapting branch prediction hardware for OS has become 

very important now. This research proposes two OS-aware branch prediction techniques 

to alleviate this destructive impact. 
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Chapter 1:  Introduction 

Advances in VLSI technology enable architects to design more and more 

powerful microprocessors and computer systems. However, emerging computer 

applications and software technology evolutions constantly challenge hardware design. 

Additionally, today’s high-complexity design has already raised many critical issues, 

such as the increasingly constrained power budget. 

The Operating System (OS) which manages both hardware and software 

resources, constitutes a major component of today’s complex systems implemented with 

high-end and general-purpose microprocessors, memory hierarchy and heterogeneous I/O 

devices. Modern and emerging applications (e.g., database, web servers and file/e-mail 

workloads) exercise the OS significantly. However, microprocessor designs and 

(performance/power) optimizations have largely ignored the impacts of OS. This chapter 

describes (1) the necessity for considering OS component in processor architecture 

design, and (2) the objectives and contributions of this dissertation. 

1.1 PROCESSOR ARCHITECTURE DESIGN: THE NEW CHALLENGES 

Microprocessor performance has been drastically improved during past three 

decades. Today’s high performance processors integrate millions of transistors and 

operate at Giga Hertz frequency. Despite of the performance achievement, processor 

architecture designs still face challenges. 

1.1.1 Emerging Applications 

Historically, microprocessor architecture designs have been largely driven by the 

traditional and technical workloads, such as applications from the science and 

engineering computation domains. As software technologies evolve, new computer 
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applications and programming paradigms (as shown in Figure 1.1) are constantly 

emerging. Therefore, current and future generation of microprocessors have to handle a 

wide range of applications. 
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Figure 1.1: Software Technology Evolution: Emerging Applications 

1.1.2 Power Dissipation 

The high-complexity microprocessor design driven by the quest for greater 

performance has resulted in many critical issues, such as longer verification time, less 

scalability etc. Among those, the increasingly constrained power budget has become a big 

concern. Figure 1.2 shows the power trend of the mainstream processors from Intel. One 

can see that when moving from one generation to the next, the microprocessor power 

density increases exponentially. The microprocessor power budget impacts many issues, 

such as the cost of cooling and packaging, circuit reliability, battery-life time and the 

utility cost for operating sever farms and data center. Therefore, today’s and future 

processor designs have to manage and minimize power dissipation.  
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Figure 1.2: Power Density of Intel Microprocessors [63] 

1.2 ARENA FOR ARCHITECTURE DESIGN AND OPTIMIZATION 

It has been well known that in order to deliver high performance and efficiency, 

both hardware and software in a computing system need to be tightly collaborated. 

Processor architecture design and optimization have been largely driven by the 

application component. For instance, the SIMD extensions are designed to accelerate 

multimedia applications execution. In the past, researchers have also found that compilers 

can affect architecture design. For example, the explicit instruction and data parallelisms 

identified by the compiler analysis can be packed and exposed to the VLIW architecture, 

eliminating the hardware complexity for exploiting ILP at runtime. Recently, there has 

been much research effort on characterizing the behavior of emerging applications (such 

as database, OLTP, web/file/e-mail servers) and new programming paradigms (such as 

Java, multithreading) to understand their impacts on the underlying hardware design. 

Researchers have found that modern and emerging applications can behave differently 

compared with the traditional and technical workloads: the execution of modern and 

emerging workloads may involve heavier OS activities. This dissertation focuses on 
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understanding and exploiting the interactions between architecture and OS to achieve 

higher performance and better energy efficient microprocessor design. 
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Figure 1.3: Arena for Architecture Design and Optimization 

1.3 OS CYCLE AND POWER DISSIPATION 

To motivate the necessity of considering the OS component in architecture 

design, this dissertation characterizes the OS activity during different program execution. 

Using a cycle accurate full-system simulation environment, the total machine cycles can 

be broken down into those spent on user application execution and those spent on the OS 

execution. The user part can be further subdivided into the time spent on user instruction 

execution and the time stalled on pipeline and memory accesses. The OS portion further 

contains time spent on kernel synchronization.  

1.3.1 Traditional and Technical Workloads 

Technical workloads such as SPECInt95 are profiled. Overall, the SPECInt95 

benchmarks spend less than 1% of their execution time in OS. The impacts of OS on the 

traditional and technical workloads execution can be ignored due to its insignificance. 
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1.3.2 Modern and Emerging Applications 

However, these scenarios are changed during modern and emerging workloads 

execution. Figure 1.4 shows two execution profiles of programs sendmail and 

postgres.update. Sendmail is the UNIX e-mail agent forwarding e-mails to the local user 

accounts. Postgres.update simulates the open source Database engine Postgres running a 

table update query. The processor spends a significant portion of the execution cycles in 

the OS.   

 

Figure 1.4: OS Activities in Two Emerging Workloads 

Figure 1.5 further shows the percentage of CPU cycles and power spent on the OS 

across a wide range of applications. No surprisingly, the OS highly impact on processor 

cycle and power on many modern and emerging workloads such as e-mail and file 

management applications, Java and Database applications. 
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1.4 THE PROBLEMS AND PROPOSED SOLUTIONS 

The evidence of the significant OS activity on many modern and emerging 

applications execution plus the trend that the importance of OS is continuously growing 

in modern computer systems due to the increasing demands on system administration 

clearly indicate the necessity for good collaboration between the architecture design and 

the OS.  

Unfortunately, processor architecture design has paid less attention to the needs of 

the OS. The existing mechanisms such as context switch, dual mode execution, precise 

exception handling, and virtual memory protection all guarantee correctness but not 

efficiency. The OS is designed to manage both hardware and software resources in a 

system. Should architecture design be more OS-friendly? What are the benefits of doing 

that? Those are the questions that this dissertation tries to answer. 

There are primarily three problems: 

• The OS activity in emerging applications execution and the implications of OS 

execution on processor performance and power dissipation are not well 

understood.  

• Low power processor architecture designs have not considered the interactions of 

hardware, application, and OS.  

• Conventional processor microarchitecture designs have not paid attention to the 

effect of OS. Performance degrades due to the interference between user 

applications and OS. 

1.5 THESIS STATEMENT 

Many modern and emerging workloads execution invoke heavy OS activities. 

Microprocessor designs that incorporate the OS-aware architectural components can 
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improve the performance and energy efficiency of modern and emerging applications 

execution. 

1.6 CONTRIBUTIONS 

This dissertation makes several contributions to the characterization of OS 

activity in modern and emerging workloads, implications of OS execution, power 

behavior of OS, and explicit hardware support for exploiting the interactions of OS and 

computer architecture to improve processor performance and energy efficiency. The 

summary of the contributions is listed below. 

1. There is abundant variety among applications running on today’s computer 

systems. However, the using of user-only technical workloads has dominantly 

driven evaluating architectural designs/optimizations. It is essential to understand 

the characteristics of today’s emerging workloads in order to design efficient 

architectures for them. Given the facts that modern and emerging applications 

involve system activities significantly, this research uses complete system 

evaluation to understand the workloads behavior and interactions of hardware, 

applications and OS.  

2. The increasing constraints on power consumption in today’s computing systems 

point to the need for power modeling and estimation for all components of a 

system. The OS constitutes a major software component and dissipates a 

significant portion of total power in many modern application executions. 

Therefore, modeling OS power is imperative for accurate software power 

evaluation, as well as power management (e.g. dynamic thermal control and equal 

energy scheduling). This dissertation characterizes the power behavior of a 

modern, commercial OS across a wide spectrum of applications to understand OS 

energy profiles and then proposed various models to cost-effectively estimate its 
 7



run-time energy dissipation. The proposed models rely on a few simple 

parameters and have various degrees of complexity and accuracy. Compared with 

cycle-accurate full-system simulation, the model can predict cumulative OS 

energy to within 1% accuracy for a set of benchmark programs evaluated on a 

high-end superscalar microprocessor. 

3. To reduce software power, hardware can provide resources that closely match the 

needs of the software. However, with exception-driven and intermittent execution 

in nature, it becomes difficult to accurately predict and adapt processor resources 

in a timely fashion for OS power savings without significant performance 

degradation. This dissertation proposes a methodology that permits precise 

processor adaptations for the operating system with low overhead. Compared with 

existing techniques, this scheme has the following advantages: (1) The proposed 

adaptation scheme guarantees the timely and fine-grained resolution required to 

capture the exception-driven, short-lived OS activity; (2) The adaptation 

techniques eliminate significant portion of adaptation overhead; (3) The 

adaptation scheme has the capability to select the optimal configuration for 

different OS code, yielding more attractive power and performance trade-off; (4) 

This scheme is orthogonal to and can be integrated with existing scheme proposed 

for user-only applications.  

4. Low power has been considered as an important issue in instruction cache (I-

cache) designs. Several studies have shown that the I-cache can be tuned to 

reduce power. These techniques, however, exclusively focus on user-level 

applications. This study goes beyond previous work to explore the opportunities 

to design energy-efficient I-cache by considering the interactions of hardware-

application-OS. This dissertation presents two techniques (OS-aware cache way 
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lookup and OS-aware cache set drowsy mode) to reduce the dynamic and the 

static power consumption of I-cache. The proposed OS-aware cache way lookup 

reduces the number of parallel tag comparisons and data array read-outs for cache 

accesses to save dynamic I-cache power in a given operation mode. The proposed 

OS-aware cache set drowsy mode puts I-cache regions that are only heavily used 

by another operation mode to reduce leakage power. The proposed mechanisms 

require minimal hardware modification and addition. Simulation based 

experiments show that with no or negligible impact on performance, applying OS-

aware tuning techniques yields significant dynamic and static power savings 

across the experimented applications.  

5. For current high performance microprocessors, the delivered ILP and pipelining 

performance is critically dependent on being able to accurately predict the control 

(branch) flow in the program. The OS component affects the control flow transfer 

in the execution environment because the exception-driven, intermittent 

invocation of OS code significantly increases the misprediction in both user and 

kernel code. This dissertation proposes two OS-aware branch prediction 

techniques to alleviate this destructive impact. Incorporating OS-aware techniques 

with existing branch prediction mechanisms yields up to 34%, 23%, 27% and 9% 

prediction accuracy improvement on four state-of-the-art branch predictors. The 

integrated OS-aware predictors consume equivalent or even less hardware 

resource. These advantages are valuable in the light of power and clock frequency 

constraints in future microprocessor and branch predictor designs. 
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1.7 ORGANIZATION 

Chapter 2 presents the performance evaluation methodology used in this 

dissertation. A detailed description of the tools, benchmarks, evaluation environment, and 

performance measures is presented. 

Chapter 3 presents a case study of emerging workloads and OS activity 

characterization.  

Chapter 4 characterizes the power behavior of OS and proposes the model and 

methodology for run-time OS power modeling. 

Chapter 5 proposes the routine based OS-aware microprocessor resource 

adaptation for OS power savings. Compared with sampling based mechanism, the 

proposed solution allow microprocessor to adapt its resource to complex software like OS 

in a timely and accurately fashion without paying high adaptation overhead. 

Chapter 6 investigates the low power instruction cache design by incorporating 

the OS-aware design philosophy. 

Chapter 7 characterizes the impact of OS on the microprocessor control flow 

prediction mechanism, one of the performance critical issues for today’s wide issue and 

highly speculative microprocessor. The hardware solutions, which can significant 

improve the prediction accuracy due to the exception driven and non-deterministic OS 

execution, are then proposed.  

Chapter 8 concludes the dissertation by summarizing the contributions and 

suggesting future opportunities. 
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Chapter 2:  Experimental Methodology 

The experimental results in this dissertation are obtained by detailed simulation of 

a complete system. This chapter discusses the simulation tools and process. The baseline 

microarchitecture and benchmark programs are also explained. 

2.1 FRAMEWORK 

This dissertation uses software-based simulation framework. 

2.1.1 SimOS 

The experimental platform used to perform this study is SimOS [28][71], a 

complete simulation environment that models hardware components with enough detail 

to boot and run a full-blown commercial OS. In this dissertation, the SimOS version that 

runs the Silicon Graphics IRIX5.3 operating system was used.  

SimOS includes multiple processor simulators (Embra, Mipsy, and MXS) that 

model the CPU at different levels of detail [28]. This research uses the fastest CPU 

simulator, Embra [85] to boot the OS and perform initialization, and then uses Mipsy and 

MXS, the detailed CPU models of SimOS to conduct performance measurements (as 

shown in Figure 2.1). For the large and complex workloads, the booting and initialization 

phase may cause the execution of several tens of billions of instructions [72].  

SimOS has a checkpointing ability which allows the hardware execution status 

(e.g. contents of register file, main memory and I/O devices) to be saved as a set of files 

(dubbed as a checkpoint), and simulation may resume from the checkpoint. This feature 

allows us to conduct multiple runs from identical initial status. To ensure that SimOS 

accurately simulates a complete execution of each workload, annotations are used to 

allow SimOS to automatically invoke a studied workload after a checkpoint is restored 

and to exit simulation as soon as the execution completes and OS prompt is returned. 
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This techniques, which avoid the need of interactive input to control the simulation after 

it begins and before it completes, make each run complete, accurate, and comparable. 
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Figure 2.1: Simulation Flow Chart 

The performance results presented in this study are generated by Mipsy and MXS, 

the detailed CPU models of SimOS. Mipsy models a simple, single-issue pipelined 

processor with one-cycle result latency and one-cycle repeat rate [28]. Although Mipsy is 

not an effective model from the perspective of detailed processor performance 

investigations, it does provide valuable information such as TLB activities, instruction 

counts, and detailed memory system behavior. In this study, Mipsy is used to generate the 

basic characterization knowledge and memory system behavior of studied workloads. 

2.1.2 SoftWatt 

The complete system power simulator SoftWatt [25], which models the power 

dissipation of the CPU, memory hierarchy and a low-power disk subsystem is used to 

investigate the power behavior of OS. The SoftWatt tool, built on top of the SimOS 
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infrastructure [28], uses validated energy models similar to other low-level power 

simulators like Wattch [13]. By leveraging the SimOS cycle-accurate and full-system 

simulation capability, SoftWatt captures power dissipation of both applications and OS 

running on a detailed system model.  

2.2 BENCHMARKS 

Table 2.1: Benchmarks 

Name 
Num. 

Of Inst. 
(M) 

Description 
% of OS 
Cycles  

(on SimOS 
Mipsy Model)   

pmake 1,117 Two parallel compilation processes compile the Modified 
Andrew Benchmark 17 

gcc 1,036 Compiles pre-processed source into optimized SPARC 
assembly code 8 

vortex 1,811 A full object oriented database 8 
sendmail 1,494 UNIX electronic mail transport agent 54 
fileman 177 File management 92 
db 201 Performs multiple database functions on a memory resident 

database 31 

jess 467 Java expert shell system based on NASA’s CLIPS expert 
system 30 

javac 366 The JDK 1.0.2 Java compiler compiling 225,000 lines of 
code 19 

jack 1,782 Parser generator with lexical analysis 17 
mtrt 1,431 Dual-threaded raytracer 7 
compress 2,428 Modified Lempel-Ziv method (LZW) to compress and 

decompress files 6 

postgres.select 1,516 Object -Relational DBMS PostgreSQL executes a select 
query 38 

postgres.update 1,438 Object-Relational DBMS PostgreSQL executes an update 
query 55 

postgres.join 1,849 Object-Relational DBMS PostgreSQL executes a join query 15 
osboot 48 A complete OS boot sequence 93 

We use 15 applications (see Table 2.1) that have different characteristics. The 

pmake is a parallel program development workload [60]. The gcc and vortex are two 

benchmarks from the SPECint95. The sendmail benchmark forwards emails using the 

Simple Mail Transport Protocol (SMTP) [47]. The fileman performs file management 

activities, such as copy, remove, tar and untar. The db, jess, javac, jack, mtrt and 

compress are Java programs from the SPECjvm98 suite executed with s1 dataset on a 
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Sun Java virtual machine [35]. We also use three benchmarks that run on a relational 

database management system (DBMS) engine- PostgreSQL [67]. The database is 

populated with relational tables for the TPC-C benchmark [83]. The postgres.select 

performs a sequential table scan of a table with 1 million rows and a selectivity of 3%. 

The postgres.update updates to a field of a 300,000 row table and the postgres.join 

executes a nested loop join query involving two tables of sizes 11MB and 24KB. The 

osboot executes a complete OS booting sequence form the root disk image and then 

generates a shell. 

2.3 SIMULATED MICROPROCESSOR AND SYSTEM CONFIGURATION 

Table 2.2: System Configuration 

Processor Core 
Fetch/Decode/Issue/Retire Width 8 
Instruction Window Size 128 
Reorder Buffer Size 128 
Number and Latency of Function Units  MIPS R10000 Like 
Branch Target Buffer (BTB) 2048-entry, 4-way 
Return Address Stack 32-entry w/ misprediction repair 
Branch Predictor/Misprediction Penalty 8K-entry Gshare/10 cycles 
Load Store Queue Size 64 

Memory Hierarchy 
MMU Fully associative TLB, 48-entries, 4KB page size 

L1 I-Cache 32KB, 4-way(LRU), 64B blocks, 4MSHRs, 2 
ports, 1 cycle latency 

L1 D-Cache 32KB, 4-way(LRU), 32B blocks, 4MSHRs, 2 
ports, 1 cycle latency 

L2 Cache 512KB, 4-way(LRU), 128B blocks, 4MSHRs, 2 
ports, 9 cycle latency 

Memory 256MB, 4 banks, 180 cycle access 
I/O 

Disk Scaled HP97560 SCSI Disk 

The performance evaluation of microarchitectural characterizations are done with 

MXS [11], which models a superscalar microprocessor with multiple instruction issue, 

register renaming, dynamic scheduling, and speculative execution with precise 

exceptions. The baseline architectural model is an 8 issue superscalar processor with 
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MIPS R10000 [57][89] instruction latencies. Unlike the MIPS R10000, our processor 

model has a 128-entry instruction window, a 128-entry reorder buffer and a 64-entry 

load/store buffer. Additionally, all functional units can handle any type of instructions. 

Branch prediction is implemented as an 8192-entry table Gshare predictor. Indirect 

branches and call/return are handled by a 2048-entry BTAC (branch target address cache) 

and a 32-entry RAS (return address stack) respectively. By default, the branch prediction 

algorithm allows fetch unit to fetch through up to 4 unresolved branches. 

The memory subsystem consists of a split L1 instruction and data cache, a unified 

L2 cache, and main memory. The L1 instruction cache is 32KB, and has a cache line size 

of 64-bytes. The L1 data cache is 32KB, and has 32-byte lines. The L2 cache is 512KB 

with 128-byte lines. A hit in the L1 cache can be serviced in one cycle, while a hit in the 

L2 cache is serviced in 10 cycles. All caches are 4-way associative, with LRU 

replacement and write back write miss allocation policies and have four miss status 

handling registers (MSHR). Main memory consists of 256 MB DRAM with a 180-cycle 

access time. Our simulated machine also includes a validated HP disk model and a single 

console device. The described architecture is simulated cycle by cycle. The instruction 

and data accesses of both applications and OS are modeled. 
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Chapter 3:  Characterizing OS Activity: A Case Study of SPECjvm98 

Complete system simulation to understand the influence of architecture and OS 

on application execution has been identified to be crucial for systems design. This 

problem is particularly interesting in the context of modern and emerging workloads. To 

investigate these issues, this chapter uses complete system simulation of the emerging 

SPECjvm98 benchmarks on the SimOS simulation platform.  

3.1 MOTIVATION 

It is becoming increasingly clear [7][28][71][72] that accurate performance 

analysis requires an examination of complete system - architecture and OS - behavior. 

While complete system simulation has been used to study several workloads [7][71][72], 

it has not been used in the context of emerging Java programs. A Java Virtual Machine 

(JVM) environment can be significantly different from that required to support traditional 

C or FORTRAN based code. The major differences are due to: 1) object-oriented 

execution with frequent use of virtual method calls (dynamic binding), dynamic object 

allocation and garbage collection; 2) dynamic linking and loading of classes; 3) program-

level multithreading and consequent synchronization overheads; and 4) software 

interpretation or dynamic compilation of byte-codes. These differences can affect the 

behavior of the OS kernel in a different manner than conventional applications. For 

instance, dynamic linking and loading of classes can result in higher file and I/O 

activities, while dynamic object allocation and garbage collection would require more 

memory management operations. Similarly, multithreading can influence the 

synchronization behavior in the kernel.  

This chapter presents results from an in-depth look at complete system profiling 

of the SPECjvm98 benchmarks, focusing on the OS activity. Of the different JVM 
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implementation styles [29][18][42][78][55], this chapter focuses on two popular 

techniques - interpretation and Just-In-Time (JIT) compilation. Interpretation [29] of the 

portable Java byte codes was the first approach that was used, and is, perhaps, the easiest 

to implement. In contrast, JIT compilers [18][42][78], which represent the state-of-the-

art, translate the byte-codes to machine native code at runtime (using sophisticated 

techniques) for direct execution. 

The rest of this chapter is organized as follows. Section 3.2 presents the execution 

time and detailed statistics for the user and kernel activities in these workloads. Section 

3.3 investigates cache and memory performance. Section 3.4 explores the ILP issues. 

Finally, section 3.5 summarizes the contributions and implications of this work.  

3.2 KERNEL ACTIVITY OF SPECJVM98 

Figure 3.1 and 3.2 show the execution time profile of the SPECjvm98 

benchmarks for JIT compiler and interpreter modes of execution on s1 input dataset (The 

results on s100 dataset are shown in Figure 3.3 and 3.4). The measured period includes 

time for loading the program, verifying the class files, compiling on the fly by JIT 

compiler and executing native instruction stream on simulated hardware. The profile is 

presented in terms of the time spent in executing user instructions, stalls incurred during 

the execution of these instructions (due to memory and pipeline stalls), the time spent in 

kernel instructions, the stalls due to these kernel instructions, synchronization operations 

within the kernel and any remaining idle times. 

Figure 3.2 shows that compress and mtrt have flat and steady execution profile. In 

these workloads, the bulk of execution time is made up by steady state execution region 

that consists of a single outer loop or a set of loops iterating on a given data size. In 

contrast, jess, db and javac make heavy but erratic use of kernel services, which makes 

their execution behaviors irregular. Additionally, we observe negligible (less that 3%) 
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synchronization time in all of the SPECjvm98 benchmarks' execution. This is partially 

due to some Java runtime library functions are designed to be thread safe, therefore, are 

synchronized. 
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The execution time of each workload is separated into the time spent in user, kernel, and idle (idle) modes on 
the SimOS Mipsy CPU model. User and kernel modes are further subdivided into instruction execution (user 
instr, kernel instr), memory stall (user stall, kernel stall), and synchronization (kernel sync, only for 
kernel mode). 

Figure 3.1: Execution Profile of SPECjvm98 (JIT compiler, s1 dataset) 
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The execution time of each workload is separated into the time spent in user, kernel, and idle (idle) modes on the 
SimOS Mipsy CPU model. User and kernel modes are further subdivided into instruction execution (user instr, 
kernel instr), memory stall (user stall, kernel stall), and synchronization (kernel sync, only for kernel 
mode). 

Figure 3.2: Execution Profile of SPECjvm98 (interpreter, s1 dataset) 
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The execution time of each workload is separated into the time spent in user, kernel, and idle (idle) modes 
on the SimOS Mipsy CPU model. User and kernel modes are further subdivided into instruction execution 
(user instr, kernel instr), memory stall (user stall, kernel stall), and synchronization (kernel sync, 
only for kernel mode). 

Figure 3.3: Execution Profile of SPECjvm98 (JIT compiler, s100 dataset) 
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The execution time of each workload is separated into the time spent in user, kernel, and idle (idle) modes 
on the SimOS Mipsy CPU model. User and kernel modes are further subdivided into instruction 
execution (user instr, kernel instr), memory stall (user stall, kernel stall), and synchronization 
(kernel sync, only for kernel mode). 

Figure 3.4: Execution Profile of SPECjvm98 (interpreter, s100 dataset) 
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Table 3.1 summarizes the breakdown of execution time spent in kernel, user and 

idle for each SPECjvm98 benchmark on three different input datasets. For the small input 

dataset s1, the kernel activity is seen to constitute 6% (compress) to 31% (db) of the 

overall execution time. On the average, the SPECjvm98 programs spend 17% of their 

execution time in kernel. This fact implies that ignoring kernel instructions in 

SPECjvm98 workloads study may not represent complete and accurate execution 

behavior. 

Table 3.1: Execution Time Percentages (with JIT compiler) 

Benchmarks Input User User 
Inst. 

User 
Stall Kernel Kernel 

Inst. 
Kernel 
Stall 

Kernel 
Sync. Idle 

S1 92.25 87.13 5.12 6.06 4.67 1.20 0.19 1.69 

S10 83.57 78.50 5.07 5.44 4.31 0.97 0.16 10.99 compress 

S100 92.81 87.19 5.62 4.30 3.78 0.49 0.03 2.89 
S1 61.95 51.49 10.46 30.28 21.71 6.50 2.07 7.77 

S10 79.10 70.70 8.40 16.99 13.61 2.66 0.72 3.91 jess 

S100 84.95 73.63 11.32 14.90 14.19 0.66 0.05 0.15 
S1 52.07 44.19 7.88 30.91 20.12 8.23 2.56 17.02 

S10 79.08 70.45 8.63 15.89 12.69 2.45 0.75 5.03 db 

S100 87.10 77.50 9.60 12.64 11.91 0.69 0.04 0.26 
S1 71.18 62.08 9.10 18.56 12.17 5.13 1.26 10.26 

S10 73.06 62.50 10.56 11.99 9.89 1.82 0.28 14.95 javac 

S100 84.31 70.92 13.39 14.92 13.85 1.03 0.04 0.77 
S1 89.99 81.23 8.76 7.27 5.08 1.87 0.32 2.74 

S10 91.98 82.50 9.48 6.71 5.37 1.18 0.16 1.31 mtrt 

S100 91.22 80.34 10.88 8.60 7.86 0.71 0.03 0.18 
S1 80.53 70.34 10.19 17.36 13.31 3.46 0.59 2.11 

S10 81.47 71.34 10.13 17.27 13.46 3.30 0.51 1.26 jack 

S100 82.94 72.51 10.43 16.90 13.51 2.96 0.43 0.16 

 

An interesting observation is the fact that idle times (due to file reads) can be seen 

with the smaller data sets. As mentioned earlier, idle times are due to disk activity when 

the operation misses in the file cache. In most applications, the operation is invoked 

repeatedly to the same files/blocks leading to a higher hit percentage in the file cache 
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while using the s100 data sets. As a result, we observed that the percentage of kernel time 

spent in the read call goes up as compared to the smaller data sets. 

The above execution profiling reveals kernel behavior on the execution of 

SPECjvm98 workloads at a coarse level. We further decompose kernel time at service 

level and characterize the corresponding kernel routines for this behavior. SimOS uses a 

set of state machines and annotations to track the current kernel processes, such as page 

fault routine, interrupt hander, disk driver, or hardware exception [28][72]. This allows us 

to attribute kernel execution time to the specific service performed. 

Tables 3.2 and 3.3 further break down the kernel activities (on s1 dataset and with 

JIT compiler) into specific services. These tables give the number of invocation of these 

services, the number of cycles spent in executing each routine on the average, a break 

down of these cycles between actual instruction execution, stalls and synchronization. 

The memory cycles per instruction (MCPI) while executing each of these services is also 

given together with its breakdown into instruction and data portions. The read or write 

kernel service may involve disk accesses and subsequent copying of data between file 

caches and user data structures. It should be noted that the time spent in disk accesses is 

not accounted for within the read or write kernel calls, but will figure as idle times in the 

execution profile (because the process is blocked on I/O activity). So the read and write 

overheads are mainly due to memory copy operations. utlb fault reloads the TLB for user 

addresses. demand_zero is a block clear operation occurs when the OS allocates a page 

for data. (The page has to be zeroed out before being used.) The read system calls is 

responsible for transferring data from kernel address space to application address space. 

Clock and vfault are clock interrupt and page fault handler respectively. 
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Table 3.2: OS Characterization of SPECjvm98 (JIT compiler, s1 dataset) 
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utlb 52.48% 6283123 13.15 99 1 0 0.01 0.01 0 
read 18.23% 5884 4875.49 58 34 8 0.53 0.34 0.19 
demand_zero 12.13% 2818 6774.88 44 53 3 1.13 0.99 0.14 
clock 2.27% 1299 2750.31 40 57 3 1.4 1.05 0.36 
cacheflush 1.96% 1573 1960.03 52 44 4 0.81 0.34 0.48 
open 1.72% 190 14265.09 56 30 14 0.43 0.15 0.28 
vfault 1.25% 975 2016.53 70 23 8 0.3 0.08 0.22 

c
o
m
p
r
e
s
s
 

execve 1.12% 12 146681 55 34 11 0.52 0.31 0.21 
read 41.42% 20368 3487.03 67 23 11 0.3 0.04 0.26 
utlb 22.91% 2884313 13.62 95 5 0 0.05 0.05 0 
BSD 10.90% 28911 646.24 85 11 4 0.13 0.03 0.1 
demand_zero 5.26% 1276 7065.17 42 55 3 1.24 1.02 0.22 
open 3.03% 327 15882.84 55 31 14 0.46 0.18 0.27 
cacheflush 2.90% 2368 2099.78 49 47 3 0.93 0.45 0.48 
tlb_miss 1.66% 24510 115.89 76 23 1 0.29 0.11 0.18 
write 1.45% 126 19770.29 55 26 19 0.35 0.09 0.26 
vfault 1.15% 974 2019.95 69 23 7 0.3 0.08 0.23 

j
e
s
s
 

execve 1.02% 12 145632.8 56 34 11 0.51 0.31 0.2 
read 41.41% 8580 3598.14 66 24 10 0.32 0.08 0.25 
utlb 10.17% 564866 13.42 94 6 0 0.06 0.06 0 
demand_zero 8.75% 945 6902.83 42 54 3 1.19 1 0.19 
write 4.96% 218 16971.67 59 23 19 0.3 0.05 0.24 
BSD 4.70% 5604 624.97 85 10 5 0.12 0.02 0.1 
cacheflush 4.24% 1583 1996.56 52 45 4 0.84 0.36 0.48 
open 3.60% 189 14200.4 56 29 14 0.42 0.15 0.28 
tlb_miss 3.04% 20455 110.85 81 18 1 0.22 0.09 0.12 
vfault 2.62% 969 2019.38 70 23 8 0.3 0.08 0.23 
execve 2.34% 12 145520.3 56 33 11 0.51 0.31 0.2 
COW_fault 2.04% 146 10435.04 41 56 3 1.3 1.16 0.14 
exit 1.41% 11 95447.45 56 31 12 0.46 0.28 0.18 
fork 1.14% 25 34015.16 49 39 12 0.65 0.43 0.22 

d
b
 

du_poll 1.02% 1038 735.42 64 12 25 0.13 0.01 0.13 
utlb 53.69% 14147861 13.71 95 5 0 0.06 0.05 0 
read 26.73% 23013 4196.86 55 36 9 0.57 0.1 0.47 
BSD 7.83% 34562 818.12 67 30 3 0.43 0.13 0.3 
demand_zero 2.71% 1353 7230.78 41 56 3 1.29 1.03 0.25 
cacheflush 1.21% 2039 2143.02 50 47 3 0.91 0.43 0.48 
clock 1.06% 1040 3668.18 29 68 2 2.21 0.91 1.3 

j
a
c
k
 

tlb_miss 1.05% 31643 120.19 77 22 1 0.27 0.1 0.17 
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Table 3.3: OS Characterization of SPECjvm98 (contd.) 

B
en

ch
. 

Se
rv
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e 

%
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N
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C
yc

le
s 

%
Ex

ec
 

%
St
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l 

%
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nc
 

M
C

PI
 

d-
M

C
PI

 

i-M
C

PI
 

read 28.28% 6029 3733.47 66 24 10 0.33 0.1 0.23 
utlb 21.15% 1227572 13.71 94 6 0 0.07 0.07 0 
demand_zero 11.26% 1280 7000.35 42 55 3 1.22 1 0.21 
open 6.15% 315 15543.07 59 25 16 0.34 0.12 0.23 
cacheflush 5.61% 2042 2185.23 50 46 3 0.89 0.45 0.44 
tlb_miss 3.21% 21413 119.44 75 24 1 0.32 0.11 0.21 
xstat 2.48% 119 16573.25 63 22 15 0.28 0.13 0.16 
vfault 2.47% 980 2010.19 70 23 8 0.3 0.07 0.23 
execve 2.21% 12 146486.2 55 34 11 0.52 0.32 0.2 
COW_fault 1.91% 146 10389.38 41 56 3 1.28 1.15 0.13 
brk 1.59% 240 5275.11 44 42 14 0.75 0.23 0.52 
exit 1.45% 11 104609.7 56 31 12 0.46 0.29 0.17 
close 1.43% 287 3976.12 44 43 12 0.77 0.24 0.54 
write 1.40% 81 13803.63 58 25 17 0.33 0.05 0.28 

j
a
v
a
c
 

fork 1.09% 25 34618.28 48 40 12 0.67 0.44 0.23 
utlb 41.36% 3473933 13.9 93 7 0 0.07 0.07 0 
read 19.54% 6081 3750.62 65 25 10 0.34 0.1 0.24 
demand_zero 13.68% 2141 7458.19 40 57 3 1.34 1.08 0.26 
cacheflush 2.94% 1688 2035.74 51 45 4 0.85 0.38 0.47 
clock 2.81% 803 4077.04 27 71 2 2.58 1.23 1.35 
open 2.57% 207 14497.26 55 31 14 0.44 0.15 0.29 
tlb_miss 2.12% 16569 149.47 69 29 2 0.4 0.14 0.27 
vfault 1.74% 1018 1989.27 70 23 8 0.3 0.07 0.23 

m
t
r
t
 

execve 1.51% 12 146549.1 55 34 11 0.52 0.31 0.21 

 

In the execution profile graphs, we see that the bulk of the time is spent in 

executing user instructions. This is particularly true for compress. While I/O (read) is 

needed for these benchmarks, subsequent executions are dominated by user operations. 

These operations are mainly compute intensive with substantial spatial and temporal 

locality (as can be seen in the lower user stalls compared to other applications in Table 

3.1). This locality also results in high TLB hit rates making the TLB handler (utlb) 

invocation infrequent.  
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Table 3.4: OS Characterization of SPECjvm98 (JIT compiler, s100 dataset) 
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utlb 80.85 8.64E+07 13 99 1 0 0.01 0.01 0 
read 9.51 6317 21140 39 58 3 1.42 1.32 0.1 
clock 3.41 16328 2934 37 60 3 1.56 1.07 0.49 
demand_zero 2.33 4807 6813 44 53 3 1.13 1 0.13 

c
o
m
p
r
e
s
s
 

other 3.90 -- -- -- -- -- -- -- -- 
utlb 95.10 3.69E+08 13 98 2 0 0.02 0.02 0 
clock 1.48 17342 4396 26 72 2 2.77 1.44 1.33 
read 1.40 20889 3474 67 22 11 0.3 0.04 0.26 j

e
s
s
 

other 2.02 -- -- -- -- -- -- -- -- 
utlb 94.17 5.60E+08 13 97 3 0 0.03 0.03 0 
clock 1.95 31439 4917 23 75 2 3.21 1.64 1.57 
read 1.44 30048 3804 61 29 10 0.41 0.1 0.31 d

b
 

other 2.44 -- -- -- -- -- -- -- -- 
utlb 91.39 4.71E+08 13 96 4 0 0.04 0.04 0 
DBL_FAULT 3.82 2812267 94 90 10 0 0.11 0.07 0.04 
clock 1.60 23302 4786 23 74 3 3.1 1.41 1.69 
read 1.0 10652 6386 48 46 6 0.89 0.41 0.48 j

a
v
a
c
 

other 2.19 -- -- -- -- -- -- -- -- 
utlb 93.41 1.61E+08 13 95 5 0 0.05 0.05 0 
clock 2.45 13745 4222 26 71 3 2.64 1.26 1.38 
read 1.19 7403 3804 64 26 10 0.36 0.11 0.25 m

t
r
t
 

other 2.95 -- -- -- -- -- -- -- -- 
utlb 63.13 2.38E+08 13 95 5 0 0.05 0.05 0 
read 25.21 296866 4401 52 40 8 0.67 0.09 0.58 
BSD 9.32 585482 825 67 30 3 0.44 0.14 0.3 
clock 1.09 15332 3686 30 68 2 2.2 0.92 1.28 j

a
c
k
 

other 1.25 -- -- -- -- -- -- -- -- 

 

In benchmarks db, jess and javac, one can observe spikes in the kernel activity in 

the execution. The spikes are introduced by the file activities that can be attributed to 

both the application behavior (loading of files) as well as the JVM characteristics. Most 

of the time spent in these spikes (read) is in memory stalls. Other kernel routines such as 

demand_zero that is used to initialize new pages before allocation, and the process clock 

interrupt (clock) routines also contribute to the stalls. In addition to the spikes, we also 

see a relatively uniform presence of kernel instructions during the course of execution. As 
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evident from Tables 3.2 and 3.3, this is due to the handling of TLB misses and processing 

memory copy & clear operations. OS kernel characterizations of SPECjvm98 workloads 

on s100 dataset (with both JIT compiler and an interpreter) are shown in Table 3.4 and 

3.5 respectively. 

Table 3.5: OS Characterization of SPECjvm98 (interpreter, s100 dataset) 
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utlb 73.46 1.39E+08 13 98 2 0 0.02 0.02 0 
clock 13.64 152657 2245 49 48 3 0.94 0.67 0.27 
read 5.32 6324 21119 39 58 3 1.42 1.32 0.10 
runqproc 3.20 1 80269930 54 43 3 0.76 0.35 0.41 
timein 1.15 9336 3107 54 36 10 0.60 0.30 0.30 
demand_zero 1.02 3767 6786 44 53 3 1.12 0.99 0.13 c

o
m
p
r
e
s
s
 

other 2.21 -- -- -- -- -- -- -- -- 
utlb 94.20 4.17E+08 13 99 1 0 0.01 0.01 0 
clock 2.38 38068 3656 31 67 2 2.14 1.13 1.01 
read 1.30 20896 3625 65 25 10 0.35 0.04 0.31 j

e
s
s
 

other 2.12 -- -- -- -- -- -- -- -- 
utlb 96.64 1.38E+09 13 98 2 0 0.02 0.02 0 
clock 1.21 56665 4008 28 70 2 2.44 1.33 1.11 d

b
 

other 2.15 -- -- -- -- -- -- -- -- 
utlb 93.67 5.53E+08 14 96 4 0 0.04 0.04 0 
clock 1.82 36676 3972 28 70 2 2.40 1.21 1.19 
DBL_FAULT 1.76 1487739 95 91 9 0 0.10 0.07 0.03 

j
a
v
a
c
 

other 2.75 -- -- -- -- -- -- -- -- 
utlb 83.04 7.95E+07 17 77 23 0 0.29 0.29 0 
clock 9.13 47562 3096 36 61 3 1.66 1.06 0.6 
read 1.77 7410 3848 63 27 10 0.38 0.11 0.27 
runqproc 1.75 1 28216870 47 50 3 0.99 0.41 0.58 
demand_zero 1.0 2173 7375 40 57 3 1.31 1.09 0.22 

m
t
r
t
 

other 3.31 -- -- -- -- -- -- -- -- 
utlb 70.21 3.51E+08 14 95 5 0 0.05 0.05 0 
read 20.30 296873 4672 49 43 8 0.77 0.09 0.68 
BSD 7.48 585470 872 63 33 4 0.52 0.21 0.31 
clock 1.08 21211 3495 31 66 3 2.03 0.85 1.18 j

a
c
k
 

other 0.93 -- -- -- -- -- -- -- -- 
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3.3 CACHE AND MEMORY PERFORMANCE 

Table 3.6 shows the percentages of memory stall time spent for data and 

instruction for each workload. For completeness, we show data in both user and kernel 

modes on different datasets. For example, in user mode (with s100 dataset), data stall 

time dominates the total memory stall in compress (99%), db (98%), mtrt (81%), and 

javac (80%). Jack is the only application which demonstrate uniform distribution 

between data and instruction stall time (56%/44%). In kernel, a significant fraction of the 

OS time spends waiting for data in compress, jess, db, and javac. Mtrt has approximately 

equal instruction and data stall time. Jack, on the other hand, has more instruction stall 

than data stall. 

Table 3.6: Memory Stall Time Percentages (with JIT compiler) 

User Stall Kernel Stall 
Benchmarks Input Data 

(%) 
Inst. 
(%) 

Data 
(%) 

Inst. 
(%) 

S1 94% 6% 69% 31% 
S10 95% 5% 68% 32% compress 
S100 99% 1% 82% 18% 
S1 48% 52% 38% 62% 
S10 71% 29% 45% 55% jess 
S100 75% 25% 71% 29% 
S1 45% 55% 45% 55% 
S10 86% 14% 44% 56% db 
S100 98% 2% 73% 28% 
S1 53% 47% 52% 48% 
S10 74% 26% 58% 42% javac 
S100 80% 20% 76% 24% 
S1 82% 18% 59% 41% 
S10 82% 18% 63% 37% mtrt 
S100 81% 19% 78% 22% 
S1 56% 44% 40% 60% 
S10 55% 45% 41% 59% jack 
S100 56% 44% 36% 65% 

 

Note that the use of simplistic Mipsy processor model necessarily introduces 

variance in the results compared with using out of order superscalar model MXS. 
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However, the much faster Mipsy model allows the simulation of complex SPECjvm98 

benchmarks with large input size to be completed within acceptable simulation time. 

Previous study [8] shows that the overall performance improvements of the superscalar 

model apply to both user and kernel code and is preferable to increase kernel execution 

time. So, we expect an increased kernel execution fraction on the more complex out of 

order superscalar model. 

We examine how cache miss behavior changes as cache size increases by 

changing the L1 data and instruction cache from 4KB to 512KB and L2 unified cache 

form 64KB to 4MB (as shown in Figure 3.5). All caches are two-way set associative 

caches with LRU replacement policy. Cache miss behavior is presented as cache misses 

per 100 non-idle instructions. The miss number includes cache misses occur in both 

kernel and user modes. 

The performance of L1 data cache when varying the configuration from 4KB to 

512KB is summarized in Figure 3.5 (a). The number of L1 data cache misses is higher in 

javac, jess, and mtrt than that of the other benchmarks. Another observation is that for all 

of the SPECjvm98 workloads, cache misses decrease drastically as cache size increases 

from 4KB to 32KB. L1 data cache misses continue to decrease further as the cache size is 

increased up to 512KB. This suggests that even larger L1 caches could be beneficial for 

most of the SPECjvm98 workloads. 

Figure 3.5 (b) presents instruction misses for SPECjvm98 workloads. The 

benchmarks jack, jess, javac and db have higher miss number due to the larger instruction 

footprint caused by frequent branches to runtime libraries as well as OS calls. Compress, 

and mtrt show fewer misses. In these workloads, either a single or a set of tight loops 

work through a given data set, consuming the bulk of computation time while 

constituting a small instruction footprint. Figure 3.5 (b) shows that instruction related L1 
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cache misses can be nearly satisfied by a 256KB L1 instruction cache and a larger/set 

associative instruction cache would not be as beneficial for the instruction cache 

performance as for the performance of data caches. 
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Figure 3.5: Impact of Cache Capacity and Line Size 
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Overall L2 cache misses, as shown in Figure 3.5 (c), decrease by 51% as L2 cache 

size increases from 64KB to 128KB, and by another 52%, as the size is increased further 

to 256KB. Both L1 instruction cache and L2 cache miss behaviors follow the rule of 

thumb that doubling of the cache size gives about half the benefit seen with the previous 

doubling. The instruction stream can be effectively cached while the data accesses are 

more difficult to absorb, because the data footprint is much larger than the instruction 

footprint for most of SPECjvm98 benchmarks. 

To investigate the impact on cache performance by increasing line sizes while 

keeping cache size constant, we model a 1MB 2-way associative L2 cache with line sizes 

varying from 32 bytes to 256 bytes.  

Figure 3.5 (d) and (e) show the L2 cache performance with increasing line size in 

user and kernel mode respectively. As the Figure 3.5 (d) and (e) shows, SPECjvm98 

workloads are able to take the advantage of larger L2 cache block sizes. However, the 

performance benefit for larger block sizes is highly dependent on the block size and 

branching behavior of the particular application. Compress and mtrt obviously realizes 

more instruction cache miss rate improvement due to their looping characteristic and 

sequential accessing nature. In contrast, jess, db, javac and jack workloads exhibit more 

random branching patterns and their codes are more likely to traverse decision trees than 

perform tight iterative loops. Additionally, many SPECjvm98 workloads compute across 

arrays of data. Hence, large block sizes improve data misses behavior in compress and 

mtrt. For example, mtrt workload almost reduces 40% of L2 miss in user mode when the 

line size is increased from 32 bytes to 64 bytes. These Figures also show that the 

efficiency of reducing instruction related L2 cache misses is not as effective as that for 

data misses. In jess, db, javac and jack, L2 instruction misses become stable when cache 

line size is increased from 64 bytes to 256 bytes. 
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For kernel codes, the conclusions from the previous line size discussion still held. 

Another observation is operating system kernel experiences higher instruction and data 

miss than user application. Symbolic codes like OS, where processors read linked lists 

and often use complex data structures with indirection have low spatial locality . 
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Figure 3.6: Memory Stall Time in Kernel and User 

Figure 3.6 shows the memory stall time expressed as memory stall time per 

instruction (MCPI). The stall time is shown separately for the both the kernel (-K) and 

user (-U) modes (with s100 dataset) and is also decomposed into instruction (-I) and data 

(-D) stalls. Further, the stalls are shown as that occurring due to L1 or L2 caches. For 

both the JIT compiler and interpreter modes of execution, it is observed that the kernel 

routines can experience much higher MCPI than user code for 3 of the benchmarks, 

indicating the worse memory system behavior of the kernel. Fortunately, the kernel 

portion forms a maximum of only 17% of the overall execution time among all the 

SPECjvm98 benchmarks and this mitigates the impact on overall MCPI. It can also be 

observed from Figure 3.6 that the MCPI in the user mode is less for the interpreter mode 

as compared to the JIT mode. The bursty writes during dynamic compilation and the 

additional non-memory instructions executed while interpreting the bytecodes result in 
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this behavior. It is also observed that the stalls due to data references are more significant 

than that due to the instruction accesses. The MCPI due to L2 cache accesses is quite 

small for the compress that exhibit a significant data locality. The other SPECjvm98 

benchmarks can, however, benefit from stall reduction techniques employed for the L2 

cache. 

3.4 ILP ISSUES 

This section analyzes the impact of ILP techniques on SPECjvm98 suite by 

executing the complete workload on the detailed superscalar CPU simulator MXS. The 

effectiveness of microarchitectural features such as wide issuing and retirement are 

studied. Due to the large slowdown of MXS CPU simulator, we use the reduced data size 

s1 as the data input in this section. Just as before, we model instruction and data accesses 

in both application and OS. 

Figure 3.7 illustrates the kernel, user, and aggregate execution speedup for a 

single pipelined (SP), a four-issue superscalar (SS) and an eight-issue superscalar 

microprocessor (normalized to the corresponding execution time on the SP system). The 

eight-issue SS uses more aggressive hardware to exploit ILP. Its instruction window and 

reorder buffer can hold 128 instructions, the load/store queue can hold 64 instructions, 

and the branch prediction table has 2048 entries. Furthermore, its L1 caches support up to 

four cache accesses per cycle. To focus the study on the performance of the CPU, there 

are no other differences in the memory subsystem. 

Figure 3.7 shows that microarchitectural techniques to exploit ILP reduce the 

execution time of all SPECjvm98 workloads on the four-issue SS. The total ILP speedup 

(in JIT mode), nevertheless, shows a wide variation (from 1.66x in jess to 2.05x in mtrt). 

The average ILP speedup for the original applications is 1.81x (for user and kernel 

integrated). We see that kernel speedup (average 1.44x) on an ILP processor is somewhat 
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lower than that of the speedup for user code (average 2.14x). When the issue width is 

increased from four to eight, we observe a factor of less than 1.2x on performance 

improvement for all of SPECjvm98 applications. Compared with the 1.6x (in SPECInt95) 

and 2.4x (in SPECfp95) performance gains obtained from wider issuing and retirement 

[59], the results suggest that aggressive ILP techniques are less efficient for SPECjvm98 

applications than for workloads such as SPEC95. Several features of SPECjvm98 

workloads help explain this poor speedup: The stack based ISA results in tight 

dependencies between instructions. Also, the execution of SPEC Java workloads, which 

involve JIT compiler, runtime libraries and OS, tends to contain more branches to 

runtime library routines, OS calls, and exceptions. The benchmark db has a significant 

idle component in the s1 data set, which causes the aggregate IPC to be low although 

both kernel and user code individually exploit reasonable ILP. 
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Figure 3.7: ILP Speedup (JIT) 

To give a more detailed insight, we breakdown the ideal IPC into actual IPC 

achieved, IPC lost on instruction and data cache stall, and IPC lost on pipeline stall. We 

use the classification techniques described in [72][59] to attribute graduation unit stall 

time to different categories: a data cache stall happens when the graduation unit is stalled 

by a load or store which has an outstanding miss in data cache. If the entire instruction 
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window is empty and the fetch unit is stalled on an instruction cache miss, an instruction 

cache stall is recorded. Other stalls, which are normally caused by pipeline dependencies, 

are attributed to pipeline stall. Figure 3.8 shows the breakdown of IPCs on four-issue and 

eight-issue superscalar processors. 
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Figure 3.8: IPC Breakdown for 4-issue and 8-issue Superscalar Processors 

(T: Total; K: Kernel; U: User, with s1 dataset and JIT compiler) 

On four-issue superscalar microprocessor, one can see jess, db, javac and jack lost 

more IPC on instruction cache stall. This is partially due to high indirect branch 

frequency which tends to interrupt control flow. All studied applications show some IPC 

loss on data cache stall. The data cache stall time includes misses for byte-codes during 

compilation by the JIT compiler and those during the actual execution of compiled code 

on a given data set. Figure 3.8 shows that a significant amount of IPC is lost due to 

pipeline stalls and the IPC loss in pipeline stall on an eight-issue processor is more 

significant than that of four-issue processor. This fact implies that the more aggressive 

and complex ILP hardware may not achieve the desired performance gains on 

SPECjvm98 due to the inherent ILP limitation of these applications. All applications 

show limited increase in instruction cache IPC stall and data cache IPC stall on eight-

issue processor.  
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3.5 SUMMARY 

This chapter has provided insights into the interaction of the emerging Java 

workloads with the underlying system (both hardware and OS). The major findings from 

this chapter are: 

• The kernel activity of SPECjvm98 applications constitutes up to 17% of the 

execution time in the large (s100) data set and up to 31% in the small (s1) data 

set. Generally, the JIT compiler mode consumes a larger portion of kernel 

services during execution.  

• The SPECjvm98 benchmarks spend most of their time in executing instructions in 

the user mode and spend less than 10% of the time in stall cycles during the user 

execution. The kernel stall mode in all SPECjvm98 benchmarks, except jack that 

has a significantly higher file activity, is small. However, the MCPI of the kernel 

execution is found to be much higher than that of the user mode. 

• The kernel activity in the SPECjvm98 benchmarks is mainly due to the invocation 

of the utlb, read and demand_zero service routines. It is also observed that the 

dynamic class-loading behavior influences the kernel activity more significantly 

for smaller datasets (s1 and s10) and increases the contribution of the read service 

routine. 

• The average ILP speedup on a four-issue superscalar processor for the 

SPECjvm98 benchmarks executed in the JIT compiler mode was found to be 1.81 

times. Further it is found that the speedup of the kernel routines (average 1.44 

times) is lower than that of the speedup of the user code (average 2.14 times). 

• Aggressive ILP techniques such as wider issue and retirement are less effective 

for SPECjvm98 benchmarks than for SPEC95. We observe that the performance 

improvement for SPECjvm98, when moving from 4 issue to 8 issue width is 1.2 
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times as compared to the 1.6 times and 2.4 times performance gains achieved by 

the SPECint95 and SPECfp95 benchmarks, respectively. The pipeline stalls due 

to dependencies are the major impediment to achieving higher speedup with 

increase in ILP issue width. Also, the SPECjvm98 workloads, which involve the 

dynamic compiler, runtime libraries and the OS, tend to contain more control 

transfers to runtime library routines and OS services. 
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Chapter 4:  Run-time OS Power Estimation 

This chapter characterizes the power behavior of a commercial OS across a wide 

spectrum of applications to understand OS energy profiles and then proposes various 

models to cost-effectively estimate its run-time energy dissipation. The proposed models 

rely on a few simple parameters and have various degrees of complexity and accuracy. 

Therefore, the models can estimate run-time OS power for run-time dynamic thermal and 

energy management. 

This chapter is organized as follows: Section 4.1 introduces software power 

estimation techniques. Section 4.2 describes the challenges in OS power modeling. 

Section 4.3 provides routine level OS power characterization. Section 4.4 proposes the 

routine based OS power models and evaluates their estimation accuracies. Section 4.5 

discusses the issues of applying the proposed model to run-time power estimation. 

Finally, Section 4.6 concludes with some final remarks and comments. 

4.1 SOFTWARE POWER ESTIMATION TECHNIQUES 

In microprocessor-based systems, one can model power dissipation as a function 

of the software (instructions) being executed on the underlying hardware platforms. 

Software power estimation techniques from past literature can be sorted into the 

following four categories: 

4.1.1 Instruction Level Power Modeling 

The instruction level power modeling [82] has been proposed to evaluate the 

power dissipation of a given piece of software. The basic idea is to explicitly associate 

the consumed power with individual instruction execution. An instruction level software 

power model can be generally described as: 
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where  is the base energy cost to process the individual instruction .  

reflects the dissipated power due to the circuit switching between each pair of 

consecutively executed instructions . The term  accounts for other energy 

overhead due to the k-types of inter-instruction effects, such as write buffer stalls and 

cache misses. For a given program, its overall energy cost,
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),( ji kS

E , can then be calculated by 
multiplying the  and the O with the dynamic instances of the individual instruction 

( ) and the instruction pair ( ) correspondingly. 
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To get  and , an exhaustive power characterization of the entire ISA 

(Instruction Set Architecture) and an inter-instruction effects measurement for any 

possible instruction pairs have to be conducted. For example, for the Intel IA-32 ISA [32] 

with 331 unique instructions, the number of possible instruction pairs need to be 

measured are 109,561 ( 331 ), which makes the instruction level power characterization 

effort non-trivial. 

iB jiO ,

2

To compute power dissipation, the above methodology favors an off-line analysis 

of the complete trace of the program. Although it is feasible to produce and store 

complete instruction traces for the simple and embedded software, the volumes of 

complete instruction traces from large applications would easily overwhelm the disk 

space. Additionally, without significantly merging, approximation and therefore paying 
the cost of accuracy lost, it is infeasible to fit all the and into a small (hardware) 

table for a live, just-in-time power estimation, a feature which is imperative to support 
many run-time power management. One solution is to store the and  into a 

software-based table and uses a dedicated software trap to trigger table lookup and then 

compute power consumption. Unfortunately, this scheme can also significantly dilate the 

iB jiO ,

iB jiO ,
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execution time of an estimated program, due to the overhead of the software trap handler 

and its invocations at individual instruction (or instruction sequence) granularity. 

Therefore, run-time instruction level power modeling is intrusive and computation 

intensive. 

4.1.2 Characterization-based Macro-modeling 

Instead of evaluating power at instruction level, software function level macro-

modeling techniques [79][68] treat application functions or sub-routines as “black boxes” 

and construct macro-models that correlate power with a set of characteristics of interest. 

Such power characteristics of interest can be obtained and collected by using a low-level 

energy simulation framework [81]. Under this philosophy, a software function or sub-

routine’s power template can be represented by a linear formula with respective to the n 

power interest metrics [  as: ],...,, 21 nccc

j
j

j cwP ×= ∑    (2), 

where  are the macro-modeling coefficients to be determined. 

Regression analysis is then applied to identify the optimal [  with the least 

mean square fitting error based on a set of known input and output pairs. 

],...,,[ 21 nwww

],...,, 21 nwww

The key issue on the above macro-modeling is how to choose [ , which 

can effectively capture the power characteristics of a given software sub-routine under 

various circumstances. In [79], Tan et al. suggested the use of algorithm complexity and 

trace-based basic-block correlation information as the power metrics. These techniques 

are proposed for embedded software and targeted for embedded processors. It should be 

noticed that while embedded software like the DSP kernels have more intensive and 

regular looping patterns, the operating systems which are designed to manage both 

software and hardware systems can lead to far more complicated and unpredictable 

],...,, 21 nccc

 40



control flow [46][47] that can not be easily captured by a naive metric such as algorithm 

complexity. The trace-based basic-block correlation analysis is more suitable for 

processors that execute instruction in order [58]. The data dependency and speculative 

execution effects have a more significant impact and greater variation in the case of wide-

issue and deeply pipelined superscalar processors. For example, even for exactly the 

same input data set, speculative execution along the wrong path followed by a 

mispredicted branch will cause more energy dissipation compared with the scenario that 

has the correctly predicted control flow [52]. 

On the other hand, the use of basic-block correlation metric relies on storing 

complete control flow graph (CFG) for each software sub-routine and counting the 

number of each correlated path whenever that sub-routine is invoked. Like instruction 

level power modeling, this macro-modeling technique necessitates off-line trace analysis 

because finding basic-blocks and counting correlated paths will be computation intensive 

and intrusive to the estimated software execution when they are applied to the on-line 

power estimation. The feature of just-in-time power modeling necessitates the use of 

simpler metrics. 

4.1.3 Performance Counter-based Run-time Power Estimation 

Run-time software power estimation [34][9] derives an estimate of live power 

dissipation by leveraging the existing processor hardware and an analytical power model 

of the target microprocessor. The idea is that the amount of power dissipated on software 

execution is appropriate to the amount of accesses and switching activities within 

processor units. Most modern microprocessors have already embedded programmable 

event counters [12] to monitor microarchitectural events for the performance 

measurement purpose. Heuristics can be chosen from the available counters to infer 
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power relevant events and further feed to an analytical processor power model to 

calculate the power. 

Joseph et al. [34] showed that the performance counters can be quite useful in 

providing good power estimation for programs as they run. Considering about 12 

performance measures, they estimated power within 2% of the actual power. However, in 

general and for a given processor, the availability of heuristics is limited by the types of 

the performance counters and the number of events that can be measured simultaneously. 

For example, the Alpha 21264 has only 9 performance counters and the Intel Pentium III 

processor can only simultaneously observe 2 out of the 77 total events. OS and many 

large software are non-deterministic in nature and their behavior can vary significantly 

over time and different runs [2]. Therefore, random sampling of counters with different 

configured event types does not apply to the on-line OS energy profiling. On the other 

hand, due to the “black box” power modeling approaches taken in [34][9], fine-grained 

(e.g. function level) power distribution, which provides insight into the software power 

behavior, is not available. Meanwhile, due to the observed drastic phase changes during 

application execution [74], the accuracy of using a simpler, flat model to track the run-

time software power behavior is largely unknown. 

4.1.4 Cycle-accurate Architectural Level Simulation 

It has been widely accepted that circuit and gate level simulations are infeasible to 

evaluate power consumption of large software executing on complex computing systems. 

A complementary set of approaches is based on the use of cycle-accurate architectural 

level power simulators [13][88][25]. Architectural level power simulations have been 

shown to be applicable to modern superscalar processor (with deep pipelines, out-of-

order and speculative execution). However, cycle-accurate simulation causes simulation 

speed to be extremely slow, preventing the efficiency of the design space searching. This 
 42



is especially true when simulating large and complex applications using detailed 

processor models. Because of that, simulation based power model can not be used to 

support run-time software power estimation. 

Moreover, most of the existing architectural level power simulators (e.g. Wattch 

[13] and SimplePower [88]) do not include the effect of the OS in their software power 

analysis. The OS execution can either be invoked explicitly (e.g. system calls) or 

implicitly (e.g. paging and faults handling) and the occurrence of the OS execution can be 

either synchronous (e.g. timer interrupt) or asynchronous (e.g. scheduling). Therefore, the 

power dissipation of OS due to its run-time, exception-driven and non-deterministic 

nature can not be completely captured without using a power-aware, timing-accurate and 

full-system simulation framework. In [25][80][17], such full-system energy simulators 

are developed and the necessity of simulating OS energy is quantified. Detailed and full-

system simulation further suffers from potentially long run times when simulating 

complete system activities using complicated processor, memory and I/O device 

modules. 

4.2 CHALLENGES IN OS POWER MODELING 

For an OS power estimation technique to be applicable to run-time thermal/power 

management, it must have the following properties: 

• High fidelity and fast speed: The model should be able to estimate the OS energy 

dissipation accurately. Power estimation should avoid the extremely slow cycle 

by cycle full-system simulation as much as possible. 

• Run-time estimation capability, non-intrusive and low overhead: The model 

should support on-the-fly OS power estimation. The run-time power estimation 

overhead should be low to avoid disturbing the normal OS execution. 
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• Simplicity, availability and generality: The model should only rely on a few 

power metrics of interest that is widely available across different hardware 

platforms. 

This dissertation explores techniques to efficiently estimate OS power dissipation 

while providing the above valuable features. The observation is that in a given computing 

system, OS is a commonly used software layer exercised by all applications. OS power 

dissipation is usually dominated by a set of limited but heavily invoked kernel service 

routines. Just as instructions are the fundamental units of software execution, the OS 

service routines can be though as the fundamental unit of OS execution. Provided that the 

most frequently invoked OS service routines have the similar or predictable power 

dissipation behavior across various benchmarks, one can evaluate the power 

characteristics of these OS routines and use such information to derive the aggregated OS 

power consumption across various applications. OS routine based power characterization 

and estimation thus avoid the computationally expensive full-system simulation for each 

estimated application.  

4.3 ROUTINE LEVEL OS POWER CHARACTERIZATION 

The complete system power simulator SoftWatt [25], which models the power 

dissipation of the CPU, memory hierarchy and a low-power disk subsystem, is used to 

investigate the power behavior of OS. The simulated microprocessor and system 

configurations can be found in Table 2.2. The CPU model runs at 900 MHz on 2.0 V 

supply voltage and uses 0.18 micron processing technology. The disk model is a SCSI 

HP97560 incorporated with low power feature. 

For the OS power modeling and estimation, the experimented benchmarks (as 

shown in Table 2.1) are partitioned into two groups, namely, profiling and test. The 

profiling group (pmake, gcc, vortex, javac, jack, mtrt, compress, postgres.join, db.s10, 
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jess.s10, javac.s10, jack.s10, mtrt.s10, compress.s10) is used to generate data needed to 

build the models. The test group (sendmail, fileman, db, jess, postgres.select, 

postgres.update, osboot) is used to examine the accuracy of the proposed models. The 

test group was selected to contain some of the programs that contain significant OS 

activity. 

4.3.1 Power Behavior of OS Routines 

The average power and its standard deviation for each OS routine across different 

benchmarks are measured. As shown in Figure 4.1, these OS routines are classified into 

interrupts, process and inter-process control, file system and miscellaneous services (see 

Appendix A for more information). 
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Figure 4.1: Average and Standard Deviations of OS Routines Power  

(Standard deviations indicated on the right side y-axis in each graph) 
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One can see that there can be a great variance in power consumption between 

different OS routines. For example, while the power dissipation on the OS copy-on-write 

fault handler COW_fault is as high as 54W, the setreuid routine (set real and effective 

user id) only consumes 14W of power. This implies that estimating the energy cost of 

various OS calls without resorting to detailed simulation will cause measurable error.  

Each OS service involves specific instruction processing across various units of 

the processor, which results in circuit activity that is characteristic of each OS service and 

can vary with OS services. Memory access intensive OS routines, such as vfault, 

COW_fault, demand_zero, cacheflush show higher power consumption than computation 

intensive services, such as utlb and clock. Some I/O interrupts (simscsi_intr and if_etintr), 

process scheduling (getcontext), file I/O (fcntl, lseek and getdents) show higher standard 

derivation in power consumption because their execution is largely dependent on system 

status. On the other hand, OS routines such as utlb, utssys and cacheflush perform certain 

amount of work in each invocation, resulting in negligible power consumption variation. 

Figure 4.2 further reveals the run-time routine-level OS energy distribution across 

different benchmarks. The x-axis indicates the serial numbers of unique OS service 

routines and the y-axis shows the percentage of run-time OS energy dissipated by that 

specific OS routine. In this study, a total number of 186 OS service routines were 

identified. Figure 4.2 shows that different benchmarks invoke different OS services and 

hence show different energy distribution patterns. For example, on benchmarks filename, 

db, jess and postgres.select, the OS energy dissipation is dominated by a small fraction of 

highly invoked service routines while on benchmarks sendmail, postgres.update and 

osboot, OS energy consumption is contributed by a wide range of service routines. The 

above observation, combined with the fact that individual routine shows different power 

behavior, implies that: (1) overall, the OS power behavior can vary from one application 
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to another; (2) the use of single “average OS power” number across various applications 

will lead to significant estimation errors. 
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Figure 4.2: Routine Level Energy Distributions in OS 

4.3.2 Energy-Performance Correlation 

Figure 4.3 further shows how a set of OS routine’s power varies on different 

profiling benchmarks. In the cases of utlb and cacheflush, the OS power varies in a very 

restricted range. However, on simscsi_intr, the OS routine power can span with in a range 

from 8W to 59W. Interestingly, we observe that OS routine’s power is strongly correlated 

with its performance. We investigate the use of IPC (Instructions per Cycle) as the metric 

to characterize the performance of modern processors, as pointed out in [61]. Valluri [84] 

and Chen [17] also had observed a similar correlation. 

The explanation for this correlation lies in the fact that in a complex, high 

performance superscalar processor, a dominant portion of the power is consumed by 

circuits used to exploit the ILP. The pie chart in Figure 4.4 shows how various 

components in the CPU and memory systems contribute to the total OS routine power. 
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Data-path and pipeline structures, which support multiple issue and out-of-order 

execution, are found to consume 50% of total power on the examined OS routines. Figure 

4.4 shows that clock is the second largest power consuming component: the capacitive 

load to the clock network switches on every clock tick, causing significant power 

consumption. 
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Figure 4.3: Correlation between OS Routines Power and IPC 
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The energy consumed in data-path during execution usually depends on the 

number of instructions that flow through. The ILP performance measured by IPC, 

certainly impacts circuit switching activities in those microprocessor components and can 

result in significant variation in power. High IPC reflects the scenario in which most of 

the processor structures are busy. On the other hand, main pipeline stalls or bubbles, 

which lead to low IPC and can be easily clock gated, will drastically reduce power 

dissipation. For a given piece of code, similar IPC usually indicates similar circuit 

switching activities and therefore, similar power consumption. 

The above correlation implies that one can use a simple linear regression model 

01 kIPCkP +×=    (3), 

to track the OS routine power showing different performance. Appendix A lists the 

regression model parameters (  and the regression model fitting errors for the 

examined OS routines. 

), 01 kk

4.4 ROUTINE LEVEL OS POWER MODEL 

This section presents routine level profiling based energy estimation models. The 

objective is to provide simple and easily computable techniques that can be used for run-

time energy estimation of operating system software. 

Energy consumption of a given piece of software can be estimated as: , 

where P is the average power and T is the execution time of that program. If average 

power of different OS routines can be determined, it can be used to compute the OS 

energy. A routine level OS energy estimation model can be represented as: 

TPE ×=

 
)( ,_,_ iroutineos

i
iroutineosOS TPE ×= ∑    (4), 

where  is the power of the iiroutineosP ,_ th OS routine invocation and T  is the 

execution time of that invocation. 

iroutineos ,_
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The  can be computed in many ways. It can be an average power based 

on all invocations of that routine in the programs (as shown in Figure 4.2). Figure 4.5 

illustrates the accuracy of this estimation model. The profiling based average power 

values at the routine level are found to yield estimation errors within 5% in 6 out of the 7 

test benchmarks. On benchmark fileman, however, this scheme can underestimate the OS 

power by as much as 32%.  

iroutineosP ,_
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Figure 4.5: Model Estimation Accuracy (Routine Average Power) 

Exploiting the interesting observation presented in section 4.3.2 on the correlation 

between IPC and OS routine average power, this research investigates the potential of 

this correlation in estimating energy consumption of programs based on IPC. This 

approach is similar to the one used in [34], where approximately a dozen performance 

counters are used to estimate power. However, the model proposed here only utilizes 2 

pieces of information, namely, instruction count and cycles. Also, it uses a profiling 

approach by which information based on some benchmarks can be used to predict the 

energy of a different application. To investigate the usefulness of this approach, we use 

per-routine based OS power models built on profiling benchmarks (Appendix A) to 
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estimate OS power on the test benchmarks. The accuracy of the energy estimation is 

within 1% (as illustrated in Figure 4.6). 
 
 

-2%

-1%

0%

1%

2%

se
nd

m
ail

file
m

an db jes
s

po
st

gr
es

.se
lec

t

po
st

gr
es

.u
pd

at
e

os
bo

ot

Es
tim

at
io

n 
Er

ro
r (

%
)

Figure 4.6: Estimation Accuracy (IPC Correlated Routine Average Power) 

If instead of routine-based estimation, a flat average is used, the errors are high. 

This approach is also used to estimate energy of OS execution on the test programs. Not 

surprisingly, Figure 4.7 illustrates that there is 20% to 50% error if energy is estimated 

with a flat average OS power for all programs. Therefore, the paradigm of blindly 

treating the OS as monolithic software is unlikely to yield highly accurate estimation. 
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4.5 RUN-TIME OS POWER MODELING 

As discussed in section 4.2, live power estimation is valuable for run-time power 

management and optimizations. The proposed routine level power estimation technique 

characterizes the power behavior of each OS routine at profiling stage and uses that 

information to compute the run-time power dissipation. The overhead of estimation is the 

computation needed for a first order linear processing of the IPC at OS routine 

boundaries, which is low. 

The linear regression model parameters can be stored in a smaller look-up table 

and the OS can dynamically compute power and energy at run-time. If the routine of 

interest is not found in the table, a single performance correlated average power 

number  can be used. The maximum error that could occur by using such an approach 

is shown in Figure 4.8. Generally, the OS power correlates well with IPC and the 

cumulative power estimation error using the power model  is seen to 

yield errors less than 10%. 
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Figure 4.8: OS Power Estimations (Single Power/IPC Correlation Model) 
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In some cases, cumulative (average) power estimation is insufficient and power 

has to be modeled and estimated on a fine-grained basis. Generating accurate and fine 

grained power estimation of an OS on a given system is important to computer architects 

as well as OS developers who need insight into machine’s power efficiency to tune their 

code. 

(a) Single Regression Model (b) Routine based Regression Models 

Names of OS Service Routines
1:utlb 2:pfault 3:vfault 4:COW_fault 5:demand_zero 6:timein 7:simscsi_intr 8:if_etintr 9:du_poll 10:clock 
11:fchmod 12:exit 13:fork 14:read 15:write 16:open 17:close 18:unlink 19:time 20:brk 
21:lseek 22:getpid 23:getuid 24:alarm 25:access 26:syssgi 27:dup 28:pipe 29:getgid 30:ioctl 
31:utssys 32:execve 33:fcntl 34:ulimit 35:getdents 36:sigreturn 37:getsockname 38:getdomainname 39:setreuid 40:sproc 
41:prctl 42:mmap 43:mprotect 44:msync 45:BSDsetpgrp 46:getrlimit 47:cacheflush 48:xstat 49:lxstat 50:fxstat 
51:ksigaction 52:sigprocmask 53:sigsuspend 54:getcontext 55:setcontext 56:waitsys 57:setrlimit    

Figure 4.9: A Comparison of Run-time Per-routine based Estimation Error 

To evaluate the run-time suitability of the proposed routine level power modeling 

approach, this chapter performed a comparative study of the flat and routine level power 

modeling schemes in terms of per-module accuracy. As it can be seen, routine level 

modeling (Figure 4.9b) consistently produces results that are less than 6% away from the 

exact, cycle-accurate values, while the flat model (Figure 4.9a) scheme can generate up to 

178% error in some cases. Modeling power behavior at OS service routine level 

drastically reduces the run-time estimation error, implying the good power tracking 

ability of this model. On the other hand, building single model for the whole operating 
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system, although achieves acceptable cumulative power estimation accuracy, can lead to 

measurable estimation error when applied to track the fin-grained run-time power 

behavior. This fact implies that the “black box” power modeling approaches taken in 

[34][9] are unlikely to be effective for run-time power tracking. 

As described earlier, many hardware platforms have restrictions on the member of 

counters that can be configured simultaneously to count events. Therefore, a good power 

model should rely on minimal number of hardware event counters but must still maintain 

high accuracy. Table 4.1 lists energy accounting mechanisms [9] that rely on 2, 3, 5, and 

7 types of counters respectively. For example, the 5-CS uses 5 hardware counters, 

namely, cycles, graduated instructions, L1 data cache accesses, L2 data cache accesses 

and main memory references to build regression power model and evaluate power. 

Table 4.1: Hardware Counter Schemes 

Schemes 
Events 2-CS 3-CS 5-CS 7-CS 

Cycles + + + + 
Graduated + + + + 
L1-D Cache  + + + 
L1-I Cache Accesses    + 
L2-D Cache   + + 
L2-I Cache Accesses    + 
Main Memory   + + 

Figure 4.10 compares the estimation accuracy of the proposed routine level OS 

power model that uses 2 counters (RL 2-CS) with flat modeling schemes that rely on 

more hardware counters. While the 3-CS, 5-CS and 7-CS outperform the 2-CS scheme in 

some cases in terms of accuracy, they show unpredictable behavior, depending on the 

benchmarks. The RL 2-CS scheme is the only one that offers consistent low error. One 

can see that the RL 2-CS model outperforms the flat regression models that use more 
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hardware counters, indicating the benefit of combining hardware and software knowledge 

in energy modeling. 
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Figure 4.10: A Comparison of Different Hardware Counter Schemes 

The proposed technique requires initial energy profiling of OS routines, which 

necessitate a full-system power-aware simulator such as SoftWatt [25]. However, the 

models described in this paper are independent of the actual method used to profiling. If 

sophisticated data acquisition based measurements are available, the measurement 

method can be used. The OS routine level power characterization is computation 

intensive. However, the power estimation does not require power simulation once that 

information is built, making it outperform other simulation-based approaches in terms of 

efficiency. The scheme also needs run-time measurement of cycles and IPC. All high-end 

microprocessors provide these counters and hence obtaining the information is not a 

problem, making it generally applicable to all hardware platforms. The run-time OS 

power estimation involves a first order linear operation on a single power metric, 

reducing estimation overhead. 

4.6 SUMMARY 

Modern computer systems are characterized by the presence of high performance, 

general-purpose processors and software (OS and user applications) running on it. Power 
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modeling is increasingly becoming a critical issue during system designs, as well as run-

time power/performance optimizations. 

This chapter proposes power models for the OS, a major power consumer in many 

modern application executions. The proposed models rely on a few metrics of interest for 

power evaluation. Profiling of several Java, Database, file/e-mail workloads illustrated a 

strong correlation between IPC and OS routine power. Exploiting this correlation, we 

built a model to estimate energy consumption of OS activity. Profiling done on one set of 

programs is used to estimate energy of another set of programs and yields a high 

accuracy within 1%. The proposed routine level power model not only offers superior 

accuracy when compared to a simpler, flat OS power model, but also provides per-

routine estimation errors of less than 6% when applied to track the run-time OS energy 

profile. 

The integrated OS performance/power characterization not only leads to efficient 

power estimation for OS-intensive applications but also provides hint to reduce OS power 

consumption. Having known the routine based power dissipation behavior, hardware can 

be adapted for power minimization. For example, to save power, the size of a banked 

instruction window or reorder buffer can be dynamically reconfigured when OS routines 

with low IPC are detected. In another scenario, dynamic voltage scaling or frequency 

throttling can be applied to the OS code that performs intensive I/O when the processor 

ILP dose not really matter. 

 56



Chapter 5:  OS Power Saving 

This chapter advocates a routine based OS-aware microprocessor resource 

adaptation mechanism to save run-time OS power. This approach permits precise 

hardware reconfigurations for the OS with low overhead and allows fine-grained 

performance/power tuning at microarchitectural level.   

5.1 PROGRAM PHASES AND IPC VARIANCE 

This chapter explores the adaptation of processor resources to reduce OS power 

on today’s high-performance superscalar processors, which exploit aggressive hardware 

design to maximize performance across a wide range of targeted applications. It has been 

observed that program’s computational requirement, generally measured by the 

instruction per cycle (IPC), varies during its execution [3]. By tuning processor resources 

to be appropriate to the actual needs of the program, significant power savings can be 

achieved with minimal impact on performance. Figure 5.1 illustrates the IPC variation 

over time for jess, a SPECjvm98 Java benchmark [35] running on an 8-issue superscalar 

processor. The benchmark’s IPC varies from as low as nearly zero to as high as five, 

indicating the significant discrepancy in computational requirement during its execution. 
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Figure 5.1: IPC Variation in the SPECjvm98 Benchmark jess 
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One factor that contributes to the widely varying IPC is the frequent OS activity: 

the ILP in the OS has been found to be much lower than user applications 

[70][38][45][17]. The nature of OS code limits the available instruction level parallelism. 

For example, to maximize the amount of time the peripheral has to clear the interrupt 

before the processor executes the interrupt return sequence, the OS usually uses a 

serializing instruction between a LOAD/STORE and an IRET (interrupt return 

instruction) to force a LOAD before the IRET. In another scenario, the OS uses caches to 

speed up reads, but it requires synchronous disk I/O for operations that modify files. A 

serializing instruction requires that all other instructions in the pipeline complete before it 

executes. Moreover, many architectures treat privilege instructions, such as move to/from 

special register, TLB management, explicit cache operations, and interrupt/exception 

return, as serialization instructions. Processor switches mode to OS upon handing an 

exception or interrupt or upon handling a TRAP instruction (usually used to implement 

all system calls by OS), which all raises an exception. To handle precise exceptions, the 

processor pipeline must drain before OS code execution can begin. Serializing 

instructions, interrupts and privilege level changes may spend considerable cycles in 

execution, forcing the decoder to wait and increasing the resource stalls, limiting the 

available ILP.  The OS IPC is much lower than the user IPC, implying that the OS does 

not exploit the superscalar capabilities provided by the wide-issue, aggressive processor 

as efficiently as user code does. 

Today’s high-performance microprocessor designs attempt to push the 

performance envelope by employing aggressive out-of-order execution mechanisms [61]. 

As a result, in a complex, high performance superscalar processor, circuits used to exploit 

the ILP consume a dominant portion of the power [64][84].  The ILP performance 

measured by IPC, certainly impacts circuit switching activities in those microprocessor 
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components and can result in significant variation in power. High IPC reflects the 

scenario in which most of the processor structures are busy. On the other hand, main 

pipeline stalls or bubbles, which lead to low IPC and can be easily clock gated, will 

drastically reduce power dissipation.  

Table 5.1: OS IPC and Power 

 1-issue 2-issue 4-issue 6-issue 8-issue 
IPC 0.88 1.09 1.15 1.19 1.21 

Power (W) 6.4 12.2 21.7 31.1 42.8 

To reduce power, hardware can be dynamically adapted to provide appropriate 

resource to the program’s computational demand. Table 5.1 shows the OS IPC and power 

consumption (average over all benchmarks) on 8-issue, 6-issue, 4-issue, 2-issue, and 1-

issue machines respectively. It can be seen that by reducing processor resources, the 4-

issue machine saves 49% of power with a performance loss of only 5%. The OS IPC does 

not scale well with the increasing superscalar capability, making it ideal candidate for 

resource adaptation. Given the assumption that the OS execution can be timely and 

accurately detected, significant power savings can be achieved (with tolerable 

performance penalty) by catering appropriate processor computational resource that 

matches the OS requirement. 

Current adaptation techniques [5][64][20][33] rely on periodic sampling to match 

program computational requirement with processor resources.  However, research in this 

chapter shows that resource adaptation based on sampling window becomes less efficient 

when applied to the exception-driven and short-lived OS execution [47]. Moreover, for 

large and sophisticated programs like OS, a naïve sampling scheme does not guarantee 

the optimal solution when both energy and performance are under consideration. 

Therefore, this chapter advocates a routine based OS-aware microprocessor resource 

adaptation scheme. The rationale is that although modern operating systems are large 
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sophisticated software, their complexities are hidden behind a relatively simple interface - 

a set of OS kernel service routines, which provides a common interface to exercise the 

OS. The power and performance knowledge of different OS routines can be characterized 

then exposed to the hardware to finely tune the power/performance knob of the OS at 

run-time. 

The proposed innovative technique ensures that processor resources match to the 

computational demands of the OS in a timely and optimal fashion yet with low overhead. 

Compared with existing techniques, the proposed scheme has the following advantages: 

(1) OS-aware resource adaptation guarantees the timely and fine-grained resolution 

required to capture the exception-driven, short-lived OS activity. (2) Adapting processor 

resources only at OS routine boundaries largely eliminates reconfiguration latency. (3) 

Routine based adaptation selects the optimal configuration for individual routine, 

yielding more attractive power and performance trade-off. (4) Aggressive optimizations 

can be safely applied to certain OS routines to further save energy without degrading 

performance. 

This chapter is organized as follows: section 5.2 presents a based line sampling-

adaptation scheme and demonstrates the challenges in sampling OS activity. Section 5.3 

proposes the routine based OS-aware microarchitecture adaptation scheme and discusses 

its benefits. Section 5.4 presents performance and energy-efficiency evaluation results. 

Section 5.5 discusses related work. Section 5.6 concludes with some final remarks. 

5.2 SAMPLING BASED ADAPTATION: CHALLENGES FOR OS 

In prior research, the run-time periodic sampling of measurable metrics (e.g., IPC) 

has ubiquitously been used to estimate program computational demand and to guide the 

adaptations. In the sampling based techniques, program execution cycles are partitioned 

into fixed period intervals as in Figure 5.2. The duration of each interval is called a 
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sampling window. The performance metric, such as IPC, is measured within a sampling 

window to estimate the program computation demand for the next execution interval 

window. At the boundaries of each sampling window, adaptation decisions are made. 
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Figure 5.2: Sampling Window 

Current sampling-adaptation approaches [5][33] use a finite state machine (FSM) 

to specify the transitions between different configurations. For example, Figure 5.3 shows 

a FSM for transitioning between the normal mode (8-issue) and the low power modes (6, 

4, 2 and 1-issue) described in Section 5.3. The enabling (ExI) and disabling conditions 

(DxI) and the IPC thresholds are set and extended according to the one proposed by 

Bahar et al. [5]. For example, the enabling conditions for entering the 4-issue mode are 

E4I or !D4I&!E2I or E4I&!E2I&!E1I respectively. In this chapter, this adaptation technique 

is considered as the baseline scheme. 
1: !E6I&!E4I&!E2I&!E1I 
2: E6I&!E4I&!E2I&!E1I 
3: !D6I&!E4I 
4: E4I 
5: !D4I&!E2I 
6: E2I 
7: !D2I&!E1I 
8: E1I 
9: !D1I 
10: D6I 
11: D4I 
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E6I : IPC<4.5 D6I : IPC>5.0 13: D1I 
E4I : IPC<3.0 D4I : IPC>3.2 14: E4I&!E2I&!E1I 
E2I : IPC<1.5 D2I : IPC>1.8 15: E2I&!E1I 
E1I : IPC<0.5 D1I : IPC>0.8 16: E1I 

Figure 5.3: FMS used in Sampling based Adaptation  

(Trigger Conditions and Thresholds are set and extended according to [5]) 

 61



At run-time, the estimated program IPC within the previous sampling window 

serves as the input of FMS to choose the configurations for the current interval, as shown 

in Figure 5.2. The basic premise of this sampling algorithm is that past program behavior 

indicates its future needs. The sampling window period (T ) determines the finest 

granularity at which program phase changes can be resolved. Generally, T  has to be 

small enough to capture the changes of program behavior. 

s

s

In practice, accomplishing an adaptation can cause performance penalty (latency 

marked as T in Figure 5.4). In the superscalar processor design, IW, LSQ and ROB are 

implemented with partitioned structure [20]. A reconfiguration has to guarantee that there 

are no instructions left on the partitions that will be deactivated. Additional care must be 

taken in resizing the ROB and LSQ because of their circular FIFO like structure [64]. 

Due to these restrictions, whenever an adaptation decision is made, the dispatch unit 

stops pumping instructions into the IW, LSQ and ROB until all existing instructions are 

drained out from the partitions to be turned off. This pipeline flushing like action can take 

a non-trivial amount of time, depending on the number of instructions already in pipeline 

and the cycles for them to complete [33]. Moreover, compared with single mode only 

execution, adaptations introduce extra latency due to pipeline warm-ups after the 

reconfigurations. As shown in Figure 5, reducing sampling window period (

a

sh TT << ) 

offers capability to capture fine-grained phase changes in execution. However, the 

aggregated adaptation overhead can be prohibitive. This fact prevents the use of small 

sampling window without significantly slowing down program execution. In [64], a 

sampling window of 2048 cycles is set. In [33], an even larger resizing period is chosen 

for the entire program hotspot, which could take several million cycles. 
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Figure 5.4: Implications of Sampling Window Sizes 

At run-time, user and OS execution appear alternately within the sampling 

windows, as shown in Figure 5.4. The IPC discrepancy between user and OS indicates 

the different computational requirement when the user/OS context switches. When 

program phase shifts (e.g., due to user/OS interactions), the prior interval becomes a poor 

estimate for the next. 

In the traditional and performance-centric OS design, highly optimized 

lightweight routines (e.g., faults and interrupt handlers) are usually implemented in order 

to keep the cycles down. Figure 5.5 characterizes the average duration in cycles of 

individual OS service (Note that the y-axis uses logarithmic scale). One can see that 

many OS service routines show short-lived execution period. Theoretically, given a 

sampling interval of T , in order to accurately capture the phase shift caused by an OS 

service and exploit the adapted configuration for at least another sampling interval, the 

duration of that OS service T should be at least  cycles, i.e. T . 

s

osd sT2 sosd T2≥

Figure 5.5 shows that there are only 16 OS routines satisfy the above condition on 

the duration ( 4096 cycles) required by the 2048 cycles sampling interval, a commonly 

used window granularity to avoid the costly reconfiguration overhead. Figure 5.6 further 

illustrates how OS service routines with different duration contribute to the total OS 

energy dissipation (Note that the x-axis uses logarithmic scale). It is observed that even 

though some OS services are very efficiently implemented from the execution cycle 

≥
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viewpoint, those lightweight OS services can have significant impact on the total OS 

energy. For example, on benchmark postgres.update, the OS service routines with 

duration less than 4096 cycles draw 50% of the OS energy. As described earlier, a 

sampling window which is larger than 2048 cycles can not guarantee to resolve these OS 

activity and adapt processor resource timely to reduce that portion of OS energy (shown 

on the left side of the dotted line in Figure 5.6). 
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Figure 5.5: Average Duration of OS Services  

(x-Error Bars Show the Maximum and Minimum Cycles) 
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To summarize, a long window interval does not provide the opportunity to switch 

mode when the program phases change due to the exception-driven, non-deterministic 

and short-live nature of user/OS interactions. On the other hand, the fine-grained 

switching required by the brief OS invocations makes it difficult to amortize the 

performance degradation due to the frequent adaptations. To reconfigure processor 

resource for the short-lived OS activity without rising costly adaptation overhead, this 

chapter proposes a routine based OS-aware processor adaptation mechanism targeting on 

the run-time OS power savings, as described in the next section. 
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Figure 5.6: Accumulative OS Energy vs. OS Service Duration 

5.3 THE PROPOSED SOLUTION: OS-AWARE ROUTINE BASED ADAPTATION 

Routine based OS-aware adaptation dedicates to reconfigure processor upon the 

OS execution. Modern microprocessors and OS provide two separate modes of operation: 

user mode and privileged mode. Processor executes user processes in user mode. 

Whenever the OS is invoked, the hardware switches to privileged mode. The OS always 

switches back to user mode before passing control to a user program. The current 

machine execution mode is stored in the Processor Status Register (PSR). Therefore, 

separating out OS execution can easily be done at run-time by looking the PSR. 

Processor adaptations occur only at the boundaries of the user/OS context switches, as 

shown by Figure 5.7. Today, almost all high-performance, out-of-order machines support 

precise exception to ensure the correctness of program execution. The OS invocations, 

either explicitly (e.g. system calls and I/O interrupts) or implicitly (e.g. fault handling) 

are treated as exceptions on these processors. Upon receiving an exception, the processor 

completes all previous instructions (specified in program order) and then flushes the 

pipeline [27]. At this point, a reconfiguration can be made with zero latency because 

there is no instruction left in the pipeline and the partitioned hardware structures. 

Similarly, when the processor returns from an OS service, another adaptation happens 
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immediately by restoring the processor to the mode prior to the user/OS context switch. 

The processor then fetches the instructions from the user applications and continuously 

executes using that mode.  
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Figure 5.7: Routine based OS-aware Adaptation 

Therefore, routine based OS-aware adaptation is capable of capturing all OS 

activity timely and accurately, while retaining a zero adaptation overhead in the OS. 

Separating OS activity out of the regular sampling interval creates the “dilated” sampling 

window (as shown in Figure 5.7), diminishing the number of reconfigurations and the 

total execution cycles of the user program. Moreover, this technique prevents 

pathological IPC degradations arising from erroneously matching processor 

configurations catered for OS to user program’s requirement (as shown in Figure 5.7, 

window II and III). This is critical since user program after the context switched from OS 

generally requires the full issuing capabilities of the machine to operate on new data and 

working set. 

As described earlier, processor resource adaptation saves power and is detrimental 

to performance. The goal of such adaptation is to reduce power with the minimum 

performance lost. The Energy-Delay product (EDP) is a reasonable metric to evaluate 

energy efficiency, namely, the goal of achieving high performance while minimizing 

energy consumption. However, due to the different characteristics of programs, a solution 

that is good for one program may not turn out to be the optimal one for another program. 
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For example, as illustrated in Figure 5.8, given the power budget (Powerth), 

Energy×Delay Tradeoff-1 (T1) works better than Energy×Delay Tradeoff-2 (T2) does on 

program 1 (Perf11>Perf12). However, the observation does not hold on program 2 

(Perf21<Perf22). 
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Figure 5.8: Effectiveness of Energy×Delay Tradeoffs is Program Dependent 

Individual OS routine performs specific functionality and can exhibit vast 

variation in computational requirement. A configuration that is good for one routine code 

may not turn out to be optimal for another. For example, Figure 5.9 shows the 

Energy×Delay (normalized with 8-issue mode) of different OS service routines (clock, 

COW_fault and read) running on different modes. Clock processes timer interrupt. 

COW_fault performs page level copy-on-write operations and read transfers data from 

OS file cache to the user address space. Figure 5.9 leads to a number of interesting 

observations. In general, the 8-issue mode is not energy efficient by showing the highest 

Energy×Delay on all of the three OS routines. The application of the 1-issue, 2-issue, 4-

issue and 6-issue modes yields better trade-off between power and performance. More 

interesting, the optimal configuration (with the lowest Energy×Delay value) changes, 

depending on the OS routines. For example, on the 1-issue mode, the clock shows its best 

Energy×Delay scenario (0.3), while the COW_fault yields an Energy×Delay value of 0.8. 
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Figure 5.9: Energy×Delay of Different OS Services 

Figure 5.10 further shows the Energy×Delay ranking of different modes across a 

wider range of the OS routines we characterized. In Figure 5.10, Energy×Delay values of 

all modes (i.e., 1i, 2i, 4i and 6i) are ranked on the per OS service basis. We omit the 8-

issue because it always shows the highest Energy×Delay value. 

The heterogeneous Energy×Delay behavior of various OS routines makes a 

unified adaptation for the whole OS less attractive. However, it provides an avenue to 

finely tune the OS power/performance knob: the per-OS routine based optimal 

configuration can be exposed to and exploited by the hardware to achieve a better OS 

Energy×Delay trade-off. In practice, a simple profile-driven methodology [53] can be 

used for finding the optimal configuration for individual routine in a pre-characterization 

stage. At run-time, the hardware selectively applies the pre-characterized, optimal 

configuration to individual OS routine instantaneously, eliminating a search of the 

configuration space. The optimal adaptation solution can be encoded into each routine 

with ISA extension. A performance degradation tolerance setting that specifies how 

aggressively to tradeoff additional delay for lower energy can be used to guide 

configuration selection.  
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Figure 5.10: Routine Based Energy×Delay Ranking of Different Modes  

Having known the nature and functionality of an OS invocation, one can apply 

Energy×Delay optimizations even more aggressively. This chapter considers the 

following two optimizations (dubbed as OS-aware SDPT w/AO in section 5.4): 

• Resizing Register File 

Modern superscalar machines exploit register renaming and use large register file 

to eliminate false dependencies between instructions. In many hand-tuned and highly 

optimized OS routines, however, the true dependencies dominate. In these scenarios, the 

size of the physical register file can be reduced to save more power. Specifically, we 

observe that disabling half of the physical registers for OS routines utlb, timein, clock, 

close, brk, alarm, dup, pipe, ioctl, utsys, prctl, and msync saves 5% - 7% of the processor 

power with no performance loss [49]. Generally, the additional complexity for resizing a 

register file greatly diminishes the likelihood to do so [20]. The proposed routine based 

OS-aware adaptation scheme can safely and efficiently resize the register file because it 

guarantees that no physical register is mapped whenever a resizing occurs at the user/OS 

context switch boundaries. 
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• OS-aware Control Flow Speculation 

Control flow speculation has been widely adopted in today's microprocessor 

design to exploit the ILP in programs. Nevertheless, the fetches and subsequent 

processing of misspeculated instructions will waste more energy and cycles [52]. It has 

been observed that the conventional branch predictors can frequently mispredict the 

control flow transfers in the exception-driven and short-lived OS execution [46]. In [47], 

Li et al. propose an OS-aware control flow speculation scheme which allocates dedicated 

branch prediction resource to the OS to improve its branch prediction accuracy. In this 

study, we integrate an OS-aware hybrid predictor [47] with the proposed processor 

adaptation scheme to further optimize its energy efficiency in the light of the exception-

driven and non-deterministic OS execution. 

5.4 POWER SAVINGS AND PERFORMANCE EVALUATION 

In this study, we use the complete system power simulator SoftWatt [25]. Figure 

5.11 depicts the superscalar microarchitecture that I consider for this study. The baseline 

machine considered for this study is an aggressive, 8-issue superscalar processor. To 

reduce its power consumption, the processor can be reconfigured to the 6-issue, 4-issue, 

2-issue and 1-issue modes by reducing its computational capacity. Previous studies 

[5][64][20] observe that power consumption of a high-performance superscalar machine 

is largely determined by the instruction issue width and the scale of major 

microarchitectural structures, such as: instruction window (IW), reorder buffer (ROB) 

and load store queue (LSQ). Therefore, in 6-issue mode, we limit the instruction fetch, 

decode, issue and retire width to be 6 and disable 1/4 of the IW, ROB and LSQ entries. In 

the 4-issue, 2-issue and 1-issue modes, I restrict the issue width to be 4, 2, and 1 and 

disable 1/2, 3/4, and 7/8 of the above resources (i.e., IW, ROB and LSQ) respectively. 
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Figure 5.11: The Baseline Microarchitecture  

(Run-time Energy×Delay Optimizations are made in the Shaded Components) 

This section presents power savings as well as performance evaluations of the 

proposed technique and the baseline adaptation mechanism (described in section 5.2) on 

the OS execution. The schemes we compare are: (1) a baseline adaptation scheme with a 

2048-cycle sampling window (ADPT with sw=2048); (2) a baseline adaptation scheme 

with a fine-grained 128-cycle sampling window (ADPT with sw=128); (3) the routine 

based OS-aware adaptation (OS-aware ADPT); (4) the routine based OS-aware 

adaptation with aggressive optimizations (OS-aware ADPT w/ AO, see section 5.3). 

Figure 5.12 shows the average power of the experimented workloads on different 

schemes. Figure 5.13 and Figure 5.14 show the performance (IPC) and Energy×Delay 

metric on the same scenario. All values are normalized with respect to the baseline 8-

issue machine without implementing any adaptation. 

Figure 5.12 shows that compared with the coarse-grained sampling technique 

(ADPT with sw=2048), the OS-aware ADPT can reduce power more aggressively by 

being able to accurately capture the exception-driven, short-lived OS activity and match 

them with appropriate resources in a timely fashion. For the same reason, scheme using 

fine-grained sampling window (ADPT with sw=128) is also observed to achieve good 

power savings. The OS-aware ADPT w/ AO has a double-fold impact on power savings: 
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reducing the size of register file drops power while the improved control flow speculation 

tends to increase power because the pipeline flushing stalls happen less frequently. 

Intuitively, optimizations such as OS-aware control-flow speculation could increase per-

cycle processor power. Nevertheless, it reduces program execution cycles and the total 

clock power, on which both the processor and software energy largely depends. 

Therefore, overall it will benefit the targeted program Energy×Delay metric that we try to 

optimize. Moreover, as can be seen in the Figure 5.12, one factor does not dominate 

another one by showing drastic changes in power compared with the OS-aware ADPT 

scheme. 
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Figure 5.12: Normalized Power  

(ADPT with sw=2048 is sampling-based adaptation with 2048-cycle window, 
ADPT with sw=128 is sampling based adaptation with 128-cycle window, OS-
aware ADPT is OS routine based adaptation, and OS-aware ADPT w/ AO is 
OS routine based adaptation with aggressive optimizations) 

Looking at Figure 5.13, one can see that the performance of OS-aware ADPT is 

competitive with that of the ADPT (sw=2048), despite that the ADPT (sw=2048) favors 

the OS performance by overestimating its computational requirement due to the 

interference of the higher user IPC. Figure 5.13 also shows that using fine-grained 

window sampling scheme (ADPT with sw=128) measurably degrades performance due 

to the aggregated adaptation overhead. As described earlier, the OS-aware ADPT does 
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not incur adaptation overheads in OS. The use of the optimal solution for individual 

routine further eliminates the unnecessary adaptations within a routine, leading to a better 

performance than the existing fine-grained adaptation scheme. Another observation from 

Figure 5.13 is that the OS-aware ADPT w/ AO further increases performance by reducing 

the time spent on processing wrong-path instructions. Note that the y-axis begins at 70% 

normalized IPC in Figure 5.13. 
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Figure 5.13: Normalized IPC 
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Figure 5.14: Normalized Energy×Delay 
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The results shown in Figure 5.14 indicate the OS-aware ADPT retains 

performance while reducing power by showing the desirable characteristics when both 

performance and energy are under consideration. The OS-aware ADPT w/ AO further 

improves the OS Energy×Delay behavior, implying that although the aggressive 

optimizations such as resizing register file may yield unbalanced machine for many user 

applications, they produce more energy savings when judiciously applied to certain OS 

routines. 

5.5 RELATED WORK 

Previous research [10] employs the OS to reduce power at system level. Recently, 

the energy behavior of embedded, real-time operating systems has been studied in 

[8][80][81][19]. In [25][17], a full- system energy simulator is developed and the 

necessity of simulating OS energy is quantified. There have been plentiful research 

[5][64][20][33][52][14][82][76] focusing on reducing the runtime software (mostly, user 

applications) power consumption. So far, techniques for run-time software power savings 

exclusively focus on the user-only applications. Among those, microarchitecture level 

power management [5][64][20] has been demonstrated to be an attractive solution for the 

fine-grained program Energy×Delay optimization. It has been observed that by allocating 

appropriate microarchitectural resource required by the actual program, significant power 

saving can be achieved with a tolerable performance lost. In [5], Bahar et al. exploit IPC 

variations in program to reduce power. By varying processor fetch and execution rates, 

Marculescu et al. [53] study power-performance trade-off based on a profile-driven 

methodology. In [64][20], the authors propose mechanisms for independently monitoring 

and adapting multiple microarchitectural structures in one system. 
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5.6 SUMMARY 

Modern applications spend a significant proportion of their execution time within 

the operating system, making OS a major power consumer. To save power, hardware can 

provide resources that closely match the needs of the software. However, with exception-

driven and intermittent execution in nature, it becomes difficult to accurately predict and 

adapt processor resources in a timely fashion. The novel approach proposed in this 

chapter permits precise hardware reconfigurations for the OS with low overhead and 

allows fine-grained performance/power tuning at microarchitectural level. This scheme is 

orthogonal to and can be integrated with existing techniques proposed for user-only 

applications to further enhance their efficiency in the light of the prevalent, OS-intensive 

and emerging workloads. With the increasing impact of the leakage power, routine 

customized aggressive adaptation tends to save more power by safely turning off more 

transistors. The proposed scheme can be exploited in mobile computing systems for 

energy saving, as well as in conventional systems for dynamic thermal management. 
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Chapter 6:  OS-aware Low Power Instruction Cache 

Low power has been considered as an important issue in instruction cache (I-

cache) designs. This chapter low power I-cache design techniques by exploiting the 

interactions of hardware-application-OS. The proposed mechanisms require minimal 

hardware modification and addition.  

6.1 MOTIVATION 

Caches account for a sizeable fraction of the total power consumption of 

microprocessors. High performance cache accesses dissipate significant dynamic power 

due to charging and discharging highly capacitive bit lines and sense amps [36]. 

Moreover, on-chip caches constitute a significant portion of the transistor budget of 

current microprocessors. With the continued scaling down of threshold voltages, static 

power due to leakage current in caches grows rapidly. Clearly, with the increasingly 

constrained power budget of today’s high performance microprocessors, low power has 

been considered as an important issue in cache designs. This chapter focuses on 

techniques to reduce both dynamic and static power of instruction cache (I-cache). 

In general, processor I-cache is designed to accommodate a wide range of 

applications. Nevertheless, it has been observed that the performance of a given I-cache 

architecture is largely determined by the behavior of the application using that cache 

[95][69]. To reduce power, previous studies [4][6][20][30][31][41][65][66][86][43][94] 

[23][37] proposed adapting I-cache to the need of application’s demand. These 

techniques, however, exclusively focus on user-level applications, even though there is 

evidence that many system workloads often involve heavy use of the OS 

[51][70][47][50].  For example, on the average, the OS accounts for 30% of total I-cache 

(32KB, 4-way set associative and 32-byte cache line) power across the experimented 
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workloads (as shown in Figure 6.1). Therefore, it is necessary to consider the OS for I-

cache power modeling and optimization.  
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Figure 6.1: I-Cache Power Breakdown: User vs. OS 

Adhering to this philosophy, this chapter explores the opportunities to design low 

power I-cache by considering the interactions of application-OS-hardware. It starts from 

characterizing user and OS I-cache access behavior to identify power saving 

opportunities. It is observed that in a system that frequently invokes OS activity, 

instruction blocks from user applications and OS often interleave and co-exist within I-

cache that is shared by all processes.  

To ensure proper operation and protect the OS from errant users, modern 

processors and operating systems provide two separate modes of operation: user mode 

and privileged mode. Processor executes user processes in user mode. Whenever the OS 

is invoked (by a trap or an interrupt/exception), the hardware switches to privileged 

mode. The OS always switches back to user mode before passing control to a user 

program. 

The semantics of dual mode operation provides opportunities to save the dynamic 

power of I-cache access: without affecting the performance and the correctness of 

program execution, I-cache lookups for user applications can bypass caches lines that 
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store OS code and vice-versa. Therefore, the number of parallel tag comparisons and data 

array read-outs needed to fulfill a set-associative I-cache access can be reduced, implying 

less dynamic power dissipation per access. Moreover, It is found that a significant 

fraction of I-cache regions are only heavily accessed in one operation mode. This 

characteristic can be exploited to reduce I-cache leakage power: when processor executes 

in one mode, cache regions that are only frequently accessed in another mode can be put 

into lower power state.  

To explore these power saving opportunities, this chapter proposes two OS-aware 

tuning techniques - OS-aware cache way lookup and OS-aware cache set drowsy mode - 

to improve the I-cache energy efficiency for system workloads. With very simple 

hardware modification and addition, OS-aware I-cache tuning exhibits promising 

dynamic and static power reduction. More attractively, the OS-aware tuning yields no or 

negligible impacts on performance. Since system performance is sensitive to that of the 

OS, the proposed techniques preserve merits especially valuable for the energy-efficient, 

high performance server processor I-cache designs. 

The rest of this chapter is organized as follows: Section 6.2 characterizes user 

applications and OS I-cache access behavior to identify power saving opportunities. 

Section 6.3 proposes two OS-aware tuning techniques to improve I-cache energy 

efficiency. Section 6.4 evaluates the impact of proposed techniques on power and 

performance. Section 6.5 discusses related work. Section 6.6 concludes with some final 

remarks. 

6.2 USER/OS I-CACHE ACCESSES CHARACTERIZATION 

During system workload execution, instructions from user applications and OS 

are fetched into I-cache and exercise on the processor alternately, as shown in Figure 

6.2(a). Among multiple processes that must all share the same I-cache, instruction blocks 
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from the OS co-exist with those from user processes. Previous studies analyzed the 

impact of inter-mingling of user and OS instructions in the I-cache and found that 

interferences between the two degrade performance. The interest of this characterization, 

however, is to identify the power saving opportunities. 
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Figure 6.2: User/OS Instruction Blocks Residency  

(Assuming a 4-way I-Cache) 

To achieve low miss rates, modern microprocessors employ set-associative I-

Caches. In a system that frequently invokes OS, there is a high possibility that user and 

OS code simultaneously reside within the same cache set. As illustrated in Figure 6.2(b), 

in a 4-way set-associative I-cache, based on user/OS instruction block residency, cache 

sets can be classified as: (1) user code occupies all of the four cache lines 

(User(4)+OS(0)); (2) user occupies three cache lines and OS resides in one cache line 

(User(3)+OS(1)); (3) user and OS each occupy two cache lines (User(2)+OS(2)); (4) 

user resides in one cache line and OS occupies three cache lines (User(1)+OS(3)); and 

(5) OS dominates all of the four cache lines (User(0)+OS(4)). 
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To protect OS from malfunctioning programs, modern processor architectures 

support user and privileged mode operations. Processor executes user applications in user 

mode and OS instructions can only be exercised in privileged mode. At any time, 

processor runs in one of the two modes. Therefore, OS instructions in I-cache will not be 

selected when processor runs in user mode and vice versa. The semantic of dual-mode 

operation implies opportunities to save the dynamic power of set-associative I-cache 

accesses: when processor runs in one mode, the number of parallel cache way lookups 

can be reduced by filtering out accesses to cache lines holding instruction blocks that are 

only executed in another mode.  For example, to access cache sets in the User(2)+OS(2) 

category, processor really needs to only perform two parallel cache way lookups. 

Similarly, in the OS mode, if the processor is aware of user/OS instruction block 

residency, 75% of parallel cache way lookups can be reduced when the processor 

accesses cache sets in the User(3)+OS(1) category. 

To evaluate the opportunities to reduce cache way lookups by exploiting the 

information of user/OS cache blocks residency within cache sets, the frequencies of I-

cache accesses to each cache set category during program execution are counted. The 

results are summarized in Table 6.1. 

Not surprisingly, during system workload execution, a significant fraction of I-

cache accesses encounters cache sets in which both user and OS instruction blocks reside 

(marked with categories II, III, and IV in Table 6.1). On benchmarks gcc and vortex, user 

mode dominates execution cycles. Still, more than 25% of I-cache references access 

cache sets in categories II, III, and IV. Interestingly, on benchmark compress, 97% of I-

cache accesses encounter OS cache lines, even though OS accounts for only 6% of 

program execution time. This is because compress has small I-cache footprint and a few 

most frequently accessed cache sets (hot-spot) are mapped by codes from both user and 
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kernel spaces. On benchmarks fileman and osboot where OS mode dominates, there are 

still 35% and 16% of I-cache references that touch user blocks. Table 6.1 shows that on 

the average, 56% of program I-cache references access cache sets in categories II, III and 

IV, indicating there are abundant opportunities to reduce the number of parallel cache 

way lookups (and associated dynamic power) by incorporating user/OS operation mode 

in I-cache designs. 

Table 6.1: I-Cache Accesses Categorized by User/OS Residency  
 

% of I-Cache Accesses 
I II III IV V Benchmarks 

User(4) 
+OS(0) 

User(3) 
+OS(1) 

User(2) 
+OS(2) 

User(1) 
+OS(3) 

User(0) 
+OS(4) 

pmake 33 26 25 11 5
gcc 73 17 7 2 1
vortex 72 20 6 1 0
sendmail 1 8 28 33 30
fileman 0 0 2 33 65
db 19 17 28 27 10
jess 32 21 23 20 5
javac 32 22 24 18 4
jack 26 34 26 14 1
mtrt 27 17 11 44 1
compress 2 8 25 64 1
postgres.select 25 27 21 22 4
postgres.update 28 19 17 20 17
postgres.join 55 18 13 12 1
osboot 0 2 4 9 84
AVERAGE 28 17 17 22 16

 

Previous research [23][37] found that during program execution, not all cache 

regions are accessed frequently. To save energy, the less frequently accessed cache 

regions can be put into lower power state with tolerable performance loss. The dual-mode 

operation provides yet another opportunity: if cache regions are heavily accessed by 

processor in only one operation mode, then those cache regions can be put into lower 

power state when the processor runs in another mode. To identify cache regions heavily 

accessed only in one of the two operation modes, the characterization shown in Table 6.1 
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is further broken down into user and OS parts. The results are shown by Figure 6.3 (a) 

and (b). 
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(a) User I-Cache Accesses 
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(b) OS I-Cache Accesses 

Figure 6.3: User and OS I-Cache Accesses  

Figure 6.3 (a) and (b) show both user and OS access cache sets in categories II, III 

and IV frequently. Interestingly, it is found find that cache sets in the category 

User(4)+OS(0) are heavily accessed only in user mode. In contrast, cache sets in the 

category User(0)+OS(4) are heavily accessed in OS mode but they are rarely accessed in 

user mode. On the average, only 0.08% of user I-cache accesses touch cache sets in the 

category User(0)+OS(4). The percentile of OS I-cache accesses that encounter cache sets 

in the category User(4)+OS(0) is merely 0.11%. The above characterization implies that 

during user execution, cache sets in the category User(0)+OS(4) can be put into lower 
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power state. On the other hand, when processor runs in OS, cache sets in the category 

User(4)+OS(0) can remain in lower power state. 

To summarize, in this section, the user/OS I-cache accesses are categorized by the 

user/OS residency. It is found that dual-mode operation opens additional opportunities to 

save processor I-cache power. These opportunities to achieve low power are exploited in 

the following sections. 

6.3 OS-AWARE I-CACHE TUNING 

This section proposes two simple mechanisms to improve I-cache energy 

efficiency for system workloads. 

6.3.1 OS-aware Cache Way Lookup 

In a set associative cache, the number of parallel cache way lookups largely 

determines the dynamic power of a cache access. A conventional 4-way set associative 

cache requires four tag comparisons and four data array read-outs for a cache access. 

Nevertheless, during user execution, performing tag comparisons and data array read-outs 

for OS cache blocks are unnecessary and waste extra dynamic power. Therefore, 

processor operation mode can be integrated with I-cache design to reduce the number of 

parallel cache way lookups (and hence dynamic power) on cache accesses. 

Figure 6.4 illustrates architectural modifications to support OS-aware cache way 

lookup. A bit called cache way mode bit is attached with each cache line. With the cache 

way mode bit (e.g., 0 for OS and 1 for user), it is able to differentiate between cache 

block stores instructions on behalf of the OS, and of one that stores instructions on behalf 

of the user applications. When a cache line is uploaded to I-cache the first time, its cache 

way mode bit is generated, depending on the processor operation mode. The cache way 

mode bit will keep unchanged unless the associated cache line is replaced. The current 
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machine execution mode in processor status register (PSR) is used to compare with cache 

way mode bit to decide whether a cache way needs to be accessed in a given operation 

mode. The results of comparisons are used to generate enable signals (assuming active 

low) to circuitry such as tag and data array access logic, tag comparators, data array sense 

amps and output drivers.  As can be seen from Figure 6.4, the hardware modification and 

addition needed to support OS-aware cache way lookup is simple.  
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Figure 6.4: Hardware Modification/Addition Required to Implement OS-aware Cache 
Way Lookup 

The generation of above enable signals is not in the critical path of I-cache access 

because once generated, they remain unchanged (due to the one-to-one hard-wired 

mapping between each cache way mode bit and each cache block) unless a cache line 

replacement (due to a cache miss) occurs or the processor switches mode. When a cache 

miss occurs, the requested cache line is retrieved from the next level of memory 

hierarchy and is immediately forwarded to processor for execution. The corresponding 

cache mode bit needs to be accessed and then updated. The latency to access and update 

cache way mode bit array and regenerate cache way access enable signals can be 

overlapped with processor execution. Similarly, the latency of regenerating cache way 
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access enable signals due to processor mode changes can be easily hidden as well due to 

the inherent cost and the low frequency of user/OS context switches. 

Note that the correctness of OS-aware cache way lookup is ensured by the dual-

mode operation semantic and the precise exception handling mechanism. Processor 

switches mode to OS upon handing an exception or interrupt or upon handling a TRAP 

instruction (usually used to implement all system calls by OS), which all raises an 

exception. To handle precise exceptions, the processor pipeline must drain before OS 

code execution can begin. To return the processor to user/unprivileged mode, most 

architectures use a privileged instruction (return-from-exception) that performs this step 

in an atomic manner. Therefore, even on processors with out-of-order and speculative 

execution, instructions from user and OS will not be fetched from I-cache and executed 

in pipeline simultaneously.    

For some systems, there could be certain circumstances where user-defined signal 

handlers were performed within the OS. Also, it is possible that certain runtime 

actions/exceptions of user code, may be trapped by the hardware, given to the OS, and 

the OS executes the user code in OS mode. For user code that dedicatedly runs in OS 

mode, OS-aware cache way lookups treat it as if it was OS code. However, for user code 

that can run in both user and OS mode, additional attention is required to ensure 

correctness. For example, a special purpose register (1 bit) can be added to enable/disable 

OS-aware cache way lookup by gating the cache way lookup enable signals. An 

instruction writes to that special purpose register to set (or reset) OS-aware cache way 

lookup. Two such instructions are placed at the boundaries of the above code region so 

that OS-aware cache way lookups are disabled before the code region execution starts 

and are resumed after the code region execution completes. During the above code region 

execution, full cache way lookups are required and no power saving is achieved. Because 
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this situation happens infrequently, its impact on performance as well as energy saving is 

negligible. 

The reduction of cache way accesses on a 4-way set-associative I-cache by 

employing OS-aware cache way lookup is measured, as shown in Figure 6.5. The results 

are shown for user, OS and the aggregated cache accesses on each benchmark. On 

benchmarks gcc and vortex where the OS frequently accesses cache sets in the category 

User(3)+OS(1), OS-aware cache way lookup reduces the number of cache way accesses 

in OS significantly. On the other hand, the number of cache way lookups during the user 

execution on benchmark sendmail is largely reduced due to its high access frequencies to 

cache sets in the categories User(1)+OS(3) and User(2)+OS(2). On the average, the 

proposed technique reduces cache way lookups in user, OS and aggregated I-cache 

accesses by 34%, 35% and 35% respectively, implying significant I-cache dynamic 

power saving. 
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Figure 6.5: I-Cache Way Accesses Reduction  

6.3.2 OS-aware Cache Set Drowsy Mode 

Caches comprise a large portion of the on-chip transistor budget. Due to CMOS 

technology scaling, static power due to leakage current is gaining in importance in I-
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cache power dissipation. For example, Agarwal et al. [1] report that leakage energy 

accounts for 30% of L1 cache energy for a 0.13-micro process technology. In a 0.07 

micron process, ITRS predicts leakage may constitute as much as 50% of total power 

budget. These make efforts at leakage control essential to maintain control of I-cache 

power on current and next generations of processors. 

To reduce cache leakage power, researchers [37][96] have proposed turning off 

the unlikely used cache lines using gated-Vdd technique [65]. While the gated-Vdd 

technique is efficient in saving leakage, the disconnected cache line loses its state and 

needs to be fetched from L2 cache, causing performance penalty and dynamic power 

consumption due to an extra L2 access. Alternatively, cache lines can be put into a low-

leakage drowsy mode to save power by exploiting the short-channel effects on dynamic 

voltage scaling [23]. Unlike the gated-Vdd, in drowsy mode, the information in the cache 

line is preserved. However, the cache line in drowsy mode must be reinstated to a high-

power mode before its contents can be accessed. The performance penalty of accessing a 

drowsy cache line is an extra cycle to restore the full voltage for that cache line.  

Recent studies show that state-preserving drowsy cache techniques are preferable 

for leakage control in L1 caches where high performance is a must. Since system 

performance is sensitive to that of the OS, our objective here is to reduce power yet 

preserve high performance. Therefore, in this chapter, We explore the opportunity of 

integrating OS-aware cache tuning with a state-preserving, leakage control mechanism. 

The rationale is to put cache regions that heavily accessed in only one operation mode 

into drowsy state when processor runs in another mode. A key issue is to classify or 

identify which cache regions are “hot” in one operation mode but stay “cool” in another 

operation mode.  
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The user/OS I-cache accesses on system workloads show that the intra-cache set 

user/OS residency can be used as proximity for the above classification. During OS 

execution, cache sets in the category User(4)+OS(0) are infrequency accessed and can be 

put into drowsy state. Similarly, during user mode execution, cache sets in the category 

User(0)+OS(4) can remain in drowsy state. 

C
ac

he
 w

ay
 m

od
e 

bi
t

drw

  !drw

Vdd Low
(0.3V)

Vdd (1V)

worldline

power supply

word line
Cache line (Way 0)

power supply

word line
Cache line (Way 1)

power supply

word line
Cache line (Way 2)

power supply

word line
Cache line (Way 3)

worldline gate

drowsy bit

voltage
controller

Processor Status Register (PSR)
execution mode bit

Cache Set

set / wake-up

 

Figure 6.6: Implementation of OS-aware Cache Set Drowsy Mode 

Figure 6.6 illustrates the control circuitry to implement OS-aware cache set 

drowsy mode. To control memory cells leakage power, the circuit technique proposed in 

[23] is used. A drowsy bit is used to control the supply voltages to the memory cells 

within a cache set. For a 0.07 micron process with normal supply voltage (Vdd) of 1.0V, 

the threshold voltage (Vdd Low) needed to preserve the state of memory cells is about 

0.3V [23]. Depending on the state of the drowsy bit, all cache lines within a cache set can 

be put into either the high power active state or the low leakage drowsy state.  

In Figure 6.6, if all cache way mode bits within a cache set are identical (e.g., 

0000 or 1111) and they are different with the current processor mode, the whole cache set 

is put into drowsy mode. This control logic puts cache sets in the category 

User(4)+OS(0) to drowsy mode during OS execution. When context switches back to 
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user, cache sets in the category User(4)+OS(0) are waken up and cache sets in the 

category User(0)+OS(4) are then put into drowsy state. Moreover, if an OS (or a user) 

cache miss occurs on a cache set in the category User(4)+OS(0) (or User(0)+OS(4)),  the 

cache set is waken up due to the change of intra-cache set user/OS residency.  

Whenever a cache set is accessed, the drowsy bit associated with it is checked. If 

the cache set stays in active mode, the ongoing cache access acts normally. Otherwise, if 

a drowsy cache set is encountered, the drowsy bit is cleared; causing the supply voltage 

resorted back to the normal Vdd during the next cycle. The data can be accessed during 

consecutive cycles. The wordline gating circuit is used to prevent unchecked accesses to 

a drowsy set which could destroy the memory’s contents. 
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Figure 6.7: % of I-cache Sets can be put into Drowsy State by Using Leakage Control 
Illustrated in Figure 6.6 

In Figure 6.6, OS-aware cache set drowsy mode uses a shared source (cache way 

mode bit) to control leakage, reducing the cost of drowsy I-cache implementation. The 

percentile of cache sets can be put into drowsy state on user, OS and aggregated 

execution by employing the leakage control method described are counted. The results 

are shown in Figure 6.7. On the average, 17% of I-cache sets can be put into drowsy 

mode during user execution while the percentage of I-cache sets remain in drowsy state 
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during OS execution is 35%. Overall, 22% of I-cache sets can be put into drowsy mode 

during program execution. On most benchmarks, It is observed that larger fraction of 

cache regions can remain in drowsy mode during OS execution. This is because that 

although OS is large and sophisticated software, OS execution is usually dominated by a 

small fraction of highly invoked service routines [50]. Therefore, a sizeable fraction of 

the I-cache is not accessed by the OS during its execution.  

Table 6.2: % of I-Cache Accesses to Drowsy Sets and Average Number of Reinstated 
Drowsy Sets 

Benchmarks 
% of User Accesses 
to Drowsy Sets (in 
the category 
User(0)+OS(4)) 

Avg. Num. of 
Drowsy Sets 
Reinstated in User 

% of OS Accesses 
to Drowsy Sets (in 
the category 
User(4)+OS(0)) 

Avg. Num. of 
Drowsy Sets 
Reinstated in OS 

pmake 0.01 0.18 0.10 0.16 
gcc 0.00 0.01 0.21 0.04 
vortex 0.00 0.00 0.05 0.01 
sendmail 0.15 1.40 0.01 0.10 
fileman 0.22 0.92 0.00 0.01 
db 0.05 0.10 0.09 0.09 
jess 0.04 0.04 0.09 0.04 
javac 0.02 0.04 0.14 0.07 
jack 0.01 0.01 0.28 0.06 
mtrt 0.00 0.02 0.11 0.03 
compress 0.00 0.01 0.03 0.01 
postgres.select 0.04 0.15 0.23 0.26 
postgres.update 0.20 0.30 0.20 0.33 
postgres.join 0.01 0.03 0.08 0.04 
osboot 0.47 2.17 0.00 0.11 

As described earlier, an extra cycle is needed to access cache sets in drowsy 

mode, implying a performance penalty. To effectively save power while maintaining high 

performance, both the number of accesses to the drowsy sets and the number of drowsy 

cache sets reinstated to the high power mode should be small. Table 6.2 summarizes the 

percentage of I-cache accesses to the drowsy sets and the average number of drowsy sets 

that are waken-up. The data are shown for both user and OS execution. As can be seen 

from Table 6.2, the possibilities to access a drowsy cache set in both operation modes are 
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extremely low (< 0.1% in most cases), indicating negligible performance lost due to 

drowsy cache sets wake ups. Additionally, most of the drowsy sets remain in the low 

power state during a given mode execution by showing very small fraction of reinstated 

drowsy sets. 

It should be noticed that although the intra-cache set user/OS residency provides a 

good approximation on user/OS access frequencies to that cache set, this heuristic may be 

too conservative from the perspective of power saving. We further explore the directly 

using of cache set access frequencies from different operation mode as the metric to 

control cache set drowsy mode. 

00 01 1110

OS

User

UserUserUser

OSOSOS

OS Access
Biased

User Access
Biased  

Figure 6.8: The 2-bit Counter and Finite State Machine to Implement User/OS Access-
biased Classification 

This user/OS access-biased classification is similar to the one that has been used 

in classifying the biases of branches. To be more specific, a finite state machine formed 

by a 2-bit saturating up/down counter is used by each cache set to keep tracking the 

accesses from user and OS execution, as shown in Figure 6.8. Whenever an access to that 

cache set comes from user mode, the associated counter is increased by 1. On the other 

hand, when an access to that cache set from the OS mode occurs, the counter is decreased 

by 1. As a result, cache sets with counter’s value equals to 3 indicate they are user access-

biased and cache sets with counter’s value equals to 0 are classified as OS access-biased. 

During user execution, the OS access-biased cache sets are put into drowsy mode. On the 
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other hand, when processor runs in OS, the user access-biased cache sets are put into 

drowsy mode. 
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Figure 6.9: % of I-cache Sets put into Drowsy State by using User/OS Access-biased 
Classification 

Figure 6.9 shows the percentile of cache sets can be put into drowsy state on user, 

OS and aggregated execution by employing the less restricted user/OS access-biased 

leakage control mechanism. One can see that the access-based classification has the 

capability of putting more cache sets into drowsy state. This is because access-based 

scheme can identify all cache sets that can be classified by the residency-based scheme. 

Additionally, access-based scheme captures more scenarios. For example, it could be 

possible that a cache set has both user and OS blocks reside in it but are accessed 

frequently only in one operation mode. On the average, 29% of I-cache sets can be put 

into drowsy mode during user execution while the percentage of I-cache sets can be put 

into drowsy state during OS execution is 71%. Overall, 42% of I-cache sets can remain in 

the drowsy state during program execution. 
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Table 6.3 further summarizes the percentage of I-cache accesses to the drowsy 

sets and the average number of drowsy sets that are waken-up by using the access-based 

classification. As can be seen, both numbers are higher than the residency-based 

classification but are still low enough to incur observable performance degradation. 



Table 6.3: % of I-Cache Accesses to Drowsy Sets and Average Number of Reinstated 
Drowsy Sets using Access-Based Classification 

Benchmarks 
% of User Accesses 
to Drowsy Sets 
(User(0)+OS(4)) 

Avg. Num. of 
Drowsy Sets 
Reinstated in User 

% of OS Accesses 
to Drowsy Sets 
(User(4)+OS(0)) 

Avg. Num. of 
Drowsy Sets 
Reinstated in OS 

pmake 0.06 1.06 0.69 1.07 
gcc 0.05 0.17 0.81 0.16 
vortex 0.03 0.04 0.32 0.04 
sendmail 0.44 4.13 0.50 4.14 
fileman 3.05 12.79 0.34 11.15 
db 0.69 1.33 1.31 1.30 
jess 0.68 0.70 1.44 0.67 
javac 0.26 0.58 1.18 0.57 
jack 0.26 0.28 1.26 0.26 
mtrt 0.07 0.25 0.98 0.25 
compress 0.15 0.54 2.59 0.53 
postgres.select 0.24 0.82 0.70 0.82 
postgres.update 0.45 0.67 0.41 0.68 
postgres.join 0.04 0.20 0.42 0.21 
osboot 1.18 5.45 0.11 5.42 

6.4 POWER AND PERFORMANCE EVALUATION 

This section provides results showing the I-cache power savings as well as the 

performance impact due to the proposed OS-aware I-cache tuning. By default, the power 

and performance numbers are normalized to the base line I-cache and machine 

configuration. In the simulation, the energy overhead due to hardware modification and 

addition to implement the proposed OS-aware tuning is also accounted. 

Figure 6.10 shows the normalized I-cache dynamic power after employing the 

OS-aware cache way lookup scheme. On the average, the OS-aware cache way lookup 

can save 29% and 30% of I-cache dynamic power on user and OS execution respectively. 

The aggregated dynamic power saving of this technique is 30%. Looking at Figure 6.5 

and Figure 6.10, one can see that dynamic power saving is largely correlated with the 

reduced cache way accesses. It should be noticed that this 30% of dynamic power saving 

is achieved without any impact on performance. This feature is especially valuable for the 
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OS since system performance is sensitive to that of the OS and the processor energy 

overhead caused by performance degradation can easily offset the benefit of power 

saving in I-cache. 
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Figure 6.10: % of I-Cache Dynamic Power Savings by Incorporating OS-aware Cache 
Way Lookup  

Table 6.4 summarizes the I-cache leakage power savings as well as the run-time 

increases due to the OS-aware cache leakage control. One can see that both policies (i.e., 

residency-based and access-based) lead to a significant leakage power reduction. The 

residency-based drowsy mode scheme is more conservative, resulting in 5% - 50% of 

leakage power saving on the experimented applications. Access-based drowsy mode 

scheme, on the other hand, yields greater leakage power reduction by putting larger 

fraction of cache regions in to drowsy state, resulting in an average of 37% of overall 

leakage power reduction. 

Table 6.4 also shows that both OS-aware cache set drowsy policies incur 

negligible (<1% in most case) run-time increase. This is because: (1) the cost of wrongly-

putting a cache set into drowsy mode that is accessed thereafter is relatively small, and 

(2) using the proposed cache set drowsy policies makes the possibilities of accessing 

drowsy cache sets become extremely low. Therefore, the proposed leakage control 
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techniques again preserve merits especially valuable for designing the power efficient, 

high performance server processor I-cache targeting on modern and commercial 

applications that heavily invoke OS activities. 

Table 6.4: Normalized Leakage Power and Run-time Increase  

(Using the OS-aware Cache Set Drowsy Mode) 
 

Residency-based Access-based 
Normalized 

Leakage Power 
Increased Execution 

Cycle 
Normalized 

Leakage Power 
Increased Execution 

Cycle  
User OS Over-

all User OS Over-
all User OS Over-

all User OS Over-
all 

pmake 0.96 0.34 0.90 0.03% 0.19% 0.04% 0.89 0.21 0.84 0.15% 1.15% 0.23% 
gcc 1.00 0.20 0.95 0.02% 0.32% 0.04% 0.98 0.12 0.93 0.09% 1.22% 0.15% 
vortex 0.99 0.38 0.94 0.03% 0.11% 0.04% 0.97 0.14 0.90 0.08% 0.84% 0.14% 
sendmail 0.67 0.98 0.82 0.21% 0.05% 0.14% 0.41 0.70 0.55 0.71% 1.23% 0.95% 
fileman 0.35 1.00 0.93 0.45% 0.04% 0.09% 0.24 0.89 0.81 4.95% 0.47% 0.98% 
db 0.93 0.85 0.91 0.12% 0.23% 0.16% 0.72 0.40 0.61 1.06% 2.48% 1.54% 
jess 0.97 0.62 0.86 0.09% 0.12% 0.10% 0.81 0.30 0.65 0.97% 2.05% 1.31% 
javac 0.98 0.69 0.93 0.07% 0.19% 0.09% 0.87 0.25 0.76 0.61% 1.97% 0.85% 
jack 0.99 0.74 0.95 0.03% 0.36% 0.08% 0.90 0.21 0.79 0.45% 2.08% 0.72% 
mtrt 0.97 0.64 0.95 0.02% 0.24% 0.03% 0.92 0.20 0.88 0.11% 1.42% 0.19% 
compress 0.47 0.99 0.50 0.05% 0.09% 0.05% 0.45 0.70 0.46 0.42% 4.09% 0.61% 
postgres.
select 0.96 0.79 0.92 0.07% 0.35% 0.14% 0.85 0.26 0.70 0.24% 0.70% 0.36% 

postgres.
update 0.97 0.53 0.74 0.49% 0.33% 0.41% 0.90 0.20 0.53 0.99% 0.65% 0.81% 

postgres.
join 0.99 0.56 0.95 0.05% 0.13% 0.06% 0.97 0.13 0.89 0.12% 0.76% 0.18% 

osboot 0.52 0.99 0.95 0.98% 0.03% 0.11% 0.30 0.82 0.78 2.46% 0.34% 0.52% 
AVERAGE 0.85 0.69 0.80 0.18% 0.19% 0.18% 0.75 0.37 0.63 0.89% 1.43% 1.05% 

6.5 RELATED WORK 

A great deal of research work in the architecture community has focused on 

reducing power in caches. Selective cache ways [4] reduce cache access energy by 

turning off unneeded ways in a set-associative cache. Recently, Zhang [95] proposed a 

reconfigurable cache architecture using way concatenation to adapt cache associativity 

for embedded applications. To use these techniques, the designers have to determine the 
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appropriate configurations for a given program by exhaustively searching all possible 

configurations. The caches are reconfigured for the entire program execution.  

Researchers have proposed several cache lookup variations to reduce set-

associative cache access energy. Phased-lookup cache [26] uses a two-phase lookup, 

where all tag arrays are accessed in the first phase, but then only the one hit data way is 

accessed in the second phase. The employing of phased-lookup cache results in less data-

way access energy at the expense of longer access time. 

Way prediction [31][66] speculatively selects a way to access initially, and only 

access the other arrays if that initial array did not result in a match. To support way 

prediction, processor branch prediction mechanism has to be extended. Adding way-

prediction to the branch prediction mechanism may affect the processor cycle time 

because the branch prediction access is often on one of the critical path. Way prediction 

scheme incurs a performance penalty by spending an extra cycle to access the other ways 

when a prediction fails. Moreover, way predicting of all I-cache accesses is non-trivial. In 

[66], Powell reported that even an elegant way predictor could make no prediction for a 

sizable fraction of I-cache accesses. Compared with way prediction, the proposed OS-

aware cache way lookups do not cause performance degradation and is easier to 

implement because no predictor is involved. Moreover, way prediction still needs full tag 

comparisons to verify the correctness of a prediction.  

In [43], Lee et al. proposed region-based caching by re-organizing the first level 

cache to more efficiently exploit memory region (stack, global, heap) reference 

characteristics produced by programming language semantics. In [40], Kim et al. 

investigated ways of splitting the cache into several smaller units, each of which is a 

cache by itself (called a sub-cache). However, implementing region-based caching or 
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sub-caching scheme requires substantial amount of modifications to be made in cache 

and other structures (e.g. TLB).  

Approaches for reducing static power consumption of caches by turning off cache 

lines using the gated-Vdd technique have been described in [37][96]. The drawback of 

this approach is that the state of the cache line is lost when it is turned off and reloading it 

from the L2 cache has a significant impact on performance.  

In [94], the using of compiler to insert power mode instructions to control cache 

leakage power was proposed. However, this approach requires the re-compilation of 

program source code, which is not generally applicable to the OS as well as many 

commercial applications. To reduce leakage energy dissipation, Yang [87] proposed a 

dynamically resizing I-cache. Compared with resizable cache, the proposed OS-aware 

cache tuning reduces power while still utilizing the full cache capacity. The drowsy 

instruction cache [39] uses dynamic voltage scaling and cache sub-bank prediction to 

achieve leakage power reduction. Like way prediction, a misprediction on cache sub-

bank incurs a performance penalty. When applied to large, set-associative cache, an 

aggressive cache sub-bank predictor yields mediocre prediction accuracies [39]. The area 

as well as power overhead of the memory sub-bank prediction buffers, which yield better 

prediction accuracies, can be significant. 

6.6 SUMMARY 

This chapter explores the opportunities of employing the three subsystems – 

application, OS and hardware – to improve I-cache energy efficiency. It starts from 

characterizing user/OS I-cache accesses on system workloads to identify power saving 

opportunities due to dual-mode operation. Two simple OS-aware techniques 

incorporating processor operation mode are proposed to improve I-cache energy 

efficiency on system workloads. The proposed OS-aware cache way lookup reduces the 
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number of parallel tag comparisons and data array read-outs for cache accesses and saves 

dynamic power. Integrating with a state preserving, leakage control mechanism, OS-

aware tuning effectively reduces static power, which is gaining in importance due to 

CMOS technology scaling. Unlike other proposed schemes, OS-aware tuning achieves 

both dynamic and static power savings but requires minimal hardware modification and 

addition.  
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Chapter 7:  OS-aware Branch Prediction 

Chapter 3 demonstrates that many modern applications result in a significant OS 

activity. The OS execution can affect architectural states. This chapter focuses on one 

specific issue that has long been considered as an important issue for performance 

optimization of state-of-the-art processors - control flow prediction. 

Detailed characterization shows that the exception-driven, intermittent invocation 

of OS code and the user/OS branch history interference increase the misprediction in both 

user and kernel code. 

Two simple OS-aware control flow prediction philosophies are proposed in this 

chapter to alleviate the destructive impact of user/OS branch interference.  

7.1 MOTIVATION 

Current high performance processors provision aggressive support for ILP and 

have deep pipelines to keep cycle times low. The delivered ILP and pipelining 

performance is critically dependent on being able to accurately predict the control 

(branch) flow in the program, so that the processor can execute more useful instructions 

and avoid stalling/squashing the pipeline. 

Branch predictors for control flow prediction have been studied extensively with 

user-level programs [90][92][73][56]. The OS affects control flow predictability by 

introducing the additional user/OS branch aliasing in branch predictor tables. It is 

observed that user/OS execution can significantly increase the mispredictions in each part 

(Figure 7.1). For example, as shown in Figure 7.1a, kernel code nearly doubles the 

misprediction rates in 7 out of 13 of our benchmarks in a Gshare predictor. On the other 

hand, the interferences of user code significantly increase the OS misprediction rates on 

all benchmarks, as shown in Figure 7.1b. 
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(b) OS 

Figure 7.1: Impact of User/OS Execution on Branch Prediction 

Branch aliasing characterization shows that user/OS aliasing contributes to up to 

24% of all misprediction and 46% of aliasing misprediction in the benchmarks studied in 

this chapter. There are numerous branch predictors that have been proposed to address 

different situations [91][54][22][77][44][16][56][21]. These prediction mechanisms have 

paid less attention to the OS requirements and no particular scheme was proposed on 

tuning control flow prediction hardware for the OS.  

This chapter investigates what causes the execution of a spectrum of applications 

with significant OS involvement to give worse branch prediction in the user and kernel 

modes by characterizing their execution using complete system simulation. This 

investigation shows that the interference between the branches in the user and kernel 

modes is leading to this poor performance. User and kernel branches have different 
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characteristics (such as the direction bias) that cause the history information used by the 

predictors - and shared by both the user and kernel - to become polluted. Such pollution 

would not have happened if we had a separate predictor for each mode. 

These observations motivate to separate out branch prediction logic for user and 

kernel modes. This approach can be easily integrated into existing prediction schemes 

without significantly complicating the logic. 

The rest of this chapter is organized as follows. Section 7.2 characterizes kernel 

branch behavior in different applications. The effect of user/OS branch aliasing or 

interference is also quantified. Section 7.3 introduces OS-aware prediction designed 

specifically to reduce user/OS branch aliasing. Section 7.4 evaluates the improvement 

contributed by the OS-aware philosophies to various branch prediction strategies. Section 

7.5 revisits the efficiency of OS-aware branch prediction. Section 7.6 discusses the 

related work. Finally, conclusions are provided in Section 7.7. 

7.2 CHARACTERIZATIONS OF OS BRANCHES 

In this section, simulation of complete system activity is used to characterize OS 

branch execution and evaluate its impact on branch predictability. Table 7.1 summarizes 

the complete system branch execution statistics of each studied benchmark. 

As illustrated in Table 7.1, the kernel portion of dynamic branch instances can be 

found to constitute a significant part in these applications. On the average, kernel 

branches, which include loops, error/bound checking, and other routine conditionals, 

constitute 27% of branch sites and 30% of dynamic branch instances in benchmark 

executions. Branches are more frequent in OS (than in user mode) [70] because it has to 

be designed to handle all possible situations (i.e., abundant error and bound checking). 

Further, the OS functions are performed not just for one process/application but also for 

the system as a whole (other daemons, periodic book-keeping duties etc.). 
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Table 7.1: Complete System Branch Execution Statistics 

Conditional Branch Statistics 
User OS Benchmarks 

# of Context 
Switches 
between 
User/OS 

Static 
Sites 

Dynamic 
Instances 

Static 
Sites 

Dynamic 
Instances 

db 935,783 33,957 13,147,512 6,016 19,742,706 
jess 4,852,221 38,654 35,986,299 6,037 28,266,026 
javac 2,039,387 38,815 34,766,245 6,070 20,807,714 
jack 23,530,133 40,640 210,722,195 6,142 40,451,532 
mtrt 5,949,357 36,629 195,674,102 6,099 23,343,298 
compress 11,819,663 33,907 406,427,219 6,081 26,101,839 
gcc 4,975,087 13,570 138,915,436 4,696 13,845,466 
vortex 21,486,430 4,108 133,545,812 1,189 11,976,141 
pmake 1,018,543 11,651 122,460,692 5,273 33,821,182 
sendmail 1,438,961 4,516 139,259,991 5,553 75,069,918 
postgres.select 5,632,788 8,417 107,228,678 6,201 93,551,585 
postgres.update 6,385,224 8,144 83,362,599 6,325 149,084,522 
postgres.join 5,858,258 8,606 220,730,099 6,099 72,657,859 

7.2.1 Context Switch Profile and Branch Distribution 

During the execution, branch instructions from user and OS code get interspersed. 

OS is activated either voluntarily by a system call from the application, or from a call by 

some other application, or implicitly by some underlying periodic/asynchronous 

(timer/device interrupt) mechanism. The inter-mingling of user and kernel branches can 

affect their behavior, compared to the execution when they were isolated from each other. 

Figure 7.2 shows the average number of executed branches in each mode per context 

invocation on the studied benchmarks. In all benchmarks except db and postgres.update1, 

OS exercises fewer branches than user code in each visit to that mode. 

We tracked the distribution of the number of executed branches for each context 

switch and the profiling results for a 5,000 context switch sample of benchmark jack are 

shown in Figure 7.3 for user and kernel code separately. Comparing Figure 7.3a and 7.3b, 

one can see that the user contexts can execute far more branches than the OS contexts do. 
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1 For benchmarks db and postgres.update, OS service read and write, which consists of far more branch instructions, 
dominates OS execution, causing higher average number of executed branches in OS. 



Further analysis indicates that most of these OS contexts are caused by exception driven 

OS routines (e.g. TLB miss and page fault) that execute very few branches. The 

distributions in Figure 7.3 for the kernel are a cause for concern since it indicates the 

possibility that the branch history may be not accurate for correct predictions (with 

interference from user mode branches). On the other hand, the user branch distribution 

suggests that this problem may not be as severe for the user mode. Kernel invocations are 

more short-lived, while user execution has reasonable time quanta to work with and build 

history. 

0

100

200

300

db
jess

jav
ac jack mtrt

co
mpre

ss gcc
vo

rte
x

pmak
e

se
nd

mail

po
stg

res.s
elec

t

po
stg

res.u
pd

ate

pos
tgr

es
.jo

in
AVG

Av
er

ag
e 

Nu
m

be
r o

f 
Ex

ec
ut

ed
  B

ra
nc

he
s OS

User

Figure 7.2: Average Number of Executed Branches (User vs. Kernel) 

user

1

10

100

1000

0 1000 2000 3000 4000 5000

User Context Serial No.

N
um

be
r o

f E
xe

cu
te

d 
B

ra
nc

he
s

(a) 

OS

1

10

100

1000

0 1000 2000 3000 4000 5000

OS Context Serial No.

N
um

be
r o

f E
xe

cu
te

d 
B

ra
nc

he
s

(b) 

Figure 7.3: Executed Branches in User and OS Contexts 
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7.2.2 OS Branch Execution Profile 

We next examine what are the dominant kernel branches, and how their 

performance can be affected by the user code executing between OS operations. The pie 

chart of Figure 7.4 shows the percentage of OS branches (the average of all the 

experimented benchmarks) executed in the different services. The result of individual 

benchmark can be found in Appendix B. The top five components include: OS 

scheduling (scheduling); TLB miss (TLB miss); idle looping (idle); performing file and 

I/O services (I/O & file system), and paging (paging). 

 

Miscellaneous
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Paging
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Exception 
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Figure 7.4: Where do the OS Dynamic Branches Come from? 

These results show that we really need to focus mainly on the TLB handler (it is 

done in software on the given MIPS platform to facilitate the use of flexible page table 

structure and simplify the handling of sparse address spaces.) and the scheduler. Further, 

it should be noted that other services such as file system, synchronization etc., are 

directly invoked by the user code. Hence, their behavior (including that for branches) is 

influenced by the current state of the invoking application and the parameters of the call. 

So one would not like to associate the term “interference” for such services. On the other 
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hand, TLB handling and scheduler invocations are not necessarily voluntary. It is useful 

to understand how the branches in these OS subsystems are invoked and whether history 

would have any bearing on their behavior for predictability – so that we can better 

understand if the predictability of these branches would be affected by the user code 

getting in-between. 

Table 7.2 further shows the OS routine based branch distribution. The utlb is the 

OS TLB miss handler. The checkRunq routine performs scheduling (picking the next 

process to run). The idle does idle looping. Explicit system calls from user code are 

handled by syscall. The io_splock routine manipulates I/O spin locks to ensure that all 

operations to a particular I/O device are synchronized. The exception_ip12 is the OS 

general exception handler. The bcopy is a memory copy routine used for paging and 

buffer copying in OS. The mrlock routine gets the states of locks and semaphores. Table 

7.2 gives further evidence of the significance of the TLB handling and scheduler 

subsystems on the overall branches within the OS. Though utlb and checkRunq both have 

high dynamic branch instances, the number of actual branch sites is quite small. We 

briefly go over these routines below identifying the branches in these routines and their 

anticipated behavior qualitatively.  

The utlb handler has only 1 branch, and the reason for its high dynamic instance is 

because this routine is invoked frequently. The utlb routine is invoked directly by the 

hardware which is the only entity that can invoke this operation. On the other hand, the 

scheduler (checkRunq) is invoked from several places. First, this operation is needed for 

scheduling decisions (by consulting the ready queue) whenever the time quantum expires 

(triggered by timer interrupt), when I/O device activity completes (there are usually 

priority boosts and rescheduling may be needed) and idle looping, or even voluntarily 

during blocking (making semaphore, I/O requests etc.) or other process state change 
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activities (such as termination). Consequently, it is to be noted that, while utlb 

invocations are only the consequence of application behavior, the scheduler actions are 

invoked from all over the OS and are invoked either asynchronously (by hardware 

events) or voluntarily due to system load/behavior. In all, it is found there are more than 

23 events that can cause checkRunq to be invoked. 

Table 7.2: OS Routine Branch Characterization 

OS Routine % Dynamic 
Branches 

Active 
Branch 

Sites 
utlb 38.7 1
checkRunq 34.2 6
idle 3.89 3
syscall 2.8 14
io splock 2.38 5
exception ip12 2.08 6
bcopy 1.5 6
mrlock 1.17 8
vsema 0.65 5
uiomove 0.6 10
findchunk 0.48 8
blkclr 0.48 1
ufget 0.48 8
mrunlock 0.45 3
copyout 0.42 3
getff 0.42 7
psema 0.42 6

7.2.3 Characteristics of OS Branches 

This subsection investigates specific properties of OS branches and their 

architectural implications. 

7.2.3.1 Weakly Biased Branches 
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It is well known that branches often have biased behavior and many branches are 

either usually “taken” or usually “not taken”. The conventional branch history table 

(BHT) counters exploit this behavior to predict future outcomes of that branch. However, 

when branches showing different biases are mapped into the same entry of the predictor 



table, aliased branches update BHT counters with different directions, leading to aliasing 

mispredictions. 

We measure branch direction distribution in order to gain more insight on bias 

behavior of the user and OS branches. Figure 7.5 shows the result based on the average of 

all benchmarks. The result of individual benchmark can be found in Appendix C. The 

branch sites are categorized into 100% “taken” (always-taken), 0% “taken” (always-not-

taken) and groups between them. For example, the marker “70%-79%” on X-axis implies 

that branch sites that fall into this category have a possibility of 70% to 79% to be 

“taken”. 
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Figure 7.5: User and OS Branch Directions 

The results show that user and OS branches behave differently in terms of the bias 

or direction distribution. For example, on benchmark jack, 46% of dynamic branches in 

kernel are “always taken” while their counterparts in user code are only 15%. On the 

other hand, 18% of dynamic branches in kernel are “always not taken” and that number 

in user mode can be as high as 42%. This implies that even when the strongly biased user 

and kernel branches are mapped into the same BHT counter, it is likely that they will lead 

to aliasing misprediction. 
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Another interesting observation is that while the dominant portion of branch sites 

is strongly biased (i.e. always taken or always not taken) in user code, a significant 

number of branches are weakly biased in OS code. More precisely, it is observed that 

13.4% of dynamic branches that contribute to the weakly biased (with the category of 

40%-49%) branches shown in Figure 7.5, come from a wide range of 22 kernel service 

routines. The weakly biased OS branches showing interleaved directions are also found 

on other benchmarks, as shown in Appendix C. Among these is the checkRunq routine 

that is frequently invoked. This routine checks through queues to find out if a 

rescheduling decision needs to be made. Intuitively, it can be hypothesized that the 

execution characteristics of such a routine are more a function of the load on the system 

more than anything else. Even when the load does not change very much during the 

course of this execution, there are bursts of I/O, synchronization activity and other events 

that can exercise the checkRunq differently, causing its branch to vary direction. Weakly 

biased branches can be a problem to many branch predictors, which rely on the persistent 

history and saturated 2-bit counter for accurate branch prediction. 

7.2.3.2 How Correlated are Kernel Branches? 

I observe that many OS branches are very correlated and hence benefit from two-

level predictors that exploit global history correlation. It should be noted that the utlb 

routine has a single branch that is nearly always taken. While static predictors would 

suffice for this branch, previous history is also a very good indicator for this particular 

branch that accounts for a large portion of the kernel’s dynamic branches. Further, OS 

exception handlers frequently use binary decision trees to classify and dispatch vectored 

interrupts from the trap entry point to the specific fault handler. Figure 7.6a shows an 

example use of such a structure in the general exception handler exception_ip12 OS code. 

This handler dispatches an exception to the corresponding kernel processing routine 
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based on the value of the exception vector. The binary decision tree based branch 

sequence of this handler is given in Figure 7.6b. It can be observed that the branches in 

the OS routine inttrap will be correlated with a NNT branching sequence while the 

branches in systrap will be correlated with a NNNT branching sequence. Hence Gshare 

[54] and GAg [90] predictors work extremely well with these branches. 

 
 
 
0x80007dd4: <exception_ip12> 
andi $k0,$k0,0x7c 
li $k1,124 
beq $k0,$k1,0x80007d0c <handle_vced> 
li $k1,56 
beq $k0,$k1,0x80007cec <handle_vcei> 
li $k1,32 
beqz $k0,0x800080f0 <inttrap> 
sw $at,-24524($zero) 
beq $k0,$k1,0x80008770 <systrap> 
li $at,8 
beq $k0,$at,0x80007e78 <kmiss> 
li $at,12 
beq $k0,$at,0x80007e78 <kmiss> 
li $at,92 
beq $k0,$at,0x80007e60 <exception_ip12+8c> 
li $at,36 
bne $k0,$at,0x80008274 <longway> 
mfc0 $k0,$12 
andi $k0,$k0,0x18 
bnez $k0,0x80008274 <longway> 
mfc0 $k0,$13 
bgez $k0,0x80007e48 <exception_ip12+74> 
. . . 
jr $at 
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(a) OS Assembly Code to Perform General 
Exception Handling 

(b) Binary Decision Tree based Branching 
Sequence Corresponding to Code Shown in (a) 

Figure 7.6: Branch Correlation in OS Code 

7.2.3.3 Impact of Intermittent Kernel Execution 

Even strongly biased OS branches can experience mispredictions due to the user 

code interference. An example for this can be obtained from the utlb routine from the OS. 

Since the utlb handler needs to be very efficient, this code is usually written in assembly 

and is hand-optimized. There are exactly 13 instructions in this routine, with the bulk of 

the instructions used to read the page table entry from the memory system and load it into 

the TLB. There is exactly 1 branch within this code that is strongly taken. But intervening 

user code interference can result in mispredictions in even such strongly biased branches. 
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Consider a correlation based branch predictor, and two scenarios of branch history shift 

register (BHSR) contents in Figure 7.7. In the absence of user code intervention, the 

correlation shift register may look like (a), and leads to correct prediction, whereas the 

intervening user code may result in the correlation information to look like (b) and result 

in aliasing misprediction. 
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Figure 7.7: Impact of User/Kernel Inference 

7.2.3.4 Characterization of User/OS Aliasing 

It is well known that branch aliasing, namely, several branches mapping to the 

same entry in the prediction tables, impacts the branch prediction accuracy. Although 

some of the aliasing can be neutral or constructive, a large part of the aliasing is often 

destructive. The branch aliasing characterization is performed to understand the impact of 

user/OS aliasing. In order to do that, the branch prediction simulators is instrumented to 

track the mapping between branch instructions and the BHT entries. Branch aliasing is 

recorded whenever the branch instruction being mapped to a given BHT entry is different 

from what is already present at that entry. Branch aliasing is attributed to user (User/User 

Aliasing), kernel (OS/OS Aliasing) and the interaction between them (User/OS Aliasing). 

The percentages of misprediction and correct prediction caused by different aliasing 

categories are shown in Table 7.3. 

In experiments with a Gshare predictor of size 8K BHT entries, user/OS aliasing 

on the average contributes to the 14.2% and 2.5% of misprediction and correct prediction 

respectively, implying most of the user/OS aliasing are negative. The percentage of 

misprediction caused by user/OS aliasing does not change significantly when the 
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predictor size is increased from 8K entries to 64K entries. This indicates that just 

increasing the capacity of the branch predictor will not effectively solve the user/OS 

aliasing problem.  

Table 7.3: Characterization of Branch Aliasing  

(8K BHT Eentries Gshare, MR: Misprediction Rate) 
 

Benchmarks Metric OS/OS 
Aliasing  

User/User 
Aliasing  

User/OS 
Aliasing 

% of Misprediction 6.2 28.2 19.4 db 
(MR=4.8%) % of Correct Prediction 1.4 2.7 2.1 

% of Misprediction 3.3 37.3 20.1 jess 
(MR=8.8%) % of Correct Prediction 1.4 6.5 3.9 

% of Misprediction 3.1 34.7 16.4 javac 
(MR=7.1%) % of Correct Prediction 0.7 5.2 2.4 

% of Misprediction 1.3 35.7 18.8 jack 
(MR=8%) % of Correct Prediction 0.6 7.9 4.7 

% of Misprediction 1.3 23.5 10.2 mtrt 
(MR=4%) % of Correct Prediction 0.2 3.8 1.1 

% of Misprediction 0.7 12.0 2.5 compress 
(MR=3.1%) % of Correct Prediction 0.1 4.7 0.2 

% of Misprediction 0.3 41.5 6.2 gcc 
(MR=10.2%) % of Correct Prediction 0.1 10.5 1.9 

% of Misprediction 0.1 39.4 11.7 vortex 
(MR=7.8%) % of Correct Prediction 0 11.8 3.8 

% of Misprediction 3.6 25.1 9.4 pmake 
(MR=6.6%) % of Correct Prediction 0.5 4.6 1 

% of Misprediction 22.2 9 23.7 sendmail 
(MR=9.3%) % of Correct Prediction 3.8 1.7 2.9 

% of Misprediction 7.4 16 19.7 postgres.select 
(MR=3.1%) % of Correct Prediction 0.9 2.4 2.2 

% of Misprediction 7.8 18.4 22.4 postgres.update 
(MR=5.7%) % of Correct Prediction 1.7 3.3 3.8 

% of Misprediction 1.1 15 4.5 postgres.join 
(MR=5.6%) % of Correct Prediction 0.2 5.3 1.1 
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The user/user aliasing that many previous studies have evaluated is still important 

as the results observed from Table 7.3 indicate. However, user/OS aliasing is also a big 

source for mispredictions. Table 7.4 characterizes the impact of branch aliasing on 

misprediction in user and OS component. With an 8K BHT entry Gshare, approximately 

22-62% of mispredictions in OS code are found to be from user/OS aliasing, suggesting 

that it is essential to protect kernel branch predictors from interference from user code. 



Table 7.4: Characterization of Misprediction due to Branch Aliasing  

(8K BHT Entries Gshare, MR: Misprediction Rate) 
 

Benchmarks OS/OS 
Aliasing 

User/User 
Aliasing 

User/OS 
Aliasing MR% 

User -- 39.0 13.5 8.6db OS 22.3 -- 34.9 2.3
User -- 47.3 12.8 12.3jess OS 15.5 -- 47.7 4.3
User -- 42.0 10.0 9.3javac OS 17.9 -- 47.0 3.5
User -- 43.9 11.6 7.8jack OS 6.9 -- 50.4 9.4
User -- 26.6 5.8 3.9mtrt OS 11.5 -- 44.0 4.7
User -- 12.5 1.3 3.1compress OS 16.8 -- 32.0 2.1
User -- 43.6 3.3 10.6gcc OS 6.7 -- 62 5.8
User -- 44.7 6.6 7.5vortex OS 1 -- 49.5 11.3
User -- 28.8 5.4 7.2pmake OS 28 -- 36.2 4.3
User -- 19.9 26.2 6.3sendmail OS 40.5 -- 21.6 14.9
User -- 26.7 16.5 3.5postgres.select OS 18.4 -- 24.5 2.6
User -- 29.3 17.9 9.6postgres.update OS 21 -- 29.9 3.5
User -- 16.1 2.4 7postgres.join OS 16.2 -- 33.5 1.6

7.3 ALLEVIATING IMPACT OF USER/OS INTERFERENCE 

It is clear from the prior sections that user and kernel code possess different 

branch behavior, often resulting in conflicts in unified structures that capture branch 

history. In subsections 7.3.1 and 7.3.2, two philosophies that aim to alleviate the 

destructive impact of OS branch execution on branch predictability are presented. 
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During the initial period of a context switch, both user and kernel history patterns 

coexist in history capturing structures. In Gshare and any correlation based predictor, this 

can happen in shift registers (BHSRs) that capture correlation between branches and/or 

branch history tables (BHTs). One solution is to use separate shift registers to 

individually keep track of branch correlation and another solution is to use separate 

BHTs. 



7.3.1 Split BHSR Predictor 

The OS-aware techniques are illustrated in the context of a Gshare predictor, but 

it can be applied to other correlation-based predictors as well. A Gshare predictor with 

split correlation history shift registers (i.e. split BHSR predictor) is illustrated in Figure 

7.8. The split BHSR predictor functions exactly the same as a conventional Gshare 

predictor except that two dedicated BHSRs (i.e., U-BHSR for user and K-BHSR for 

kernel) are used to gather branch correlation patterns and to generate BHT indexing. By 

using K-BHSR for kernel branches, the split BHSR predictor overcomes the loss of 

branch history patterns in kernel mode. Meanwhile, the split BHSR predictor 

dynamically switches between BHSRs when a context switch occurs, preventing the BHT 

indexing ambiguity during the initial stages of a context switch. 

K-BHSR

branch address

X
O
R

i bits

i bits

i bits

..

..

BHT of 2i Entries
pr

ed
ic

tio
n

execution mode bit

U-BHSR

...

Processor Status Register

Figure 7.8: Gshare with Split BHSR 

7.3.2 Split Predictor 

The proposed split BHSR predictor aims to preserve accurate BHT counter 

indexing during a context switch. However, user/OS aliasing can still occur when user 

and kernel branches have the same XORed global history pattern, but opposite biases. 

Due to their different branch bias distribution, user and kernel branches can update BHT 
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counters in different manners. To reduce the destructive user/OS branch aliasing in BHT, 

we propose the use of split BHT for each, which yields split predictor, as shown in Figure 

7.9. This predictor eliminates the destructive user/OS aliasing by using separate 

correlation and history information for user mode and kernel mode. It is also observed 

that when branch history tables are split into user and kernel parts, the kernel BHT can be 

smaller than the user BHT because of the fewer active branch sites in kernel (as shown in 

Table 7.1).  
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Figure 7.9: Split Gshare Predictor 

In this study, we only consider the design space in which the proposed schemes 

are cost-effective than the baseline model. Therefore, we allocate U-BHT with half size 

of that used by conventional Gshare predictor for user code and allocate a smaller K-BHT 

for kernel code. To understand performance trade-off on K-BHT sizes, we simulate the 

split Gshare schemes that have varied K-BHT sizes, i.e., 1K, 2K, 4K and equivalent to 

that of U-BHT. Figure 7.10 shows misprediction rates (average number of benchmarks) 

yielded by split Gshare predictors with different K-BHT sizes. Note that in Figure 7.10, 

the misprediction rates on conventional Gshare are also shown for illustration. The value 
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x shown on X-axis is the predictor size of conventional Gshare. The size of 

corresponding split OS-Gshare is x/2+K-BHT-size. 

Figure 7.10 shows that resource constrained split Gshare with 1K K-BHT causes 

higher misprediction rates than its conventional Gshare counterpart with large BHT 

configuration. The 2K K-BHT configuration outperforms Gshare. Further increasing K-

BHT beyond 2K does not gain significant performance improvement. Therefore, we kept 

the user BHT at half the size of the original Gshare and allocate kernel BHT with a fixed 

size of 2K entry in our experiment. 
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7.3.3 Integrating with Other Predictors 
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Splitting user and kernel prediction resources is a technique suggested by the 

characterization study, not necessarily a particular predictor. We surveyed literature to 

identify branch predictors, which may be poised to handle branches with the 

characteristics unveiled in the earlier sections. Although not targeted for OS-user branch 

interference, Multi-Hybrid [22], Agree [77] and Bi-Mode schemes [44] do contain 

mechanisms tailored for branches with heterogeneous characteristics and/or de-aliasing. 

Table 7.5 summarizes these schemes, and the additional cost used for branch de-aliasing. 



The sizes of all the predictors are normalized to Gshare to give an indication of the 

associated area cost. 

Table 7.5: A Comparison of Several Branch De-aliasing Schemes 

Predictor Description of feature to exploit heterogeneous branches or 
De-aliasing 

Additional 
Branch 

De-aliasing 
Hardware 

Predictor 
Size 

Normalized 
to Gshare 
(8k-256k) 

Gshare 
[54] 

Consists of one correlation shift register (BHSR) and one 
BHT. BHSR is XORed with branch address bits of a 
branch address to index BHT entry. The XORing helps to 
reduce aliasing effects. 

0 1 

Multi-Hybrid 1, 2 
[22] 

Consists of multiple single-scheme components: simple 2-
bit (2bc), GAs, Gshare, Pshare and always taken predictor. 
Use of simple 2-bit predictors (2bc) and static predictors as 
components of the multi-hybrid predictor provides quick 
warm up after a context switch. 

5×2K predictor 
selection 
counters in 
BTB 

1.04-2.25 

Agree 
[77] 

Converts instances of destructive aliasing into either 
constructive or neutral aliasing by attaching each branch 
with a biasing bit that predicts the most likely outcome of 
that branch. 

2K biasing bits 
in BTB 1-1.13 

Bi-Mode 
[44] 

Uses separate history tables for taken and not-taken 
branches, and a selection branch history table. This 
classification helps to alleviate destructive aliasing while 
keeping the harmless aliasing together. 

the third BHT 
for dynamic 
bias selection 

1.5 

OS-aware split 
BHSR predictor 
[this research] 

OS-aware Gshare predictor uses separate shift registers (U-
BHSR and K-BHSR) for capturing path history patterns. 1 shift register 1 

OS aware split 
predictor 
[this research] 

OS-aware Gshare predictor that uses separate branch 
history tables for user and kernels. Kernel-BHT is 2K and 
User-BHT is 50% of Gshare. 

consumes less 
BHT resource 
than Gshare 

0.51-1 

1. The simulated Multi-Hybrid does not include AVG predictor [15] because it needs source recompilation which often is 
difficult for commercial and complicated software like OS. 
2. As indicated by [22], we allocate half of the total budget for Gshare, a quarter of the total budget for Pshare, and 1/8 for 2bc 
and Gas respectively. The priority ordering of the component predictors is 2bc, GAs, Gshare, Pshare and always taken scheme. 
 

As shown in Figure 7.11, all these predictors contain a Gshare predictor or a 

Gshare indexing [22][77][44]. To integrate the proposed techniques, we simply replace 

the conventional Gshare component used in the above predictors with the proposed OS-

aware split-BHSR Gshare predictor and split Gshare predictor. 

Table 7.6a shows the average (of the 13 studied benchmarks) misprediction rates 

of each baseline predictor and the percentage of misprediction reduction by incorporating 

the OS-aware techniques proposed in this paper. Table 7.6b further illustrates the 

 116



breakdown of the misprediction reduction in user and OS parts, for each individual 

benchmark. 
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Figure 7.11: Integrating with Other Predictors 

As described in subsection 7.4.1, split BHSR predictor only separates the branch 

history shift registers. The partitioning of the BHT for user or OS happens dynamically. 

The resource available for the code is not less than that in the baseline. Hence, split 

BHSR predictor is never inferior to the baseline. Split predictor is at times worse than the 

baseline. In split predictor, the partitioning of the BHT between user and kernel code is 

done statically. Both the user and kernel BHTs are smaller than the unified BHT in the 

baseline configuration. In the configurations studied in this paper, the user BHT is only 

50% of the baseline BHT, and the K-BHT is fixed at 2K in all cases. Hence, the overall 

size of the philosophy 2 BHT is not much greater than 50% of the BHT in the baseline. A 

2K K-BHT is seen to be sufficient to capture all history patterns in the OS code and 

except in postgres.update, the mispredictions in OS code goes down. For the user part, 
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the small size of the U-BHT (4K BHT entries) can detrimentally affect the performance 

on benchmarks compress, gcc, pmake, postgres.select and postgres.join. 

Table 7.6a: Misprediction Reduction by Introducing OS-aware Prediction 

Schemes Size (Number of BHT entries, not including de-
aliasing overhead) 

 8k 16k 32k 64k 128k 256k
14.03 12.35 10.89 9.64 8.66 8 

Gshare+OS-aware Split BHSR 
Predictor % of Misprediction Reduction 31% 32% 31% 29% 

Gshare+OS-aware Split Predictor % of Misprediction Reduction 20% 24% 22% 20% 
Multi-Hybrid Misprediction(in %) 10.87 9.53 8.58 7.66 6.96 6.3 

21% 22% 23% 23% 22% 22% 
Multi-Hybrid+OS-aware Split 
Predictor % of Misprediction Reduction 13% 

Metric 

Misprediction(in %) Gshare 

33% 34% 

17% 15% 

Multi-Hybrid+OS-aware Split BHSR 
Predictor % of Misprediction Reduction 

12% 13% 11% 10% 8% 

Agree Misprediction(in %) 12.59 11.41 10.46 9.66 9.13 8.78 

% of Misprediction Reduction 27% 27% 27% 26% 25% 24% 

Agree+OS-aware Split Predictor % of Misprediction Reduction 19% 20% 20% 19% 
Bi-Mode Misprediction(in %) 7.7 6.95 6.42 6.07 
Bi-Mode+OS-aware Split BHSR 
Predictor % of Misprediction Reduction 10% 9% 9% 9% 9% 9% 

4% 2% 1% 1% 0% 0% 

On the average, with a 32K BHT entry Gshare, incorporating OS-aware split 

BHSR predictor and split predictor reduces 34% and 22% of the misprediction. OS-aware 

predictions also reduce the misprediction of Multi-Hybrid, Agree and Bi-Mode 

predictors. For instance, compared with the 32K BHT entry baseline predictors, OS-

aware Multi-Hybrid, Agree and Bi-Mode predictors yield up to 23%, 27% and 9% 

prediction accuracy improvement respectively, implying that OS-aware predictions still 

provide significant improvements on some of the most powerful predictors. 

As shown in Table 7.6a and Table 7.6b, split BHSR predictor outperforms split 

predictor on most of the de-aliasing predictors examined. Considering overall 

performance, in more than half the cases, the performance gain due to the elimination of 

user/OS aliasing by split predictor outweighs the performance loss due to individually 

using smaller prediction tables for each part. More precisely, for example, the OS-aware 

Agree+OS-aware Split BHSR 
Predicor 

22% 22% 
5.79 5.57 

% of Misprediction Reduction Bi-Mode+OS-aware Split Predictor 
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split p predictor reduces 22% of misprediction on a conventional Agree predictor of 32K 

BHT entries, using only 18K entries BHT consisting of a 16K entries U-BHT and a 2k 

entries K-BHT. 

Table 7.6b: OS-aware Prediction: Breakdown of Misprediction Reduction 

Gshare  
+ OS-aware 

Multi-Hybrid  
+ OS-aware 

Agree  
+OS-aware 

Bi-Mode  
+ OS-aware 

Split 
BHSR 

Predictor 

Split 
Predictor

Split 
BHSR 

Predictor

Split 
Predictor

Split 
BHSR 

Predictor

Split 
Predictor 

Split 
BHSR 

Predictor 

Split 
Predictor

23% 20% 15% 21% 17% 9% 8% 
OS 8% 7% 11% 15% 7% 7% 10% db 
Full-System 28% 14% 20% 16% 8% 8% 
User 39% 31% 34% 27% 13% 8% 
OS 52% 42% 12% 36% 13% 20% jess 
Full-System 42% 34% 28% 23% 29% 13% 10% 
User 28% 19% 20% 13% 24% 4% 
OS 40% 36% 10% 20% 42% 41% javac 
Full-System 30% 22% 18% 14% 27% 21% 8% 
User 57% 47% 47% 39% 51% 42% 21% 13% 
OS 79% 82% 29% 49% 64% 70% 43% 53% jack 

61% 53% 46% 40% 53% 46% 23% 17% 
15% 27% 19% 20% 11% 7% 4% 

OS 59% 15% 23% 49% 48% 19% 27% mtrt 
Full-System 31% 19% 22% 15% 8% 6% 
User 11% -27% 7% -30% 3% 2% 
OS 43% 29% 7% 12% 8% 13% compress 
Full-System 12% -25% 10% 1% 3% 3% 
User 16% 2% 10% -1% 12% -1% 
OS 46% 55% 3% 26% 62% 68% 31% gcc 
Full-System 18% 5% 10% 0% 15% 7% 10% 
User 76% 63% 71% 48% 73% 65% 35% 28% 
OS 96% 97% 30% 54% 98% 99% 67% 77% vortex 

78% 68% 70% 48% 78% 72% 37% 31% 
-6% 4% -11% 6% -7% 4% -6% 

OS pmake 

% of Misprediction Reduction for Different Schemes (8K BHT Entries) 

Benchmarks 

28% User 
28% 

19% 16% 
31% 25% 

15% 44% 
36% 

17% 8% 
9% 18% 

6% 

Full-System 
27% User 
60% 

20% 25% 
10% -3% 

11% 19% 
7% -29% 

2% 10% 
14% 

1% 

Full-System 
8% User 
11% 2% 2% 8% 7% 13% 3% 8% 

-4% 4% -8% 6% -5% 4% -4% 
User 5% 3% 1% 0% 3% 1% 
OS 5% 1% 3% 2% 2% 2% 
Full-System 5% 1% 2% 0% 2% 2% 
User 47% 12% 50% 48% 36% 
OS 27% 8% 17% 29% 14% 13% postgres.select 

30% 35% 16% 40% 40% -14% 
User 35% 30% 25% 25% 23% 21% 

14% -10% 6% 6% 9% 5% 5% postgres.update 
Full-System 27% 17% 19% 22% 16% 15% 
User 12% -6% 8% -1% -6% 3% -6% 
OS 15% 26% 35% 44% 26% 
Full-System 14% -4% 9% 

8% Full-System 
2% 2% 

0% 3% sendmail 
3% 2% 

56% 45% -34% 
22% 26% 

45% 26% Full-System 
25% 24% 

17% OS 
14% 17% 

10% 
42% 32% 34% postgres.join 

0% 12% -3% 4% -5% 
 

 119



7.4 PERFORMANCE EVALUATION 

The benefits of integrating the above predictors with OS-aware predictions on a 

dynamically scheduled superscalar processor are evaluated using a full-system simulator 

that captures OS behavior as well. The SimOS MXS model [11], which simulates a 

superscalar microprocessor with multiple instruction issue, register renaming, dynamic 

scheduling, and speculative execution with precise exceptions, is used. The simulated 

architectural model is an 8-issue superscalar processor with instruction latencies as in the 

MIPS R10000 [89]. By default, the branch prediction algorithm allows fetch unit to fetch 

through up to 4 unresolved branches. In the model, a misprediction will cause a 10-cycle 

penalty. BHSR is speculatively updated and later corrected after a misprediction. BHT 

counter update takes place in order at instruction commit time. 

Figure 7.12 shows the IPC performance for this scenario. Since instruction counts 

are the same, IPC improvement is indicative of execution cycle improvement. Results are 

depicted for the 13 evaluated programs. Comparison of predictors integrating OS-aware 

prediction techniques with Gshare, Multi-Hybrid, Agree and Bi-Mode predictors is 

presented. The scale of Y-axis is varied for each benchmark due to their differences in 

IPC. Split BHSR predictors improve IPC performance on all of the benchmarks for all of 

the four types of base predictors. This benefit is particularly substantial in those programs 

where user/OS aliasing is significant, such as jess, jack, vortex, and postgres.update (as 

was illustrated in Figure 7.1). The same trend can be observed in programs such as javac 

and db. For those programs where the impact of user/OS aliasing on misprediction is less 

significant (for instance, compress and pmake), the integration of OS-aware techniques 

show only limited improvement. 
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Figure 7.12: IPC Improvement of OS-aware Predictors 

Integration of split predictor results in improvement in many cases, even though 

the predictor size is not much more than 50% of the baseline predictor. In most of the 

cases in Gshare, Multi-Hybrid and Agree predictors, despite the small size, split predictor 

still results in improvement. In the case of the Bi-Mode predictors, split predictor-
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integrated case is inferior to the baseline for 5 of 13 benchmarks. However, if one 

compares them to a baseline that is comparable in size (i.e., 16K BHT entries), OS-aware 

split predictor with 18K BHT entries (16K U-BHT + 2K K-BHT) outperforms 16K BHT 

entries baseline predictor in all cases, resulting up to 10% of IPC speedup [48].  

Compared with a Gshare predictor, the two proposed techniques – split BHSR 

predictor and split predictor yield up to 8% and 7% of IPC improvement respectively. 

This improvement is a result of the removal of aliasing mispredictions. The integration of 

OS-aware prediction into Multi-Hybrid predictor yields up to 5% of IPC gain. As 

described earlier, Multi-Hybrid allocates the largest prediction resource to its Gshare 

component and its overall prediction accuracy is more impacted by Gshare than any other 

predictor. Hence, the replacement of the conventional Gshare with the proposed OS-

aware Gshare predictors improves performance. 

By introducing OS-aware philosophies on the Agree predictor, up to 7% of IPC 

improvement can be achieved. The performance of Agree predictor is largely dependent 

on branch biases and possibility of identifying the biased behavior the first time the 

branch is introduced into the BTB. If the branch does not show strongly biased behavior, 

there is still frequent aliasing between instances of a branch that do not comply with the 

biasing bit and instances which do comply with the biasing bit. Once we incorporate OS-

aware policies into the Agree predictor, the filtering out of the visible portion of weakly 

biased kernel branches leads more U-BHT entries to reach “agree” status. 

The IPC improvement of OS-aware Bi-Mode is marginal (1%), but it should be 

noted that the OS-aware Bi-Mode consumes only equivalent or less resource to achieve 

this performance enhancement. Thus, OS-aware prediction leads to the same performance 

with less hardware.  

 122



The results shown in Figure 7.12 also indicate that the combination of the OS-

aware prediction and a simple predictor (for instance, Gshare) can outperform 

sophisticated predictors (e.g., Multi-Hybrid and Agree) with larger size configuration. 

Current and next generation microprocessors are becoming increasingly sensitive 

to branch prediction accuracy due to the use of deeper pipelines and wider issue 

microarchitecture. The proposed techniques are expected to yield more ILP performance 

benefit on aggressive implementations with higher misprediction penalties. 

7.5 DISCUSSION 
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Figure 7.13: Impact of OS-aware Split BHSR Predictor 

We motivated the research in this chapter using Figure 7.1, which showed that 

kernel interference increases user misprediction from 1.1x to 6x (with an average of 

2.1x). Similarly, it is observed that user interference increases OS misprediction from 
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1.3x to 129x (with an average of 13x). In this subsection, we revisit this characterization 

in the presence of the OS-aware prediction. 

Figure 7.13 illustrates the impact of user/OS execution on branch prediction after 

OS-aware split BHSR predictor is integrated with Gshare. Compared with Figure 7.1, 

OS-aware split BHSR predictor significantly reduces the negative impact of user/OS 

interference on branch prediction, resulting in the drop of mispredictions from 2.1x to 

1.2x and from 13x to 2x in user and OS space respectively. 
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Figure 7.14: Impact OS-aware Split Predictor 

Similarly, Figure 7.14 revisits the impact of user/OS on branch misprediction 

after an OS-aware split predictor is integrated. Compared with Figure 7.1, OS-aware split 

predictor cost-effectively reduces the negative impact of kernel code on branch 

misprediction in user part. The misprediction reduction by OS interference removal 

outweighs the extra misprediction caused by using less (50%) BHT resource on all 
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benchmarks except compress and pmake. In the OS part, the fixed size 2K K-BHT still 

outperforms the performance of a unified 16K BHT on benchmarks jess, javac, jack, 

mtrt, gcc, vortex and postgres.join. 

7.6 RELATED WORK 

There have been limited studies on the impact of OS activity on branch predictors. 

Flushing branch prediction tables (i.e., BHT, BHSRs) at a given interval of instructions 

have been used to model the effects of context switch in user-code-only simulation by 

several research studies [62][22]. However, periodic flushing has been found to 

inaccurately estimate user/kernel branch interactions [24] because a short switch does not 

necessarily flush the branch history state and such a methodology can unfairly penalize 

predictors with large table sizes. The negative impact of kernel branches on branch 

prediction has been reported in [24]. However, little research has been done on hardware 

optimization to alleviate the destructive user/kernel branch aliasing problem.  

Past research has shown that destructive branch aliasing can seriously deteriorate 

the performance of branch predictors [92][73][24]. To address the aliasing problem, 

Gshare [54] uses “exclusive or” (XOR) of the global history with the low-order address 

bits of a branch to form a more randomized BHT index, leading it to be one of the best 

single-scheme predictors. 

There have been several other proposals to reduce aliasing problems 

[16][22[56][77][44]. Evers and Patt propose Multi-Hybrid predictor [22] and show that it 

is more accurate than classic two-component hybrid predictors [54] in the presence of 

context switch. Multi-Hybrid uses more than two single-scheme predictors and associates 

a predictor selection counter with each single-scheme predictor to keep track of the most 

accurate component predictor for each branch. A priority encoding mechanism is used to 

select the appropriate prediction. Using predictors with short training time (e.g., static 
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predictor, 2bc) to assist the otherwise more accurate predictors (e.g., Gshare, GAs) during 

their warm-up phases, Multi-Hybrid maintains high prediction accuracy after a loss of 

branch histories due to context switches. 

The Agree predictor [77] converts instances of destructive aliasing into either 

constructive or neutral aliasing by attaching each branch with a biasing bit that predicts 

the most likely outcome of that branch. The 2-bit BHT counter is then interpreted as 

whether or not the branch will go in the direction indicated by the biasing bit. The idea 

behind the Agree predictor is that most branches are highly biased. If the behavior can be 

captured by biasing bits, those branches using the same BHT entry are more likely to 

update the counter in the same direction - towards the “agree” state, which will not result 

in mispredictions. 

In Agree predictor, the biasing bit is determined by the direction of that branch 

when it is initially introduced into the branch target buffer (BTB). The Bi-Mode predictor 

[44] proposed by Lee and Mudge uses a dedicated choice BHT to dynamically determine 

the “taken” or “not-taken” bias. The Bi-Mode predictor splits the conventional BHT table 

into two parts; one is a “taken” direction BHT and the other is a “not-taken” direction 

BHT. The direction BHTs are indexed by the branch address XORed with the global 

history. When a branch is encountered, both direction BHTs make predictions and a 

choice BHT entry pointed by branch address is used to choose the final prediction. Later, 

only the direction BHT chosen by the choice BHT is updated. As a result of this scheme, 

branch predictions stored in a direction BHT will have the same bias. Thus, this 

classification helps to alleviate destructive aliasing while keeping the harmless aliasing 

together. 

There are other branch de-aliasing techniques which trade conflict and capacity 

aliasing by introducing multiple BHT banks [56] or use a branch filtering mechanism 
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[16]. Usually, most of existing branch de-aliasing schemes consume extra resources due 

to the additional overhead used for branch de-aliasing, such as multiple component 

predictor and predictor selection counter table in Multi-Hybrid, biasing bit table in agree 

predictor and choice BHT in Bi-Mode predictor.  

7.7 SUMMARY 

Control flow prediction is one of the key issues in the design of high performance 

processors. It is extremely important that processor hardware, software and the operating 

system collaborate with each other to deliver high performance. The operating system 

affects control flow predictability by introducing the additional user/OS branch aliasing 

in predictor hardware. Compared to the branches in user code, the OS branches are 

usually invoked by the exception-driven and intermittently executed kernel routines and 

may have different biased behavior caused by performing operations not common in user 

mode. Thus, when interacted with user branches, the OS branches increase misprediction 

significantly.  

The proposed OS-aware prediction is a technique that advocates orchestrating 

branch correlation information and/or branch history information for user and kernel 

branches individually. The proposed OS-aware prediction can be incorporated into any 

other predictor, ranging from a naïve Gshare to the more sophisticated Multi-Hybrid, 

Agree and Bi-Mode predictors, to further improve prediction accuracy. More precisely, 

on the 32K BHT entry predictors, incorporating OS-aware strategies into previously 

proposed Gshare, Multi-Hybrid, Agree and Bi-Mode predictors yields up to 34%, 23%, 

27% and 9% prediction accuracy improvement and up to 8%, 5%, 7% and 1% execution 

speedup respectively.  
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Chapter 8:  Conclusions and Future Work 

It is a very exciting time to do research in computer architecture area because 

VLSI technology continues to provide increasing numbers of transistors and clock speeds 

to allow computer architects to build even more powerful microprocessors and computer 

systems than those we have seen today.  

However, as software technologies evolve, new computer applications and 

programming paradigms are constantly emerging to challenge the traditional hardware 

designs. Moreover, the high-complexity design driven by the quest for greater 

performance has resulted in many critical issues, such as higher power dissipation. 

Therefore, there are at least two challenges in high performance microprocessor design: 

(1) How to maximize performance across different applications, and (2) How to mange 

power dissipation.   

It has been proved that in order to achieve higher performance and better energy 

efficiency, software behavior and characteristics should be carefully considered during 

hardware design.  Adhering to this philosophy, previous work extensively exploited the 

interactions of applications-compilers-hardware. The Operating System (OS) is a major 

software component of today’s complex systems. Nevertheless, its effects on hardware 

have largely been ignored.  

This dissertation advocates the incorporation of OS component in processor 

hardware design. This is particularly interesting because modern and emerging 

applications tend to invoke heavier OS activity than traditional and technical workloads. 

This trend is likely to continue in the near future and it is very important to consider the 

OS not only for performance evaluations, but also when attempting to optimize the 

performance and power of hardware. 
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This dissertation demonstrates that with minimal and simple hardware 

modifications or additions, OS-aware design philosophy can cost-effectively achieve 

higher performance and better energy efficiency.  

8.1 CONCLUSIONS  

This dissertation makes important contributions to several key areas: 

• Complete system, emerging workloads and OS characterization  

There is abundant variety among applications running on today’s computer 

systems. However, the using of user-only technical workloads has dominantly 

driven evaluating architectural designs/optimizations. It is essential to understand 

the characteristics of today’s emerging workloads in order to design efficient 

architectures for them. Given the facts that emerging and commercial applications 

involve system activities significantly, it is nature to consider the using of 

complete system evaluation. This dissertation conducts research on full-system 

workload characterization to understand the implications of emerging and system 

workloads from the system perspective. By exploring interactions of architecture, 

applications, OS and managed run-time environments, this dissertation proposes 

several system performance and power optimizations targeting for emerging 

workloads.  

• Run-time OS power estimation  

Power modeling is increasingly becoming a critical issue during system designs, 

as well as run-time power/performance optimizations. The OS constitutes a major 

software component and dissipates a significant portion of total power in many 

modern application executions. Therefore, modeling OS power is imperative for 

accurate software power evaluation, as well as power management (e.g. dynamic 

thermal control and equal energy scheduling) in the light of emerging workload 
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execution. This dissertation conducts research to characterize the power behavior 

of a modern, commercial OS across a wide spectrum of applications to understand 

OS energy profiles and then proposed various models to cost-effectively estimate 

its run-time energy dissipation. Profiling of several Java, Database, file/e-mail 

workloads illustrated a strong correlation between IPC and OS routine power. 

Exploiting this correlation, we built a model to estimate energy consumption of 

OS activity. The proposed models rely on a few simple parameters and have 

various degrees of complexity and accuracy. Compared with cycle-accurate full-

system simulation, the model can predict cumulative OS energy to within 1% 

accuracy for a set of benchmark programs evaluated on a high-end superscalar 

microprocessor. The proposed routine level power model not only offers superior 

accuracy when compared to a simpler, flat OS power model, but also provides 

per-routine estimation errors of less than 6% when applied to track the run-time 

OS energy profile. The integrated OS performance/power characterization not 

only leads to efficient power estimation for OS-intensive applications but also 

provides hint to reduce OS power consumption. Having known the routine based 

power dissipation behavior, hardware can be adapted for power minimization.  

• OS power saving  

To reduce OS power, hardware can provide resources that closely match the 

needs of the OS. However, with exception-driven and intermittent execution in 

nature, it becomes difficult to accurately predict and adapt processor resources in 

a timely fashion for OS power savings without significant performance 

degradation. The OS-aware routine based microprocessor resource adaptation 

proposed in this dissertation permits precise hardware reconfigurations for the OS 

with low overhead and allows fine-grained performance/power tuning at 
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microarchitectural level. Compared with sampling based techniques, this scheme 

has the following advantages: (1) The proposed adaptation scheme guarantees the 

timely and fine-grained resolution required to capture the exception-driven, short-

lived OS activity; (2) The adaptation techniques eliminate significant portion of 

adaptation overhead; (3) The adaptation scheme has the capability to select the 

optimal configuration for different OS code, yielding more attractive power and 

performance trade-off; (4) This scheme is orthogonal to and can be integrated 

with existing scheme proposed for user-only applications. With the increasing 

impact of the leakage power, routine customized aggressive adaptation tends to 

save more power by safely turning off more transistors. The proposed scheme can 

be exploited in mobile computing systems for energy saving, as well as in 

conventional systems for dynamic thermal management. 

• OS-aware low power I-cache  

Low power has been considered as an important issue in instruction cache (I-

cache) designs. Several studies have shown that the I-cache can be tuned to 

reduce power. These techniques, however, exclusively focus on user-level 

applications. This study goes beyond previous work to explore the opportunities 

of employing the three subsystems – application, OS and hardware – to improve 

I-cache energy efficiency. User/OS I-cache accesses on system workloads are 

characterized to identify power saving opportunities due to dual-mode operation. 

Two techniques, OS-aware cache way lookup and OS-aware cache set drowsy 

mode, are proposed to reduce the dynamic and the static power consumption of I-

cache. The OS-aware cache way lookup reduces the number of parallel tag 

comparisons and data array read-outs for cache accesses and saves dynamic 

power. Integrating with a state-preserving, leakage control mechanism, OS-aware 
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tuning effectively reduces static power, which is gaining in importance due to 

CMOS technology scaling. Unlike other proposed schemes, OS-aware tuning 

achieves both dynamic and static power savings but require minimal hardware 

modification and addition. Simulation based experiments show that with no or 

negligible impact on performance, applying OS-aware tuning techniques to a 32 

KB, 4-way set-associative I-cache yields significant dynamic and static power 

savings across the experimented applications. The proposed techniques can be 

implanted into sever processor I-caches mostly targeting on OS-intensive 

commercial applications. 

• OS-aware control flow prediction  

Control flow prediction is one of the key issues in the design of high performance 

processors. It is extremely important that processor hardware, software and the 

OS collaborate with each other to deliver high performance. The OS affects 

control flow predictability by introducing the additional user/OS branch aliasing 

in predictor hardware. Compared to the branches in user code, the OS branches 

are usually invoked by the exception-driven and intermittently executed kernel 

routines and may have different biased behavior caused by performing operations 

not common in user mode. Thus, when interacted with user branches, the OS 

branches increase misprediction significantly. Current branch predictors have paid 

less attention to the OS requirements and therefore, do not contain mechanisms to 

specifically alleviate the user/OS aliasing. This dissertation proposes OS-aware 

branch prediction designed to reduce user/OS branch aliasing without adding 

extra hardware for branch de-aliasing. The proposed OS-aware prediction can be 

incorporated into any other predictor, ranging from a naïve Gshare to the more 

sophisticated Multi-Hybrid, Agree and Bi-Mode predictors, to further improve 
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prediction accuracy. Simulation results also show that the combination of the OS-

aware prediction and a simple predictor (for instance, Gshare) can outperform 

sophisticated predictors (e.g., Multi-Hybrid and Agree) with larger size 

configuration. OS-aware techniques provide opportunities for catering user and 

kernel branches with differently tuned structures. For example, compared with a 

conventional design, the OS-aware split predictor requires access to only one of 

the smaller prediction tables for a given branch instruction mode (kernel or user), 

which can result in energy savings and low-latency access. These advantages are 

valuable in the light of power and clock frequency constraints in emerging 

processor and branch predictor designs. 

8.2 FUTURE WORK 

• OS-aware / OS-friendly computer architecture 

In the near future, I am interested in the extending of my thesis work to design the 

OS-aware and OS friendly architecture to improve the system performance and 

energy efficiency on emerging application execution. For example, I intend to 

look at how OS-aware architecture can help with other performance critical 

microarchitecture designs, such as value prediction, register file, and data caches. 

I would also like to extend the emerging workload oriented microarchitecture 

optimizations from superscalar paradigm to CMP and SMT systems. I believe 

there is significant room to improve system performance, energy-efficiency, 

quality of service, and security by providing OS-friendly, emerging application-

oriented architecture. 

• Software power models supporting run-time energy and thermal 

management 
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As a natural extension of the research on OS power modeling, I intend to look 

how general software knowledge with various granularities can be combined with 

simple, run-time hardware metrics to produce efficient power estimation, a first 

step toward run-time, system wide energy and thermal management. I would like 

to further extend the SoftWatt full-system power estimation framework co-

developed with my collaborators to support CMP and SMT architecture. I also 

plan to do research on reactive system for power savings by exploiting the 

behaviors of human-computer interactions. 

• Adaptable computer and system architecture for heterogeneous applications, 

OS and run-time environments 

The long-term research plan is to design and develop techniques to support 

systems that automatically analyze heterogeneous workloads, extra workload 

feature from applications, and dynamically respond to the changes in application 

demands by reconfiguring its components to match application needs. The 

systems can accommodate the needs of different application categories with a 

uniform design, instead of the current practice of optimizing the system for a 

particular application class. I intend to achieve this goal by applying an integrated 

hardware-software approach, including adaptable hardware microarchitecture, 

lightweight operating system and managed run-time supports, innovative 

middleware, intelligent compiler and programming environments. I believe that 

adaptability will enhance the technical efficiency of the system, its ease of use, 

and its commercial viability by accommodating a large set of commercial and 

high performance computing workloads. 
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Appendices 

Appendix A: Power Characterization of OS Routines 
(ε: Regression Model Fitting Error) 

 

Interrupts 
IPC Power Regression Model

P = k1×IPC+k0
OS 

Services 
Avg. 

Cycles Avg. Std. Dev. 
(%)

Avg. 
(W)

Std. Dev.
(%) k1 k0 ε

Comment 

utlb 13 0.92 0 28 0.1 23.6 6.2 0.17% TLB miss handler 
pfault 1,100 1.16 19 40 6.2 32.8 1.9 0.48% protection fault 
vfault 971 1.43 11 47 3.4 23.9 12.9 4.89% virtual memory fault 
COW_fault 2,574 1.65 8 54 2.6 32.1 1.1 0.19% copy-on-write fault 
demand_zero 1,939 1.54 16 44 4.5 27.6 1.5 0.40% zero fill page faults 
simscsi_intr 993 0.98 37 35 12.6 33.9 1.3 1.94% SCSI disk I/O interrupt 
if_etintr 241 1.38 51 42 15.0 29.4 1.1 1.57% Ethernet interrupt 
du_poll 481 0.95 26 35 9.3 35.7 0.8 5.04% input/output multiplexing 
clock 2,457 0.53 26 20 9.5 36.4 0.6 2.68% clock interrupts 

 
 

Process and Interprocess Control 
IPC Power Regression Model

P = k1×IPC+k0
OS 

Services 
Avg. 

Cycles Avg. Std. Dev. 
(%)

Avg. 
(W)

Std. Dev.
(%) k1 k0 ε

Comment 

exit 63,492 1.08 12 39 4.3 36.0 0.6 0.42% terminate a process  
fork 16,154 1.28 6 45 2.3 36.5 -1.7 0.99% create a new process 

getpid 226 1.51 23 48 7.7 33.6 -2.7 0.75% return the process ID of the 
calling process 

getuid 248 1.34 5 42 1.8 33.6 -3.1 0.17% return the real user ID of the 
calling process 

alarm 594 0.77 9 26 2.9 32.8 0.6 0.14% set a process alarm clock 
pipe 4,188 0.71 11 25 3.8 35.4 0.4 0.50% create an interprocess channel 

getgid 240 1.41 21 43 6.5 30.5 0.4 0.10% return the real group ID of the 
calling process 

execve 64,401 1.23 4 43 1.2 31.0 4.6 0.20% execute a file 
sigreturn 924 1.17 7 39 2.4 34.5 -1.4 0.56% returns from a signal handler 
getsockname 1,137 0.74 10 25 3.1 32.4 1.2 0.57% get socket name 

getdomainname 590 0.70 18 22 5.6 31.2 0.3 0.04% get name of current NIS 
domain 

setreuid 1,455 0.43 6 14 2.2 34.7 -0.9 0.08% set real and effective user ID's

sproc 51,775 1.24 4 41 0.1 15.7 21.1 0.12% create a new share group 
process 

prctl 813 0.48 12 15 3.8 31.8 -0.2 0.89% operations on a process 

ksigaction 624 1.17 7 38 2.3 32.8 0.1 0.70% used to implement all type 
signal routines 

sigprocmask 364 1.46 29 47 9.2 31.4 0.9 0.03% alter and return previous state 
of the blocked signals 

BSDsetpgrp 2,565 0.41 4 15 1.6 35.4 0.3 0.55% set process group ID 

sigsuspend 9,901 0.30 15 11 5.0 33.7 0.7 0.94% release blocked signals and 
wait for interrupt 

getcontext 679 1.38 31 43 9.6 30.6 0.2 0.19% get current user context 
setcontext 1,025 0.97 14 32 4.5 33.1 0.1 0.48% set current user context 
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File System 
IPC Power Regression Model

P = k ×1 IPC+k0
OS 

Services 
Avg. 

Cycles Avg. Std. Dev. 
(%)

Avg. 
(W)

Std. Dev.
(%) k1 k0 ε

Comment 

read 2,614 1.36 19 45 6.1 29.6 4.7 4.53% read file 
write 9,344 0.91 9 33 3.2 34.3 1.5 1.27% write file 

open 8,626 0.97 10 35 3.5 34.3 1.2 0.41% opens a file, serial port or 
command pipeline 

close 2,131 0.77 21 27 6.5 30.4 3.9 2.61% close an open channel 
unlink 8,904 1.00 7 36 2.0 30.0 5.5 0.11% remove a link to a file 
lseek 536 1.01 22 33 7.3 33.1 -0.5 2.49% move read/write file pointer 

access 6,547 1.11 18 39 5.9 33.3 1.7 0.57% determine accessibility of a 
file 

dup 1,074 0.74 18 25 5.7 32.4 1.2 0.56% duplicate an open file 
descriptor 

ioctl 5,230 0.51 3 18 1.0 32.5 1.1 0.52% perform a variety of control 
functions on devices 

fcntl 613 1.39 25 45 8.3 33.2 -0.9 0.95% file and descriptor control 

getdents 5391 1.00 35 34 11.3 32.4 1.8 0.58% 
read directory entries and put 
in a file system independent 
format 

xstat 5,990 1.22 14 43 4.8 35.0 0 0.85% obtain file attributes 

lxstat 3,517 1.52 3 53 1.0 34.9 -0.2 0.20% obtain symbolic link file 
attributes 

fxstat 1,293 0.85 18 28 5.4 30.5 2.0 2.01% 
obtain information about an 
open file known by the file 
descriptor  

 
 
 
 

Miscellaneous Services 
IPC Power Regression Model

P = k ×1 IPC+k0
OS 

Services 
Avg. 

Cycles Avg. Std. Dev. 
(%)

Avg. 
(W)

Std. Dev.
(%) k1 k0 ε

Comment 

brk 2,974 0.80 18 30 6.3 35.8 1.1 1.03% change data segment space 
allocation 

syssgi 2,377 1.06 3 37 1.0 34.4 0.3 0.29% system interface specific to 
SGI 

utssys 1,833 0.47 2 16 0.5 31.9 0.7 0.22% set/get system's hostname 
ulimit 364 1.08 52 34 15.9 30.4 1.0 0.02% get and set user limits 
mmap 7,311 0.74 12 26 4.2 34.5 0.6 1.08% map pages of memory 

1,703 0.99 3 35 1.1 35.3 0.3 0.50% set protection of memory 
mapping 

msync 23,107 0.61 3 23 0.1 36.8 0 0.36% synchronize memory with 
physical storage 

getrlimit 1,045 0.42 2 14 0.2 18.0 6.1 0.42% control maximum system 
resource consumption 

cacheflush 867 1.22 2 41 0.8 33.4 0.1 0.41% flush contents of instruction 
and/or data cache 

waitsys 3,338 0.63 65 22 1.9 32.7 1.4 0.55% underlying system call for all 
wait-like calls 

timein 1,185 0.65 15 23 5.0 34.3 0.4 2.89% set timer 
time 478 0.97 7 32 2.3 33.2 -0.6 0.85% count elapsed time 

mprotect 
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Appendix B:  Breakdown of Dynamic OS Branches based on Services 
 

db

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

jess

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

javac

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

jack

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

mtrt

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

compress

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

gcc

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

vortex

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

pmake

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

sendmail

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Buffer Copying
System calls
Exception handling
Miscellaneous

postgres.select

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

postgres.update

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous

postgres.join

TLB miss
Scheduling
I/O & file system
Idle
Synchronization
Paging
System calls
Exception handling
Miscellaneous
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Appendix C: Illustration of Weakly Biased Branches in OS 
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