
ADirpNB: A Cost-Effective Way to
Implement Full Map Directory-Based

Cache Coherence Protocols
Tao Li, Student Member, IEEE, and Lizy Kurian John, Senior Member, IEEE

AbstractÐDirectories have been used to maintain cache coherency in shared memory multiprocessors with private caches. The

traditional full map directory tracks the exact caching status for each shared memory block and is designed to be efficient and simple.

Unfortunately, the inherent directory size explosion makes it unsuitable for large-scale multiprocessors. In this paper, we propose a

new directory scheme, dubbed associative full map directory (ADirpNB) which reduces the directory storage requirement. The

proposed ADirpNB uses one directory entry to maintain the sharing information for a set of exclusively cached memory blocks in a

centralized linked list style. By implementing dynamic cache pointer allocation, reclamation, and replacement hints, ADirpNB can be

implemented as ªa full map directory with lower directory memory cost.º Our analysis indicates that, on a typical architectural paradigm,

ADirpNB reduces memory overhead of a traditional full map directory by up to 70-80 percent. In addition to the low memory overhead,

we show that the proposed scheme can be implemented with appropriate protocol modification and hardware addition. Simulation

studies indicate that ADirpNB can achieve a competitive performance with the DirpNB. Compared with limited directory schemes,

ADirpNB shows more stable and robust performance results on applications across a spectrum of memory sharing and access

patterns due to the elimination of directory overflows. We believe that ADirpNB can be employed as a design alternative of full map

directory for moderately large-scale and fine-grain shared memory multiprocessors.

Index TermsÐCache coherence, directory protocols, shared memory multiprocessors, computer architecture.

æ

1 INTRODUCTION

SHARED memory multiprocessors are becoming increas-
ingly popular and attractive platforms for running a

variety of applications, ranging from traditional parallel
engineering and numeric applications to recent commercial
database and Web workloads [4]. Most shared memory
multiprocessors use private or local caches to alleviate the
impact of interconnection network latency on the memory
accesses [30], [49], [29], [35], [28]. Introducing private caches
greatly improves system performance, however, cache
coherency must be maintained if memory blocks are
allowed to reside in different processors simultaneously
[14]. Several cache coherence schemes have been proposed
in the literature to solve this problem [46], [34], [51], [41].
Snoopy protocols [15], [26], [40], [3] maintain data consis-
tency by monitoring memory access traffic and taking
appropriate actions if a memory access violates consistency
in data cache. A snoopy protocol is usually implemented on
shared bus multiprocessors mounted with a limited number
of processors because its performance largely depends on
the broadcasting ability of the system interconnection.

Directory protocols, based on point-to-point commu-

nication, provide an attractive design alternative to

maintain cache coherency in scalable, high performance

multiprocessor systems [45]. In this case, a directory entry
is maintained for each memory block to keep track of the
processors which have cached copies and to decide which
action should be taken upon requests to that memory block.
Most medium and large scale shared memory multi-
processors of the current generation, such as SGI Origin
2000 [29], Sequent STiNG [35], Stanford FLASH [28], and
MIT Alewife [2], employ directory protocols to ensure cache
coherence of shared data. The full map directory [6], which
employs a presence bit vector to track the identities of
processors caching a given block, is designed to be efficient
and is the simplest of all directory-based cache coherence
protocols [17]. Unfortunately, the storage overhead neces-
sary to maintain a full map directory grows rapidly with the
number of processors, making it unscalable.

Many research efforts compromise communication mes-
sage efficiency for directory memory storage by keeping
limited or imprecise sharing information [1], [39], [33], [31]
or employ dynamic and complex directory structures
(doubly linked list, k-ary tree) with customized protocol
operations [23], [8], [38], [48], [51], [9], [20] to resolve this
directory scaling problem. Compared with a traditional full
map directory, these solutions either inflate coherence
message traffic or introduce more latency and complexity
in the protocol controller. For instance, in a limited
directory [1], when the number of processors sharing a
memory block exceeds that of the specified number of
pointers, a directory overflow will occur.

For a p processor full map system, the amount of
directory memory is m � p2 bits, where m is the total number
of blocks in shared memory modules. The memory

IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 9, SEPTEMBER 2001 921

. The authors are with the Laboratory for Computer Architecture,
Department of Electrical and Computer Engineering, University of Texas
at Austin, Austin, TX 78712. E-mail: {tli3, ljohn}@ece.utexas.edu.

Manuscript received 10 Mar. 2000; revised 10 Dec. 2000; accepted 11 Apr.
2001.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 111639.

0018-9340/01/$10.00 ß 2001 IEEE

requirement for a limited directory entry with fixed i
pointers is i � log2 p, where log2 p are the minimal bits to
uniquely present each processor's identity. Additionally,
each pointer is attached with a valid bit to indicate if it
contains a valid processor number, making a total of p �m �
�i� i � log2 p� bits dedicated to directory structure.

The linked list directory [23], [48] scales gracefully to
larger numbers of processors with minimal memory
overhead. The directory bits dedicated to storing coher-
ence information in the doubly linked list scheme is p �
�m� c� 2 � �m� c� � log2 p� since each memory and cache
pointer requires log2 p bits to point a processor, plus an
extra bit to point back to memory (c is the number of cache
blocks in a cache) [34]. Unfortunately, the inherently
complex, sequential, and distributed structure of the linked
list directory can cause several disadvantages [17].

A bit-vector directory can be classified as DiriX using
a nomenclature introduced in [1], where i is the number
of pointers in one directory entry and X is either B or NB,
depending on whether a broadcast is issued when a
cache pointer overflows. Full map directory and limited
directory, therefore, can be symbolized with DirpNB and
DiriNB�i < p�.

This paper proposes an associative full map directory
(ADirpNB) which contributes to reducing the overwhelm-
ing memory overhead while maintaining the optimal
performance of a full map directory. By examining multiple
memory block caching artifacts, we find that directory
memory overhead can benefit from associating a shared
directory entry with a set of exclusively cached memory
blocks, i.e., blocks that are potentially mapped into the same
cache line or the same cache set, depending on the cache
organization.

The proposed directory has the following features that
distinguish this work with previous studies: 1) It uses one
directory entry to track multiple memory blocks caching
status simultaneously by creating and maintaining multiple
centralized linked lists; 2) by exploiting caching exclusive-
ness of multiple memory blocks, ADirpNB captures
compact yet exact sharing information for each memory
block, thus makes an effective use of directory memory;
3) by implementing dynamic cache pointer allocation,
reclamation, and replacement hints, ADirpNB can achieve
competitive performance with a traditional full map
directory.

This paper examines the quantitative efficiency of the
proposed cache coherence protocol on a cache coherent
nonuniform memory access (CC-NUMA) machine from the
perspective of both memory overhead, coherence traffic,
and execution performance. Our performance evaluation is
based on SimOS [18], a complete system simulation plat-
form running multiprogramming applications SPLASH-2.
The analysis indicates that, on a typical architecture,
ADirpNB reduces the memory overhead of a traditional
full map directory by up to 70-80 percent. For some memory
and cache configurations, ADirpNB is even more memory
efficient than inexpensive limited directories, such as
Dir4NB and Dir8NB. By eliminating the cache pointer
overflows due to limited directory entries (or pointers) and
sequential invalidations by traversing the distributed linked

list through underlying interconnection network, the

proposed scheme potentially has lower coherence message

traffic and protocol controller latency.
Simulation studies indicate, on a 16-processors

CC-NUMA system, ADirpNB results in a competitive

performance with DirpNB. Compared with limited direc-

tory schemes, ADirpNB shows more stable and robust

performance results on applications across a spectrum of

memory sharing and access patterns due to the elimination

of directory overflows. We believe that ADirpNB can be

employed as a design alternative of full map directory for

moderately large-scale and fine-grain shared memory

multiprocessors.
The remainder of this paper is organized as follows: The

detailed rationale of our proposed associative full map

directory is described in Section 2. Section 3 examines the

memory reduction efficiency of the proposed technique.

Section 4 describes our experimental methodology and

presents results from the simulation studies. Related work

is discussed in Section 5. Finally, concluding remarks

appear in Section 6.

2 THE PROPOSED ASSOCIATIVE FULL MAP

DIRECTORY

This section introduces a memory-efficient arrangement of

directory bits, called the associative full map directory. Our

new approach is based on the observation that a traditional

full map directory allocates a static, redundant, yet sparsely

utilized bit vector for each memory block, ignoring the

potential exclusiveness of multiple memory blocks due to

the implication of cache mapping artifacts. By exploiting

caching exclusiveness, directory memory requirement can

benefit from associating a dynamic, shared directory entry

with multiple memory blocks. Our proposed associative full

map directory derives its name from the perspective that

each directory entry has the ability to keep track of and

maintain precise sharing information for multiple memory

blocks simultaneously. To clarify the proposed scheme

efficiently, we define a set of notations used in our

illustration (see Table 1).

922 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 9, SEPTEMBER 2001

TABLE 1
Notations Used to Explain the Proposed Scheme

2.1 Associative Full Map Directory for Direct
Mapped Cache

For simplicity, we first introduce the proposed scheme for

direct mapped caches and then extend to more complicated

set-associative caches. For a direct mapped cache, the

mapping artifact, which translates a memory block to a

cache line, is f : MBi ! CLj, where j � imod n. The

capacity ratio r determines how many memory blocks can

exclusively be mapped into a specific cache line. If, at any

point t in time, a memory block MBy is cached by Cx, we

note it as MBy 2 Cx�t�. Otherwise, we note it as

MBy 62 Cx�t�. Assuming 16 MB of memory per module, a

16 KB direct mapped cache, and a cache line size of 16 bytes,

we have n � 210, m � 220, and r � 1; 024. Note that �0 �
MB0;MB1�1;024;MB2�2;024; :::;MB1;023�1;024

� 	
is the com-

plete set of memory blocks that can potentially be mapped

into cache line CL0.
We mark �0 as the set of caching exclusive

memory blocks with respect to CL0. More formally,

if MBy 2 Cx�t� and MBy ÿ!f CLi, i.e., MBy 2 �i, then

8MBq 2 f�i ÿMByg, we have MBq 62 Cx�t�, where Cx
is the cache in which MBy is present. Given a case

that memory block MBy is cached by n processors at

point t in time, e.g., MBy 2 C1�t�; . . . ;MBy 2 Cn�t�,
MBy 62 Cn�1�t�; . . . ;MBy 62 Cp�t�, and MBy 2 �i, we have

8MBq 2 f�i ÿMByg, MBq 62 C1�t�; . . . ;MBq 62 Cn�t�. That

is, memory blocks in set f�i ÿMByg are at most cached by

Cn�1�t�; . . . ; Cp�t� (p-n) caches.

This rule implies that, in a multiprocessor system with p
direct mapped caches, the maximum number of cached
copies of memory blocks which belong to a given caching
exclusive set �i is p, the number of caches (processors) in
the system. Moreover, 8MBp, 8MBq 2 �i �p 6� q�, at any
point t in time, if MBp 2 Cx�t� and MBq 2 Cy�t�, we have
x 6� y. These features guarantee that memory blocks falling
into the same caching exclusive set actually do not compete
for the same cache pointer, even if there are only the fixed p
cache pointers for the entire set of memory blocks. Hence, it
is economical and safe to allocate total p cache pointers for
the r memory blocks in �i.

Fig. 1 illustrates the structure of associative full map
directory, including the mapping rationale from caching
exclusive sets to directory entries and coherence operations
manipulated on a directory entry. As shown in Fig. 1, each
directory entry is comprised of head pointer fields
H1; H2; . . . ; Hr and cache pointer fields C1; C2; . . . ; Cp. A
head pointer is allocated for each memory block within a
shared memory module and is used to indicate the first
item in the sharing list of that block. A cache pointer, which
serves as a forwarding linker, is used to store the next cache
identifier in that list. Either a head or a cache pointer
consumes log2 p� 1 bits since each of them requires log2 p
bits to point to a processor, plus an extra valid bit to indicate
if it contains a valid processor pointer. To clarify our
illustration, we mark each memory block with a specific
filling pattern and a specific shade pattern in Fig. 1.
Memory blocks marked with the same filling pattern fall

LI AND JOHN: ADirpNB: A COST-EFFECTIVE WAY TO IMPLEMENT FULL MAP DIRECTORY-BASED CACHE COHERENCE PROTOCOLS 923

Fig. 1. Structure of associative full map directory. (a) Mapping scheme between caching exclusive shared memory blocks and directory entries. (b)

Multiple cache linked lists in a directory entry. (c) Before cache 2 is inserted in the linked list. (d) After cache 2 is inserted in the linked list. (e)

Invalidation message transverse linked list one-by-one.

into the same caching exclusive set and, hence, are mapped
into the same directory entry. Memory blocks marked with
the same shade pattern are contiguous in addressing space
and are uniformly distributed among different directory
entries.

Following this rule, the m memory blocks in a shared
memory module can uniquely be mapped into n directory
entries, each of which has r head pointers and p cache
pointers. Recall m equals n� r in our definition. In each
directory entry, the p cache pointers are dynamically
allocated and reclaimed for the clustered r head pointers,
which represent a complete caching exclusive memory
block set. Indexing of the head pointer for a given memory
block, although not as explicit as that in the case of
traditional full map directory, is straightforward and needs
fairly simple hardware. As shown in Fig. 1a, the n bit index
field in physical memory address is used to find the
directory entry allocated for the corresponding caching
exclusive memory block set (step 1 in Fig. 1a). The r bit tag
field is then applied to select a specific head pointer
allocated for that memory block (step 2 in Fig. 1a). Fig. 1a
shows an example of how to find the head pointer for
memory block MBn�2.

Sharing a memory block with different processors causes
the directory controller to construct and maintain a
directory memory-based linked list with a head pointer
dedicated to that memory block. Since a shared directory
entry is used to serve a set of memory blocks, the sharing
behavior of these memory blocks may produce several
linked lists simultaneously. Fig. 1b shows a case in which a
memory block (indicated by H1) has copies in caches 1, p-1,
2, and another memory block (indicated by H2) has copies
in caches p and 3. Due to the caching exclusiveness of these
memory blocks, the p cache pointers in this directory entry
can be shared effectively and safely by the r memory blocks.

As mentioned before, the proposed associative full map
directory constructs and maintains the precise sharing
information for multiple memory blocks in a linked list
style. Fig. 2 highlights the directory memory manipulations
that should be taken upon a memory access. Fig. 2a shows a
procedure for inserting a new item into linked list when a
shared read miss is invoked. Fig. 2b shows a procedure
called invalidate(cache) to perform invalidation upon a write,
where cache refers to the processor requesting this write
operation. The traversal through the list can be performed
more effectively within directory memory instead of issuing
remote cache accesses through the slower interconnection
network.

Fig. 1c, Fig. 1d, and Fig. 1e illustrate the insertion and
invalidation operations in a graphic style. In Fig. 1c, the
given memory block (pointed by H1) is initially cached by
processors 1 and p-1. Therefore, the initial values of pointers
H1, C1, Cpÿ1 are 1, p-1, -1. Fig. 1d shows that, when
processor 2 accesses directory entry due to a shared read
miss, it is inserted as the new head of that linked list. Note
that: 1) H1 points to the most recent requestor, 2) C2 now
serves as forward pointer of H1, 3) the remainder of the
linked list is unchanged. When a write to that block occurs,
invalidation messages are sent to those caches present in the
linked list by walking through all the items until it meets an

invalid pointer, which indicates the end of that list (see
Fig. 1e). After invalidation, the linked list has only one item
that owns the exclusive copy of that memory block. The
invalidated cache pointers are reclaimed to the free list for
future use.

In associative full map directory, all cache pointers are
dynamically allocated and reclaimed. Exploiting the cach-
ing exclusiveness of memory blocks ensures the collision-
free characteristic of sharing the fixed p cache pointers
among r memory blocks. However, this ability depends on
keeping accurate and up-to-date sharing information and
does come at a cost. Since there are only p cache pointers, it
is possible to run out of pointers if the directory controller
does not reclaim a pointer after a memory block has been
replaced from the cache.

The proposed scheme, like other dynamic pointer
allocation protocols [17], makes use of replacement hints
to prevent this pointer exhaustion. Replacement hints
complicate design by requiring that the system handle an
additional type of message. However, it reduces the
number of invalidation and invalidation acknowledgments
by only sending coherence messages to the actual sharing
processors. Associative full map directory uses replacement
hints to locate the replaced item and remove it from the list.
Due to the sequential nature of a linked list, time spent on
searching a given item can be ��n�, where n is length of the

924 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 9, SEPTEMBER 2001

Fig. 2. Procedures used in the proposed scheme to implement (a) insert

and (b) invalidate operation.

inquired linked list. In our proposed scheme, this searching
cost can be reduced to ��1� since the entire linked list is
stored in one directory entry instead of being distributed
among different caches. In this paper, we introduce an
efficient replacement algorithm for our proposed scheme.

Fig. 3 shows an example of how the efficient replacement
algorithm works. Initially, the four cache items (i.e., caches
2, 5, 3, and 6) are scattered throughout the cache pointer
array and linked with each other, as shown in Fig. 3a. When
a replacement in cache 3 occurs, a replacement hint is sent
to the corresponding directory entry. The directory con-
troller uses this information to compare all cache pointers to
find the predecessor (cache 5) of the replaced cache item
(cache 3) in the linked list, as shown in Fig. 3b. Meanwhile,
the replacement hint is applied to index the successor
(cache 6) of the replaced cache item (see Fig. 3c). As a result,
updating the predecessor with the identity of its successor
actually performs removal of the replaced node from the
linked list, as shown in Fig. 3d. The unraveled cache pointer
should be reclaimed to the free list for future use.1

An implication of the above replacement algorithm is
that it requires that the replacement hints arrive before the
request from the new sharing processor. In a network that
allows message reordering, a request could bypass a
replacement hint, leaving the directory in a transient state
where more pointers are required than are available. In
such a case, the directory controller can send NAck and
retry signals to the sharing processor until it performs the
necessary directory entry reclamation and then allows the
new sharing processor to be added to the linked list.
Alternatively, the out of order requests could be buffered
and serialized through the directory. Our proposed scheme
uses NAck/retry solutions for simplicity since messages
will frequently arrive in order [44].

Our proposed directory can be symbolized by ADirpNB,
where A represents the associative directory because, in this
case, a directory entry is associated with and served for

multiple memory blocks. DirpNB is derived from the
perspective that this scheme uses dynamic cache pointer
allocation, reclamation, and replacement hints to emulate a
full map directory with optimal performance.

The directory memory manipulations described above
can be either hardwired in a custom coherence controller
(HWC) or implemented as a software-based protocol
handler executed by a dedicated protocol processor (PP)
[36]. The coherence protocol of ADirpNB can be tailored
from a traditional full map directory and augmented with
the specific directory operations described above. This
feature can facilitate protocol verification and thus shorten
hardware development time.

2.2 Associative Full Map Directory for Set
Associative Cache

The proposed scheme can be extended easily to fit set
associative caches. In a k-way set associative cache, a
memory block is mapped into a given cache set in a
modulo fashion, but may be hashed in any one of the k
cache lines within a set. Therefore, given p set associative
caches in shared memory multiprocessors, at any point t in
time, the copies of the memory blocks which can be
mapped into the same cache set are no more than kp,
where p is the number of caches and k is cache associativity.
Similarly, we can associate a shared directory entry with
those memory blocks that are mapped into the same cache
set. The associative full map directory for the set associative
cache has the structure illustrated in Fig. 4.

As shown in Fig. 4, each directory entry is comprised of
head pointers (H1; H2; . . . ; H�) and a cache pointer matrix
Cp�k. The symbol � is defined as the number of memory
blocks which can be potentially mapped into the same
cache set in a memory module. Since those memory blocks
are caching exclusive with respect to the same cache set
(instead of to the same cache line), the cache pointer array
used in the direct-mapped cache is replaced by a cache
pointer matrix to handle the situation that several memory
blocks may simultaneously be present in one processor's
cache.

LI AND JOHN: ADirpNB: A COST-EFFECTIVE WAY TO IMPLEMENT FULL MAP DIRECTORY-BASED CACHE COHERENCE PROTOCOLS 925

1. Fig. 3 shows a case where the replaced item is in the middle of a linked
list. The replacements of the head pointer and tail pointer, as two special
cases, can be handled in a similar way.

Fig. 3. The proposed efficient replacement algorithm. (a) Initial state of a linked list. (b) Replacement hint is compared with cache pointers in the

linked list to find predecessor. (c) Replacement hint is applied to cache pointer array to select the successor of replaced cache. (d) Removing the

replaced node from the linked list by updating its predecessor. (d) Final state of linked list after replacement.

Fig. 5 shows a snapshot of a directory entry at the
moment that a memory block (represented by H1) is cached
by processor 1, 3, and p and another memory block
(represented by H2) is cached by processor 1, 2, and p.
Note that associative hardware search for replacement in
set-associative caches needs to be scaled linearly with
associativity.

3 EFFICIENCY OF DIRECTORY MEMORY REDUCTION

3.1 Direct Mapped Cache

For simplicity, we first consider directory memory over-
head of ADirpNB with direct-mapped cache configura-
tions and then extend to a set-associative case. To
evaluate the protocol memory efficiency of the proposed
scheme and its sensitivity to various memory and cache
configurations, we introduce a notation Nx�:�, referred to
as memory overhead for a given directory scheme in a
memory module. Thus, we have: Nx�DirpNB� � mp and
Nx�ADirpNB� � m � �log2 p� 1� � �1� p=r�� �. Nx�ADirpNB�
can be expressed as log2 p� 1� � m� pn� �, which indicates
that one part is linear with the memory size m and another
part is linear in size with the total amount of cache (pn) in

the system. As described in Section 2, r is the capacity ratio
of a shared memory module and a cache, i.e., r � m=n.

The memory overhead reduction ratio (MORR) of
directory scheme DirA to directory scheme DirB can be
defined as MORR�DirA=DirB� � 1ÿNx�A�=Nx�B�. Thus,
we have

MORR�ADirpNB=DirpNB�
� 1ÿ log2 p� 1� � � m� np� �= mp� �:

Fig. 6 illustrates the impact of different memory cache
configurations on MORR. It is seen that, for a given p, an
increase in r improves MORR since a directory entry can be
shared with more memory blocks as r grows. With a given
memory cache mapping configuration, MORR increases as
p grows and starts to decrease for high values of p. Note that
when r � 32, the reduction of MORR becomes less sensitive
to the growth of system size because the high associativity
between multiple memory blocks and a directory entry can
efficiently hide memory expansion caused by the increase
of number of processors. For example, given r � 128,
MORR equals 0.84, 0.90, and 0.90 when p is equal to 64,
256, and 4,096. This optimistic result implies that the
proposed scheme can be applied to large systems.

Note that, for a given MORR �, we have r �
p��log2 p�1�

�1ÿ���pÿ�log2 p�1� �r > 0�. The value of r can be computed to
investigate the minimum required memory module to
cache capacity ratio in order to yield any advantage by
justifiably employing ADirpNB. From the standpoint of
implementation, r is power of 2. Fig. 7 examines the impacts
of � and p on r, the minimal required memory module to
cache capacity ratio given MORR � �. It is seen that, in
general, an increase in � naturally increases r for a given p.
Fortunately, � does not have a significant effect on r
provided that 0:1 < � < 0:9 and p goes from 64 to 4,096. If
we assume that typical cache sizes are in the range of 64KB
words to 256KB words and a typical memory module may
contain from 2MB words to 16MB words [34], then the
typical values of r will fall into a range of 8 to 256.

Fig. 7 shows that when r falls into this range, � can be as
high as 0.9. This observation implies that, with optimistic
memory module and cache configurations, ADirpNB can

926 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 9, SEPTEMBER 2001

Fig. 4. Directory structure of ADirpNB for set-associative caches.

Fig. 5. Cache linked lists in a shared directory entry.

Fig. 6. Impact of memory cache configurations on memory overhead

reduction ratio (MORR).

help to reduce the directory memory overhead by 90 percent
compared with DirpNB. Fig. 7 shows that, in general, r �
64 is sufficient to reduce 70-80 percent of directory memory
overhead.

Fig. 8 provides directory memory overhead comparison
of ADirpNB and three inexpensive limited directory
schemes, namely Dir4NB, Dir8NB, and Dir16NB. To
provide a fair comparison, we present only cases where
limited directory consumes less directory memory than a
full map scheme. ADirpNB is seen to be more economical
than even limited directories. The improvement does
deteriorate with higher p. For example, compared with
Dir4NB, MORR is 0.63, 0.5, and 0.25 when r � 64 and p
equals 32, 64, and 128. For a given p, increase of r will
improve MORR. For example, given p � 64, MORR in-
creases from 0.25 to 0.73 when r grows from 32 to 1,024.
Given p � 128 and r � 64, MORR are 0.25, 0.63, and 0.81 for
Dir4NB, Dir8NB, and Dir16NB.

3.2 Set Associative Cache

The directory memory overhead of ADirpNB with set-
associative cache configuration (in a shared memory
module) is m

� ���log2 pk� 1� � pk�log2 pk� 1�� since the head
pointers of a directory entry consumes ��log2 pk� 1� bits
and pk�log2 pk� 1� bits are used for storing the cache

pointer matrix. Also, a valid bit is attached with each
pointer to indicate whether it is pointing to a valid cache.

The MORR of ADirpNB for set-associative caches can be

expressed as 1ÿ ��log2 pk�1��pk�log2 pk�1�
�p . Recall � can be

expressed as kr, i.e., � � kr, where k is the set size and r is

the capacity ratio of memory module and cache. When

k � 1, � � r and the directory structure shown in Fig. 4

equates with the directory structure described in Fig. 1a. For

a k-way set associative cache, MORR can be expressed as

1ÿ �r�p���log2 p�1�
rp ÿ �r�p� log2 k

rp . Note that the first two terms are

identical to MORR in the case of direct-mapped caches. The

set associative caches, unfortunately, introduce a factor
�r�p� log2 k

rp , which decreases the memory overhead savings.

Typically, k ranges from 2 to 16. Fig. 9 illustrates the impact

of set associativity k and p on MORR. As shown in this

figure, the increase of k does decrease MORR for a given p

and r. Fortunately, given r � 64, the MORR drops less than

0.1 when k goes from 2 to 16.
The results in Fig. 9 indicate that the amount of state

required by ADirpNB depends on the amount of associa-
tivity in the system and MORR does not scale well on large
and highly associated (with small value in r and high value
in k) cache configurations. This implies that ADirpNB is not
quite suitable for designs in which large fully associative
caches (e.g., 4M, 32-way remote access cache) are used to
eliminate capacity and conflict misses. In such cases, a
COMA-based protocol [47] may provide more design trade-
off. Fortunately, even if the cache is only 2 or 4-way set-
associative, added structures, such as victim caches [25],
prefetch buffers, write-back buffers, and noninclusive
L1/L2 caches, can increase the effective associativity of
the system drastically. Despite the above limitation,
ADirpNB still provides some optimization on implement-
ing a full-map directory based coherence protocol for fine-
grain physical shared memory.

In the proposed scheme, each memory block is
mapped to a home node which keeps a directory entry
for memory blocks exclusively mapped to a cache line or
a cache set. One implication of the proposed scheme is
that directory hardware is dependent on the cache size

LI AND JOHN: ADirpNB: A COST-EFFECTIVE WAY TO IMPLEMENT FULL MAP DIRECTORY-BASED CACHE COHERENCE PROTOCOLS 927

Fig. 7. Impact of p and � on r.

Fig. 8. Directory memory overhead comparison of associative full map directory and limited directories Dir4NB, Dir8NB, and Dir16NB.

and its associativity, eliminating some of the flexibility in

allowing users to choose and upgrade cache sizes in their

systems. Nevertheless, the relatively low memory over-

head still makes it an attractive design alternative.

Additionally, since the number of entries in this directory

is small, it can be implemented in fast SRAM instead of

slower DRAM, which may help to reduce directory

information access time. This access time is in the critical

path that determines the latency seen by the processor for

many types of memory references [11].

4 PERFORMANCE EVALUATION

This section evaluates the performance of the proposed

directory scheme quantitatively. We compare ADirpNB

with a limited nonbroadcast, a limited broadcast, a coarse

vector, and a dynamic pointer directory running on a

CC-NUMA system with applications from the SPLASH-2

suite.

4.1 Experimental Methodology and Architectural
Assumptions

The experimental platform used to evaluate the above

directory protocols is SimOS [42], [19], a complete

simulation environment that models hardware compo-

nents with enough detail to boot and run a Silicon

Graphics IRIX5.3 OS. SimOS includes multiple processor

simulators (Embra, Mipsy, and MXS) that model the CPU at

different levels of detail and supports simulation for both

uniprocessor and multiprocessor architectures [18]. The

performance results of this study are generated by Mipsy,

which models a single-issue pipelined processor with a one-

cycle result latency and a one-cycle repeat rate [19].
We modify SimOS numa memory model by porting the

proposed scheme and other examined directory protocols.

The default cache coherence protocol for numa model is a

traditional full map directory. All simulated directory

schemes use invalidation-based protocol and replacement

hints. Our simulator can accurately model memory con-

troller and DRAM, directory controller and directory

928 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 9, SEPTEMBER 2001

Fig. 9. Impact of cache set associativity on MORR.

memory, network interface, and contention for these
resources. The memory system is sequentially consistent.

We configure SimOS to simulate a CC-NUMA multi-
processor composed of 16 nodes connected by a network
with fixed delay. Each node includes a 200 MHz compute
processor with 32 KB split L1 and 1MB L2 caches, a portion
of globally shared memory and directory, a directory
controller implemented with simulated directory protocol,
and a network interface. All caches are 2-way associative
LRU caches with write miss allocation. Main memory
consists of a total 256 MB DRAM with a 10-cycles access
time. A memory access is local to a node if the accessed
memory is allocated within the referring node. References
that are not local to a node are classified as remote.2 In our
simulation study, headers for data packets and all other
overhead packets (e.g., remote data request message,
invalidations, acknowledgments, replacement hint, and
NAck) are assumed to be 8 bytes long. The simulation
parameters, architectural assumptions, and no-contention
latencies of memory accesses and directory operations are
summarized in Table 2 and Table 3. These latencies are set
to be consistent with the relative processor, memory, and
network speeds of the simulated machine.

Cycle-by-cycle simulation of the described architecture is
performed. The instruction and data accesses of both
applications and OS are modeled [32]. Because directory
protocols vary the execution behaviors of applications by
influencing their communication characteristics, an impli-
cation in comparing the performances of different directory
protocols is to ensure that each simulation does the same
amount of work. For this reason, the entire execution of
each application is simulated to provide a fair comparison.

In this study, we use nine benchmarks, which cover a
spectrum of memory sharing and access patterns from the
SPLASH-2 suite [50], to evaluate the performance of
different directory protocols. The applications and the input
data/problem size are listed in Table 4. We use m4 macro
preprocessor and Argonne National Laboratories (ANL)
parmacs macros to automatically generate parallel code of

each studied SPLASH-2 benchmark. All the benchmarks are
compiled with MIPSpro CC compiler with optimization
level ÿO2.

4.2 Simulation Results

The effectiveness of the ADir16NB directory scheme and its
impact on the system performance are compared with those
of a fully mapped Dir16NB, a limited nonbroadcast
Dir4NB, a limited broadcast Dir4B, a coarse vector
Dir2CV2,3 and a dynamic pointer allocation directory DynP.
The DynP scheme is assumed to contain 1K pointer/link
store entries and is simulated based on Simoni's model [44].

Fig. 10 shows directory overflow characteristics (mea-
sured by memory system traffic) that the studied directory
organizations produce for each of the applications. Traffic is
calculated as described in Section 4.1 and is normalized to
the traffic produced by the Dir16NB. Fig. 10 illustrates that
Dir4NB yields the largest number of memory traffic
compared with other directory schemes. In the Dir4NB
scheme, the directory makes room for an additional
requestor by invalidating one of the caches already sharing
the block. This results in an increased number of misses and
an increase in the data and coherence traffic. For applica-
tions that are well-suited to limited-pointer schemes (such
as Water), the traffic is uniformly low for all directory entry
organizations. On applications with a large fraction of
mostly read data (such as Barnes and FMM), the explosion
in memory system traffic caused by the nonbroadcast
Dir4NB can be as high as 960 percent and 700 percent,
respectively.

The broadcast scheme Dir4B outperforms Dir4NB on all
of the studied applications. Nevertheless, visible increases
(2.15 times in Barnes, 2.06 times in FMM, and 1.8 times in
Raytrace) of memory traffic are observed on applications
(e.g., Barnes and FMM) where broadcasts are relatively
frequent. In the Dir4B, when a pointer overflow occurs, the
broadcast bit is set. A subsequent write to this block causes
invalidations to be broadcast to all caches. Some of these
invalidation messages go to processors that do not have a
copy of the block and, thus, the overall memory traffic is
increased. Coarse vector directory Dir2CV2 further reduces
memory traffic by only sending invalidations to a subset of
processors in the system. Like Dir4B, Dir2CV2 can also
inflate memory traffic when broadcast becomes frequent.
For example, in comparison with Dir16NB, a Dir2CV2 can
still yield 1.8 and 1.7 times traffic on benchmarks Barnes
and FMM while showing competitive performance on most
of the remaining applications. Additionally, we expect the
performance gap between broadcast schemes (limited
directory, coarse vector) and a full map directory to widen
with increased number of processors because broadcast
invalidations become increasingly more expensive on large
systems.

Compared with the optimal Dir16NB, the DynP scheme
produces competitive performance on benchmark
Choleksy, FFT, LU, and Water, in which a few cache blocks
are widely shared. In these cases, the use of on-the-fly
directory pointer allocation efficiently reduces directory

LI AND JOHN: ADirpNB: A COST-EFFECTIVE WAY TO IMPLEMENT FULL MAP DIRECTORY-BASED CACHE COHERENCE PROTOCOLS 929

TABLE 2
Simulation Parameters and Architectural Assumptions

2. The minimum local miss time is
2� BUS TIME� PILOCAL DC TIME�MEM TIME
and the minimum remote miss time is
2� BUS TIME� PIREMOTE DC TIME�NILOCAL DC TIME-
�NIREMOTE DC TIME�MEM TIME� 2�NET TIME.

3. Dir2CV2 has two 4-bit coarse vectors and each coarse vector bit points
to a region of two processors.

pointer overflows due to the small set of heavily shared
cache lines. For example, less than 5 percent of memory
traffic increases are observed in Choleksy, FFT, and Water.
DynP suffers a performance penalty when it runs out of
directory pointers, as it does on benchmark Barnes and
FMM. On the two benchmarks, the memory traffic caused
by extraneous directory overflows in DynP increases
0.9 times and 0.7 times compared with those on a full
map directory. The competitions on fixed resource, such as
pointer/link store entries, due to the different sharing
patterns of various applications make the performance of
DynP less robust.

By exploiting caching exclusiveness, Dir16NB yields
attractive performance (in terms of memory traffic) across a
spectrum of SPLASH-2 benchmarks. The traffic produced
by Dir16NB is close to the ideal traffic of the Dir16NB for
most applications. The extraneous memory traffic caused by

Dir16NB is due to the NAck and retry messages used to
maintain the exact sharing information in a centralized
linked list style.

Fig. 11 further shows the execution time of the studied
directory schemes normalized to that of the Dir16NB. The
performance results are found to be tightly correlated with
memory traffic patterns shown in Fig. 10. The poor
performance of the Dir4NB, which stems from the largest
directory overflows, is shown on most of the studied
benchmarks. For example, the Barnes and FMM with the
Dir4NB run 6.4 and 5.8 times slower than those with the
Dir16NB. By only increasing invalidation traffic but not the
miss ratio over that of the Dir16NB, Dir4B and Dir2CV2 run
1.2 and 1.18 times slower than Dir16NB on Barnes.

On benchmarks LU, Radix, Cholesky, and Water, more
than 95 percent of the invalidating writes produce only one
invalidation [44]. In such cases, there are a few invalidating

930 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 9, SEPTEMBER 2001

TABLE 3
Latencies of Different Memory and Directory Operations

TABLE 4
SPLASH-2 Benchmarks and Input Data/Problem Size

Fig. 10. Normalized memory traffic.

writes to the blocks which experience directory overflows.

Thus, Dir4B and Dir2CV2 exhibit approximate performance

of the Dir16NB. For benchmarks characterized by many

mostly read and small migratory memory blocks, like FMM

and Raytrace, the performance degradation of the limited

directory schemes is not small due to the fact that the

invalidating writes to the memory blocks of mostly read

nature result in large invalidations. Not surprisingly, the

directory overflow-free ADir16NB and Dir16NB are most

robust and outperform other schemes across a spectrum of

applications with various memory access patterns.
As described before, the ADir16NB requires replacement

hints, NAck, and retry messages to maintain the exact

memory block sharing information while exploiting caching

exclusiveness. The introduction of replacement hints,

NAck, and retry messages, however, could potentially

increase coherency traffic. To understand this implication,

we simulate a Dir16NB without the replacement hint, a

Dir16NB with the replacement hint and ADir16NB. The

performance results of the above three directory schemes

normalized to the traffic produced by a Dir16NB without

replacement hints are shown in Fig. 12. We break traffic
down into five major categories:

1. local data, which is the amount of data transmitted
between processor and local memory,

2. remote data, which is the traffic transferred between
nodes,

3. invalidations and acknowledgments, which are traffic
associated with cache coherence maintenance,

4. replacement hints, which are the amount of messages
used by the bookkeeping of accurate sharing status,
and

5. NAck and retry, which are overhead to avoid
running out of pointers during the transient state
in an associative full map directory.

With the aid of replacement hints in the finite cache run,
the directory knows about all cache replacements and is
able to send fewer invalidations for some invalidating
writes. Such benefit can be found in benchmarks Barnes and
FMM. For other benchmarks, the use of replacement hints
contributes to less than 10 percent of memory traffic
increase. The visible increases are found on benchmarks
Radix, Cholesky, and FFT, which show higher conflict miss
rates [50]. In all studied benchmarks, NAck and retry
messages slightly increase memory traffic. These indicate
that the impact of replacement hints, NAck, and retry
messages is not very detrimental on the total traffic.

5 RELATED WORK

The Stanford DASH [30] and HAL-S1 [49] both implement a
bit-vector protocol. Many hybrid directory schemes have
been proposed as design alternatives of a full map directory
[34]. One example is a pointer cache tagged directory [33]
that organizes cache pointers as a cache, each entry of which
is indexed by an address tag. The tag cache directory [39] is
a variation of the pointer cache idea that uses two levels of
caches in the directory. In both cases, when the directory
cache runs out of space, a free entry has to be created by
randomly choosing an active entry and invalidating the
selected block in the indicated processor. In [21], Ho et al.

LI AND JOHN: ADirpNB: A COST-EFFECTIVE WAY TO IMPLEMENT FULL MAP DIRECTORY-BASED CACHE COHERENCE PROTOCOLS 931

Fig. 11. Normalized execution time.

Fig. 12. Impact of replacement hint, NAck, and retry messages on traffic.

proposed a scheme called in-memory directories to elim-
inate the cost of directories by storing directory entries in
the same memory used for the data that they keep coherent.
ADirpNB is a hybrid between directory cache and linked
list directories and introduces a new efficient directory
configuration between these two. By exploiting cache
exclusiveness, ADirpNB eliminates the need to store a
tagged address for each directory entry and avoids
directory overflows in an elegant manner.

The coarse vector directory [16] incorporates a versatile
directory structure which can be dynamically interpreted,
depending on the data sharing degree of a given memory
block. Due to the introduction of coarseness in sharing
information, invalidation messages may have to be sent to
all processors identified by a unique group, regardless of
whether they have actually accessed or are caching the
block. The SGI Origin 2000 [29] implements a bit-vector/
coarse vector directory where the coarseness transitions
immediately from 1 to 8 above 128 processors.

The LimitLESS directory, which was implemented in the
MIT Alewife machine [7], combines both hardware and
software to implement a directory protocol. Overflow
pointers are handled by software and the major overhead
is the cost of the interrupts and software processing. For
example, on a 16-processor system, the latency of five
invalidations handled in hardware is 84 cycles, but a
request requiring six invalidations handled by software
intervention needs 707 cycles.

The dynamic pointer allocation scheme [43] is the default
directory organization for the Stanford FLASH multi-
processor. It uses a directory header and a static pool of
data structures, called the pointer/link store, to maintain
precise sharing information in a linked list style. In FLASH
implementation, all linked list manipulations are done in
hardware by a special purpose protocol processor, MAGIC.
Our proposed associative full map directory differs from
this scheme in that: 1) In ADirpNB, a linked list created for
a memory block is stored in one directory entry to facilitate
indexing and replacement; 2) in our proposed scheme, the
number of bits need to be stored for each pointer is log2 p,
which is smaller than that for a pointer/link store, which can
potentially point to a random portion of memory; 3) for the
purpose of good performance, their pointer/link store should
have a number of entries equal to 8 to 16 times the number
of cache lines [44]. In ADirpNB, however, the number of
entries for a directory is only as many as those for a cache.

The Scalable Coherent Interface (SCI) [22], also known as
IEEE Standard 1596-1992, is a typical linked list-based
directory protocol. The basic SCI uses doubly linked lists
that are distributed across the nodes. Various derivatives of
the SCI protocol are used in several machines, including the
Sequent NUMA-Q [35], HP Exemplar [5], and Data General
Aviion [13]. The key trade-off is storage requirement,
controller occupancy, number of network transactions,
and serialization latency. Several SCI extensions [24], [27]
have been proposed to help parallelized directory opera-
tions and reduce invalidation latency. The proposed
ADirpNB is generally simpler than doubly linked list based
schemes.

The Scalable Tree Protocol (STP) [38] proposed by
Nilsson and StenstroÈm constructs and maintains the caches
in the sharing set of a memory block in a tree structure. The
STP guarantees logarithmic write latency by always
maintaining an optimal tree structure and exploiting
parallelism in the algorithms. Unfortunately, this approach
sacrifices message efficiency and low read latency in order
to construct and maintain a balanced tree, making it
unsuitable for an application with a smaller degree of data
sharing. The SCI tree extensions [24] is another example of
tree-based protocols.

Agarwal et al. [1] first evaluated the performance of
directory schemes (Dir1NB, Dir0B, and Dir4NB) using
traces generated by the ATUM address tracing tool on a
four processor VAX 8350 running parallel applications, i.e.,
POPS, THOE, and PERO, on MACH. It is hard to compare
our results to theirs because of the differences in both
simulation methodology and benchmarks.

Chapin et al. [10] studied the memory system perfor-
mance of IRIX 5.3 on CC-NUMA multiprocessors and
concluded that OS data accesses do not follow the patterns
discovered in application reference streams that motivated
the design of limited directory schemes. However, they did
not show the impact of different directories on CC-NUMA
architecture quantitatively as we do.

More recently, Michael et al. [36] studied the perfor-
mance of a full map directory cache protocol with
alternative coherence controller architectures on a 4� 16
CC-NUMA system. They found that the occupancy of
coherence controllers can be a bottleneck for applications
with high communication requirements (i.e., ocean, radix,
and FFT). Dual protocol engines improve performance by
up to 18 percent (with HWC implementation) and
30 percent (with PP implementation) relative to the single
protocol engine. Our proposed scheme has simplified and
atomic directory operations and can be implemented with
either an HWC or a PP.

Dahlgren et al. [12] evaluate the combined performance
gains of several extensions to a directory-based invalidation
protocol, namely, adaptive sequential prefetching (P),
migratory sharing optimization (M), and competitive-
update (CW) mechanism. They found that the performance
of a directory protocol augmented by appropriate exten-
sions (e.g., P+CW, P+M) can eliminate a substantial part of
the memory access penalty without significantly increasing
the complexity of either the hardware design or the
software system. These optimizations can be used in
ADirpNB because they are orthogonal to our technique.

Heinrich et al. [17] evaluate the performance of four
scalable cache coherence protocols, including coarse vector,
dynamic pointer allocation, SCI, and COMA protocol, using
SimOS Mipsy and FlashLite simulators. They found that the
optimal protocol changes for different applications and can
change with processor count, even within the same applica-
tion. Wood et al. [51] explored the complexity of implement-
ing directory protocols by examining their mechanisms
ranging from directory primitive operations to network
interfaces. It is found that, with increasing network latencies,
the performance effect of directory operation overhead
decreases, which provides the opportunity to sequence

932 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 9, SEPTEMBER 2001

directory operations in a processor rather than a dedicated
directory controller.

Nanda et al. [37] studied the impact of applying parallel
mechanisms, such as multiple protocol engines, pipelined
protocol engines, and split request-response streams, on the
occupancy of the coherence controllers. Their experimental
results showed that each mechanism is highly effective at
reducing controller occupancy by as much as 66 percent
and improving execution time by as much as 51 percent on
both commercial and scientific benchmarks.

6 CONCLUSION

This paper proposes a new coherence scheme called
associative full map directory (ADirpNB), which behaves
like a traditional full map directory and gracefully
decreases the directory memory requirement. The associa-
tive full map directory is unique and distinguishes itself
from previous schemes by dynamically examining and
exploiting caching exclusiveness of multiple memory
blocks. Directory bits are dynamically allocated and
reclaimed for a set of caching exclusive memory blocks.
By implementing replacement hints, the proposed techni-
que can emulate a traditional full map directory with lower
memory overhead, fairly simple protocol modification, and
appropriate hardware addition. Our analysis shows that the
directory memory efficiency of the proposed scheme is
promising: On a typical architectural paradigm, ADirpNB
reduces the memory overhead of a traditional full map
directory by up to 70-80 percent. For some optimal memory
and cache configurations, ADirpNB is more memory-
efficient than even inexpensive limited directories such as
Dir4NB and Dir8NB.

We evaluate the performance of the proposed techni-
que by using a SimOS simulation platform that runs the
IRIX5.3 OS and SPLASH-2 applications. Our simulation
results show that, due to the elimination of directory
overflows, the speed up of ADirpNB can be competitive
with that of a DirpNB on the studied workloads. Thus, we
believe that ADirpNB can be employed as a design
alternative of full map directory for moderately large-scale
and fine-grain shared memory multiprocessors.

REFERENCES

[1] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz, ªAn
Evaluation of Directory Schemes for Cache Coherence,º Proc. 15th
Ann. Int'l Symp. Computer Architecture, pp. 280-289, 1988.

[2] A. Agarwal, R. Bianchini, D. Chaiken, K.L. Johnson, D. Kranz, J.
Kubiatowicz, B.-H. Lim, K. Mackenzie, and D. Yeung, ªThe MIT
Alewife Machine: Architecture and Performance,º Proc. 22nd Ann.
Int'l Symp. Computer Architecture, pp. 2-13, 1995.

[3] J.K. Archibald and J.-L. Baer, ªCache Coherence Protocols:
Evaluation Using a Multiprocessor Simulation Model,º ACM
Trans. Computer Systems, vol. 4, no. 4, pp. 273-298, Nov. 1986.

[4] L.A. Barroso, K. Gharachorloo, and E. Bugnion, ªMemory System
Characterization of Commercial Workloads,º Proc. 25th Ann. Int'l
Symp. Computer Architecture, pp. 3-14, 1998.

[5] T. Brewer and G. Astfalk, ªThe Evolution of the HP/Convex
Exemplar,º Proc. COMPCON Spring '97: 42nd IEEE CS Int'l Conf.,
pp. 81-86, 1997.

[6] L.M. Censier and P. Feautrier, ªA New Solution to Coherence
Problem in Multicache Systems,º IEEE Trans. Computers, vol. 27,
no. 12, pp. 1112-1118, Dec. 1978.

[7] D. Chaiken, J. Kubiatowicz, and A. Agarwal, ªLimitLESS
Directories: A Scalable Cache Coherence Scheme,º Proc. Fourth
Int'l Conf. Architectural Support for Programming Languages and
Operating Systems (ASPLOS-IV), pp. 224-234, 1991.

[8] D. Chaiken and A. Agarwal, ªSoftware Extended Coherent Shared
Memory: Performance and Cost,º Proc. 21st Ann. Int'l Symp.
Computer Architecture, pp. 314-324, 1994.

[9] Y. Chang and L.N. Bhuyan, ªAn Efficient Tree Cache Coherence
Protocol for Distributed Shared Memory Multiprocessors,º IEEE
Trans. Computers, vol. 48, no. 3, pp. 352-360, Mar. 1999.

[10] J. Chapin, S.A. Herrod, M. Rosenblum, and A. Gupta, ªMemory
System Performance of UNIX on CC-NUMA Multiprocessors,º
Proc. 1995 ACM SIGMETRICS Conf. Measurement and Modeling of
Computer Systems, pp. 1-13, 1995.

[11] D.E. Culler, J.P. Singh, and A. Gupta, Parallel Computer Architec-
ture: A Hardware/ Software Approach. Morgan Kaufmann, 1999.

[12] F. Dahlgren, M. Dubois, and P. StenstroÈm, ªCombined Perfor-
mance Gains of Simple Cache Protocol Extensions,º Proc. 21st
Ann. Int'l Symp. Computer Architecture, pp. 187-197, 1994.

[13] Data General Corp., ªAviion AV 20000 Server Technical Over-
view,ºData General White Paper, 1997.

[14] M. Dubois, C. Scheurich, and F.A. Briggs, ªSynchronization,
Coherence, and Event Ordering in Multiprocessors,º Computer,
vol. 21, no. 2, pp. 9-21, Feb. 1998.

[15] J.R. Goodman, ªUsing Cache Memory to Reduce Processor-
Memory Traffic,º Proc. 10th Ann. Int'l Symp. Computer Architecture,
pp. 124-131, 1983.

[16] A. Gupta, W.-D. Weber, and T. Mowry, ªReducing Memory and
Traffic Requirements for Scalable Directory-Based Cache Coher-
ence Scheme,º Proc. Int'l Conf. Parallel Processing, pp. 312-321,
1990.

[17] M. Heinrich, V. Soundararajan, J. Hennessy, and A. Gupta, ªA
Quantitative Analysis of the Performance and Scalability of
Distributed Shared Memory Cache Coherence Protocols,º IEEE
Trans. Computers, vol. 48, no. 2, pp. 205-217, Feb. 1999.

[18] S. Herrod, M. Rosenblum, E. Bugnion, S. Devine, R. Bosch, J.
Chapin, K. Govil, D. Teodosiu, E. Witchel, and B. Verghese, ªThe
SimOS User Guide,º http://simos.stanford.edu/userguide/
1998.

[19] S.A. Herrod, ªUsing Complete Machine Simulation to Understand
Computer System Behavior,º PhD thesis, Stanford Univ., Feb.
1998.

[20] M.D. Hill, J.R. Larus, S.K. Reinhardt, and D.A. Wood, ªCoopera-
tive Shared Memory: Software and Hardware for Scalable Multi-
processors,º Proc. Fifth Int'l Conf. Architectural Support for
Programming Languages and Operating Systems (ASPLOS-V),
pp. 262-273, 1992.

[21] C. Ho, H. Ziegler, and M. Dubois, ªIn Memory Directories:
Eliminating the Cost of Directories in CC-NUMAs,º Proc. 10th
Ann. ACM Symp. Parallel Algorithms and Architectures, pp. 222-230,
1998.

[22] IEEE Std 1596-1992: IEEE Standard for Scalable Coherent Interface,
New York: IEEE, Aug. 1993.

[23] D.V. James, A.T. Laundrie, S. Gjessing, and G.S. Sohi, ªDistrib-
uted-Directory Scheme: Scalable Coherent Interface,º Computer,
vol. 23, no. 6, pp. 74-77, June 1990.

[24] R.E. Johnson, ªExtending the Scalable Coherent Interface for
Large-Scale Shared-Memory Multiprocessors,º PhD thesis, Univ.
of Wisconsin-Madison, 1993.

[25] N.P. Jouppi, ªImproving Direct-Mapped Cache Performance by
the Addition of a Small Fully-Associative Cache and Prefetch
Buffers,º Proc. 17th Ann. Int'l Symp. Computer Architecture, pp. 364-
373, 1990.

[26] R.H. Katz, S.J. Eggers, D.A. Wood, C.L. Perkins, and R.G. Sheldon,
ªImplementing a Cache Consistency Protocol,º Proc. 12th Ann.
Int'l Symp. Computer Architecture, pp. 276-283, 1985.

[27] S. Kaxiras, ªIdentification and Optimization of Sharing Patterns
for Scalable Shared-Memory Multiprocessors,º PhD thesis, Univ.
of Wisconsin-Madison, 1998.

[28] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K.
Gharachorloo, J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A.
Gupta, M. Rosenblum, and J. Hennessy, ªThe Stanford FLASH
Multiprocessor,º Proc. 21st Ann. Int'l Symp. Computer Architecture,
pp. 302-313, 1994.

[29] J. Laudon and D. Lenoski, ªThe SGI Origin: A ccNUMA Highly
Scalable Server,º Proc. 24th Ann. Int'l Symp. Computer Architecture,
pp. 241-251, 1997.

LI AND JOHN: ADirpNB: A COST-EFFECTIVE WAY TO IMPLEMENT FULL MAP DIRECTORY-BASED CACHE COHERENCE PROTOCOLS 933

[30] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J.
Hennessy, M. Horowitz, and M.S. Lam, ªThe Stanford DASH
Multiprocessor,º Computer, vol. 25, no. 3, pp. 63-79, Mar. 1992.

[31] T. Li and B.W. Rong, ªA Versatile Directory Scheme (Dir2NB� L)
and Its Implementation on BY91-1 Multiprocessors System,º Proc.
IEEE Advances on Parallel and Distributed Computing, pp. 180-185,
1997.

[32] T. Li, L.K. John, N. Vijaykrishnan, A. Sivasubramaniam, A.
Murthy, and J. Sabarinathan, ªUsing Complete System Simulation
to Characterize SPECjvm98 Benchmarks,º Proc. Int'l Conf. Super-
computing, pp. 22-33, 2000.

[33] D.J. Lilja and P.-C. Yew, ªCombining Hardware and Software
Cache Coherence Strategies,º Proc. 1991 Int'l Conf. Supercomputing,
pp. 274-283, 1991.

[34] D.J. Lilja, ªCache Coherence in Large-Scale Shared-Memory
Multiprocessors: Issues and Comparisons,º ACM Computing
Surveys, vol. 25, no. 3, pp. 303-338, Sept. 1993.

[35] T.D. Lovett and R.M. Clapp, ªSTiNG: A CC-NUMA Computer
System for the Commercial Marketplace,º Proc. 23rd Ann. Int'l
Symp. Computer Architecture, pp. 308-317, 1996.

[36] M.M. Michael, A.K. Nanda, B.-H. Lim, and M.L. Scott, ªCoherence
Controller Architectures for SMP-Based CC-NUMA Multiproces-
sors,º Proc. 24th Ann. Int'l Symp. Computer Architecture, pp. 219-
228, 1997.

[37] A.K. Nanda, A.T. Nguyen, M.M. Michael, and D.J. Joseph, ªHigh-
Throughput Coherence Controllers,º Proc. Sixth Int'l Symp. High
Performance Computer Architecture, pp. 145-155, 2000.

[38] H. Nilsson and P. StenstroÈm, ªThe Scalable Tree ProtocolÐA
Cache Coherence Approach for Large-Scale Multiprocessors,º
Proc. IEEE Symp. Parallel and Distributed Processing, pp. 498-506,
1992.

[39] B.W. O'Krafka and A.R. Newton, ªAn Empirical Evaluation of
Two Memory-Efficient Directory Methods,º Proc. 17th Ann. Int'l
Symp. Computer Architecture, pp. 138-147, 1990.

[40] M.S. Papamarcos and J.H. Patel, ªA Low Overhead Coherence
Solution for Multiprocessors with Private Cache Memories,º Proc.
12th Ann. Int'l Symp. Computer Architecture, pp. 348-354, 1985.

[41] S.K. Reinhardt, J.R. Larus, and D.A. Wood, ªTempest and
Typhoon: User-Level Shared Memory,º Proc. 21st Ann. Int'l Symp.
Computer Architecture, pp. 325-336, 1994.

[42] M. Rosenblum, S.A. Herrod, E. Witchel, and A. Gupta, ªComplete
Computer System Simulation: The SimOS Approach,º IEEE
Parallel and Distributed Technology: Systems and Applications, vol. 3,
no. 4, pp. 34-43, Winter 1995.

[43] R. Simoni and M. Horowitz, ªDynamic Pointer Allocation for
Salable Cache Coherence Directories,º Proc. Int'l Symp. Shared
Memory Multiprocessing, pp. 72-81, 1991.

[44] R. Simoni, ªCache Coherence Directories for Scalable Multi-
processors,º PhD dissertation, Stanford Univ., Oct. 1992.

[45] V. Soundararajan, M. Heinrich, B. Verghese, K. Gharachorloo, A.
Gupta, and J. Hennessy, ªFlexible Use of Memory for Replication/
Migration in Cache-Coherent DSM Multiprocessors,º Proc. 25th
Ann. Int'l Symp. Computer Architecture, pp. 342-355, 1998.

[46] P. StenstroÈm, ªA Survey of Cache Coherence Schemes for
Multiprocessors,º Computer, vol. 23, no. 6, pp. 12-24, June 1990.

[47] P. StenstroÈm, T. Joe, and A. Gupta, ªPerformance Evaluation of
Cache-Coherent NUMA and COMA Architecture,º Proc. 19th Int'l
Symp. Computer Architecture, pp. 80-91, 1992.

[48] M. Thapar, B. Delagi, and M.J. Flynn, ªLinked List Cache
Coherence for Scalable Shared Memory Multiprocessors,º Proc.
Int'l Symp. Parallel Processing, pp. 34-43, 1993.

[49] W.-D. Weber, S. Gold, P. Helland, T. Shimizu, T. Wicki, and W.
Wilcke, ªThe Mercury Interconnect Architecture: A Cost-Effective
Infrastructure for High-Performance Servers,º Proc. 24th Ann. Int'l
Symp. Computer Architecture, pp. 98-107, 1997.

[50] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta, ªThe
SPLASH-2 Programs: Characterization and Methodological Con-
sideration,º Proc. 22nd Ann. Int'l Symp. Computer Architecture, pp.
24-36, 1995.

[51] D.A. Wood, S. Chandra, B. Falsafi, M.D. Hill, J.R. Larus, A.R.
Lebeck, J.C. Lewis, S.S. Mukherjee, S. Palacharla, and S.K.
Reinhardt, ªMechanisms for Cooperative Shared Memory,º Proc.
20th Ann. Int'l Symp. Computer Architecture, pp. 156-167, 1993.

Tao Li received the MS degree in computer
engineering from the Beijing Institute of Data
Processing Technology (BIDPT), People's Re-
public of China, in 1996 and the BSE degree in
computer science and engineering from North-
western Polytechnic University, People's Repub-
lic of China, in 1993, respectively. He has been a
PhD student in the Laboratory for Computer
Architecture, Department of Electrical and Com-
puter Engineering, University of Texas at Austin,

since September 1998. Before joining there, he was a researcher and an
engineer at the High Performance Computer Research Division of
BIDPT. From 1995 to 1998, he served as a system engineer and
designer of building of BY91-1 multiprocessors system, S2000 rugged
computer system, and S1000 scalable multiprocessor system at BIDPT.
Currently, he is investigating a system approach ranging from traditional
operating system virtual memory management to advanced speculative
microarchitectural techniques to improve performance of contemporary
computer systems on emerging workloads. His research interests
include microprocessor architecture, microarchitectural optimizations for
operating system and emerging workloads, memory system, and cache
designs for shared memory multiprocessor, high performance computer
system benchmarking, and workload characterization. He is a student
member of the IEEE.

Lizy Kurian John received the PhD degree in
computer engineering from the Pennsylvania
State University in 1993. She has been an
assistant professor in the Department of Elec-
trical and Computer Engineering at the Univer-
sity of Texas at Austin since September 1996.
She was on the faculty of the Computer Science
and Engineering Department at the University of
South Florida from 1993 to 1996. Her research
interests include high performance microproces-

sor architecture, memory architectures for high performance proces-
sors, computer performance evaluation and benchmarking, workload
characterization, and optimization of architectures for emerging work-
loads. She has published papers in the IEEE Transactions on
Computers, IEEE Transactions on VLSI, ACM/IEEE International
Symposium on Computer Architecture (ISCA), ACM International
Conference on Supercomputing (ICS), IEEE Micro Symposium (MI-
CRO), IEEE High Performance Computer Architecture Symposium
(HPCA), etc., and has a patent for a Field Programmable Memory Cell
Array chip. Her research is supported by the US National Science
Foundation (NSF), the State of Texas Advanced Technology program,
DELL Computer Corporation, Tivoli, IBM, AMD, Intel, and Microsoft
Corporations. She is the recipient of an NSF CAREER award and a
Junior Faculty Enhancement Award from Oak Ridge Associated
Universities. She is a senior member of the IEEE and a member of
the IEEE Computer Society and ACM and ACM SIGARCH. She is also a
member of Eta Kappa Nu, Tau Beta Pi, and Phi Kappa Phi.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

934 IEEE TRANSACTIONS ON COMPUTERS, VOL. 50, NO. 9, SEPTEMBER 2001

