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Abstract—To achieve high efficiency and prevent destructive interference among multiple divergent workloads, the last-level
cache of Chip Multiprocessors has to be carefully managed. Previously proposed cache management schemes suffer from
inefficient cache capacity utilization, by either focusing on improving the absolute number of cache misses or by allocating cache
capacity without taking into consideration the applications’ memory sharing characteristics. Reduction of the overall number
of misses does not always correlate with higher performance as Memory-level Parallelism can hide the latency penalty of
a significant number of misses in out-of-order execution. In this work we describe a quasi-partitioning scheme for last-level
caches that combines the memory-level parallelism, cache friendliness and interference sensitivity of competing applications, to
efficiently manage the shared cache capacity. The proposed scheme improves both system throughput and execution fairness —
outperforming previous schemes that are oblivious to applications’ memory behavior.

Index Terms—Cache resource management, Last-level caches, Memory-level Parallelism, Chip Multiprocessors.

1 INTRODUCTION

S the number of integrated cores in Chip-

Multiprocessor (CMP) designs continues to in-
crease, the typically shared last-level cache memory
gradually becomes a critical performance bottleneck.
In the past, researchers have shown that traditional,
unmanaged, shared cache schemes introduce inter-
thread destructive interference, leading to perfor-
mance degradation and lack of ability to enforce
fairness and/or Quality of Service (QoS).

To address the problem of contention in shared
last-level caches, three main research directions have
been proposed in the past: a) Cache Capacity Par-
titioning schemes [4][13][31][8][19], b) Cache-blocks
Dead-time management schemes [20][8], and c) Cache
Pseudo-partitioning schemes [31]. The Cache Partitioning
schemes identify an ideal size of capacity that each
concurrently executing thread should be assigned to
maximize system throughput and/or execution fair-
ness. Although such schemes can effectively eliminate
threads’ destructive interference by utilizing isolated
partitions, they result in inefficient capacity utiliza-
tion [8][31]. A big portion of the last-level cache
capacity can be underutilized for a significant amount
of time. Cache-blocks Dead-time management schemes
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focus on identifying the dead (not any more useful)
cache lines and force their early eviction from the
cache. As a result, a big percentage of useful lines are
retained in the cache, enabling better utilization of its
capacity. Unfortunately, since there is no control over
the number of cache lines each thread can maintain
in the cache, destructive interference among the con-
currently executing threads is still present. To counter
this problem, Cache Pseudo-partitioning schemes [31]
have been proposed that provide a combination of
both previous schemes; applications are allowed to
share part of the available capacity and compete for
it, while at the same time, they can exclusively occupy
a portion of capacity to protect useful lines from being
evicted by other applications in the cache.

An effective cache management scheme should
provide both good capacity utilization and interference
isolation. While both Dead-time and Pseudo-partitioning
schemes are able to identify and prevent “thrashing”’
applications from polluting the cache, they are obliv-
ious to the other two important memory behaviors
that we identify in this paper, namely, Cache Friendly
and Cache Fitting behaviors. As our evaluation shows,
a scheme that is aware of application’s Cache Friendli-
ness (meaning its memory behavior in this work) can
provide better capacity utilization while significantly
reducing cache interference.

Previously proposed Dead-time and pseudo-
partitioning cache management schemes allocate
capacity to applications based on heuristics that aim

1. Applications with small temporal locality and high cache space
demand rate that tend to occupy a big portion of the cache, evicting
useful cache lines that belong to other applications.

0018-9340/13/$31.00 © 2013 TEEE



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON COMPUTERS

at the raw reduction of the absolute number of cache
misses. In out-of-order execution, each workloads
can have a different number of overlapping cache
misses (Memory-level Parallelism - MLP) which
could drastically change workloads’ performance
sensitivity to the absolute number of misses. As
it has been shown for isolated cache partitioning
schemes [18], targeting the reduction of absolute
number of misses introduces significant inefficiencies.
A significant percentage of cache space can potentially
be allocated to applications with high cache demand
rate that cannot actually extract any benefit from
the dedicated capacity; while low MLP, miss-latency
sensitive workloads with small cache space demand
rates can suffocate in small cache partitions. As the
number of cores per die increases, such wasteful
cache management schemes will severely affect
performance and scaling efficiency of future high
performance, multicore designs.

In this work we describe a Memory-level parallelism
and Cache-Friendliness aware Quasi-partitioning scheme
(MCFQ). Our Quasi-partitioning proposal can success-
fully combine the benefits of previous schemes as it
mimics the operation of cache capacity partitioning
schemes without actually enforcing the use of iso-
lated partitions; while at the same time, maintaining
all the benefits of pseudo-partitioned schemes. Our
scheme manages the cache quasi-partitions by taking
applications” MLP and memory use behavior into
consideration. To minimize the effects of interference
among resource competing applications, we utilize a
set of heuristics to assign priorities over the use of the
available shared cache capacity.

Overall this work makes the following contribu-
tions in the area of last-level caches cache manage-
ment:

o We advocate the use of the Memory-level Paral-
lelism (MLP) information to predict applications’
performance sensitivity to last-level cache misses.
The MLP information allow us to tune our heuris-
tics by using the final, overall system throughput
instead of focusing on raw reductions of cache
misses.

o Propose a cache management scheme that al-
locates cache quasi-partitions based on applica-
tions” “Cache-friendliness”, meaning their mem-
ory behavior when they coexist with other ap-
plications in last-level cache. Friendly, Fitting and
Thrashing applications are treated with the appro-
priate priorities in our scheme to achieve the best
possible use of the last-level cache capacity.

o Propose the use of two new heuristics: “Inter-
ference Sensitivity” factor and “Partitions Scal-
ing” scheme to drive our cache management
scheme. The first helps us identify how sensitive
is an application to cache contention and how
much we expect it to hurt the behavior of other
co-executing applications with respect to cache

use. The second helps us to readjust the quasi-
partition sizes in order to bring the average,
dynamically achieved cache space occupancy of
each application closer to the best estimated one.

2 MOTIVATION
2.1 Memory-level Parallelism (MLP)

In out-of-order execution, Memory-level Parallelism
(MLP) of applications can drastically change work-
load’s performance sensitivity to the absolute number
of last-level cache misses. An application running on
an out-of-order core with a high level of MLP usually
clusters cache miss events together, overlapping their
miss latency. As a result, the effective performance
penalty of each last-level cache miss can vary accord-
ing to the application’s concurrency factor (that is MLP)
and in general is expected to be smaller than the main
memory access latency of a typical miss.

The two extreme cases of MLP are pointer chasing
code and vector code. In a typical pointer chasing
code, most of the load instructions are dependent
on previous loads and therefore, on average, only
one memory access can take place at the same time
outside the core. As a result, pointer chasing code has
a concurrency factor of 1 and reducing the number of
last-level cache misses can directly be translated into
performance gains.

On the other hand, we typically characterize a piece
of code as vector code when a large percentage of the
memory accesses are independent of each other and
can be executed in parallel and out of order. Vector
code has a large concurrency factor that is determined
by the maximum number of outstanding memory
accesses (or core misses) that the microarchitecture
can support. In vector code, many independent load
misses can be overlapped with each other, forming
clusters of misses. A raw reduction of these overlap-
ping misses may not lead to noticeable performance
gains. Each miss cluster introduces a constant latency
to reach main-memory and one have to avoid the
whole cluster to improve performance. As a result,
any cache managing scheme that simply aims at the
reduction of the absolute number of cache misses,
introduces inefficiencies for overall throughput, and
cannot provide any QoS guarantees.

2.2 Cache Friendliness Aware Cache Allocation

Prior work has demonstrated that the capacity of
the last-level cache has to be carefully managed in
order to prevent destructive interference among mul-
tiple divergent workloads [4][31][8][19]. When mul-
tiple threads compete for a shared cache, cache ca-
pacity should be allocated to the threads that can
more efficiently use such resources [6][24][19]. The
commonly used LRU replacement policy is unable
to identify which applications can effectively use the
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Fig. 1. Categories of applications’ miss-rate sensitivity to cache space dedicated to them.

extra capacity and which ones act as cache hogs,
polluting the cache. Cache capacity partitioning schemes
address this problem by allocating specific, isolated,
cache partitions to each application, eliminating the
potential destructive interference.

Despite the popularity of cache capacity partition-
ing schemes, previous work [31][8] has shown that
they tend to be wasteful as a percentage of the dedi-
cated cache capacity is usually underutilized. To solve
this inefficiency, Cache pseudo-partitioning schemes [31]
break the cache partitions” isolation assumption and
allow applications to share cache capacity and there-
fore compete with other applications for it. Such
approaches provide to the cache management scheme
the flexibility to “steal” cache capacity from cache-
underutilizing applications and temporarily allocate
it to the applications that can benefit the most from
the extra capacity. As expected, such flexibility is
not coming for free. By breaking the partitions’ iso-
lation assumption, destructive interference between
the cache capacity competing cores is introduced. It
is therefore necessary to allocate resources based on
both the performance sensitivity of each application to
cache space and how well applications compete with
each other in order to claim cache capacity.

Fig. 1 illustrates the miss rates of different classes of
applications on a 4MB last-level cache, as we increase
the cache capacity allocated to them. Based on our
analysis on a typical CMP system, we can classify
applications into three basic categories:

1) Cache Fitting Applications: These applications
have a small working set size that can easily fit
in a typically sized cache, but at the same time,
they are also very sensitive to this allocated cache
capacity. As Fig. 1(a) shows, an allocation which
is slightly smaller than their ideal size (close to
600KB for dealll) can significantly increase their
miss rate, forcing them to behave as cache thrash-
ing applications. It is therefore important for a
cache management scheme to allocate enough
space to these applications to fit their working
sets. If such cache space allocation cannot be
guaranteed then it is preferable to reduce the
cache resources allocated to them in order to
restrict their thrashing behavior from affecting
the rest applications.

2) Cache Friendly Applications: These applications
can efficiently share the cache capacity using an
LRU-like replacement policy and can in general
benefitted by additional cache space (Fig. 1(b)).
In contrast to cache fitting applications, their
cache space requirements usually exceed a typ-
ically sized cache, especially when they have to
share it with other applications. Under a Pseudo-
partitioning scheme, these applications should
have higher priority than fitting applications as
they have the potential to benefit from any addi-
tional capacity allocated to them through capacity
“stealing” .

3) Cache Thrashing/Streaming Applications: These
applications feature poor cache locality due to
either their big working set size that cannot fit
in a typically sized shared cache, or their stream-
ing behavior that produces a lot of memory
traffic with small to almost no reuse. Under a
LRU replacement policy, they pollute the shared
cache without actually getting any benefit from
the occupied cache capacity. When they execute
with cache friendly or cache fitting applications,
they should be allocated the minimum possible
cache space to avoid cache pollution. We refer to
both types as Cache Thrashing as both generate a
thrashing behavior on the cache.

Overall, we can extract three basic rules that a cache
capacity management scheme has to follow: a) the
cache resources have to be allocated proportionally to
the applications” ability to benefit from cache space,
b) Thrashing applications have to be identified and
restricted to a small fraction of the cache to signifi-
cantly reduce destructive interference, and c) Fitting
applications are sensitive to the cache space allocated
to them and the management scheme has to provide
some space allocation guarantees to avoid overall
system degradation.

Using the above observations, we propose a quasi-
partitioning scheme that allocates cache capacity
based on the Cache Friendliness of each application. For
the case of Thrashing applications, Bimodal Insertion
Policy (BIP) [20] has shown that by inserting the new
coming cache blocks of such applications in the LRU
position, cache thrashing can be significantly reduced.
Our scheme allocates the lowest priority to Cache
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Thrashing applications, restricting them to the lower 1-
2 cache ways of the LRU stack. We treat Cache Fitting
applications with an intermediate priority level and
provide some minimum space allocation guarantees,
to allow them to get enough capacity to execute with
low miss rate. Cache Friendly applications receive the
highest priority. For the case of Cache Friendly and
Cache Fitting applications, when multiple concurrently
executing applications belong to the same category,
the scheme allocates priorities within each category
based on their Interference Sensitivity Factor, i.e. how
friendly each application is to the co-running applica-
tions when it has to share the cache (Section 4.2.2).

3 MCFQ PROFILERS

The proposed MCFQ scheme allocates cache capacity
based on: a) applications” performance sensitivity to
misses (MLP-aware) and b) applications’ cache mem-
ory behavior (Fitting, Friendly and Thrashing). Both
of them are attributes of the applications running on
the system that are dynamically changing as applica-
tions execute and interact with each other. To monitor
the system and collect all the necessary information
for our scheme, we need a set of on-line, low-overhead
hardware profilers. This section provides a description
of the proposed profilers that our scheme requires.

3.1

Our on-line cache demands monitoring scheme is
based on the principles introduced by Mattson’s stack
distance algorithm (MSA) [16]. Our implementation is
based on previously proposed hardware-based MSA
profilers for last-level cache misses [19][32][10].

MSA is based on the inclusion property of the
commonly used Least Recently Used (LRU) cache re-
placement policy. Specifically, during any sequence of
memory accesses, the content of an N sized cache is
a subset of the content of any cache larger than N. To
create a profile for a K-way set associative cache, K+1
counters are needed, named Counter; to Countery 1.
Every time there is an access to the monitored cache
we increment only the counter that corresponds to
the LRU stack distance where the access took place.
Counters from Counter; to Countery correspond to
the Most Recently Used (MRU) up to the LRU position
in the stack distance, respectively. If an access touches
an address in a cache block that was in the i-th
position of the LRU stack distance, we increment the
Counter; counter. Finally, if the access ends up being
a miss, we increment the Counterg 1.

The Hit Counter of Fig. 2 demonstrates such a MSA
profile for bzip2 of SPEC CPU2006 suite [28] running
on an 8-way associative cache. The application in the
example shows a good temporal reuse of stored data
in the cache as the MRU positions have a significant
percentage of the hits over the LRU one. The graph
of Fig. 2 can change according to each application’s
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Fig. 2. Example of misses and bandwidth MSA his-
tograms of bzip2 benchmark [28].

spatial and temporal locality. If we want to estimate
the cache miss rate for a cache with half the size of the
original one in the system, the “inclusion property”
of LRU allows us to assume the measured hits in
the Counters to Counters to be misses. Such an
MSA-based profiling allows us to monitor each cores
cache capacity requirements during the execution of
an application and based on which we can find the
points of cache allocation that can benefit the miss
ratio the most.

To monitor each core individually, the scheme im-
plements an individual profiler for every core which
assumes that the whole cache is dedicated to it. Doing
so, we maintain a set of shadow cache tags per core
that allows us to monitor what would be each core’s
cache use if the core had exclusive access to the cache.
Based on the positions of the hits in the profiler,
we can create a cache miss rate curve that correlates
cache misses with allocated cache capacity. The overall
profilers” overhead is discussed in Section 3.4.

3.2 Profiler for Concurrency Factor (MLP)

To estimate the average Concurrency factor (MLP) of
each application running on a single core, we profiled
the Miss Status Holding Registers (MSHR). The MSHR
typically exists in an out-of-order core between the L1
and L2 cache [14]. The purpose of the MSHR is to keep
track of all the outstanding L1 misses being serviced
by the lower levels of memory hierarchy (i.e. L2 and
main memory). Therefore, the number of entries in the
MSHR represents the number of the concurrent, long-
latency, outstanding memory requests that were sent
from the core to the last-level cache or memory, which
is equal to the MLP of the application running on the
core. To estimate the average MLP, we modified the
MSHR by adding two counters: one to hold the ag-
gregated number of outstanding misses in the MSHR,
and a second one to hold the overall number of times
an L1 miss was added in it. Both counters are updated
every time an entry is added (new outstanding miss)
or removed (miss served) from the MSHR.
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3.3

To categorize the cache behavior of each applica-
tion (Fig. 1), we utilize the MSA-based cache miss
profiles that the profilers create for each individ-
ual core from 3.1. The profiler looks at the esti-
mated Misses Per Kilo Instructions (MPKI) when
only one cache-way is allocated to an application
(MPK I in.capacity), and the MPKI when the whole
cache capacity (M PK I ax.capacity) 18 given to it. To
characterize an application as Thrashing the follow-
ing has to be true:

Identify Applications’ Cache Friendliness

MPKImaz.capacity
MPKImiwcapacity

> Thresholdrhrashing (1)

In the same way, if at any capacity point of the
cache miss profile (number of cache-ways dedicated
to the core), the MPKI number is estimated smaller
than a Thresholdriiing the application is character-
ized as Fitting. The remaining applications are set to
Friendly.

Both thresholds (Thresholdrhrashing and
Thresholdpiiing) are system parameters which
can be tuned to the specific system and the level of
aggressiveness that is required by the partitioning
scheme. For the analysis presented in this chapter, we
performed a sensitivity analysis for both parameters
to find the best values.

Our analysis, on SPEC CPU2006 benchmarks,
showed that a threshold of T'hresholdrhrashing = 0.85
provides the best trade-off for characterizing appli-
cations as thrashing/streaming. Bigger values allows
applications with thrashing behavior to be character-
ized as friendly; polluting the cache. On the other
hand, smaller values than this threshold treated po-
tentially friendly applications that could be benefitted
from additional cache capacity (even marginally) as
thrashing applications, restricting them in one or two
LRU ways in the cache. Finally the best value for the
Thresholdpiting value was found to be 0.005 of the
MPK I yin capacity- This value was enough to guaran-
tee that when an application achieves less than 0.5%
of its initial cache miss rate at any cache allocation
dedicated to it, we can treat it as a fitting application.

3.4 Profilers Overhead

The profilers overhead is basically dominated by the
overhead of implementing the Applications Cache De-
mands Profilers (Section 3.1) on the hardware. To keep
this overhead low, we used partial hashed tags, to avoid
keeping the full cache tag of each cache access [11],
and set sampling [12] to only sample a small random
number of cache lines. In our implementation we use
11 bit partial tags combined with 1-in-32 set sampling.
This selection of parameters added up only 1.3% error
in the estimation of performance when compared to
the accuracy we got using a full tag implementation

and sample all cache set in the cache, over the whole
SPEC CPU2006 [28] suite. The profiler counters’ size
for keeping the number of misses per cache way,
was set to 32 bits to avoid overflows during the
monitoring interval. In addition we implemented the
circuit to keep the LRU stack distance of the MSA
per monitored cache set as a single linked list with
head and tail pointers. Overall, the implementation
overhead is estimated to be 117 kbits per profiler,
which is approximately 1.1% of the size of an 4MB
last-level cache design; assuming 4 overall profilers
for a 4-core CMP. The estimation of each core’s MLP
added only 2 counters per core as the MSHR struc-
tures necessary for our profilers in included in a
typical out of order processor design. Using 32bit
counters, the MLP estimation added only 64bits per
core in the system. Finally, the circuit of identifying
each applications memory behavior come for free as it
reuses the applications cache demands profiler circuit
described above. The remaining of calculations can
take place in software when the routine to collect the
profiling data and evaluate the next partition sizes is
triggered. Such routine can be implemented as part
of the OS scheduler in the kernel, that will collect the
data through the use of memory mapped IO registers.

4 CACHE-FRIENDLINESS AWARE QUASI-
PARTITIONING SCHEME

Our scheme uses the MCFQ profilers (section 3) to
gather all the information necessary for driving our
cache management scheme. Our cache-friendliness
aware scheme consists of two logical parts: a) the
MLP-aware Cache capacity allocation (Section 4.1), and
b) the MCFQ pseudo-partitioning policies (Section 4.2).

The first part estimates the ideal partition sizes that
should be allocated to each core, assuming there will
be no overlap of cache partitions. To do so, it uses as
its optimization target the expected improvement of
the final, observable performance of each application
running on a core when a specific cache space is
allocated to it. The methodology of estimating the per-
formance sensitivity of applications to cache capacity
is analyzed in the same Section 4.2.

The second part (Section 4.2) analyzes the cache
pseudo-partitioning policies and two heuristics that
we propose to introduce in the cache management
scheme to make sure that each core will be able
to maintain an average cache capacity occupancy as
close to the ideal partition sizes estimated in the first
part as possible, while it dynamically shares the cache
capacity with the rest of the cores.

Fig. 3 illustrates the proposed last-level cache
Quasi-partitioning scheme along with a simplified ex-
ample. The dark shaded modules in Fig. 3(a), indicate
our additions/modifications over a typical CMP sys-
tem. Each core has a dedicated Cache Profiling circuit
(Section 3.1) and we augmented the L2 design to add
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our Cache-way Occupancy profiler (Section 4.2.3). These
two profilers along with the MLP statistics that we
get from the MSHR (Section 3.2) are the inputs to the
Cache Capacity Management module that controls the
last-level cache.

The overall proposed dynamic scheme is based on
the notion of epochs. During an epoch, our profilers
constantly monitor the behavior of each core. When
an epoch ends, the profiled data of each core is passed
to the Marginal-Utility algorithm (Section 4.1) to find
the ideal cache capacity assignment based on MLP. In
parallel, our profilers identify the memory behavior
that each application fits (Friendly, Fitting, Thrashing)
and based on their category and their cache capacity
assignment S;, we decide the insertion points2 (IF),
for each core (Section 4.2). If there are more than
one applications in the same category, the Inferference
Sensitivity Factor (Section 4.2.2) is used to assign the
priority among them. Finally, the Partition Scaling
Heuristic (Section 4.2.3) is used to scale the estimated
partitions sizes to ensure that our scheme can on
average meet the ideal partition sizes estimated by
the Marginal-Utility algorithm. The whole process is
repeated at the end of the next epoch. In our evalua-
tion section we used epochs of 10M instructions.

Fig. 3(b) illustrates a simplified example on a 4-
core CMP with a 16-way last-level cache. Accord-
ing to it, we have identified 1 Friendly, 2 Fitting
and 1 Thrashing application. In the first step, we
estimate the partition sizes S; (Srriendaiy=8, Srit.1=4,
Srit.2=3 and Sthreshing=1) and we order them giving
the highest priority to the Friendly ones and low-
est to Thrashing. The two Fitting get their initial
priority based on their S; sizes. Overall, the high-
est priority application inserts new cache line at the
MRU position and the rest of /Ps are based on the
partition sizes from higher to lower priority. Since
we have 2 Fitting applications, in Step 2 we esti-
mate their Sensitivity Factors and order them from
higher to lower. Assuming that Fiitting 2 got a higher
value, we swap the two applications with the proper

2. Points in cache LRU order that new cache lines are inserted in
cache, more information in Section 4.2

change of their IPs. Finally, in Step 3, we use the
Partitions Scaling Scheme to scale their partitions
based on their average cache-way occupancies mea-
sured on last-level cache during the last epoch. The
figure shows the finally selected IPs per application
assuming we have actually scaled the partition sizes
based on profiled data.

41

An efficient last-level cache managing scheme must
take into consideration the effects of multiple out-
standing misses to performance and execution fair-
ness. To model this sensitivity, we separate the execu-
tion time spent for each application into two parts: the
time spent inside the core (T'perfect_Cache), asSsuming a
prefect cache, and the time consumed outside the core
serving cache misses (Tisses). From the two, only
Thrrisses would depend upon the interference due to
the resource sharing of the last-level cache capacity
with other concurrently executing applications.

To model application’s performance in terms of
Cycles-per-Instruction (CPI) we can use Equation 2 [25].
Assuming a single L2 acting as the last-level cache, the
CPlIprisses of Equation 2 can be broken down as the
CPI when we hit in L2 (CPIi; 12) and the CPI due
to L2 misses that are directed to the main memory
(CPI]Wemory)‘

MLP-aware Cache Capacity Allocation

CPI = CPIPeTfect_Cache + CPlpfisses (2)
= CPIPer'fect_Cache + CPIHit_LQ + CPI]Memory (3)

To express the effects of concurrency among cache
misses outside a core, we can extend Equation 3 to
include MLP, that is, the average number of useful
outstanding requests to the memory [2]. To do so, we
can define the CPIyemory term as:

N N
= Miss_Penalty;
CPI = = X 4
Memory ; ( Memory_reference @)

Memory_references )

Instructions;
MissLatency

®)

= Miss_Ratememory X

Concurrency Factor
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As only the CPlIyremory term of Equation 3 is af-
fected by last-level misses, Equation 5 is in essence
a direct way to estimate the impact of last-level cache
misses to final performance. The Misspgtency can be
approximated to be equal to the average effective
latency of an L2 miss to the main memory and there-
fore the only information missing from the equation
is the Miss_Ratememory and the Concurrency Factor
(MLP) of an application. To estimate both terms,
we utilize the online profiling mechanisms described
in Section 3. The Miss_Ratememory for every appli-
cation and every possible cache capacity allocation
can be calculated from the Cache Demands Profilers
(Section 3.1) and the average Concurrency Factor can
be measured using the Profiler for Concurrency Factor
(Section 3.2).

Using all the previous information to understand
and estimate the applications sensitivity to cache al-
location and last-level cache misses, we propose a
new Cache Capacity Allocation Algorithm to find the
ideal cache partition sizes that should be assigned
to each core. The algorithm is based on the concept
of Marginal Utility [3]. This concept originates from
economic theory, and has been used in cases where a
given amount of resources (in our case cache capacity)
provides a certain amount of Utility (reduced misses
or CPI). The amount of Utility (benefit) relative to the
used resource is defined as the Marginal Utility. Specif-
ically, the Marginal Utility for n additional elements
when ¢ of them have already been used is defined as:

_ Utility Rate(c+ n) — Utility Rate(c)
n

Marg. Utility(n) (6)

Our cache miss profilers (Section 3.1) provide a
direct way to compute the Marginal Utility for a given
workload across a range of possible cache allocations.
We follow an iterative approach, where at any point
we can compare the Marginal Utility of all possible
allocations of unused capacity. Of these possible al-
locations, the maximum Marginal Utility represents
the best use of an increment in assigned capacity.
The greedy algorithm implementation used in the
paper is shown in Algorithm 1 and follows the one
initially introduced by Stone et al. [29]. The algorithm
estimates the cache capacity partitions assuming that
each partition is isolated from each other. These par-
titions will be our ideal partition sizes that we want
to enforce on our shared cache

To take MLP into consideration, the marginal utility
is estimated based on the cumulative histograms of
the last-level misses and the application’s concurrency
factor. The Utility function of the algorithm represents
the effective additional benefit that each cache way
can contribute to the final performance of an appli-
cation. Our Utility Rate function, is estimated as the
fraction of the cumulative hits at each cache-way over
the average concurrency factor of the core for a given
instruction window. That is:

Algorithm 1 Marginal-utility allocation algorithm.

num_ways_free = 16
best_reduction = 0
/* Repeat until all ways have been allocated to a core */
while (num_ways_free) {
for core = 0 to num_of _cores {
/* Repeat for the remaining un-allocated ways */
for assign_num = 1 to num_ways_free {
/* Marginal utility from eq. 6 */
local_reduction = (MSA_hits(bank_assigned|core]
“+assign_num)—
MSA_hits(bank_assigned|corel))/assign_num;
/* keep the best reduction so far with best
Marginal utility*/
if (local_reduction > best_reduction) {
best_reduction = local_reduction;
save(core, assign_num);

retrieve(best_core,best_assign_num);
num_ways_free — = best_assign_num;

bank_assigned|best_core]+ = best_assign_num;

MSA_hits(cache way)

Utility_Rate(cache way) =
Y- ( v) Average_Concurrency_factor

@)

The CPIperfect_cache of Equation 3 can be assumed
to remain unchanged for the same application over
a small, steady execution phase (we found that a
10M instruction window is a good assumption for
the system under study in this paper). Therefore,
by modifying the cache allocation of each core, we
affect the other two terms in the equation, that is
CPlpi_r2 and CPIyemory. Following this approach,
our algorithm can effectively allocate capacity to the
cores that affect the final observable CPI the most.

4.2 MCFQ Pseudo-partitioning Policies

Using the terminology from [31], a cache management
scheme requires three basic pieces of information: a)
an Insertion Policy; the location (cache-way) where
to insert a new cache line in the LRU stack per
application/core, named I F;, b) a Promotion policy; the
way LRU stack is modified on a cache hit, and c) a
Replacement Policy: the exit point of cache-lines in case
of line eviction.

A partitioning scheme like UCP [19] features one,
non-overlapping, isolated partition per core that oc-
cupies a number of specific cache-ways, equal to its
partition size. The insertion point of each core is set to
the top of each partition; the promotion policy is set to
move the cache line that got a hit to the MRU position
of its partition; and the replacement policy is LRU
among the ways that belong to the same partition.

On the other hand, a pseudo-partitioning scheme
like PIPP [31] does not have isolated partitions. All
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the cache ways are accessible by all the cores, sim-
ulating a typical LRU stack. To allow such pseudo-
partitions, PIPP sets the insertion point (I F;) of each
core to be at each core’s partition size, [P, = S;;
the promotion policy was set to promote cache hit
lines by one position based on a P, probability
(otherwise stays unchanged); and the replacement
policy was set to LRU evicting from the LRU position
of the shared stack. Based on this scheme, there is
a shared/unallocated portion of capacity from the
largest I P; to the MRU. This space can be utilized by
applications” hot cache lines through line promotions;
thus helping the cores with good cache locality.

As our evaluation shows, previous pseudo-partition
schemes feature a significant level of performance
drop when executing high resource demanding ap-
plications due to their Insertion/Promotion polices.
Most of the applications can not efficiently utilize the
capacity available in the cache in the MRU positions,
featuring diminishing returns when allocating this
capacity to specific threads, like isolated partitions do.
Moreover, the interference that was introduced in the
LRU positions found to be quite significant, especially
for the Cache Fitting applications.

4.2.1 MCFQ Policies

To overcome these problems, MCFQ estimates the
IPs on the basis of a) MLP and ideal partition sizes
estimated in Section 4.1, b) applications’ cache friend-
liness, and c) Interference sensitivity factors (Sec-
tion 4.2.2).

The promotion policy is modified such that a cache
line moves to its IP on a hit, i.e, a cache line is never
allowed to move beyond its IP. Assuming an LRU
replacement policy, the selected values for IPs can
be translated into priorities P;, with higher value for
1P meaning higher priority. Our analysis showed that
(Section 2.2), we should allocate the higher priority to
Cache Friendly applications followed by Cache Fitting
ones.

We restrict Cache Thrashing applications at the low-
est one cache way of the LRU stack, similar to the
TADIP [8] and PIPP [31] schemes. Thus the applica-
tions with higher priority have less competition in
terms of promotion and demotion of cache lines in
the LRU stack.

Our Partition Scaling heuristic (Section 4.2.3) scales
the estimated partition sizes and IPs to ensure that
Cache Fitting applications have enough capacity to
avoid thrashing the cache. Between applications of
the same category, we allocate priorities based on
applications’ interference sensitivity factor described
in 4.2.2. Such approach significantly reduces the cache
interference for low priority cache-ways. Since we
share lower priority partitions, our Partition Scaling
scheme makes sure that each application has enough
capacity to maintain, on average, a number of cache

ways close to the ideal estimated partition size. There-
fore, for our case ) | S; >#cache_ways. By doing so, we
can allow capacity stealing for high priority cores while
maintaining a low threshold of capacity allocation to
the lower-priority partitions.

4.2.2 |Interference Sensitivity Factor Heuristic

While MCFQ has a clear priority scheme between
applications with different cache friendliness behav-
ior, we need a way to allocate individual priorities
when more than one applications belong to the same
category. We base our ordering on how sensitive is
an application to cache contention and how much we
expect it to hurt the cache behavior of other appli-
cations. To calculate the sensitivity of an application,
we used the stack-distance profiles from our cache
miss profilers (Section 3.1) to estimate the following
Interference Sensitivity Factor:

#Hways—1

> i hits(i) (8)

=0

Inter ference Sensitivity Factor =

Hits(i) in the above equation is the actual number
of hits from our profiler on the i-th position in the
stack (MRU position ¢ = 0, LRU ¢ = #ways — 1).
The more hits an application has at cache-ways closer
to LRU, the more sensitive is the application to the
cache contention. Under high contention, the effect
of interference in misses is, on average, equivalent to
allocating less cache space as a core’s lines get evicted
with a rate higher than its own demand rate. Hits
closer to LRU positions have higher probability to
become misses when the cache is shared. Moreover,
in a quasi-partitioning scheme with different insertion
points per core, the more hits an application has in
LRU positions, the more useful cache lines will be
evicted by other threads that insert lines at lower
insertion points. Therefore, an application with high
Interference Sensitivity Factor is more likely to see a
degradation in performance.

4.2.3 Partition Scaling Heuristic

Since we selectively share a portion of the cache
with multiple threads, we need to know what rel-
ative percentage of its allocated cache ways (based
on its priority) an application actually maintains in
the cache. If this number is significantly smaller than
its ideal partition size, the application will feature
a significant performance degradation. To do so, we
added a monitoring scheme that utilizes the cache’s
core inclusivity bits to measure the average number
of cache-ways per core.

Overall, we added two counters for every core
the system supports, the Occupancy_Counter; and
Cache_Accesses_Counter;. Whenever there is a cache
hit or insertion of a new cache-line triggered by Core;
we update the Occupancy_Counter; with the number



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
IEEE TRANSACTIONS ON COMPUTERS

of cache ways the Core; occupies in the set, and
increase Cache_Accesses_Counter; by one. Having
this information, we can estimate the average number
of ways a core occupies.

If the average occupancy is less than 80% of the
ideal size estimated by the Marginal-Algorithm, we
increase the IP; proportionally in the next epoch
to bring the occupancy close to the ideal. This is
especially important for Cache Fitting applications to
avoid them thrashing the cache. If the correction is
not feasible, we set the application to insert in the
MRU position. Notice that, since we use the average
occupancy numbers, the cores can still “steal” useful
capacity in a subset of cache-sets.

4.3 MCFQ Inefficiencies

MCEQ policies do not implement a cache line promo-
tion mechanism to allow cache lines from low priority
applications to use cache space allocated to higher
priority ones. As a result, cache space allocated to high
priority applications can be temporarily underutilized
in some systems. As we stated before, our scheme tar-
gets high performance, server space systems that are
typically running applications with big working sets
(e.g. databases, commercial/scientific data processing)
that tend to use the majority of the cache space allo-
cated to them and therefore the cache space is almost
never underutilized. In our evaluation section we
analyzed the benefits of promoting cache lines beyond
their IP’s (Figure 6) and we found such a scheme to
provide marginal benefits for the system under study
and for a relatively small epoch size (10M in our
study). If the proposed scheme is implemented in a
less resource demanding environment like personal
computers, mobile platforms, etc. a cache line pro-
motion heuristic could potentially benefit the overall
cache utilization of the system.

5 EVALUATION

To evaluate our scheme, we simulated a 4 and 8
cores CMP system using Simics functional model [27]
extended with Gems tool set [17]. Gems provides
an out-of-order processor model along with a de-
tailed memory subsystem that includes an intercon-
nection network and a memory controller. The de-
fault memory controller was augmented to simulate
a First-Ready, First-Come-First-Served (FR_FCEFS) [23]
controller configured to drive a DDR3-1066 DRAM
memory. Finally, we implemented a size N stride
prefetcher that supports 8 streams per core. Table 1
summarizes the full-system simulation parameters.
We used multi-programmed workloads using mixes
of SPEC CPU2006 suite [28] that are shown in Table 2
for 4 and 8-cores CMP. The workload mixes combine
benchmarks with different cache behaviors (Friendly,
Fitting and Thrashing) and levels of MLP. We used
representative 100M instructions Simpoint phases.

Name Description Benchmark Set
All_Low 4 Low gee, perlbench, h264, astar
All_Medium 4 Medium dealll, xalancbmk, gobmk, hmmer
All_High 4 High bzip2, soplex, bwaves, mcf

Low_Medium_1 | 1 Low - 3 Medium namd, dealll, sjeng, calculix

Low_Medium_2 | 2 Low - 2 Medium sphinx3, GemsFDTD, tonto, povray

Low_Medium_3 | 3 Low - 1 Medium | sphinx3, h264ref, cactusADM, libquantum

Medium_High_1
Medium_High_2
Medium_High_3

1 Medium - 3 High
2 Medium - 2 High
3 Medium - 1 High

gobmk, soplex, mcf, leslied3d

tonto, calculix, bwaves, omnetpp

dealll, gobmk, hmmer, mcf

Low_Hgh_1 1 Low - 3 High h264ref, bzip2, omnetpp, soplex
Low_High_2 2 Low - 2 High astar, gec, leslie3d, bzip2
Low_High_3 3 Low - 1 High h264ref, astar, perlbench, omnetpp

(a) Experiments to evaluate MLP-assignment description.
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(b) IPC and MPKI comparisons over UCP scheme.

Fig. 4. Evaluation of MLP-aware assignment of cache
capacity assuming isolated cache partitioning scheme
like UCP [19] on a 4core CMP system.

The MCFQ behavior is compared against three
previously proposed schemes: a) a cache partitioning
scheme based on isolated partitions: Utility-
based Cache Partitioning (UCP) [19], b) a cache
pseudo-partitioning scheme: Promotion Insertion
Pseudo-Partitioning (PIPP) [31], and c¢) a dynamic
cache line insertion policy: Thread-aware Dynamic
Insertion  Policy (TADIP) [8]. We implemented
all these schemes by modifying Gems’ memory
model (Ruby). For each experiment we present the
throughput, Throughput =% IPC;, and fairness,
estimated as the harmonic mean of weighted
speedup, Fairness = N/ > (IPC; qione/IPC;), where
IPC; qione is the IPC of the i-th application when it
was executed stand-alone with exclusive ownership
of all the resources [15].

5.1 MLP-aware Capacity Assignment

To evaluate the effectiveness of the MLP-aware cache
capacity assignment algorithm (Section 4.1), we ex-
tended UCP isolated partitioning scheme using our
Utility_Rate function and compared it against the
original UCP. Fig. 4 provides a comparison of our
approach against original UCP for 12 specific exper-
iments (Table in Fig. 4(a)) executed on a 4-core CMP
system. To use a representative set of benchmarks, we
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TABLE 1
Full-system detailed simulation parameters.

10

Memory Subsystem

L1 D + I Cache L2 Cache Main Memory Memory Controller Prefetcher
1l6-way, 4 MB, 12 .
2-way, 64 KB, 3 cydles bank 8 GB, 16 GB/s, 2 Controllers, 2 Ranks H/W stride n, 8

cycles access time,
64B block size

access, 64B block
size

DDR3-1066-6-6-6

per Controller, 32
Read/Write Entries

streams / core,
prefetching in L2

Reorder Buffer

Core Characteristics Clock Frequency Pipeline /Scheduler Branch Predictor
30 stages / .
4 GHz 4-wide fetch / 128/64 Entries  Direct YAGS /
decode indirect 256 entries
TABLE 2

Multi-programed benchmark sets from SPEC CPU2006 [28] suite for 4 and 8 cores.

4 Cores ‘

8 Cores

Benchmark Group Benchmarks

Benchmark Group Benchmarks

Mix 1 - All Friendly
Mix 2 - All Fitting

soplex, bzip2, h264ref, perlbench

xalancbmk, wrf, tonto, gamess

soplex, omnetpp, perlbench, calculix,

Mix 1- All Friendly gromacs, dealll, calculix, gromacs

Mix 3 - All Thrashing
Mix 4 - 3 Fr.:1 Fit.

leslie3d, sjeng, bwaves, zeusmp

omnetpp, bzip2, calculix, astar

xalancbmk, gobmk, wrf, gobmk,

Mix 2 - All Fitting hmmer, astar, gamess, hmmer

Mix 5 - 2 Fr.:2 Fit.
Mix 6 - 1 Fr.:3 Fit.

bzip2, mcf, gobmk, gamess

omnetpp, xalancbmk, gamess, wrf

omnetpp, bzip2, gobmk, gromacs,

Mix3 - 4 Fr:2 Fit:2 Thr. povray, h264ref, Ibm, libquantum

Mix 7 - 3 Fr./Fit.:1 Thr.
Mix 8 - 2 Fr./Fit.:2 Thr.

mcf, perlbench, hmmer, bwaves

xalancbmk, dealll, milc, zeusmp

mcf, gobmk, gromacs, hmmer, gamess,

Mix 4 - 2 Fr.:4 Fit..2 Thr. tonto, libquantum, milc

Mix 9 - 2 Fr.:1 Fit.:1 Thr.
Mix 10 - 1 Fr.:2 Fit.:1 Thr.

mcf, bzip2, astar, leslie3d

mcf, gobmk, gamess, libquantum

omnetpp, soplex, gobmk, gamess,

Mix 5 - 2 Fr.:2 Fit.:4 Thr. . . .
libquantum, milc, zeusmp, milc

segmented SPEC CPU2006 suite in three categories
based on their measured MLP. Low MLP threshold
was set to 2; Medium selected between 2 and 4; and
higher than MLP of 4 was characterized as High.
Overall, we included cases for which a) the MLP of all
benchmarks is approximately the same (first 3 experi-
ments), b) there is a small difference in MLP between
the benchmarks in the set (next 6 experiments), and c)
there is a combination of benchmarks with significant
big variation of MLP (last 3 experiments).

Fig. 4 includes the IPC improvement and the last-
level cache’s Misses Per Thousand Instructions (MPKI)
degradation over simple UCP. Since our target was
to improve the final performance and not to reduce
the absolute number of misses, in all cases we actu-
ally happened to increase the number of misses but,
in parallel, improved performance. The selection of
benchmarks targeted the extreme cases to show the
potentials of the scheme. In normal use, the MPKI is
not expected to be so drastically increased. Despite
that, the IPC is shown to improve up to 15% with
an average (Geometric Mean) improvement close to
8% for our experiments. The benchmarks of the first
three cases have comparable MLP and therefore, each
application’s cache misses are equally important for
performance. As a result, the performance of our
scheme is very close to UCP’s.

In the cases of combining benchmarks with a small

difference in MLP, that is Low-Medium-1 to Medium-
High-3, there is a significant gain in IPC close to 8%
for Low-Medium and 6% for Medium-High categories.
For these cases, the results show that the IPC is
improved more when a small number of benchmarks
with high MLP executes in the set; cases Low-Medium-
3 and Medium-High-3. That is a strong proof that, the
high MLP benchmark in the case of simple UCP, was
granted a bigger partition than what it should have
been assigned. The main reason of such assignment
is the use of the absolute number of misses to es-
timate its Marginal Utility. Such bigger partition is
not actually contributing to performance, restricting
the rest of the lower MLP benchmarks by occupying
useful cache capacity. Our approach can recognize the
impact of each application to final performance and
effectively assign more capacity to the lower MLP
benchmarks.

Finally, the biggest performance improvements are
found in the last three categories where there is a
significant difference between the MLP. The best IPC
improvement took place for the case of 3 High MLP
benchmarks. Our scheme can effectively recognize the
importance of the lower MLP benchmark, h264ref in
that case, and avoid allocating most of cache capacity
to the higher MLP benchmarks that generate the
majority of cache misses. The last two experiments
followed with slightly smaller improvements that are
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Fig. 5. Comparison of throughput improvements of MCFQ, TADIP, PIPP and UCP schemes for 4 and 8 cores

over simple LRU scheme.

proportional to the number of benchmarks with a big
difference in MLP.

5.2 Performance evaluation on a 4 & 8 cores CMP

Fig. 5(a) includes the throughput improvements
TADIP, PIPP, UCP and MCFQ schemes achieved over
simple LRU with no advanced cache management
scheme, for the benchmark sets listed in Table 2 in the
case of a 4-core system. To get the baseline behavior
for each category, the first three mixes include applica-
tions from the same cache-behavior category; the next
three mixes contain combinations of only Friendly
and Fitting and finally the last four of them target
interesting combinations of all behaviors.

Overall, MCFQ demonstrates significant improve-
ments over the next best scheme of every category.
The only cases where MCFQ is comparable to other
schemes are Mix 3, Mix 5 and Mix 10. In Mixz 3, all
benchmarks are Thrashing and therefore all schemes
except UCP have chosen to insert new lines in MRU
position, so performance is almost the same with
LRU. UCP had evenly allocated the cache to all four
applications but since the benchmarks are 7T'hrashing
the cache, it could not get any real benefit out of
it. On the other hand, Mix 5 and 10, include 2
Fitting benchmarks and all schemes expect UCP, did
worse than MCFQ because they could not guarantee
a minimum number of ways for the Fitting cores
to avoid them entering the T'hrashing behavior. UCP
and MCFQ managed to do equally well by minimiz-
ing the interference and providing enough capacity
to the Fitting applications. Overall, UCP did well in
most cases that include a Fitting application, even
better than PIPP, which was initially unexpected.

Looking carefully at the statistics, Fig. 6 shows that
for these cases, PIPP effectively used the excess of
space in the MRU positions only in Mizes 6, 8 and
9. For the rest of the cases, the space was practically
unused, wasting space that UCP effectively used to
improve performance. Furthermore, when multiple
Fitting applications had almost the same partition
size, PIPP’s insertion policy put them on the same IP;
introducing severe contention and therefore forcing

them to work in their Thrashing area. This is clear
from the fact that PIPP is better than UCP in Mix 6, 8
and 9 where only one fitting application exists. De-
spite that, MCFQ was still significantly better than
PIPP in the same categories.

Finally, TADIP had an intermediate behavior by
achieving comparable results to the second best in a
small number of cases. Unfortunately, due to its policy
to either insert a new line in the MRU or LRU posi-
tion, it cannot properly handle Fitting applications;
while in Mix 5 it is even worse than simple LRU
by 7%. As expected, TADIP gets reasonable perfor-
mance improvements only in cases with Thrashing
applications. Overall, MCFQ for the specific 4-cores
cases, managed an average improvement of 19%,
14%, 13% and 10% over LRU, TADIP, PIPP and UCP,
respectively.

The 8-cores results in Fig 5(b) can potentially show
how well each scheme can scale with the number of
cores. Notice that since we have a 16-way last-level
cache, each core in a 8-core CMP can get on average
2 ways. Therefore, these benchmark mixes put a lot
of pressure on each scheme to keep the most impor-
tant cache-lines for each application in the cache. As
expected, UCP is the second best followed by TADIP.
UCP can effectively choose the best isolated partitions
size to improve performance while TADIP can handle
the high demand rates by forcing the new lines from
the applications that hurt performance the most to be
allocated at the LRU positions. Both schemes though

" 3 B Max over IP W Avg. over IP 12'00%§
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@ 2 8.00% &
;_,'_5 15 6.00% §
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Fig. 6. PIPP’s maximum and average number of
cache-ways promoted higher than applications’ IPs.
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Fig. 7. Comparison of performance fairness/improvements of MCFQ, TADIP, PIPP and UCP for 4 and 8 cores

over simple LRU scheme.

got gains by helping only a small number of threads,
restricting the rest of applications to only one cache-
way; hurting overall system fairness. PIPP showed the
worst behavior since there are many applications with
similar partition sizes that insert lines in the same IP.

Our statistics show that in most cases the applica-
tions were evicting each other’s cache-lines, forcing
them to a thrashing execution style. Overall, MCFQ
showed significant throughput improvements due to
its ability to share the capacity efficiently while mini-
mizing the interference. For the 8-cores cases, MCFQ
achieved an average improvement of 20%, 13%, 17%
and 8% over LRU, TADIP, PIPP, and UCP, respectively.

5.3 Fairness evaluation on a 4 & 8 cores CMP

Fig. 7 provides a comparison of our fairness metric.
By comparing Fig. 5(a) and Fig 7(a) one can see that
the fairness of MCFQ is improved across the whole
set of benchmarks even for the cases that MCFQ
had comparable performance gains to other schemes
(Mixz 5 and 10). In addition, even for the cases that
TADIP, PIPP and UCP provide a significant perfor-
mance improvement over LRU, such improvement is
coming from helping only a small number of threads;
leading to significantly lower fairness than MCFQ’s.

TADIP and PIPP cannot efficiently target fairness
because of their greedy philosophy to help the appli-
cations that can get the most performance gains and
they have no real protection mechanisms to ensure
fair execution. UCP on the other hand, could be
configured to provide fairness with proper allocation
of capacity in its isolated partitions, but such approach
would be wasteful and as it has been shown in the
past, it hurts performance [6]. Therefore, UCP can
either help throughput or fairness. Such behavior can
also be confirmed by looking into the 8-core fairness
results of Fig. 7(b). TADIP and UCP managed to get
their performance gains by helping only a subset of
applications. For 8-cores, the worst overall behavior
was achieved by PIPP because under high pressure,
its insertion point policy fails to help the competing
threads, hurting its performance fairness. In addition,
PIPP’s significant reduction in fairness is an evidence

of its inherent difficulty to scale its performance fairly
when moving from 4 to 8 cores.

MCEQ, on the other hand, can successfully improve
fairness by allocating capacity based on applications’
performance sensitivity to cache space and misses.
In addition, MCFQ'’s careful handling of Fitting ap-
plications seems to improve fairness for the cases
where many Fitting applications coexist (Miz 2, 6,
8 and 10). MCFQ achieved its best fairness perfor-
mance in the cases where many Friendly applica-
tions were competing for capacity. For these cases,
the Inter ference Sensitivity Factor could effectively
reduce interference across the same category of ap-
plications and the Partitions Scaling Scheme was
able to fairly scale the capacities allocated to them.
Overall, for the 4 core cases, MCFQ achieved an
average improvement of 17%, 12%, 14% and 9% over
LRU, TADIP, PIPP and UCP, respectively. Finally, for
the 8 cores cases, the improvements were found to be
15%, 13%, 12% and 8% over LRU, TADIP, PIPP, and
UCP, respectively.

6 RELATED WORK
6.1 Isolated Cache Partitions

To solve the problem of destructive interference in
the last-level-caches, researchers have proposed to
partition the cache among different threads [19][24][1].
This is commonly done by means of way-partitioning
i.e, in a set-associative cache each application is given
the exclusive ownership of a fixed number of cache-
ways. Suh et al. [24] proposed a greedy heuristic to
allocate cache-ways proportionally to the incremen-
tal benefit that the thread gets from that allocation.
Later on, Qureshi et al. [19] proposed Utility Based
Cache Partitioning (UCP). They used utility monitors
to estimate the utility of assigning additional ways
to a thread and allocate ways based on this utility.
Kaseridis et al. with their “Bank-aware” proposal [9]
applied the basic concept of UCP on realistic CMP
implementations with DNUCA-like caches to provide
a scaling solution. Since in this paper we do not use
a DNUCA cache, UCP and “Bank-aware” proposal
are identical and the inclusion of UCP in our analysis
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covers both of them. In an another publication from
Kaseridis et al. [10] the authors extended Qureshi’s
work by taking in to consideration both cache ca-
pacity and memory bandwidth contention in large
multi-chip CMP systems. This paper focuses only on
cache capacity within single chip systems but can
be extended to multi-chips using a similar to [10]
hierarchical scheme. Moreto et al. [18] describes a par-
titioning scheme that uses the MLP information and
it is based on the same principles with our approach.
Based on our evaluation, even though using the MLP
information can provide more accurate partition sizes,
the scheme suffers of the same limitations that isolated
partitions do. Our scheme, utilizes applications” mem-
ory behavior to create quasi-partitions that can exploit
capacity stealing for efficient capacity utilization.

Finally, isolated cache partitions have been used
aiming at the reduction of energy consumption.
Reddy et al. [22] utilize cache partitioning to reduce
power in embedded systems by keeping only part of
the cache active at the time that belongs to the active
execution thread. Our scheme focuses on dynamic
pseudo partitioning of high performance processors
with multiple concurrent execution threads for which
all cache partitions need to be active in any time.
Wang et al. [30], present an energy optimization tech-
nique which employs both dynamic reconfiguration
of private caches and partitioning of the shared cache
space for multicore systems with real-time tasks. Their
algorithm, based on static profiling, finds beneficial
cache configurations (of private caches) for each task
as well as partition factors (of the shared cache) for
each core so that the energy consumption is mini-
mized while task deadline is satisfied. In contrast, our
scheme is not designed for real time applications and
we do not explicitly target energy minimization.

6.2 Dead-time Management

Cache lines with poor temporal locality occupy valu-
able cache resources without providing any actual
benefits (cache hits). To minimize the life time of
these lines, Qureshi et al. proposed Dynamic Inser-
tion Policy (DIP) [20]. DIP identifies dead lines and
inserts them at LRU position instead of MRU position
resulting in their quick eviction. This allows more
useful lines to be retained in the cache enabling
better utilization of capacity. A subsequent proposal
by Jaleel et al. [8] extends DIP to manage dead-time in
the multi-core environments. They proposed Thread
Aware Dynamic Insertion Policy (TADIP) which can
adapt to memory requirements of competing applica-
tions.

6.3 Cache Pseudo-Partitioning

A recent proposal Promotion/Insertion and Pseudo-
Partitioning (PIPP) [31] combines the ideas presented
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in UCP and TADIP to support a cache pseudo-
partitions scheme. PIPP can provide good isolation
for highly reused lines but, as we show in our eval-
uation, due to their insertion policy, still suffers from
high destructive interference in the lower parts of
the LRU stack. Rafique et al. [21] proposed an OS
controlled technique where it is possible for applica-
tions to steal lines from other applications if they are
not using their allocations effectively. MCFQ, on the
other hand, implements quasi-partitioning by assign-
ing different insertion points to applications keeping
in view their MLP, cache memory behavior (Friendly,
Fitting, Thrashing) and their interference sensitivity.
This allows MCFQ to efficiently utilize the capacity
while reducing the effects of interference. Herrero
et al. in [5] proposed “Elastic Cooperative Caching”
for NUCA caches. This scheme detects the dissimilar
cache requirements of applications and distributes
cache resources accordingly, allowing the creation of
partitions that can be private, shared or both based
on the demands of applications.

6.4 QoS/Fairness

Researchers have proposed cache partition algorithms
that focus on improving fairness and/or Quality of
Service (QoS) [4][7][6][13]. Kim et al. [13] highlighted
the importance of enforcing fairness in CMP caches
and proposed a set of fairness metrics to evaluate
fairness optimizations. Chang et al. [1] proposed
time-sharing of cache partitions, which transforms
the problem of fairness to a problem of scheduling
in a time-sharing system. Iyer et al. [7] proposed
a framework for enforcing QoS characteristics in a
system based on a trial-and-error scheme to fit the
QoS targets. That work was later on extended by Zhao
et al. [33] with a set of counters, named CacheScouts,
that monitored their QoS characteristics in a system
and, based on them, made resource management
decisions. In this work we were motivated by the
CacheScouts work to create our cache occupancy
monitoring mechanism. Researchers have used the
contention characteristics of applications [34] similar
to our interference-sensitivity while making applica-
tions” co-scheduling decisions, but to our knowledge
nobody has previously utilized such metrics for man-
agement of caches. Finally, Srikantaiah et al. [26] use
formal control theory for dynamically partitioning
the shared last level cache in CMPs by optimizing
the last level cache space utilization among multiple
concurrently executing applications with well defined
service level objectives. This paper provides efficient
policies for QOS based cache partitioning. We do not
focus on QOS and a QoS-driven quasi-partitioning
scheme is part of our future research endeavors.

7 CONCLUSIONS

In this work we present a last-level cache quasi-
partitioning scheme that effectively allocates capacity
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to resource competing applications, while minimizing
destructive interference. We show that by utilizing
applications” memory-level parallelism, MCFQ can
predict applications’ performance sensitivity to last-
level cache misses and therefore, target final system
throughput improvements. We demonstrate through
cycle-accurate simulation that MCFQ significantly re-
duces the effects of applications’” shared cache in-
terference by categorizing and assigning priorities
according to applications’ cache friendliness behavior
(Friendly, Fitting, Thrashing) and their performance
sensitivity on sharing cache capacity (Interference Sen-
sitivity factor).
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