
Predictive Heterogeneity-Aware Application
Scheduling for Chip Multiprocessors

Jian Chen, Member, IEEE, Arun Arvind Nair, Member, IEEE, and Lizy K. John, Fellow, IEEE

Abstract—Single-ISA heterogeneous chip multiprocessor (CMP) is not only an attractive design paradigm but also is expected to

occur as a consequence of manufacturing imperfections, such as process variation and permanent faults. Process variation could

cause cores to have different maximum frequencies; whereas permanent faults could cause losses of functional units and/or cache

banks randomly distributed on cores, resulting in fine-grained heterogeneous CMPs. Hence, application schedulers for CMPs need to

be aware of such heterogeneity to avoid pathological scheduling decisions. However, existing heterogeneity-aware scheduling

schemes rely on either trial runs or offline profiled information to schedule the applications, which incur significant performance

degradation and are impractical to implement. This paper presents a dynamic and predictive application scheduler for single-ISA

heterogeneous CMPs. It uses a set of hardware-efficient online profilers and an analytical performance model to simultaneously

predict the applications performance on different cores. Based on the predicted performance, the scheduler identifies and enforces

near-optimal application assignment for each scheduling interval without any trial runs or offline profiling. We demonstrate that, using

only a few kilo-bytes of extra hardware, the proposed heterogeneity-aware scheduler improves the system throughput by an average

of 20.8 percent and the weighted speedup by 11.3 percent compared with the commodity OpenSolaris scheduler. Compared with the

best known research scheduler, the proposed scheduler also improves the throughput by 11.4 percent and the weighted speedup by

6.8 percent.

Index Terms—Heterogeneous multicore processor, application scheduling, performance modeling, process variation

Ç

1 INTRODUCTION

AS transistor density and die size continue to grow, chip
multiprocessors (CMPs) become increasingly suscep-

tible to process variation and permanent faults caused by
the inability to precisely control the manufacturing process.
Process variation could result in large variation on
transistor threshold voltage, which causes maximum
operating frequencies to be different for the cores on the
same die [1]. On the other hand, permanent faults would
render parts of the core unusable, which may result in
expensive yield loss. To guard against yield loss, it has been
suggested to exploit the redundancy in the cores, and
salvage them by disabling the faulty yet noncritical units,
such as redundant functional units and cache SRAM arrays
[2], [3]. This results in a relatively fine-grained single-ISA
heterogeneous CMPs, in which each core has the same ISA
but different frequency and/or different cache size, number
of functional units, and so on.

Besides the heterogeneity caused by manufacturing, the
single-ISA heterogeneous CMP itself has been demon-
strated to be an attractive design alternative to its homo-
geneous counterpart [4]. By integrating cores with same ISA

but different complexity in a single die, single-ISA hetero-
geneous CMP could significantly improve the execution
efficiency for various workloads as it provides the hard-
ware substrate to match the different workload require-
ments [4]. This design-caused CMP heterogeneity,
combined with the manufacturing-caused CMP heteroge-
neity, underscores the importance of the single-ISA hetero-
geneous CMP, and presents a unique challenge to
application scheduling in the operating system (OS).

Existing commodity application schedulers, such as the
one in Linux or OpenSolaris [5], assume cores are
symmetric, which could lead to pathological application
scheduling decisions in the presence of core-level hetero-
geneity. For example, a memory-bound application with
low instruction level parallelism (ILP) may be scheduled to
a fast core; whereas a computation-bound high-ILP applica-
tion may be scheduled to a slow core, resulting in poor
overall performance. To prevent the undesirable scheduling
results, researchers have proposed several heterogeneity-
aware scheduling schemes by using trial runs or offline
profiling. Kumar et al. [4] proposed a straightforward
method that tentatively runs the program on different cores,
each for a short period of time, and then schedules the
program to the optimum core according to the sampled
energy-delay product (EDP) during the tentative runs.
Becchi and Crowley [6] extended Kumar’s work by using
the measured instruction-per-cycle (IPC) ratios between
two different cores to determine the migration of the
applications, which reduces the number of trial runs for
each migration enforcement. The drawback of these
methods is that the trial runs could incur significant power
and performance overhead in moving around the architec-
ture states and data sets, negating the benefit of the
improvement in application scheduling. In addition, these

IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 2, FEBRUARY 2014 435

. J. Chen is with Intel Corporation, Apt. 524, 2557 NW Overlook Drive,
Hillsboro, OR 97124. E-mail: chenjian@utexas.edu.

. A.A. Nair is with the Adavanced Micro Devices, Apt. K302, 755 E Capitol
Ave., Milpitas, CA 95035. E-mail: nair@utexas.edu.

. L.K. John is with the Department of Electrical Communication Engineering,
The University of Texas at Austin, 1 University Station C0803, Austin, TX
78712. E-mail: ljohn@ece.utexas.edu.

Manuscript received 25 Mar. 2012; revised 9 Aug. 2012; accepted 12 Aug.
2012; published online 28 Aug. 2012.
Recommended for acceptance by R. Gupta.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2012-03-0225.
Digital Object Identifier no. 10.1109/TC.2012.212.

0018-9340/14/$31.00 � 2014 IEEE Published by the IEEE Computer Society

methods also suffer from poor scalability because the
number of trial runs required to explore all scheduling
options grows almost exponentially as the number of
heterogeneous cores increases. Shelepov et al. [7] proposed
to utilize reuse distance signature constructed from offline
profiling to schedule applications to cores with different
cache sizes. Chen and John [8] used more comprehensive
program characteristics profiled offline to find the proper
program-core mapping. These offline techniques can only
schedule the application statically, missing the opportunity
to exploit program phase changes. Moreover, the need of
offline profiling and encoding/decoding of the profiled
information in the program binary could results in dramatic
modification in the interface between OS, compiler and
architecture, which fundamentally limits the applicability of
the offline approach in practice.

To address these limitations, we present a new hetero-
geneity-aware application scheduler that proactively and
dynamically schedules the applications to appropriate cores
with the assistance of cost-effective online profilers. Unlike
the existing dynamic schedulers, the proposed heterogene-
ity-aware scheduler leverages an analytic performance
model to simultaneously predict the performance of an
application on different cores, and formulates the schedul-
ing decisions accordingly, without any trial runs. By
collecting the application characteristics dynamically during
the application’s execution, the performance model can
update the performance prediction at each scheduling
interval, allowing the scheduler to dynamically adapt to
program phase changes. In particular, the contributions of
this paper are as follows:

. We build a comprehensive yet cost-effective online
profiler, and an online analytic performance model
that utilizes the online profile to accurately predict the
performance of cores with different configurations on
multiple resources. These resources include core
frequency, L2 cache, and functional units, covering
some of the most representative resources that are
vulnerable to process variation and permanent faults.
We show that the analytic model can predict the
performance with an average error of 8.2 percent.

. We propose a framework for heterogeneity-aware
application scheduling based on the proposed
performance model. Our approach eliminates the
need of trial-runs or offline profiling, yet can
dynamically and efficiently adapt to program
phases. We compare our approach with a set of
dynamic scheduling schemes from prior work, and
demonstrate that our approach improves through-
put by an average of 20.8 percent as compared to the
OpenSolaris scheduler, and by 11.4 percent as
compared to the best known research scheduler.

This paper is organized as follows: Section 2 shows the
background of process variation and permanent faults.
Section 3 gives an overview of the proposed scheduling
framework. Section 4 describes the performance model.
Section 5 shows the structures of the online profilers.
Section 6 presents the scheduling algorithms. Section 7
describes the experiment methodology. Section 8 evaluates
the performance of the proposed scheduler. Section 9
describes the related works, and section 10 concludes
this paper.

2 BACKGROUND

Process variation is defined as a divergence in the
parameters of the fabricated transistors from their nominal
values, both within dies and die-to-die [1]. It occurs due to
random dopant fluctuations and shortcomings of litho-
graphic processes, and could significantly affect the thresh-
old voltage of transistors. ITRS [9] reports that the 3�
intradie variation of a transistor’s threshold voltage and
effective channel length can be as large as 42 and 12 percent
in 45-nm technology, and is expected to be worsen as the
technology scales down further. The variation on these
parameters directly impacts the switching speed of the
transistors, which further causes the maximum operating
frequency of the processor to deviate from its nominal
value. In a multicore processor, this implies that different
cores may have different peak operating frequencies.

Besides process variation, hard faults are another
important issue in the manufacturing process. They are
caused by imprecise calibration of the equipments, con-
taminants in the materials, as well as particle impurities in
the air [2], and could incur functional failures in parts of the
processors, resulting in expensive yield loss. It is expected
that the yield loss will be exacerbated as the transistor
density and die size increase, and needs to be carefully
controlled. To mitigate yield loss, designers typically
leverage the redundancy in processor components such as
SRAM arrays, functional units and queues, to recover faulty
processors by disabling some of the defective yet noncritical
units [2]. These rescued processors are fully functional,
albeit with reduced performance due to the reduction in
certain hardware resources. That said, not all faulty units
are suitable for this yield-enhancing technique: faults in
critical units, such as control units, could cause complete
failure of the processor; faults in reorder buffer (ROB) or
load/store queue may require complex and expensive
hardware to recover the functionality. Hence, in this paper,
we focus on two types of representative resources that can
be protected by this yield-enhancing technique, namely,
available functional units (FU) and L2 cache size. Functional
units have their natural redundancy in microprocessors,
especially in wide-issue superscalar processors, and have
been explored to improve the yield [2]. L2 cache occupies a
large amount of chip real estate, and is susceptible to hard
faults. These hard faults may be sporadically distributed
across a few ways on different sets, or spatially correlated
across multiple ways in the same set. In the former case, it
has been shown that the defective ways in L2 cache can be
discovered and disabled during manufacturing test, which
results in a smaller, but functional cache [3]. In the latter
case, a technique similar with horizontal yield aware power
down (H-YAPD) [10] can be employed, which essentially
remaps the addresses on the defective ways such that all
ways of the same set are never disabled, and the cache
behaves identical to a cache with fewer ways.

Both process variation and hardware faults are ex-
pected to coexist in the manufacturing process, and the
compounded effect of these two has significant impact on
CMP: each core in CMP may not only have different
operating frequency but also different amount of func-
tional units and L2 cache sizes, resulting in fine-grained

436 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 2, FEBRUARY 2014

heterogeneous CMPs. Moreover, such single-ISA hetero-
geneity may also be introduced into CMPs as an
important design option to improve the power efficiency
of CMPs. Therefore, there is an urgent need for a
scheduling methodology that is aware of, and can
efficiently exploit this heterogeneity, such that the overall
throughput and efficiency of CMPs are optimized.

3 OVERVIEW OF THE FRAMEWORK

The proposed framework for predictive heterogeneity-
aware scheduling (PHASE) consists of three components:
the online profiler, the performance predictor, and the
scheduling heuristic, as shown in Fig. 1. The online profiler
noninvasively profiles the application running on each core,
and extracts the application’s inherent characteristics
required for the performance prediction. The performance
predictor collects the profiled application characteristics at
the end of each scheduling interval, and predicts the
application’s performance on other cores using the collected
application statistics and the configurations of the corre-
sponding cores. The predicted performance values are
organized as a performance matrix and passed to the OS
scheduler, where the scheduling algorithm identifies and
enforces the appropriate assignment of the applications for
the next interval based on the given objectives. As a result,
the PHASE framework completely eliminates the need of
trial runs, meanwhile it is able to dynamically and
efficiently adapt to program phase changes.

Note that the proposed scheduling algorithm is not
intended to replace, but rather complement the existing
criteria for application scheduling. Specifically, the hetero-
geneity-aware scheduling is enforced only after the sche-
duler has chosen the applications from its application pool
based on existing criteria including priority, fairness, and
starvation-avoidance. Note also that while this framework
can also be applied in single-ISA heterogeneous CMP
caused by design, this paper focuses its application on
heterogeneous CMPs resulting from process variations and
manufacturing defects. In the following sections, we explain
each component of the scheduling framework in detail.

4 PERFORMANCE PREDICTOR

Predicting/estimating the application’s performance
on different cores based on the observed application
characteristics is the key step to avoid expensive trial runs.
A naı̈ve approach to do so is to use the measured IPC rate

on one core as a proxy of the IPC rate on other cores [11],
which might work when each core differs only in clock
frequency. However, when each core has different number
of functional units and/or different L2 cache sizes, this
approach is no longer valid. In fact, an application may
have very different performance on cores with the same
clock frequency but different L2 caches or FU numbers.
Therefore, in the presence of fine-grain heterogeneity on
multiple resources, a comprehensive performance model is
required to capture the impact of individual resource on the
overall performance.

4.1 Basic Performance Model

The performance model is based on the previously
proposed interval analysis [12], [13], which treats the
exhibited cycle-per-instruction (CPI) rate as a sustained
steady-state execution rate intermittently disrupted by long
latency miss events, such as, L2 cache misses and branch
mispredictions and so on. With the interval analysis, the
total CPI of an application can be treated as the sum of three
CPI components:

CPItotal ¼ CPIexe þ CPImem þ CPIother; ð1Þ

where CPIexe represents the steady-state CPI when the
execution is free from any miss events. It is fundamentally
constrained by the ILP of the application and the issue width
of the processor. The ILP of the application is typically
characterized by the critical dependence chain of the
instructions in the instruction window (equivalent to reorder
buffer in this paper). Assume an instruction window size w,
and an average critical dependence chain length lw. On an
ideal machine with unit execution latency, lw indicates the
average number of cycles required to execute the instruc-
tions in the instruction window; hence, the average
throughput is w=lw. On a realistic machine with nonunit
execution latency, this number should be further divided by
the average execution latency latavg according to Little’s law
[12]. Therefore, the average ILP, �avg, can be obtained by
w=ðlatavg � lwÞ, which also represents the steady-state execu-
tion rate if the instruction issue width is unlimited. However,
for a realistic processor with limited issue width �, the
steady-state execution rate would be saturated at either the
average ILP or the issue width, whichever is smaller. As a
result, CPIexe can be obtained by 1=minð�avg; �Þ.
CPImem represents the CPI penalty caused by the load

misses in the last level cache (L2 cache in this paper). The
total L2 load miss latency can be calculated by multiplying
the number of L2 load misses NL2 with the average memory
access latency latmem, assuming there are no multiple L2
load misses outstanding. In practice, to hide the load miss
latency, L2 caches are usually nonblocking and multiple L2
load misses could be outstanding. Under this circumstance,
it has been shown that the average load miss latency is
reduced to latmem=movp [12], where movp is the average
number of outstanding load misses. Therefore, CPImem can
be calculated by latmem �NL2=ðmovp �NinstÞ.
CPIother is the CPI component caused by other miss

events, such as instruction cache misses, branch mispredic-
tions and so on. In this paper, we assume that the resources
related with these miss events remain the same across

CHEN ET AL.: PREDICTIVE HETEROGENEITY-AWARE APPLICATION SCHEDULING FOR CHIP MULTIPROCESSORS 437

Fig. 1. The overview of the application scheduling framework.

different cores. Therefore, this CPI component can be
treated as a constant parameter when a program is
migrated from one core to anther as long as the program
is in stable execution phase. Meanwhile, the value of this
CPI component can be derived from the measurements on
the core that the program is running on by transforming (1)
to CPIother ¼ CPItotal � CPIexe � CPImem, where CPItotal
can be obtained from the performance counter, CPIexe and
CPImem can be derived from the observed program
characteristics. Once CPIother has been deduced, it can be
plugged into the analytic model to estimate the perfor-
mance of the program on other cores. As a result, we have
our basic performance model as follows:

CPItotal ¼
1

minð�avg; �Þ
þ latmem �NL2

movp �Ninst
þ CPIother:

4.2 Extended Performance Model

The basic performance model assumes that there are
sufficient number of functional units (FU). However, when
the number of FUs is limited, instructions may be stalled
for additional cycles, which impacts the performance from
two aspects. First, the additional stalled cycles increase
the average execution latency, which in turn reduces the
observed average ILP. Second, the limited number of
functional units may also constrain the number of the
instructions that can be issued in one cycle, causing the
effective issue width �eff smaller than the nominal one.

To evaluate the performance impact of different FU
numbers, we present the ready set size histogram for any
given type of FUs. The ready set is the set of instructions in
the instruction window that are ready for execution on a
certain type of functional units, and the ready set size (RSS) is
the number of instructions in the ready set, used as an index
to the RSS histogram. Each time a new ready set is
encountered, the histogram entry indexed with the corre-
sponding RSS is incremented by one. As shown in Fig. 2a,
when instruction a finishes execution, instruction b and c
are ready to execute. Since both b and c will execute on
integer ALU (I-ALU), the RSS for I-ALU is 2 and the
corresponding entry in the I-ALU RSS histogram is
incremented by 1. When instruction b finishes execution,
instruction d, e, and f are free. Instruction d will execute on
load unit. Both e and f will execute on I-ALU, though they
have different opcodes. Hence, the new RSS for I-ALU is
also 2. Note that even if at this point c is still in ready state,

it should not be counted in the new ready set. Therefore,
RSS histogram reflects the inherent property of the work-
load, and is independent of microarchitecture.

With the RSS histogram, we are able to estimate the
number of stalled cycles and the effective issue width
for any number of FUs. As shown in Fig. 2b, the number of
I-ALU divides the histogram into region A and region B.
The RSS in Region A is no larger than the I-ALU number;
hence, instructions in this region do not experience
additional stalled cycles caused by the limited number of
I-ALU. While in region B, the I-ALU number is smaller than
RSS, causing additional waiting cycles on the ready
instructions. Assuming n fully pipelined I-ALUs and a
ready set with RSS of m, it takes bm=nc additional cycles to
finish issuing the instructions in this ready set, contributing
an additional cycle-instruction product

Pbm=nc
i¼1 ðm� i � nÞ to

the equation of calculating the average instruction latency.
Therefore, considering the additional stalled cycles caused
by the limited number of FUs, the average instruction
latency could change significantly, resulting in a modified
observed average ILP, which we refer to as �0avg. On the
other hand, instructions in region A and instructions in
region B have different observed issue width. While the
observed issue width for the instructions in region A equals
the physical issue width, the observed issue width for those
in region B is limited by the FU number n. Therefore, on
average, the effective issue width �eff ¼ pnþ ð1� pÞ�,
where p is the percentage of instructions in region B among
the total instructions executed. As a result, with the limited
functional units, CPIexe becomes 1=minð�0avg; �effÞ.

Besides modeling the impact of limited FU numbers, the
basic performance model also needs to be augmented to
capture the performance impact of different clock frequen-
cies. This could be achieved by converting the CPI to the
absolute execution time, which leads us to the following
extended performance model:

Delay ¼ Ninst � CPItotal=f

¼ Ninst

minð�0avg; �effÞ � f
þNL2 � tmem

movp
þ Cother=f;

ð2Þ

where f is the core clock frequency, and tmem is the absolute
memory access time.

5 ONLINE PROFILER

The proposed performance model requires a set of
program characteristics to derive the key parameters used
in the model. These characteristics include: 1) the critical
dependence chain, for deriving the average ILP; 2) the
instruction ready set size histogram, for calculating
the effective issue width with different FU number; and
3) the stack distance histogram [14], for estimating the
number of L2 load misses with different L2 cache sizes.
This section presents a set of noninvasive and cost-effective
online profilers to dynamically extract these characteristics
during the application’s execution.

5.1 Critical Dependence Chain Profiler

The critical dependence chain (CDC) in this paper refers to
the longest instruction dependence chain in the instruction

438 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 2, FEBRUARY 2014

Fig. 2. The instruction ready set and the RSS histogram. (a) Example of
an instruction dependence graph. (b) I-ALU RSS histogram for SPEC
CPU2006 program h264ref.

window. To capture the CDC length, we propose a token-
passing technique inspired by Fields et al.’s work [15]. A
token is a field in each reservation station entry that keeps
track of the dependence chain length, as shown in Fig. 3a.
When an instruction enters the reservation station, its token
field is set to zero; when an instruction leaves the
reservation station for execution, its token field is incre-
mented by one. The incremented token is propagated along
with the result tag of the instruction. When the instruction
finishes execution and its result tag matches the source tag
of the waiting instruction, the propagated token is
compared against the token of the waiting instruction,
and the larger one is stored in the token field of the waiting
instruction. Hence, by the time an instruction is ready
for execution, its token holds the length of its longest
dependence chain.

The CDC profiler compares the token of every issued
instruction, and keeps track of the largest token, which is
then used as an index to the max dependence chain histogram.
As shown in Fig. 3b, the histogram is controlled by an
instruction counter that monitors the number of issued
instructions. When this number reaches the size of instruc-
tion window, the histogram entry indexed with the
maximum observed token is incremented by 1, and the
register that holds the maximum token is reset to zero.
Consequently, the maximum dependence chain histogram
holds the information of the longest dependence chain
length for each instruction window. At the end of each
scheduling interval, this histogram is used to calculated the
average CDC length, and then reset to zeros for the next
scheduling interval.

5.2 Ready Set Size Profiler

The ready set size profiler takes advantage of the standard
instruction selection logic [16], where the information about
the number of ready instructions on a certain type of FUs is
readily available. This information is steered to the RSS
register in the ready set size profiler for the corresponding
FU type, as shown in Fig. 3c. Besides the RSS register, the
ready set size profiler also contains a utilization counter
that is incremented each time an instruction is issued to the
corresponding FU for execution. When the utilization of the
FU equals the previously stored RSS value, the RSS register
is loaded with a new RSS value, and the utilization counter
is reset to zero. Meanwhile, the RSS histogram entry
indexed by the new RSS value is incremented by one.

At the end of scheduling interval, RSS histogram is used to
update the average instruction latency, and reset to zero.

Such profiling mechanism can precisely capture the RSS
information assuming the instructions are issued in the
oldest first order. For a different instruction selection policy,
the profiled RSS histogram may not exactly reflect the
application’s RSS statistics. Nevertheless, we expect that the
discrepancy is small and its impact on the accuracy of
performance prediction is negligible.

5.3 Stack Distance Profiler

To estimate the number of L2 load misses for different cache
sizes, we employ Mattson’s stack distance model at the
granularity of cache ways [14], [17]. This stack distance
model exploits the inclusion property of least recently used
(LRU) replacement policy, i.e., the content of an N-way
cache line is a subset of the content of any cache line with
associativity larger than N . As an example, Fig. 4 shows the
stack distance histogram of program xalancbmk on an eight-
way associative cache, organized from MRU position to
LRU position. For caches with the associativity reduced to
six-ways (dash line in the figure), the data with stack
distance larger than 6 cannot be hold in the cache,
generating cache misses. Therefore, with the stack distance
histogram, we are able to estimate the cache miss rate for
any cache ways less than the profiled ways and conse-
quently derive the number of L2 misses. Note that although
the cache miss rate can be collected with the standard
performance counters, this miss rate cannot be used to
estimate the miss rate on caches with different sizes.

Profiling the stack distance requires an auxiliary tag
directory (ATD) and hit counters for each cache set [17]. The

CHEN ET AL.: PREDICTIVE HETEROGENEITY-AWARE APPLICATION SCHEDULING FOR CHIP MULTIPROCESSORS 439

Fig. 3. The online profilers. (a)-(b) The critical dependence chain profiler. (c) The ready set size profiler.

Fig. 4. Stack distance histogram of SPEC CPU2006 program
xalancbmk.

ATD has the same associativity as the largest L2 cache in the
chip and keeps track of LRU replacement; and the hit
counter counts the number of hits on each cache way. To
reduce the hardware cost of ATD, we employ the dynamic
set sampling (DSS) technique, which essentially uses a few
sets to approximate the entire cache behavior [17]. In this
paper, we sample 1 set out of every 32 sets.

5.4 Profiling for Other Parameters

Other parameters required by the analytic model can be
obtained from the standard performance counters. For
example, the performance counters in Intel Core architec-
ture [18] are able to provide the instruction mix and cache
hit/miss statistics. With these statistics, the average
latency latavg can be derived by weight-averaging the
percentage of each instruction type with the corresponding
execution latency. Note that the load that misses L1 cache
but hits in L2 cache is treated as an instruction with long
execution latency. This average latency is further adjusted
with the RSS histogram to count in the effect of limited
functional units.

Similarly, the average memory level parallelism movp can
be obtained by monitoring the miss status holding register
(MSHR) in L2 cache. Specifically, each time an L2 load miss
occurs, we look up the MSHR for outstanding load misses.
movp is the average number of these outstanding misses
across all L2 load misses.

5.5 Hardware Cost Analysis

The hardware cost of the profilers depends on the
instruction window size as well as the L2 cache size.
Assuming 128-entry instruction window, 96-entry reserva-
tion station, 32-bit physical address space, and 2-MB 8-way
L2 cache with 64B block size, the total hardware cost
amounts to 3.5 KB, as shown in Table 1. The hardware cost
may be further reduced by using a smaller number of
histogram counters based on the observation that most of
the RSS or the CDC length is far smaller than the instruction
window size. However, even without such optimization,
the online profilers incur no larger than 0.2 percent
hardware overhead on a core with 2-MB L2 cache. Note
that these profilers are not in the critical path, and do not
affect the processor’s performance.

The computation cost of the performance prediction is
mainly caused by converting the histograms to the para-
meters used in the performance model, which requires
about 300 multiply-accumulate operations. In addition, the

performance model itself needs 2 add, 1 comparison,
2 multiply, and 3 divide operations. Therefore, predicting
the performance of an application on four cores requires
around 350 arithmetic operations. Since the prediction is
made only once every scheduling interval, these operations
can be carried out by exploiting the FUs already on the chip.
Specifically, the processor steers the data from the profilers
to the idle FUs and uses their idle cycle slots to do the
calculations needed in the performance prediction. These
calculations are controlled by an embedded microcode
sequence, which is invisible to the software and does not
introduce additional regular instructions into the ROB.
Since the FUs are usually underutilized due to the load/
store instructions, by starting the performance prediction
several thousands of cycles before the end of the scheduling
interval, there should be sufficient idle slots to complete the
necessary calculations. Hence, the computation cost of the
performance prediction can be completely hidden behind
the normal execution.

6 SCHEDULING ALGORITHMS

With the online profilers and the performance predictor, the
core-level heterogeneity of the CMP is exposed to the
scheduler as a matrix of performance values (in the form of
IPC or IPC speedup depending on the optimization target).
The PHASE scheduler can simply searches through this
matrix for the optimum program-core allocations, funda-
mentally eliminating the need of trial runs.

To identify the optimum program-core allocation from
the performance matrix, a naı̈ve approach needs exhaustive
search, which has the complexity of Oðn!Þ and is not
scalable. In contrast, our PHASE scheduler uses a greedy
algorithm with polynomial computation complexity, as
shown in Pseudocode 1. The algorithm first searches the
estimated performance matrix for the largest entry, and the
corresponding program and core indices are stored in
the program-core allocation array and then removed from
the index arrays. This process repeats for the remaining
matrix until all indices of applications or cores have been
visited. The newly obtained program-core allocation is
enforced in the next scheduling interval only when the
predicted performance gain is larger than the given
migration threshold. This threshold serves as a migration
throttling agent, which prevents applications from migrat-
ing when there is insufficient performance improvement to
compensate the migration cost.

Pseudocode 1. Algorithm for Predictive Heterogeneous-

Aware Scheduling.

#define Nc /*the number of cores in the CMP*/

#define Np /*the number of programs to be

scheduled*/
#define Pth /*the performance threshold*/

#define perf ½Np�½Nc� /*the array of predicted

performance*/

#define prog½Np� /*the program index array*/

#define core½Nc� /*the core index array*/

#define core alloc½Nc� /*the core allocation array*/

for ði ¼ 0; i < Nc; iþþÞ
foreach nc in core½Nc�

440 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 2, FEBRUARY 2014

TABLE 1
Hardware Cost of the Online Profilers

foreach np in prog½Np�
if (perf ½np�½nc� > max perf)

Npmax ¼ np; Ncmax ¼ nc;
max perf ¼ perf ½np�½nc�;

end if

end foreach

end foreach

core alloc½Ncmax� ¼ Npmax;

total perf ¼ total perf þmax perf ;

remove Npmax from prog½Np�;
remove Ncmax from core½Nc�;

end for

if ((total perf � total mon perfÞ=total mon perf > Pth)

enforce schedule based on core alloc½Nc�;
end if

The complexity of this algorithm is Oðn2 �mÞ, where n is
the number of cores and m is the number of programs to
schedule (m � n). Note that if the number of programs is
larger than the number of cores, the scheduler will first
choose the programs from the program pool based on the
criteria such as priority and fairness, and then the
performance matrix associated with these programs will
be searched for the optimum allocation. Without losing
generality, this paper focuses on the case that the number of
programs is no larger than the number of cores.

Besides this proposed algorithm, we also evaluate a set
of other scheduling algorithms for comparison. These
algorithms include:

OpenSolaris: This is the default OpenSolaris scheduler,
which is unaware of the core-level heterogeneity and treats
each core as symmetric. It has the property of natural
binding, that is, when an application gets scheduled to one
core, this application is unlikely to be migrated to a different
core in the next scheduling interval to avoid migration
overhead [5]. Therefore, it can be treated as random static
mapping, and is used as the baseline scheduler in this paper.

Becchi+: This algorithm is based on the one proposed by
Becchi and Crowley [6]. While the original proposal only
applies to two types of cores, we extend it to support four or
more different cores. Specifically, the algorithm allows the
applications run for one interval, and then it randomly
selects two cores, swaps the applications running on the
cores, and makes them run for another interval. The
allocation that gives the higher performance between these
two intervals is enforced in the next scheduling interval.
To mitigate the overhead of program swapping, we allow

the procedure to repeat 10 times and then no program
swapping is allowed in the following 10 scheduling
intervals, and then the swapping procedure repeats again
for 10 times and so on.

Oracle: This algorithm assumes the performance of the
program on different cores in the next scheduling interval is
known a priori. It uses these future performance data to find
the program-core allocation that gives highest throughput
(or speedup), and enforce the allocation in the next
scheduling interval. While it is unrealistic in practice, it sets
an upper bound of the potential performance improvement.

Worst static scheduling (WSS): This is essentially the static
program-core mapping that gives the lowest aggregated
throughput (or speedup). It is only used as a reference point
to highlight the worst situation that a heterogeneity-
unaware scheduling scheme could possibly end up with.

7 EXPERIMENT METHODOLOGY

7.1 Simulation Platform

We use Simics [19], extended with the Gems toolset [20], to
simulate a quad-core SPARCv9 CMP system running under
OpenSolaris operating system. Each core in the CMP is
four-issue out-of-order processor modeled by Opal [20].
The simulated CMP system contains a detailed memory
subsystem model, which includes an intercore last-level
cache network and a detailed memory controller. In
addition, the simulated system supports software prefetch-
ing and next-line hardware prefetching. Table 2 lists the
nominal configurations of the CMP system in detail. We use
Wattch [21] to estimate the dynamic power, and Cacti 5 [22]
to estimate the leakage power on caches and other SRAM
structures in the core. We also use Orion [23] to estimate the
power on the interconnection network of the last level
cache. Therefore, the performance and power overhead of
application migration is fully modeled in each application
scheduling scenario.

This paper focuses on the core-level heterogeneity on
clock frequency, integer ALU number and L2 cache size, yet it
is infeasible to evaluate every possible configuration. There-
fore, we evaluate three sets of heterogeneous configurations
created by varying these resources over their nominal values,
as shown in Table 3. These configuration sets are: low
heterogeneity (LH) where only clock frequency varies,
medium heterogeneity (MH) where both clock frequency
and I-ALU number vary, and high heterogeneity (HH)

CHEN ET AL.: PREDICTIVE HETEROGENEITY-AWARE APPLICATION SCHEDULING FOR CHIP MULTIPROCESSORS 441

TABLE 2
Nominal Configurations of the CMP System

where all three resources vary. Note that not all resources are
varying at the same direction. For example, while the clock
frequency of C1 is larger than that of C2, the I-ALU number of
C1 is less than that of C2. Although there are other
heterogeneous configuration sets, these three configuration
sets are representative in covering different degrees of
heterogeneity. More importantly, these heterogeneity levels
are used to demonstrate the superiority of PHASE over
existing scheduling schemes regardless of the detailed
heterogeneous configurations.

7.2 Workloads

To stress the scheduling in heterogeneous CMPs, the
workload also needs to be heterogeneous (Homogeneous
workloads, such as the threads spawned from a program,
benefit little from scheduling in heterogeneous CMPs.) [7].
Therefore, we construct nine multiprogrammed workloads
from the programs in SPEC CPU2006 benchmark suite [25],
with each program compiled to SPARC ISA. Each hetero-
geneous workload contains two integer programs and two
FP programs, as shown in Table 4. The program mix is based
on the similarity analysis by Phansalkar et al. [26], and is
created such that: 1) the workloads cover all representative
programs; 2) programs in each workload are from clusters
with large linkage distances [26]. Each workload is executed
on the aforementioned three heterogeneous CMP systems.
During the execution, each workload is fast-forwarded
3 billion instructions, and the next 100 million instructions
are used to warmup the cache subsystem. We then simulate
the full system for a time span equivalent to 1 second on a
real 4-GHz CMP system, which covers up to 5 billion
instructions for a program. The scheduling interval is set to
10 ms (standard in OpenSolaris). Therefore, each simulation
gives us 100 scheduling intervals.

7.3 Metrics

We use the aggregated throughput, defined as the sum of each
application’s million-instructions per second (MIPS), and the

weighted speedup [27], defined as
P

i IPC
scheduled
i =IPCref

i , as
the metrics to evaluate the system performance. In the
weighted speedup, IPCscheduled

i is the IPC of the application
i being scheduled with a certain scheduling algorithm, and
IPCref

i refers to the IPC of the application iunder the baseline
scenario (OpenSolaris in this paper). To measure the
efficiency of the system, we use the metric mips3=W , which
is inverse to energy-delay-square (ED2) and has been
accepted as the efficiency metric for high-performance
systems [28].

8 EVALUATION

8.1 Model Accuracy

The accuracy of the analytic performance model could
largely impact the effectiveness of the proposed scheduling
framework. To evaluate this accuracy, we run every SPEC
CPU2006 program on a simulated processor for one
scheduling interval, and use the performance model to
estimate the program’s CPI on other processors with
different configurations. Meanwhile, we also run the
programs on those processors for one scheduling interval
and compare the observed CPI with the estimated one. As
shown in Figs. 5a, 5b, and 5c, the average error between the
estimated CPI and the observed one is no larger than
8.17 percent, indicating the performance model keeps a
good track of the observed performance when only one
resource varies its configuration. Fig. 5d shows the Monte
Carlo simulation of 300 random configurations when all
three resources vary simultaneously. The average error
between the estimated CPI and the observed one is
6.71 percent. These errors are mainly due to: 1) the fact
that the profiled critical dependence chain based on the
number of dependent instructions may not be the real
critical dependence chain in terms of execution latency;
2) the usage of dynamic set sampling to approximate the
behavior of the entire cache; and 3) the fact that the
simulator models hardware prefetching but the analytic
model does not captures the effect of hardware prefetching.
Nevertheless, we believe that these are the reasonable
tradeoffs between the accuracy and the hardware cost, since
the accuracy of the model is sufficient for our scheduling
heuristic to achieve near-optimal performance.

8.2 Migration Threshold

As explained in Section 6, the proposed scheduling
algorithm uses the migration threshold to control perfor-
mance gain and throttle nonbeneficial program migration.
The migration threshold should be reasonably high to filter
out detrimental program migrations whose migration

442 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 2, FEBRUARY 2014

TABLE 3
Configurations of the CMP System

TABLE 4
Workloads and Their Characteristics

overhead is larger than the potential performance gain.
However, the threshold cannot be too high, otherwise it
may conservatively prevent the program from migrating,
missing the opportunities for performance improvement.
Therefore, a good threshold should prevent most of the
detrimental program migrations yet still allow most of the
beneficial ones. In this paper, we find out that 5 percent is a
reasonable threshold value that meets this criterion for all
workloads. One can further improve the performance by
using an adaptive threshold, but it is beyond the scope of
this paper.

8.3 Performance

A case study. As an example, Fig. 6 shows the details of
program-core allocation for workload lxws under four
different scheduling algorithms. As shown in Fig. 6b,
Becchi+ needs many scheduling intervals to try different
program-core allocations before it stabilizes. After being
stable for several intervals, Becchi+ has to go back to the
stage of trial runs again to detect any program phase
changes that may cause changes in program scheduling,
which significantly undermines the benefit of program
scheduling. In contrast, PHASE completely avoids this

problem by replacing the heavy-weight and slow trial runs

with the light-weight and fast performance prediction. As

shown in Fig. 6c, PHASE enforces a new program-core

allocation immediately after the first scheduling interval.

During the execution, PHASE also dynamically enforces

different program-core allocation along with the overall

performance changes. Note that while the performance of

PHASE is close to Oracle, the program-core allocations in

PHASE does not always match Oracle. This phenomenon

mainly comes from two sources: 1) PHASE uses the history

information to estimate future performance, hence cannot

capture the sudden performance change in the next

scheduling interval; whereas the Oracle scheduler knows

the future events, and can adjust the scheduling decisions

accordingly; and 2) due to the greedy nature of the searching

algorithm, PHASE may be trapped in the application

assignment that is only local optimum whereas the Oracle

scheduler always enforces the global optimum assignment.
Improvement on throughput. Fig. 7a shows the comparison

of the aggregated throughput for different scheduling

policies. We observe that the performance of the OpenSolaris

scheduler can be very close to (e.g., workload mbpg) or

CHEN ET AL.: PREDICTIVE HETEROGENEITY-AWARE APPLICATION SCHEDULING FOR CHIP MULTIPROCESSORS 443

Fig. 6. Scheduling of the workload lxws. (a) OpenSolaris scheduling, and the normalized throughput is 1. (b) Becchi+ scheduling, and the normalized
throughput is 1.030. (c) PHASE scheduling, and the normalized throughput is 1.084. (d) Oracle scheduling, and the normalized throughput is 1.102.
For all subfigures, � stands for libquantum, 4 for xalancbmk, � for wrf, and + for soplex.

Fig. 5. Model accuracy. (a) The number of IALU varies from 1 to 4. (b) The L2 cache size varies from 512 KB to 2 MB at the step of 256 KB.
(c) Frequency varies from 2 GHz to 4 GHz at the step of 0.1 GHz. (a)-(c) Only one resource changes with others in nominal configurations. (d) Three
hundred random configurations when three resources vary simultaneously.

significantly higher (e.g., workload xnlo) than that of the
WSS scheduler. This is because the OpenSolaris scheduler
does not consider the underlying hardware heterogeneity,
and the random nature of program-core assignment may
end up with a reasonable good static assignment or the
worst static assignment. This also means that a scheduler
unaware of the core-level heterogeneity may lead to
nondeterminist performance, which further underscores
the importance of heterogeneity awareness in application
schedulers. This figure also shows that Becchi+ scheduler
has significant improvement over the baseline OpenSolaris

scheduler, yet its performance is still far from that of the
Oracle scheduler due to its inability to quickly identify the
optimum application-core assignment with explorative trial
runs. In contrast, PHASE eliminates the trial runs and can
achieve near optimum performance improvement. On
average, it achieves 20.8 percent improvement over the
baseline, 11.4 percent improvement over Becchi+, and is
only 1.7 percent less than the oracle scheduling.

Fig. 7b illustrates the impact of migration overhead on the
system throughput. It is obtained by comparing the realistic
throughput with the throughput that is achieved when the
data working sets are ideally moved along with the
migrating applications. The migration overhead of Becchi+
is consistently the largest for each workload due to the
unnecessary movement of data sets and slows down the
overall execution. Fig. 7c shows the average throughput
(geometric mean) improvement as the heterogeneity degree
changes. We observe that the potential of the throughput
improvement drops as the heterogeneity degree decreases.
This is because with reduced heterogeneity, the performance

difference of scheduling an application to different cores is
also reduced.

Improvement on efficiency. Fig. 8a shows the comparison
of the efficiency in terms of mips3=W for different
scheduling algorithms. We observe that PHASE achieves
3.2� efficiency improvement on workload mbpg compared
with the baseline scheduler. This improvement is mainly
because OpenSolaris scheduler blindly assigns the memory-
bound mcf to the fastest core (C0) and the computing-
bound gcc to the slowest core (C3), whereas PHASE
schedules the programs in the opposite way, resulting
high efficiency improvement. On average, PHASE im-
proves the efficiency by 72.6 percent over the OpenSolaris
scheduler and 37.2 percent over Becchi+ scheduler. Note
that for some workloads, such as mbpg, the WSS scheduler
yields higher efficiency that the baseline scheduler, indicat-
ing that the baseline scheduler may require higher power
consumption than WSS scheduler. Fig. 8b shows the
efficiency loss caused by migration overhead. Again,
Becchi+ has the highest efficiency loss because the trial
runs not only slow down the execution but also incur
extra power consumption on the interconnection network
between caches. Fig. 8c further shows the efficiency
improvement as the heterogeneity level changes. Similarly,
the potential of efficiency improvement decrease as the
heterogeneity degree decreases.

Improvement on weighted speedup. Fig. 9 shows the
performance and efficiency of different schedulers when
using the weighted speedup as the optimization target. The
results are similar with those of aggregated throughput, yet
with smaller improvement. On average, PHASE improves

444 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 2, FEBRUARY 2014

Fig. 7. Comparison of throughput. The data are normalized to the throughput of the OpenSolaris scheduler.

Fig. 8. Comparison of efficiency. The data are normalized to the efficiency of the OpenSolaris scheduler.

the weighted speedup by 11.3 percent and the mips3=W
efficiency by 59.7 percent over OpenSolaris scheduler, and
compared with Becchi+ scheduler, the improvements are
6.8 and 26.6 percent, respectively.

Impact of program number. We also evaluate the impact of
program number on the performance of the schedulers.
To do so, for each of the four-programmed workloads, we
evaluate all possible combinations of 1, 2, and 3 programs.
The geometric means of the throughput results are shown
in Fig. 10a. Compared with the baseline scheduler, the
performance of Becchi+ decreases as the program number
drops from 4 to 1. It is mainly because the scheduler
unaware of the heterogeneity is more likely to reach a good
static application assignment as the program number gets
smaller. However, the performance of our predictive
scheduling is still near optimum, and can reach up to
14.5 percent improvement over Becchi+. Fig. 10b further
shows the efficiency improvement as the program number
changes. Overall, the potential of efficiency improvement
decreases as the number of program decreases. Figs. 10c
and 10d show the results of the same experiment as
Figs. 10a and 10b, but with weighted speedup as the
optimization target. We observe the similar trend.

8.4 Scalability

Since PHASE depends on performance prediction for
application scheduling, it does not require any trial runs
and hence avoids the major scalability issue associated with
the trial-and-error based dynamic scheduler. Meanwhile, to
predict the application’s performance, PHASE requires one
hardware profiler per core, and hence the hardware cost of
the framework scales only linearly with the number of cores.
Another important aspect is the scalability of the searching
algorithm that PHASE uses to identify the appropriate
program-core allocation. To evaluate scalability of this
algorithm, we measure its dynamic instruction count and

its execution time under different number of cores. Fig. 11
shows the dynamic instruction count as well as the
execution time of the searching algorithm. As we can see,
even if the number of core reaches 32, it takes only 18:2 �s
to execute the searching algorithm on a 4-GHz processor,
which is less than 0.2 percent of the 10 ms scheduling
interval and hence can be ignored. For CMPs with more
than 32 cores, the scheduler could employ an hierarchical
searching algorithm, which partitions the cores into groups
of 32 cores or less and finds the appropriate program-core
mapping hierarchically between groups and then within
groups. In this way, the searching overhead remains low
even for a large number of cores. Overall, PHASE
demonstrates a good scalability with the number of core
in the CMP system.

9 RELATED WORK

Prior work on hardware-aware application scheduling can
be classified into the following categories:

CHEN ET AL.: PREDICTIVE HETEROGENEITY-AWARE APPLICATION SCHEDULING FOR CHIP MULTIPROCESSORS 445

Fig. 10. Average performance and efficiency improvement as the program number changes.

Fig. 9. Weighted speedup and efficiency.

Fig. 11. Scalability of the searching algorithm.

Scheduling for single-ISA heterogeneous CMPs. Shepalov
et al. [7] propose a heterogeneity-aware signature sup-
ported (HASS) scheduler, which relies on a signature
generated by offline profiling to schedule the applications.
Chen and John [8] proposed to use inherent program
characteristics to find the proper program-core mapping
offline. These offline schedulers cannot exploit dynamic
phase changes, are sensitive to input data sets, and are
impractical to implement without dramatic changes in the
computer system. Kumar et.al [4] propose a dynamic
scheduling scheme that tentatively runs application on
different cores, and uses the sampled energy and perfor-
mance data to find best application-core mapping. Becchi
and Crowley [6] use the IPC ratio between the tentative
runs on two different cores to migrate the application.
These methods require trial runs, which not only incur
overhead in power and performance, but also result in
scalability issues. In contrast, our method does not require
offline profiling nor any trial runs, and can achieve near
optimum scheduling results.

Scheduling for on-chip variation. Teodorescu and Torellas
[11] propose an application scheduler that is aware of
intradie process variation on CMPs. This work only applies
to cores with different frequencies and voltages but no other
different microarchitectural features. In contrast, our
PHASE scheduler addresses the scheduling challenge in a
more heterogeneous CMP. Rangan et al. [29] propose
Thread Motion, that involves migrating threads across
processors with different voltage and frequency, as an
alternative to DVFS. However, their architecture does not
have any other source of heterogeneity and is effective only
when multiple cores share an L1 cache. Recent work by Yan
et al. [30] tries to address timing emergencies as a result of
running multiple programs. They attempt to schedule
workloads with large variations that may trigger timing
emergencies on cores that can tolerate them. This is
complementary to our work.

Scheduling for hard faults avoidance. Powell et al. [31]
propose architectural core salvaging as a means for utilizing
cores that cannot execute certain classes of instructions due
to permanent faults. In this scheme, program migration is
triggered only when a core runs into an instruction that
cannot be executed. Therefore, this scheme is intended to
ensure the execution correctness as opposed to enhance the
performance, hence is complementary to our method.

10 CONCLUSIONS

As the transistor density and die sizes continue to grow,
process variation and hard faults are expected to cause
heterogeneity even in chip multiprocessors that were
homogeneous by design. We show that there is the need
to leverage such heterogeneity for application scheduling.
However, the heterogeneity-aware schedulers proposed in
the literature have inefficiencies and shortcomings, either
causing significant overhead in power and performance or
being impractical to implement.

This paper presents PHASE, a heterogeneity-aware
scheduling framework that can dynamically and proac-
tively schedule applications in single-ISA heterogeneous
CMPs. This framework uses a set of hardware-efficient
online profilers and an analytic performance model to

simultaneously predict the application’s performance on
different cores. Based on the predicted performance, the
scheduler identifies and enforces near optimum application
assignment for each scheduling interval, eliminating the
need of trial runs or offline profiling. We show that PHASE
outperforms the OpenSolaris scheduler by an average of
20.8 percent in terms of overall throughput and an average
of 72.6 percent in terms of efficiency. Compared with the
state-of-the-art research scheduler, the proposed scheduler
improves the throughput by an average of 11.4 percent and
the efficiency by an average of 37.2 percent.

The proposed PHASE framework provides a platform
which can be augmented to support additional structures as
necessary. For example, it can be extended to support more
manufacturing-caused heterogeneous resources, such as
ROB sizes, or more coarse-grain heterogeneity from design,
such as in-order and out-of-order execution styles. Overall,
the proposed scheduling framework opens up a new
possibility to leverage performance prediction to efficiently
exploit what heterogeneous computing has to offer.

ACKNOWLEDGMENTS

The authors would like to thank anonymous reviewers
for the feedback. This work was supported partially
through the US National Science Foundation (NSF) Award
numbers 0702694 and 1117895. Any opinions, findings,
and conclusions or recommendations expressed herein are
those of the authors and do not necessarily reflect the
views of NSF.

REFERENCES

[1] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and
V. De, “Parameter Variations and Impact on Circuits and
Microarchitecture,” Proc. Design Automation Conf., pp. 338-342,
2003.

[2] P. Shivakumar, S.W. Keckler, C.R. Moore, and D. Burger,
“Exploiting Microarchitectural Redundancy for Defect Tolerance,”
Proc. Int’l Conf. Computer Design, pp. 481-495, 2003.

[3] S. Ozdemir, D. Sinha, G. Memik, J. Adams, and H. Zhou, “Yield-
Aware Cache Architectures,” Proc. Int’l Symp. Microarchitecture,
pp. 15-25, 2006.

[4] R. Kumar, K.I. Farkas, N.P. Jouppi, P. Ranganathan, and D.M.
Tullsen, “Single-ISA Heterogeneous Multi-Core Architectures:
The Potential for Processor Power Reduction,” Proc. Int’l Symp.
Microarchitecture, pp. 81-92, 2003.

[5] P.B. Daniel and M. Cesati, Understanding the Linux Kernel,
chapter 7, third, ed. O’Reilly Media, 2005.

[6] M. Becchi and P. Crowley, “Dynamic Thread Assignment on
Heterogeneous Multiprocessor Architectures,” Proc. Conf. Comput-
ing Frontiers, pp. 29-40, 2006.

[7] D. Shelepov, J.C. Saez Alcaide, S. Jeffery, A. Fedorova, N. Perez,
Z.F. Huang, S. Blagodurov, and V. Kumar, “HASS: A Scheduler
for Heterogeneous Multicore Systems,” SIGOPS Operating Systems
Rev., vol. 43, no. 2, pp. 66-75, 2009.

[8] J. Chen and L.K. John, “Efficient Program Scheduling for
Heterogeneous Multi-Core Processors,” Proc. Design Automation
Conf., pp. 927-930, 2009.

[9] “International Technology Roadmap for Semiconductors,” http://
public.itrs.net, 2006.

[10] R. Rao, D. Blaauw, D. Sylvester, and A. Devgan, “Modeling and
Analysis of Parametric Yield under Power and Performance
Constraints,” IEEE Design Test of Computers, vol. 22, no. 4, pp. 376-
385, July 2005.

[11] R. Teodorescu and J. Torrellas, “Variation-Aware Application
Scheduling and Power Management for Chip Multiprocessors,”
Proc. Int’l Symp. Computer Architecture, pp. 363-374, 2008.

446 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 2, FEBRUARY 2014

[12] T.S. Karkhanis and J.E. Smith, “A First-Order Superscalar
Processor Model,” Proc. Int’l Symp. Computer Architecture,
pp. 338-349, 2004.

[13] S. Eyerman, L. Eeckhout, T. Karkhanis, and J.E. Smith, “A
Performance Counter Architecture for Computing Accurate CPI
Components,” Proc. Int’l Conf. on Architectural Support for
Programming Languages and Operating Systems, pp. 175-184, 2006.

[14] R.L. Mattson, D.R. Slutz, and I.L. Traiger, “Evaluation Techniques
for Storage Hierarchies,” IBM Systems J., vol. 9, no. 2, pp. 78-117,
1970.

[15] B. Fields, S. Rubin, and R. Bodı́k, “Focusing Processor Policies via
Critical-Path Prediction,” Proc. Int’l Symp. Computer Architecture,
pp. 74-85, 2001.

[16] M.D. Brown, J. Stark, and Y.N. Patt, “Select-Free Instruction
Scheduling Logic,” Proc. Int’l Symp. Microarchitecture, pp. 204-213,
2001.

[17] M.K. Qureshi and Y.N. Patt, “Utility-Based Cache Partitioning:
A Low-Overhead, High-Performance, Runtime Mechanism to
Partition Shared Caches,” Proc. Int’l Symp. Microarchitecture,
pp. 423-432, 2006.

[18] Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B: System Programming Guide, chapter 7, O’Reilly
Media, Sept. 2013.

[19] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G.
Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and B. Werner,
“Simics: A Full System Simulation Platform,” Computer, vol. 35,
no. 2, pp. 50-58, 2002.

[20] M.M.K. Martin, D.J. Sorin, B.M. Beckmann, M.R. Marty, M. Xu,
A.R. Alameldeen, K.E. Moore, M.D. Hill, and D.A. Wood,
“Multifacet’s General Execution-Driven Multiprocessor Simulator
(Gems) Toolset,” SIGARCH Computer Architecture News, vol. 33,
no. 4, pp. 92-99, 2005.

[21] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A Framework
for Architectural-Level Power Analysis and Optimizations,” Proc.
Int’l Symp. Computer Architecture, pp. 83-94, 2000.

[22] S. Thoziyoor, N. Muralimanohar, J.H. Ahn, and N.P. Jouppi,
“Cacti 5.1,” HP technical reports, pp. 1-37, 2008.

[23] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik, “Orion: A Power-
Performance Simulator for Interconnection Networks,” Proc. Int’l
Symp. Microarchitecture, pp. 294-305, 2002.

[24] S. Rixner, W.J. Dally, U.J. Kapasi, P. Mattson, and J.D. Owens,
“Memory Access Scheduling,” Proc. Int’l Symp. Computer Archi-
tecture, pp. 128-138, 2000.

[25] “SPEC CPU2006 Benchmark Suit,” http://www.spec.org, 2013.
[26] A. Phansalkar, A. Joshi, and L.K. John, “Analysis of

Redundancy and Application Balance in the SPEC CPU2006
Benchmark Suite,” Proc. Int’l Symp. Computer Architecture,
pp. 338-349, 2007.

[27] A. Snavely and D.M. Tullsen, “Symbiotic Job Scheduling for a
Simultaneous Multithreaded Processor,” Proc. Int’l Conf. Architec-
tural Support for Programming Languages and Operating Systems,
pp. 234-244, 2000.

[28] D.M. Brooks, P. Bose, S.E. Schuster, H. Jacobson, P.N. Kudva, A.
Buyuktosunoglu, J.-D. Wellman, V. Zyuban, M. Gupta, and P.W.
Cook, “Power-Aware Microarchitecture: Design and Modeling
Challenges for Next-Generation Microprocessors,” IEEE Micro,
vol. 20, no. 6, pp. 26-44, Nov./Dec. 2000.

[29] K.K. Rangan, G.-Y. Wei, and D. Brooks, “Thread Motion: Fine-
Grained Power Management for Multi-Core Systems,” Proc. Int’l
Symp. Computer Architecture, pp. 302-313, 2009.

[30] G. Yan, X. Liang, Y. Han, and X. Li, “Leveraging the Core-Level
Complementary Effects of PVT Variations to Reduce Timing
Emergencies in Multi-Core Processors,” Proc. Int’l Symp. Computer
Architecture, pp. 485-496, 2010.

[31] M.D. Powell, A. Biswas, S. Gupta, and S.S. Mukherjee, “Archi-
tectural Core Salvaging in a Multi-Core Processor for Hard-Error
Tolerance,” Proc. Int’l Symp. Computer Architecture, pp. 93-104,
2009.

Jian Chen received the BE and ME degrees in
electrical engineering from Shanghai Jiao Tong
University, in 2002 and 2005, respectively, and
the PhD degree in computer engineering from
The University of Texas at Austin in 2011. He
is currently a performance architect in Intel
Corporation. His research interests include
computer architecture, workload characteriza-
tion and performance modeling. He is a
member of the IEEE, the IEEE Computer
Society, and ACM.

Arun Arvind Nair received the BE degree
in electronics engineering from the University of
Mumbai, India, in 2002, the MS degree in
computer engineering from the University of
California at Irvine in 2006, and the PhD
degree in computer engineering from The
University of Texas at Austin in 2012. He is
currently a performance architect in AMD. His
research interests include architectural techni-
ques for reliability, workload characterization,

and analytical modeling. He is a member of the IEEE and the IEEE
Computer Society.

Lizy K. John received the PhD degree in
computer engineering from The Pennsylvania
State University in 1993. She currently holds the
B.N. Gafford Professorship in the Electrical
Communication Engineering Department at The
University of Texas at Austin. Her research
interests include microprocessor architecture,
performance and power modeling, workload
characterization, and low power architecture.
She is a fellow of the IEEE and the IEEE
Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CHEN ET AL.: PREDICTIVE HETEROGENEITY-AWARE APPLICATION SCHEDULING FOR CHIP MULTIPROCESSORS 447

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

