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Abstract 
 

Performance evaluation using only a subset of 
programs from a benchmark suite is commonplace in 
computer architecture research. This is especially true 
during early design space exploration when a variety of 
enhancements need to be evaluated to reach a good 
microprocessor architecture in a limited amount of time. 
When such a subset of benchmark programs is used for 
performance evaluation of architectural enhancements, it 
is essential that the subset is well distributed within the 
target workload space rather than clustered in specific 
areas. Past efforts for identifying subsets have primarily 
relied on using microarchitecture-dependent metrics of 
program performance, such as cycles per instruction and 
cache miss-rate. The shortcoming of this technique is that 
the results could be biased by the idiosyncrasies of the 
chosen configurations.  

We believe that a technique based on measuring the 
inherent characteristics of a program will make the 
results applicable to any microarchitecture. The objective 
of this paper is to present a methodology to measure 
similarity of programs based on their inherent 
microarchitecture-independent characteristics. We apply 
our methodology to the SPEC CPU2000 benchmark suite 
and demonstrate that a subset of 8 programs can be used 
to effectively represent the entire suite.  We validate the 
usefulness of this subset by using it to estimate the 
average IPC, speedup, and L1 data cache miss-rate of the 
entire suite.  The average IPC of 8-way and 16-way issue 
superscalar processor configurations could be estimated 
with 3.9% and 4.4% error respectively.  This 
methodology is applicable not only to find subsets from a 
benchmark suite, but also to identify programs for a 
benchmark suite from a list of potential candidates. 

We also apply the microarchitecture-independent 
program characterization methodology to understand 
how the inherent characteristics of programs in four 
generations of SPEC CPU benchmark suites have evolved 
over the last decade.  Surprisingly, we find that other 
than a dramatic increase in the dynamic instruction count 

and increasingly poor temporal data locality, the inherent 
program characteristics have more or less remained the 
same. 
 
1.  Introduction 
 

During the early design space exploration phase of 
the microprocessor design process, a variety of 
enhancements and design options are evaluated by 
analyzing the performance model of the microprocessor.  
Simulation time is limited, and hence it is often required 
to use only a subset of the benchmark programs to 
evaluate the enhancements and design options.  A poorly 
chosen set of benchmark programs may not accurately 
depict the true performance of the processor design.  On 
one hand, selecting the wrong set of benchmarks could 
incorrectly estimate the performance of a particular 
enhancement; while on the other hand, simulating similar 
programs will increase simulation time without providing 
additional information.  Therefore, a good workload 
should have programs that are well distributed within the 
target workload space without being clustered in specific 
areas.  Understanding similarity between programs can 
help in selecting benchmark programs that are distinct, 
but are still representative of the target workload space.  
A typical approach to study similarity in programs is to 
measure program characteristics and then use statistical 
data analysis techniques to group programs with similar 
characteristics.   

Programs can be characterized using implementation 
(machine) dependent metrics such as cycles per 
instruction (CPI), cache miss-rate, and branch prediction 
accuracy, or microarchitecture-independent metrics such 
as temporal locality, and parallelism.  Techniques that 
have been previously proposed primarily concentrate on 
measuring microarchitecture-dependent characteristics of 
programs [7] [17].  This involves measuring program 
performance characteristics such as instruction and data 
cache miss-rate, branch prediction accuracy, CPI, and 
execution time across multiple microarchitecture 
configurations.  The results obtained from these 
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techniques could be biased by the idiosyncrasies of a 
particular microarchitecture if the program behavior is not 
observed across a carefully chosen range of 
microarchitecture configurations.  Moreover, conclusions 
based on performance metrics such as execution time 
could categorize a program with unique characteristics as 
insignificant, only because it shows similar trends on the 
microarchitecture configurations used in the study.  For 
instance, a prior study [7] ranked programs in the SPEC 
CPU 2000 benchmark suite using the SPEC peak 
performance rating.  The program ranks were based on 
their uniqueness i.e. the programs that exhibit different 
speedups on most of the machines were given a higher 
rank as compared to other programs in the suite.  In this 
scheme of ranking programs, gcc ranks very low, and 
seems to be less unique.  However, our results show that 
the inherent characteristics of gcc are significantly 
different from other programs in the benchmark suite.  
This indicates that analysis based on microarchitecture-
dependent metrics could undermine the importance of a 
program that is really unique. 

We believe that by measuring the inherent 
characteristics of a program, it is possible to ensure that 
the results of such experiments will be applicable to any 
microarchitecture.   The objective of this paper is to 
present a technique to measure similarity of programs 
based on their microarchitecture-independent 
characteristics, and demonstrate its application to find a 
representative subset of programs from the SPEC CPU 
2000 benchmark suites. We also use the methodology 
presented in this paper to understand similarity in 
program characteristics across four generations of SPEC 
CPU benchmark suites. 

 In this study we classify two programs to be similar 
if they have similar inherent characteristics such as 
instruction locality, data locality, branch predictability, 
and instruction level parallelism (ILP).  In order to 
remove the correlation between the measured metrics, and 
make it possible to visualize the program workspace, we 
use a multivariate statistical data analysis technique called 
principal component analysis (PCA) to reduce the 
dimensionality of the data while retaining most of the 
information.  We then use the K-means clustering 
algorithm to group programs that have similar inherent 
characteristics.  

Following are the contributions of this paper: 
 

(i) The paper motivates and presents an approach that 
can be used to measure similarity between programs 
in a microarchitecture-independent manner.   

 
(ii) The paper finds a subset of programs from the SPEC 

CPU 2000 benchmark suite.  We demonstrate the 
usefulness of this subset by using it to estimate the 

average IPC of the entire suite for two different 
configurations of a microprocessor, and average L1 
data cache miss-rate of the entire suite for 9 cache 
configurations. 

 
 
(iii) The paper provides an insight into how 

characteristics of SPEC CPU benchmark suites have 
evolved since its inception in 1989. 

 
The roadmap of this paper is as follows: In section 2 

we describe a microarchitecture-independent 
methodology to characterize benchmarks. In section 3 we 
apply the presented methodology to find a subset of 
programs from the SPEC CPU 2000 benchmark suite and 
validate that these programs are indeed representative of 
the entire benchmark suite.  Section 4 uses the presented 
methodology to provide a historical insight into how 
characteristics of SPEC CPU benchmark suites have 
changed over the last decade.  In section 5 we describe 
the related work, and in section 6 summarize the key 
learning and contributions of this study.  
 
2.  Characterization Methodology 

 
This section proposes our methodology to measure 

similarity between benchmark programs: the 
microarchitecture-independent metrics used to 
characterize the benchmarks, the statistical data analysis 
techniques, the benchmarks, and the tools. 

 
2.1  Metrics 

 
In this paper we use microarchitecture-independent 
metrics to characterize the behavior of the instruction and 
data stream of every benchmark program.  
Microarchitecture-independent metrics allow for a 
comparison between programs by understanding the 
inherent characteristics of a program isolated from 
features of particular microarchitectural components. As 
such, we use a gamut of microarchitecture-independent 
metrics that affect overall program performance.  We 
provide an intuitive reasoning to illustrate how the 
measured metrics can affect the manifested performance.  
The metrics measured in this study are a subset of all the 
microarchitecture-independent characteristics that can be 
potentially measured, but we believe that our metrics 
cover a wide enough range of the program characteristics 
to make a meaningful comparison between the programs.  
Other program characteristics, such as value 
predictability, can also be added to the analysis if they are 
exploited by the microarchitecture, and hence determine 
program performance. We have identified the following 
microarchitecture-independent metrics: 



 

 
Instruction Mix: Instruction mix of a program measures 
the relative frequency of various operations performed by 
a program.  We measured the percentage of computation, 
data memory accesses (load and store), and branch 
instructions in the dynamic instruction stream of a 
program.  This information can be used to understand the 
control flow of the program and/or to calculate the ratio 
of computation to memory accesses, which gives us an 
idea of whether the program is computation bound or 
memory bound. 
 
Dynamic Basic Block Size: A basic block is a section of 
code with one entry and one exit point. We measure the 
dynamic basic block size as the average number of 
instructions between two consecutive branches in the 
dynamic instruction stream of the program.  A larger 
basic block size is useful in exploiting instruction level 
parallelism (ILP). 
 
Branch Direction: Backward branches are typically 
more likely to be taken than forward branches.  This 
metric computes the percentage of forward branches out 
of the total branch instructions in the dynamic instruction 
stream of the program.  Obviously, hundred minus this 
percentage is the percentage of backward branches.   
 
Taken Branches:  This metric is defined as the ratio of 
taken branches to the total number of branches in the 
dynamic instruction stream of the program. 
 
Forward-taken Branches: We also measure the fraction 
of taken forward branches in the dynamic instruction 
stream of the program. 
 
Dependency Distance: We use a distribution of 
dependency distances as a measure of the inherent ILP in 
the program. Dependency distance is defined as the total 
number of instructions in the dynamic instruction stream 
between the production (write) and the first consumption 
(read) of a register instance [3] [22]. While techniques 
such as value prediction reduce the impact of these 
dependencies on ILP, information on the dependency 
distance is very useful in understanding ILP inherent to a 
program.  The dependency distance is classified into six 
categories: percentage of total dependencies that have a 
distance of 1, and the percentage of total dependencies 
that have a distance of up to 2, 4, 8, 16, 32, and greater 
than 32.  Programs that have a higher percentage of 
dependency distances that are greater than 32 are likely to 
exhibit a higher ILP (provided control flow is not the 
limiting factor). 
Data Temporal Locality: Several locality metrics have 
been proposed in the past [4] [5] [11] [18] [21] [30] [31], 

however, many of them are computation and memory 
intensive. We picked the average memory reuse distance 
metric from [31] since it is more computationally feasible 
than other metrics. In this metric, locality is quantified by 
computing the average distance (in terms of number of 
memory accesses) between two consecutive accesses to 
the same address, for every unique address in the 
program. The evaluation is performed in four distinct 
window sizes, analogous to cache block sizes. The 
data_tlocality metric is calculated for window sizes of 16, 
64, 256 and 4096 bytes. The choice of the window sizes is 
based on the experiments conducted by Lafage et.al. [31].  
Their experimental results show that the above set of 
window sizes was sufficient to characterize the locality of 
the data reference stream with respect to a wide range of 
data cache configurations. 
 
Data Spatial Locality: In order to measure spatial 
locality we computed the data_tlocality metric for four 
different window sizes: 16, 64, 256, and 4096 bytes.   
Spatial locality information is characterized by the ratio 
of the data_tlocality metric for window sizes mentioned 
above. 
 
Instruction Temporal Locality: The instruction 
temporal locality metric is quantified by computing the 
average distance (in terms of number of instructions) 
between two consecutive accesses to the same static 
instruction (instrn_tlocality), for every unique static 
instruction in the program that is executed at least twice. 
The instruction temporal locality (instrn_tlocality) is 
calculated for window sizes of 16, 64, 256, and 4096 
bytes. 
 
Instruction Spatial Locality: Spatial locality of the 
instruction stream is characterized by the ratio of the 
instrn_tlocality metric for the window sizes mentioned 
above. 
 
2.2 Statistical Data Analysis 
 

Obviously, the amount of data in the analysis is 
huge.  There are many variables (29 microarchitecture- 
independent characteristics) and many cases 
(benchmarks).  It is humanly impossible to 
simultaneously look at all the data and draw meaningful 
conclusions from them.  We thus use multivariate 
statistical data analysis techniques, namely Principal 
Component Analysis and Cluster Analysis, to compare 
and discriminate programs based on the measured 
characteristics, and understand the distribution of 
programs in the workload space.  Cluster Analysis is used 
to group n cases in an experiment (benchmark programs) 
based on the measurements of the p principal 



 

components.  The goal is to cluster programs that have 
the same intrinsic program characteristics. 
Principal Components Analysis:  Principal components 
analysis (PCA) [6] is a classic multivariate statistical data 
analysis technique that is used to reduce the 
dimensionality of the data set while retaining most of the 
original information.  It builds on the assumption that 
many variables (in our case, microarchitecture-
independent program characteristics) are correlated.  PCA 
computes new variables, called principal components, 
which are linear combinations of the original variables, 
such that all the principal components are uncorrelated.  
PCA transforms p variables X1, X2,...., Xp into p principal 
components Z1,Z2,…,Zp  such that:  
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 This transformation has the property Var [Z1] > Var [Z2] 
>…> Var [Zp] which means that 1Z  contains the most 
information and Zp the least.  Given this property of 
decreasing variance of the principal components, we can 
remove the components with the lower values of variance 
from the analysis.  This reduces the dimensionality of the 
data set while controlling the amount of information that 
is lost.  In other words, we retain q principal components 
(q << p) that explain at least 75% to 90 % of the total 
information; in this paper q varies between 2 and 4.  By 
examining the most important principal components, 
which are linear combinations of the original program 
characteristics, meaningful interpretations can be given to 
these principal components in terms of the original 
program characteristics.  
 
Cluster Analysis:  We use K-means clustering for our 
analysis [1].  K-means clustering tries to group all cases 
into exactly K clusters.  Obviously, not all values for K fit 
the data set well.  As such, we will explore various values 
of K in order to find the optimal clustering for the given 
data set.  
 
2.3 Benchmarks 
 
The different benchmark programs used in this study and 
their dynamic instruction counts are shown in Table 1.  
Due to the differences in libraries, data type definitions, 
pointer size conventions, and known compilation issues 
on 64-bit machines, we were unable to compile some 
programs (mostly from old suites - SPEC CPU 89 and 
SPEC CPU 92).  The instruction counts of these programs 
are therefore missing from the tables. The programs from 
the four SPEC CPU benchmark suites were compiled on a 

Compaq Alpha AXP-2116 processor using the 
Compaq/DEC C, C++, and the FORTRAN compiler.  The 
programs were statically built under OSF/1 V5.6 
operating system using full compiler optimization.  
Although our results are microarchitecture-independent, 
they are dependent on the instruction set architecture 
(ISA) and the compiler.  However, we feel that with 
CISC ISAs or RISC style micro-ops, our results will not 
change significantly. 
 
 2.4  Tools 
 
SCOPE: The workload characteristics were measured 
using a custom-grown analyser called SCOPE.  SCOPE 
was developed by modifying the sim-safe functional 
simulator from the SimpleScalar 3.0 [29] tool set.  
SCOPE analyses the dynamic instruction stream and 
generates statistics related to instruction mix, data 
locality, branch predictability, basic-block size, and ILP. 
Essentially, the front-end of sim-safe is interfaced with 
homegrown analyzers to obtain various locality and 
parallelism metrics.   
 
Statistical data analysis:  We use STATISTICA version 
6.1 for performing PCA.  For K-means clustering we use 
the SimPoint software [32].  However, unlike SimPoint 
we do not use random projection before applying K-
means clustering; instead, we use the transformed PCA 
space as the projected space.   
 
3. Subsetting SPEC CPU2000 benchmark 
suite 

 
Benchmark subsetting involves measuring the 

characteristics of benchmark programs and grouping 
programs with similar characteristics such as temporal 
locality, spatial locality, and branch predictability.  A 
representative program from each group can then be 
selected for simulation, without losing significant 
information.  In this section we apply the 
microarchitecture-independent technique to measure 
benchmark similarity presented in this paper, to the 
problem of finding a representative subsets of programs 
from the SPEC CPU 2000 benchmark suite.  We 
measured the microarchitecture-independent 
characteristics mentioned in section 2 for the SPEC CPU 
2000 benchmark programs from the SPEC CPU 2000 
benchmark suite.  We measured the microarchitecture-
independent characteristics mentioned in section 2 for the 
SPEC CPU2000 benchmark programs and computed two 
subsets of programs, the first based on similarity in all the 
important program characteristics described in section 

 
 



 

Program Input INT/
FP 

Dynamic 
Instruction 

Count 
 

SPEC CPU89 
 

espresso bca.in INT 0.5 billion 
Li li-input.lsp INT 7 billion 
eqntott * INT * 
gcc * INT * 
spice2g6 * FP * 
doduc doducin FP 1.03 billion 
fpppp natoms FP 1.17 billion 
matrix300 - FP 1.9 billion 
nasa7 - FP 6.2 billion 
tomcatv - FP 1 billion 
    

 
SPEC CPU92 

 
espresso bca.in INT 0.5 billion 
Li li-input.lsp INT 6.8 billion 
eqntott * INT * 
compress in INT 0.1 billion 
sc * INT * 
gcc * INT * 
spice2g6 * FP * 
doduc doducin FP 1.03 billion 
mdljdp2 input.file FP 2.55 billion 
mdljsp2 input.file FP 3.05 billion 
wave5 - FP 3.53 billion 
hydro2d hydro2d.in FP 44 billion 
Swm256 swm256.in FP 10.2 billion 
alvinn In_pats.txt FP 4.69 billion 
ora params FP 4.72 billion 
ear * FP * 
su2cor su2cor.in FP 4.65 billion 
fpppp natoms FP 116 billion 
nasa7 - FP 6.23 billion 
tomcatv - FP 0.9 billion 
    

 
SPEC CPU95 

 
go null.in INT 18.2 billion 
Li *.lsp INT 75.6 billion 

m88ksim ctl.in INT 520.4 billion 
compress bigtest.in INT 69.3 billion 
ijpeg penguin.ppm INT 41.4 billion 
gcc expr.i INT 1.1 billion 
perl perl.in INT 16.8 billion 
vortex * INT * 
wave5 wave5.in FP 30 billion 
hydro2d hydro2d.in FP 44 billion 
swim swim.in FP 30.1 billion 
applu applu.in FP 43.7 billion 
mgrid mgrid.in FP 56.4 billion 
turb3d turb3d.in FP 91.9 
su2cor su2cor.in FP 33 billion 
fpppp natmos.in FP 116 billion 
apsi apsi.in FP 28.9 billion 
tomcatv tomcatv.in FP 26.3 billion 
    

 
SPEC CPU2000 

 
gzip input.graphic INT 103.7 billion 
vpr route INT 84.06 billion 
gcc 166.i INT 46.9 billion 
mcf inp.in INT 61.8 billion 
crafty crafty.in INT 191.8 billion 
parser ref INT 546.7 billion 
eon cook INT 80.6 billion 
perlbmk * INT * 
vortex lendian1.raw INT 118.9 billion 
gap ref.in INT 269.0 billion 
bzip2 input.graphic INT 128.7 billion 
twolf Ref INT 346.4 billion 
swim swim.in FP 225.8 billion 
wupwise wupwise.in FP 349.6 billion 
mgrid mgrid.in FP 419.1 billion 
mesa mesa.in FP 141.86 billion 
galgel gagel.in FP 409.3 billion 
art c756hel.in FP 45.0 billion 
equake inp.in FP 131.5 billion 
ammp ammp.in FP 326.5 billion 
lucas lucas2.in FP 142.4 billion 
fma3d fma3d.in FP 268.3 billion 
apsi apsi.in FP 347.9 billion 
applu applu.in FP 223.8 billion 
facerec * FP * 
sixtrack * FP * 

 

Table 1: Programs from SPEC CPU benchmark suites used in the study 

 

2, and the second based on similarity in data locality 
characteristics.  We reduce the dimensionality of the data 
using the PCA technique described earlier in the paper.  
We then use K-means clustering algorithm, provided in 
the SimPoint software, to group programs based on 
similarity in the measured characteristics.  The SimPoint 
software identifies the optimal number of clusters, K, by 

computing the minimal number of clusters for which the 
Bayesian Information Criterion (BIC) is optimal.  The 
BIC is a measure of the goodness of fit of a clustering to a 
data set.  In the following sections we describe two 
experiments to find a of programs in SPEC CPU 2000 
benchmark suite, and validate that they are indeed 
representative of the entire benchmark suite. 

3.1 Subsetting using overall program 
characteristics   

 
We measured all the microarchitecture-independent 
program characteristics mentioned in section 2 for SPEC 

CPU 2000 programs (raw data is presented in Appendix 
A).  Using the PCA and K-means clustering technique 
described above, we obtain 8 clusters as a good fit for the 
measured data set. Table 2 shows the 8 clusters and their 
members. The programs marked in bold are closest to the 



 

center of their respective cluster and are hence chosen to 
be the representatives of that particular group. For 
clusters with just two programs, any program can be 
chosen as a representative.  Citron [2] presented a survey 
on the use of SPEC CPU2000 benchmark programs in 
papers from four recent ISCA conferences.  He observed 
that some programs are more popular than the others 
among computer architecture researchers. 
The programs in the SPEC CPU2000 integer benchmark 
suite in their decreasing order of popularity are: gzip, gcc, 
parser, vpr, mcf, vortex, twolf, bzip2, crafty, perlbmk, 
gap, and eon.  For the floating-point CPU2000 
benchmarks, the list in decreasing order of popularity is:  
art, equake, ammp, mesa, applu, swim, lucas, apsi, mgrid, 
wupwise, galgel, sixtrack, facerec and fma3d. The 
clusters we obtained in Table 2 suggest that the most 
popular programs in the listing provided by Citron [2] are 
not a truly representative subset of the benchmark suite 
(based on their inherent-characteristics). For example, 
subsetting SPEC CPU 2000 integer programs using gzip, 
gcc, parser, vpr, mcf, vortex, twolf and bzip2 will result in 
three uncovered clusters, namely 1, 3 and 7.  We also 
observe that there is a lot of similarity in the 
characteristics of the popular programs listed above.  The 
three popular benchmarks parser, twolf, and vortex in the 
subset belong to the same cluster, Cluster 6, and hence do 
not provide any additional information.  The results from 
Table 2 suggest that using applu, gzip, equake, fma3d, 
mcf, twolf, mesa, and gcc as a representative subset of the 
SPEC CPU 2000 benchmark suite would be a better 
practice.  

We observe that gcc is in a separate cluster by 
itself, and hence has characteristics that are significantly 
different from other programs in the benchmark suite.  
However, in the ranking scheme used in a prior study [7], 
gcc ranks very low and does not seem to be a very unique 
program.  Their study uses microarchitecture-dependent 
metric, SPEC peak performance rating, and hence a 
program, such as gcc, that shows similar speedup on most 
of the machines will be ranked lower.  This example 
shows that results based on analysis using 
microarchitecture-independent metrics can identify 
redundancy more effectively. 

 
 
Table 2:  Optimum number of clusters for SPEC 
CPU2000 benchmarks when measuring similarity 
based on locality, branch predictability and ILP   
program characteristics. 
 
 
3.2 Subsetting using data locality characteristics 

 
In this analysis we find a subset of the SPEC 

CPU2000 benchmark suite by only considering the 7 
characteristics of SPEC CPU2000 programs that are 
closely related to the temporal and spatial data locality of 
a program viz. data_tlocality for window sizes of 16, 64, 
256, and 4096 bytes, and the ratios of each of the 
data_tlocality metric for window sizes of 64, 256, and 
4096 bytes, to the data_tlocality metric for window size 
of 16 bytes.  The first four metrics measure temporal data 
locality of the program, whereas the remaining three 
characterize the spatial data locality of the program. We 
use the same methodology for data reduction and 
clustering as mentioned above. Table 3 shows the groups 
of programs that have similar data locality characteristics.  
 
3.3. Validating benchmark  subsets  
 

It is important to know whether the subsets we 
created are meaningful and are indeed representative of 
the SPEC CPU 2000 benchmark suite. We used the 
subsets to estimate the average IPC and L1 data cache 
miss-rate of the entire benchmark suite.  We then 
compared our results with those obtained by using the 
entire benchmark suite. 

 
 
 
 
 

Cluster 1 applu, mgrid 

Cluster 2 gzip, bzip2  

Cluster 3 equake, crafty 

Cluster 4 fma3d, ammp, apsi, galgel, swim, vpr, 

wupwise 

Cluster 5 mcf 

Cluster 6 twolf , lucas, parser, vortex 

Cluster 7 mesa, art, eon 

Cluster 8 gcc 



 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 3:   Optimum number of clusters for SPEC 
PU2000 benchmarks based on similarity in data 
locality characteristics 
 
 
3.3.1 Computing IPC 
 
Using the subset based on overall program haracteristics 
we calculated the average IPC of the entire suite for two 
different microarchitectures with issue widths of 8 and 
16.  Figure 1 shows the average IPC of the entire 
benchmark suite calculated using the program subset, and 
also using every program in the benchmark suite.  

We obtained the performance data of IPC on 8-
way and 16-way issue widths for every program in the 
SPEC CPU2000 benchmarks from Wenisch et. al. [33].  
The following are the microarchitecture details: 8-way 
(RUU-128, LSQ-64, Memory System - 32 KB 2-way L1 
I/D, 2 ports, 8 MHSR, 1M 4-way L2, 16-entry store 
buffer, ITLB-4-way 128 entries, DTLB-4-way 256 entries 
– 200 cycle miss penalty, L1/L2/memory latency – 
1/12/100 cycles, Functional Units 4 I-ALU, 2 I-
MUL/DIV, 2 FP-ALU, 1 FP-MUL/DIV, and branch 
predictor – combined 2K tables 7 cycle misprediction 
penalty – 1 prediction/cycle), and 16-way (RUU-256, 
LSQ-128, Memory System – 64 KB 2-way L1 I/D, 4 
ports, 16 MHSR, 2M 8-way L2, 32-entry store buffer,  
ITLB- 4-way 128 entries, DTLB-4-way 256 entries, 200 
cycle miss penalty, L1/L2/memory latency – 2/16/100 
cycles, Functional Units 16 I-ALU, 8 I-MUL/DIV, 8 FP-
ALU, 4 FP-MUL/DIV, and branch predictor – combined 
8K tables 10 cycle misprediction penalty – 2 
predictions/cycle),   

From Table 2 we observe that each cluster has a 
different number of programs, and hence the weight 
assigned to each representative program should depend 
on the number of programs that it represents (i.e. the 

number of programs in its cluster).   For example, from 
Table 2, the weight for fma3d (cluster 4) is 7.  The error 
in average IPC computed using the subset of programs for 
both, 8-way and 16-way issue widths, is less than 5%. It 
also shows percentage error on top of the bar graphs for 
each of the configurations.  If the IPC of the entire suite 
can be estimated with reasonable accuracy using the 
subsets, we feel that it is a good validation for the 
usefulness of the subset. 

 
3.3.2 Computing data cache miss-rate.  
 Figure 2 shows average L1 data cache miss-rate of the 
benchmark suite estimated using the subset of programs 
obtained in section 3.2 along with the average miss-rate 
using the entire benchmark suite.  

We obtained the miss-rates for 9 different L1 
data cache configurations from Cantin et. al. [34]. As 
mentioned in the earlier section, the weight for each 
representative program is assigned as the number of 
programs it represents (i.e. the number of programs in its 
cluster).  From these results we can conclude that the 
program subset derived in section 4.2 is indeed 
representative of the data locality characteristics of 
programs in SPEC CPU 2000 benchmark suite.   
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Figure 1: Estimated average IPC of benchmark suite 
using subset versus True average IPC of benchmark 
suite              
 

We also used the subset based on overall 
characteristics (obtained in section 3.1) to estimate the 
average cache miss-rate of the entire suite; the results are 
also shown in Figure 2.  Although the accuracy of the 
average cache miss-rate calculated using the subset based 
on overall characteristics is not as high as that of the 
subset based on locality characteristics, it is reasonably 

Cluster 1 gzip 

Cluster 2 mcf 

Cluster 3 ammp, applu, crafty, art, eon, mgrid, 

parser, twolf, vortex, vpr 

Cluster 4 equake 

Cluster 5 bzip2 

Cluster 6 mesa, gcc 

Cluster 7 fma3d, swim, apsi 

Cluster 8 galgel, lucas 

Cluster 9 wupwise 



 

good.  It is interesting to note that in 5 of the 9 cases, the 
clusters based on overall characteristics performed better 
in estimating the average miss-rate of the entire suite, 
than the clusters based on locality characteristics. 
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Figure 2: Average miss-rate of entire suite estimated 
using the subset based on locality characteristics, 
and the subset based on overall characteristics. 
 
3.3.3 Computing execution speed-up 
 
  Figure 3 shows the estimated average (geometric 
mean) speedup of the entire suite using the subset based 
on overall program characteristics, and the true speedup 
of the entire suite for computers from various 
manufacturers.  The speedup numbers were directly 
obtained from the results published by SPEC [38].   As 
described in Section 3.3.1, each representative program in 
the subset was assigned a weight corresponding to the 
number of programs that it represents (i.e. the number of 
programs in its cluster).    

 The maximum error in the speedup estimated 
using the subset is 9.1%.  If the speedup of the entire suite 
can be estimated with reasonable accuracy using the 
subsets, we feel that it is a good validation for the 
usefulness of the subset. 
 
3.3.4 Sensitivity to number of clusters 
 
  The number of representative programs to be chosen 
from a benchmark suite depends on the level of accuracy  
desired. Theoretically, as we increase the number of 
representative programs, the accuracy should increase i.e. 
the average miss-rate of the suite calculated using the 
subset will be closer to that calculated using the entire 
suite. In this section we show that the average miss-rate 
of the benchmark suite can be calculated with an 

increasing level of accuracy if we partition the programs 
into higher number of clusters i.e. more programs are 
chosen to represent the benchmark suite. The optimum 
number of clusters for subset using data locality 
characteristics is 9 according to the SimPoint algorithm.  
Figure 4 shows the estimated miss-rate of the benchmark 
suite using a subset of 5, 9, and 15 programs that were 
clustered based on the locality characteristics. We observe 
that as we increase the number of representative programs 
(clusters), the estimated miss-rate using the subset moves 
closer to the true average miss-rate using the entire suite. 
The number of clusters can therefore be chosen 
depending on the desired level of accuracy. This can be 
achieved by simply specifying the number of 
representative programs, K, in the K-means algorithm. 
 
 
4. Similarity across four generations of SPEC 
CPU benchmark suites 

 
Standard Performance Evaluation Corporation 

(SPEC) CPU benchmark suite which was first released in 
1989 as a collection of 10 computation-intensive 
benchmark programs (average size of 2.5 billion dynamic 
instructions per program), is now in its fourth generation 
and has grown to 26 programs (average size of 230 
billion dynamic instructions per program).  In order to 
keep pace with the architectural enhancements, 
technological advancements, software improvements, and 
emerging workloads, new programs were added, 
programs susceptible to compiler tweaks were retired, 
program run times were increased, and memory activity 
of programs was increased in every generation of the 
benchmark suite.  

In this section, we use our collection of 
microarchitecture-independent metrics, described in 
section 2, to characterize the generic behavior of the 
benchmark programs as the evolved over the last decade.  
The same compiler is used to compile the four suites. The 
data is analyzed using PCA and cluster analysis to 
understand the changes in workload. 

 
4.1 Instruction Locality 

 
We perform PCA on the raw data measured for the 

instruction locality metric, which yields two principal 
components explaining 68.4 % and 28.6 % of variance. 
Figure 5 shows the benchmarks in PC space.  

PC1 represents the instruction temporal locality of 
benchmarks. Benchmarks with higher value of PC1 show 
poor temporal locality for instruction stream. Benchmarks 
with higher value of PC2 will benefit more from increase 
in block size.  Figure 6 shows that all SPEC CPU  
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Figure 3:  Average speedup of entire suite estimated using subset versus true speedup of entire suite 

 
 
 

 
 
 
             Figure 4: Sensitivity of estimated average L1 data cache miss-rate of benchmark suite to 
               number of clusters 
 
 

generations overlap.  The biggest exception is gcc in 
SPECint2000 and SPECint95 (the two dark points on the 
plot on extreme right). gcc in SPECint2000 and 
SPECint95 suite exhibits poor instruction temporal 
locality – as shown by the instrn_tlocality (Appendix A) 

metric. gcc also shows very low values for PC2 due to 
poor spatial locality. Except gcc, almost all programs in 
the 4 different generations of SPEC CPU benchmark suite 
show similar instruction locality.  
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We observe that although the average dynamic 
instruction count of the benchmark programs has 
increased by a factor of x100, the static count has 
remained more or less constant.  This suggests that the 
dynamic instruction count of the SPEC CPU benchmark 
programs could have simply been scaled – more iterations 
through the same instructions.  This could be a plausible 
reason for the observation that instruction locality of 
programs has more or less remained the same across the 
four generations of benchmark suites. 
 
4.2 Branch characteristics 

 
For studying the branch behavior we have 

included the following metrics: the percentage branches 
in the dynamic instruction stream, the average basic block 
size, the percentage forward branches, the percentage 
taken branches, and the percentage forward-taken 
branches.  From PCA analysis, we retain 2 principal 
components explaining 62% and 19% of the total 
variance, respectively.  Figure 6 plots the various SPEC 
CPU benchmarks in this PCA space.   
We observe that the integer benchmarks are clustered in 
an area. We also observe that the floating-point 
benchmarks typically have a positive value along the first 
principal component (PC1), whereas the integer 
benchmarks have a negative value along PC1.  The 
reason is that floating-point benchmarks typically have 
fewer branches, and thus have a larger basic block size; 
floating-point benchmarks also typically are very well 
structured, and have a smaller percentage of forward 
branches, and fewer percentage forward-taken branches.  
In other words, floating-point benchmarks tend to spend 
most of their time in loops.  The two outliers in the top 
corner of this graph are SPEC2000’s mgrid and applu 
programs due to their extremely large basic block sizes, 
273 and 318, respectively.  The two outliers on the right 
are SPEC92 and SPEC95 swim due to its large percentage 
taken branches and small percentage forward branches.  
We conclude from this graph that branch characteristics 
of SPEC CPU programs did not significantly change over 
the past 1.5 decades.  Indeed, all SPEC CPU suites 
overlap in this graph. 
 
4.3  Instruction-level parallelism 

 
In order to study the instruction-level parallelism 

(ILP) of the SPEC CPU suites we used the dependency 
metrics as well as the basic block size.  Both metrics are 
closely related to the intrinsic ILP available in an 
application.  Long dependency distances and large basic 
block sizes generally imply a high ILP. Basic block and 
dependency related limitations can be overcome by 
branch prediction and value prediction respectively. 

However, both these metrics can be used to indicate the 
ILP or to motivate the use of better branch and value 
predictors.  The first two principal components explain 
96% of the total variance.  The PCA space is plotted in 
Figure 7.   
We observe that the integer benchmarks typically have a 
high value along PC1, which indicates that these 
benchmarks have more short dependencies.  The floating 
benchmarks typically have larger dependency distances.  
We observe no real trend in this graph.  The intrinsic ILP 
did not change over the past 1.5 decades - except for the 
fact that several floating-point SPEC89 and SPEC92 
benchmarks (and no SPEC CPU95 or SPEC CPU2000 
benchmarks) exhibit relatively short dependencies 
compared to other floating-point  
 
4.4    Data Locality 
 

For studying the temporal and spatial locality 
behavior of the data stream we used the locality metrics 
as proposed by Lafage et. al. [31] for four different 
window sizes: 16, 64, 256, and 4096.  Recall that the 
metrics by themselves quantify temporal locality whereas 
the ratios between them is a measure for spatial locality. 
We perform PCA analyses of raw data. Figure 8 shows a 
plot of the benchmarks in this PCA space.  We concluded 
that several SPEC CPU2000 and CPU95 benchmark 
programs: bzip2, gzip, mcf, vortex, vpr, gcc, crafty, applu, 
mgrid, wupwise, and apsi from CPU2000, and gcc, 
turbo3d, applu, and mgrid from CPU95 exhibit a 
temporal locality that is significantly worse than the other 
benchmarks.  Concerning spatial locality, most of these 
benchmarks exhibit a spatial locality that is relatively 
higher than that of the remaining benchmarks, i.e. 
increasing window sizes improves performance of these 
programs more than they do for the other benchmarks. 
Obviously, we expected temporal locality of the data 
stream to get worse for newer generations of SPEC CPU 
given one of the objectives of SPEC, which is to increase 
the working set size along the data stream for subsequent 
SPEC CPU suite generations. 

In Figure 8 the first principal component basically 
measures temporal locality, i.e. a more positive value 
along PC1 indicates poorer temporal locality.  The second 
principal component basically measures spatial locality.  
Benchmarks with a high value along PC2 will thus 
benefit more from an increased line size.  This graph 
shows that for these benchmarks, all SPEC CPU 
generations overlap.  This indicates that although SPEC’s 
objective is to worsen the data stream locality behavior of 
subsequent CPU suites, several benchmarks in recent 
suites exhibit a locality behavior that is similar to older 
versions of SPEC CPU.  Moreover, several CPU95 and 
CPU2000  
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Figure 5: PCA space built from instruction locality 
characteristics 
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Figure 7: PCA space built from ILP characteristics 
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benchmarks show a temporal locality behavior that is 
better than most CPU89 and CPU92 benchmarks. 

 
4.4 Overall Characteristics 

 
In order to understand (dis) similarity across 

SPEC CPU benchmark suites we perform a cluster 
analysis in the PCA space as described in section 3. 
Clustering all 60 benchmarks yields 12 optimum clusters, 
which are shown in Table 4.    

 

 
 

Table 4: Optimum number of clusters for four 
generations of SPEC CPU benchmark programs 
using overall program  
 

The benchmarks in bold are the benchmarks closest to 
the centroid of the cluster and can thus be considered the 
representatives for that cluster. For, clusters with 2 
benchmarks either one can be picked as a representative 

since both are equidistant from the center of the cluster.  
A detailed analysis of Table 4 gives us several interesting 
insights.  First, out of all the benchmarks gcc (2000) and 
gcc (95) are together in a separate cluster. We observe 
that instruction locality for gcc is worse than any other 
program in all 4 generations of SPEC CPU suite; due to 
which gcc programs from SPEC CPU 95 and 2000 suites 
reside in their own separate cluster.  Due to its peculiar 
data locality characteristics, mcf (2000) resides in a 
separate cluster (cluster 2), and bzip2(2000), gzip(2000) 
form one cluster (cluster 12). SPEC CPU2000 programs 
exist in 10 out of 12 clusters, as opposed to SPEC CPU95 
in 7 clusters, SPEC CPU92 in 6 clusters, and SPEC 
CPU89 in 5 clusters. This shows that SPEC CPU 2000 
benchmarks are more diverse than their ancestors.  
 
 
5.  Related Work 
 

The majority of ongoing work in studying 
benchmark characteristics involves measuring 
microarchitecture-dependent metrics e.g. cycles per 
instruction, cache miss rate, branch prediction accuracy 
etc., on various microarchitecture configurations that 
offer a different mixture of bottlenecks 
[12][15][16][17][27].  The variation in these metrics is 
then used to infer the generic program behavior.  These 
inferred program characteristics may be biased by the 
idiosyncrasies of a particular configuration, and therefore 
may not be generally applicable. In this paper we measure 
program similarity based on the cause (microarchitecture-
independent characteristics) rather than the effect 
(microarchitecture-dependent characteristics). 

Past attempts to understand benchmark redundancy 
used microarchitecture-dependent metrics such as 
execution time or SPEC peak performance rating. 
Vandierendonck et. al. [7] analyzed the SPEC CPU2000 
benchmark suite peak results on 340 different machines 
representing eight architectures, and used PCA to identify 
the redundancy in the benchmark suite.  Dujmovic and 
Dujmovic [9] developed a quantitative approach to 
evaluate benchmark suites.  They used the execution time 
of a program on several machines and used this to 
calculate metrics that measure the size, completeness, and 
redundancy of the benchmark space. The shortcoming of 
these two approaches is that the inferences are based on 
the measured performance metrics due the interaction of 
program and machine behaviour, and not due to the 
generic characteristics of the benchmarks. Ranking 
programs based on microarchitecture-dependent metrics 
can be misleading for future designs because a 
benchmark might have looked redundant in the analysis 
merely because all existing architectures did equally well 

Cluster 1 gcc(95), gcc(2000) 
 

Cluster 2 mcf(2000) 
 

Cluster 3 turbo3d (95), applu (95), apsi(95), 
swim(2000), mgrid(95), wupwise(2000) 
 

Cluster 4 hydro2d(95), hydro2d(92), wave5(92), 
su2cor(92), succor(95), apsi(95), 
tomcatv(89), tomcatv(92), crafty(2000), 
art(2000), equake(2000), mdljdp2(92) 
 

Cluster 5 perl(95), li (89), li(95), compress(92), 
tomcatv(95), matrix300(89) 
 

Cluster 6 nasa7(92), nasa(89), swim(95), swim(92), 
galgel(2000), wave5(95), alvinn(92) 
 

Cluster 7 applu(2000), mgrid(2000) 
 

Cluster 8 doduc(92), doduc(89), ora(92) 
 

Cluster 9 mdljsp2(92), lucas(2000) 
 

Cluster 10 parser(2000), twolf(2000), espresso(89), 
espresso(92), compress(95), go(95), 
ijpeg(95), vortex(2000) 
 

Cluster 11 fppp(95), fpppp(92), eon(2000), vpr(2000), 
fpppp(89), fma3d(2000), mesa(2000), 
ammp(2000) 
 

Cluster 12 bzip2(2000), gzip(2000) 
 



 

(or worse) on them, and not because that benchmark was 
not unique.  The relatively lower rank of gcc in [7] and its 
better position in this work (Tables 2 and 3) is an example 
of such differences that become apparent only with 
microarchitecture-independent studies. 

There has been some research on 
microarchitecture-independent locality and ILP metrics. 
For example, locality models researched in the past 
include working set models, least recently used stack 
models, independent reference models, temporal density 
functions, spatial density functions, memory reuse 
distance, locality space etc. [4][5][11][18][21][30][31].  
Generic measures of parallelism were used by Noonburg 
et. al. [3] and Dubey et. al. [22] based on a profile of 
dependency distances in a program.   Sherwood et. al. 
[32] proposed basic block distribution analysis for finding 
program phases which are representative of the entire 
program.  Microarchitecture-independent metrics such as, 
true computations versus address computations, and 
overhead memory accesses versus true memory accesses 
have been proposed by several researchers [8][19]. This 
paper can benefit from more microarchitecture- 
independent metrics, but we believe that the metrics we 
have used cover a wide enough range of the program 
characteristics to make a meaningful comparison between 
the programs.  

Several techniques have been proposed to reduce 
simulation time of programs [35][36][37].  But our 
techniques are relevant not only for identifying a subset 
from an existing suite, but also to select programs to 
include in a benchmark suite when there are several 
candidates. 

 
6.   Conclusion  

 
In this paper we presented a methodology to 

measure similarity of programs based on their inherent 
microarchitecture-independent characteristics.  We apply 
this technique to identify a small subset of nine programs 
in the SPEC CPU 2000 benchmark suite that are 
representative of the data locality exhibited by the suites, 
and a subset of eight programs that are representative of 
the overall characteristics (instruction locality, data 
locality, branch predictability, and ILP) of the programs 
in the entire suite.  We validated this technique by 
demonstrating that the average data cache miss-rate and 
IPC of the entire suite could be estimated with a 
reasonable accuracy by just simulating the subset of 
programs.  These results are applicable generally to any 
microarchitecture.   

We also applied the microarchitecture-
independent program characterization methodology to 
understand how the characteristics of the SPEC CPU 
programs have evolved since the inception of SPEC.  We 

characterized 29 different microarchitecture-independent 
features of 60 SPEC CPU programs from SPEC89 to 
SPEC2000 suites.  We find that no single characteristic 
has changed as dramatically as the dynamic instruction 
count.   Our analysis shows that the branch and ILP 
characteristics have not changed much over the last 
decade, but the temporal data locality of programs has 
become increasingly poor.  Our results indicate that 
although the diversity of newer generations of SPEC CPU 
benchmarks has increased, there still exists a lot of 
similarity between programs in the SPEC CPU2000 
benchmark suite. 

The methodology presented in this paper could 
be used to select representative programs for the 
characteristics of interest, should the cost of simulating 
the entire suite be prohibitively high.  This technique 
could also be used during the benchmark design process 
to select only a fixed number of benchmark programs 
from a group of candidates. 
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Appendix A  

Benchmark %Memory %Branches Comp/Mem BB Size %Fwd %taken %Fwd-Taken %Back-Taken d-tlocality16 d-tlocality64 d-tlocality256 d-tlocality4096 d-tloc64/d-tloc16 d-tloc256/d-tloc16 d-tloc4096/d-tloc16
espresso_89 26.66 15.92 2.15 5.28 0.63 0.64 0.47 0.53 313.00 103.00 31.00 6.00 0.329073482 0.099041534 0.019169329

li_89 41.13 16.74 1.02 4.98 0.66 0.65 0.63 0.37 138.00 63.00 36.00 7.00 0.456521739 0.260869565 0.050724638
doduc 89 34.51 7.74 1.67 11.91 0.80 0.49 0.64 0.36 499.00 628.00 201.00 28.00 1.258517034 0.402805611 0.056112224
nasa7_89 46.24 2.47 1.11 39.56 0.26 0.84 0.14 0.86 338.00 593.00 182.00 25.00 1.75443787 0.538461538 0.073964497

matrix300_89 35.15 3.13 1.76 30.94 0.05 0.95 0.01 0.99 21312.00 1771.00 236.00 24.00 0.083098724 0.011073574 0.001126126
fpppp_89 43.36 1.29 1.28 76.73 0.82 0.51 0.72 0.28 2418.00 850.00 230.00 30.00 0.35153019 0.095119934 0.012406948

tomcatv_89 39.31 2.78 1.47 34.97 0.53 0.99 0.53 0.47 575.00 603.00 171.00 21.00 1.048695652 0.297391304 0.036521739
doduc_92 34.51 7.74 1.67 11.91 0.80 0.49 0.64 0.36 505.00 631.00 201.00 28.00 1.24950495 0.398019802 0.055445545

mdljdp2_92 24.72 12.65 2.53 6.91 0.86 0.84 0.83 0.17 1230.00 656.00 208.00 33.00 0.533333333 0.169105691 0.026829268
wave5_92 35.75 4.63 1.67 20.62 0.49 0.73 0.34 0.66 1020.00 576.00 184.00 27.00 0.564705882 0.180392157 0.026470588

tomcatv_92 39.31 2.78 1.47 34.97 0.53 0.99 0.53 0.47 575.00 605.00 172.00 22.00 1.052173913 0.299130435 0.03826087
ora_92 29.64 6.88 2.14 13.54 0.78 0.57 0.63 0.37 393.00 622.00 206.00 34.00 1.582697201 0.524173028 0.086513995

alvinn_92 36.48 10.32 1.46 8.69 0.04 0.98 0.02 0.98 54.00 33.00 15.00 2.00 0.611111111 0.277777778 0.037037037
mdljsp2_92 23.05 3.52 3.18 27.39 0.53 0.66 0.30 0.70 502.00 649.00 210.00 32.00 1.292828685 0.418326693 0.06374502
swm256_92 37.43 0.63 1.65 157.91 0.05 0.95 0.02 0.98 458.00 637.00 207.00 32.00 1.390829694 0.451965066 0.069868996
su2cor_92 38.84 2.81 1.50 34.64 0.46 0.78 0.32 0.68 2397.00 971.00 300.00 36.00 0.405089695 0.125156446 0.015018773

hydro2d_92 36.84 6.00 1.55 15.66 0.54 0.75 0.41 0.59 1294.00 672.00 217.00 35.00 0.519319938 0.167697063 0.027047913
nasa7_92 46.15 2.57 1.11 37.86 0.28 0.83 0.16 0.84 406.00 616.00 191.00 27.00 1.517241379 0.47044335 0.066502463
fpppp_92 44.96 2.05 1.18 47.82 0.79 0.61 0.75 0.25 3167.00 1161.00 273.00 30.00 0.36659299 0.086201452 0.009472687

espresso_92 27.85 17.10 1.98 4.85 0.63 0.64 0.47 0.53 309.00 106.00 37.00 6.00 0.343042071 0.1197411 0.019417476
li_92 42.53 17.65 0.94 4.67 0.67 0.65 0.63 0.37 139.00 61.00 34.00 8.00 0.438848921 0.244604317 0.057553957

compress_92 33.97 12.05 1.59 7.30 0.77 0.52 0.58 0.42 10178.00 1693.00 100.00 4.00 0.166339163 0.009825113 0.000393005
tomcatv_95 37.56 1.82 1.61 53.98 0.39 0.75 0.20 0.80 477.00 221.00 221.00 26.00 0.463312369 0.463312369 0.054507338

swim_95 37.40 0.62 1.66 160.73 0.03 0.97 0.01 0.99 461.00 643.00 210.00 33.00 1.394793926 0.455531453 0.071583514
su2cor 95 37.70 3.62 1.56 26.62 0.57 0.70 0.39 0.61 4175.00 910.00 291.00 33.00 0.217964072 0.069700599 0.007904192

hydro2d_95 36.55 5.82 1.58 16.20 0.54 0.78 0.41 0.59 1607.00 698.00 218.00 31.00 0.43434972 0.135656503 0.019290604
applu_95 34.76 3.68 1.77 26.20 0.32 0.62 0.27 0.73 93989.00 720.00 207.00 32.00 0.007660471 0.002202385 0.000340465
turb3d 95 37.88 3.30 1.55 29.28 0.49 0.60 0.35 0.65 1113236.00 124651.00 1078.00 38.00 0.111971765 0.000968348 3.41347E-05
apsi_95 35.71 3.31 1.71 29.23 0.43 0.72 0.31 0.69 1155.00 705.00 222.00 34.00 0.61038961 0.192207792 0.029437229

fpppp_95 43.86 1.40 1.25 70.37 0.80 0.54 0.72 0.28 3166.00 804.00 204.00 32.00 0.2539482 0.064434618 0.010107391
wave5 95 39.67 3.35 1.44 28.84 0.42 0.76 0.25 0.75 465.00 659.00 221.00 33.00 1.417204301 0.475268817 0.070967742
mgrid_95 36.73 0.82 1.70 120.55 0.19 0.83 0.11 0.89 81269.00 693.00 214.00 28.00 0.008527237 0.00263323 0.000344535

go_95 36.95 13.04 1.35 6.67 0.76 0.66 0.70 0.30 2856.00 548.00 69.00 9.00 0.191876751 0.024159664 0.003151261
li 95 41.36 18.05 0.98 4.54 0.65 0.64 0.62 0.38 1369.00 278.00 103.00 10.00 0.203067933 0.0752374 0.007304602

perl_95 40.80 16.72 1.04 4.98 0.85 0.67 0.79 0.21 153.00 81.00 42.00 5.00 0.529411765 0.274509804 0.032679739
gcc_95 37.92 14.91 1.24 5.70 0.75 0.62 0.66 0.34 7157.00 3412.00 730.00 5.00 0.476736063 0.101998044 0.000698617

compress 95 32.59 11.52 1.71 7.68 0.59 0.79 0.54 0.46 109.00 49.00 27.00 7.00 0.449541284 0.247706422 0.064220183
ijpeg_95 28.35 5.45 2.33 17.33 0.59 0.75 0.50 0.50 1700.00 195.00 34.00 9.00 0.114705882 0.02 0.005294118
bzip2_2k 39.50 12.29 1.22 8.14 0.63 0.70 0.56 0.44 337042.00 100375.00 69024.00 1875.00 0.297811549 0.204793468 0.005563105
crafty 2k 36.60 11.20 1.43 8.93 0.83 0.67 0.80 0.20 31962.00 7635.00 294.00 21.00 0.238877417 0.009198423 0.00065703
eon_2k 48.15 11.18 0.84 8.94 0.67 0.63 0.59 0.41 3622.00 707.00 229.00 28.00 0.195196024 0.063224738 0.007730536
gcc2k 53.26 10.68 0.68 9.36 0.58 0.71 0.43 0.57 26246.00 7112.00 2705.00 307.00 0.270974625 0.103063324 0.01169702

gzip 2k 32.17 10.44 1.78 9.58 0.72 0.70 0.62 0.38 3484076.00 296272.00 120821.00 2579.00 0.085036033 0.034678061 0.000740225
mcf_2k 37.27 21.10 1.12 4.74 0.63 0.64 0.53 0.47 6384474.00 801795.00 309.00 8.00 0.12558513 4.83987E-05 1.25304E-06

parser_2k 34.84 15.48 1.43 6.46 0.65 0.65 0.50 0.50 24700.00 1816.00 175.00 9.00 0.073522267 0.00708502 0.000364372
twolf_2k 32.28 12.08 1.72 8.28 0.62 0.57 0.48 0.52 21792.00 1240.00 102.00 6.00 0.056901615 0.004680617 0.00027533

vortex_2k 40.53 17.29 1.04 5.78 0.83 0.52 0.69 0.31 315137.00 27783.00 1419.00 60.00 0.088161657 0.004502804 0.000190393
vpr_2k 44.08 10.65 1.03 9.39 0.68 0.52 0.44 0.56 524568.00 15223.00 1829.00 4.00 0.02902007 0.003486679 7.62532E-06

applu_2k 38.17 0.31 1.61 317.61 0.26 0.69 0.04 0.96 557233.00 3638.00 218.00 34.00 0.006528687 0.000391219 6.10158E-05
apsi_2k 37.22 3.60 1.59 27.80 0.55 0.55 0.39 0.61 1621949.00 106372.00 202.00 25.00 0.065582827 0.000124542 1.54136E-05

equake_2k 44.29 4.15 1.16 24.08 0.52 0.87 0.50 0.50 42.00 25.00 11.00 4.00 0.595238095 0.261904762 0.095238095
fma3d_2k 43.99 4.10 1.18 24.39 0.54 0.71 0.43 0.57 1225.00 661.00 202.00 19.00 0.539591837 0.164897959 0.015510204
galgel_2k 43.66 5.24 1.17 19.07 0.07 0.87 0.00 1.00 462.00 641.00 207.00 33.00 1.387445887 0.448051948 0.071428571
lucas_2k 22.13 1.43 3.45 69.91 0.36 0.62 0.02 0.98 382.00 597.00 191.00 30.00 1.562827225 0.5 0.078534031
mesa_2k 38.54 17.59 1.14 5.69 0.76 0.62 0.68 0.32 1337.00 442.00 142.00 17.00 0.330590875 0.106207928 0.012715034
mgrid_2k 36.72 0.37 1.71 273.37 0.41 0.65 0.19 0.81 689344.00 1349.00 247.00 34.00 0.001956933 0.000358312 4.93223E-05
swim_2k 32.92 1.30 2.00 76.66 0.41 0.59 0.01 0.99 1163.00 622.00 201.00 30.00 0.534823732 0.172828891 0.025795357

wupwise_2k 30.78 9.76 1.93 10.24 0.67 0.37 0.56 0.44 768641.00 192694.00 48236.00 36.00 0.250694407 0.062754914 4.68359E-05
art_2k 34.72 13.09 1.50 7.64 0.50 0.86 0.46 0.54 10102.00 25.00 13.00 7.00 0.002474757 0.001286874 0.000692932



 

..

Benchmark Dep dist 1 Dep dist upto 2 Dep dist upto 4 Dep dist upto 8 Dep dist upto 16 Dep dist Upto 32 Dep dist > 32 i-tlocality16 i-tlocality64 i-tlocality256 i-tlocality4096 i-tloc64/d-tloc16 i-tloc256/d-tloc16 i-tloc4096/i-tloc16
espresso_89 28.24577373 40.94172679 54.92052202 65.36403516 76.78822241 83.64447094 16.35543529 1734 528 189 43 0.3045 0.1089 0.0250

li_89 27.70554918 39.00579288 48.87863995 62.15352425 77.3318135 88.73144154 11.26855363 1120 390 171 38 0.3486 0.1524 0.0340
doduc_89 7.375817486 13.95497374 24.38021798 36.8675402 50.31224938 64.44339106 35.5566 3408 1033 361 59 0.3031 0.1058 0.0173
nasa7_89 3.383647112 6.463081912 14.79243914 31.49066013 44.50820973 60.90195933 39.09808698 799 270 113 33 0.3376 0.1416 0.0415

matrix300_89 9.405020439 16.95375902 32.05268642 60.2594348 73.29750219 77.13009639 22.86995108 285 114 61 23 0.4003 0.2141 0.0812
fpppp_89 1.106479632 2.392775878 5.086533806 16.61190969 32.24427263 45.79965407 54.20043377 2999 849 275 44 0.2830 0.0917 0.0147

tomcatv_89 2.706408212 3.670326085 6.465692347 15.31506744 33.71480372 49.89402637 50.10597363 1012 356 153 31 0.3513 0.1507 0.0306
doduc_92 7.369569635 14.15684223 24.97240403 37.39501373 50.98217567 67.22516845 35.55650188 3439 1052 371 62 0.3059 0.1078 0.0180

mdljdp2_92 18.94120892 22.90179847 35.34422322 42.82562051 55.07027378 63.30777644 36.69225781 1385 481 195 41 0.3472 0.1410 0.0297
wave5_92 5.073910055 10.11623437 18.91032696 32.31444761 44.29766509 57.14925836 42.85074164 3032 935 343 61 0.3083 0.1132 0.0201

tomcatv_92 2.706408227 3.670325532 6.465691352 15.31506742 33.71480603 49.89402789 50.10600477 1012 356 153 31 0.3513 0.1507 0.0306
ora_92 7.611049877 20.17374465 35.76855713 45.72093359 55.9790114 69.15288504 30.84706633 749 279 122 34 0.3722 0.1630 0.0456

alvinn_92 12.10487609 23.2799133 34.54941864 55.93953617 70.06306546 70.94966673 29.05032609 588 208 88 23 0.3538 0.1495 0.0396
mdljsp2_92 7.70318037 14.52271482 27.17382032 38.03077007 48.22985935 61.88326164 38.11663836 1436 487 204 41 0.3390 0.1417 0.0286
swm256_92 1.215104135 2.331453237 5.155123269 12.07271202 27.98370066 42.68698114 57.31305055 1160 415 186 41 0.3576 0.1600 0.0354
su2cor_92 2.707182576 5.2692738 12.26371027 23.77122429 39.03594555 51.08441523 48.91557738 2977 926 342 63 0.3111 0.1149 0.0210

hydro2d_92 3.625165567 8.041499866 13.82861965 26.6983678 42.76260452 58.53971562 41.46024029 3000 879 300 54 0.2932 0.1000 0.0180
nasa7_92 3.665554989 5.774864472 12.76471127 29.98851954 42.64204269 57.51028818 42.48965873 1650 582 238 54 0.3528 0.1444 0.0329
fpppp_92 2.353216428 4.395173019 8.763440367 21.30104599 36.00287021 48.88848792 51.11147059 2998 850 275 44 0.2835 0.0918 0.0147

espresso_92 45.46639969 59.10839734 65.88239603 70.39990711 77.95290561 82.85030436 17.14969564 1646 501 174 40 0.3042 0.1060 0.0244
li_92 36.83269998 44.4652 53.37849999 65.42240004 79.14800002 89.57470001 10.42529999 1097 384 169 36 0.3497 0.1544 0.0329

compress_92 21.53149994 36.54360012 51.0211996 61.76150138 71.85390101 80.82090069 19.17919931 230 89 42 13 0.3874 0.1818 0.0556
tomcatv_95 1.677198842 3.181968312 5.345249983 17.06161871 34.31065691 49.43717595 50.56281349 1177 481 192 48 0.4089 0.1631 0.0412

swim_95 1.249567916 2.517823836 5.633384004 13.81630156 28.14650772 43.4559487 56.5440513 1129 416 177 38 0.3689 0.1569 0.0337
su2cor_95 4.260704086 7.808068596 14.87282368 26.57982199 41.32320668 52.9695105 47.0304895 2742 874 328 60 0.3189 0.1197 0.0217

hydro2d_95 3.991078996 9.204048648 14.93412558 27.295558 43.09640308 59.09473274 40.90532653 2698 808 273 54 0.2996 0.1013 0.0198
applu_95 1.938616155 5.977797339 9.522697376 21.5284511 36.44813854 47.82060164 52.17944372 3401 993 326 54 0.2919 0.0960 0.0159
turb3d_95 3.139914098 7.663209211 13.09510382 19.57900012 35.58454211 50.36408283 49.63575365 3073 999 357 61 0.3251 0.1161 0.0199

apsi_95 3.242025616 6.967425931 11.69774338 21.32114886 37.19709838 53.8835877 46.11650956 5187 1578 544 84 0.3043 0.1048 0.0162
fpppp_95 1.295660679 2.792299382 5.70101484 17.66442606 33.49827417 47.00494774 52.99505226 3024 863 284 46 0.2852 0.0939 0.0152
wave5_95 4.537476439 8.525762061 18.58577889 30.59781513 42.03833648 55.50583645 44.49425396 4085 1253 431 71 0.3067 0.1056 0.0173
mgrid_95 0.460169624 2.158106568 5.033334146 15.99715995 33.22709534 43.60114704 56.3990168 2466 803 301 55 0.3257 0.1222 0.0222

go_95 21.34404836 33.31246921 46.90191379 57.76185101 69.61896859 79.88843464 20.11156536 14014 3731 1029 92 0.2662 0.0734 0.0066
li_95 37.6025004 45.48547065 54.28051869 66.52520181 78.39445223 88.75450729 11.24539357 1318 443 176 37 0.3362 0.1334 0.0281

perl_95 24.0069258 35.23719605 48.12493458 59.63755984 72.34400846 83.12929771 16.87070229 1238 455 196 46 0.3671 0.1585 0.0374
gcc_95 24.63591849 35.38411936 46.97917412 58.24071352 72.02735631 82.25718934 17.74261084 33010 10179 3328 314 0.3084 0.1008 0.0095

compress_95 18.01075483 29.97885601 45.74111093 62.27942492 76.04136832 86.05779167 13.94220833 568 177 75 16 0.3109 0.1323 0.0282
ijpeg_95 14.40154365 24.36649296 37.88002103 50.59509179 62.17651747 79.48397176 20.51602169 4702 1499 477 55 0.3189 0.1014 0.0117
bzip2_2k 31.42387946 35.45925911 57.57294627 73.12391239 86.49331199 90.60139239 9.39863619 1691 502 172 29 0.2969 0.1018 0.0171
crafty_2k 13.79524488 24.51466878 38.61956916 52.65633508 64.36610601 72.74521463 27.25478537 6578 1925 619 73 0.2926 0.0942 0.0110
eon_2k 6.752331646 11.89105831 21.40168993 31.90866985 48.05191045 62.03596511 37.96404513 2372 782 334 88 0.3298 0.1406 0.0373
gcc2k 22.8095904 29.62519249 44.86550944 51.53146429 68.92398594 75.85878245 24.1411316 34199 10534 3416 337 0.3080 0.0999 0.0099

gzip_2k 22.12449237 33.66510763 43.96245593 61.23192373 69.04922034 74.19398644 25.80593305 1576 481 171 30 0.3050 0.1087 0.0193
mcf_2k 19.47193895 34.29095164 46.45298806 58.31641232 68.91389536 72.19232364 27.80767638 1055 370 155 26 0.3509 0.1470 0.0244

parser_2k 20.47269985 32.33808499 49.96636229 61.17772112 73.99880756 83.4104212 16.5894788 5507 1623 486 55 0.2947 0.0883 0.0100
twolf_2k 21.93760764 38.78265983 62.77025319 80.11326516 87.12390455 90.08897142 9.911028577 3387 1054 381 59 0.3114 0.1124 0.0174

vortex_2k 41.76606805 49.78237994 60.82341848 73.39741011 83.80272073 91.68711536 8.312851312 10170 3094 1025 134 0.3042 0.1008 0.0132
vpr_2k 11.50525103 13.20424629 15.31769834 44.35755264 65.44147953 71.23628346 28.76371654 1758 588 220 41 0.3346 0.1249 0.0233

applu_2k 1.223290027 2.494915219 5.226286336 13.1195204 28.24459492 40.79978446 59.20025531 10096 2663 744 79 0.2638 0.0737 0.0078
apsi_2k 1.960622173 6.036014625 10.94763116 22.26281403 36.95494988 49.38400803 50.6160258 9097 2619 804 108 0.2880 0.0883 0.0119

equake_2k 6.208077631 9.237213429 14.08927488 26.57030031 40.09568695 49.48966089 50.51033911 1189 366 138 27 0.3078 0.1164 0.0228
fma3d_2k 1.693835268 3.207988252 7.630875627 20.22057241 34.74243131 48.41702869 51.5828813 4628 1542 614 96 0.3331 0.1328 0.0207
galgel_2k 3.441307704 9.461174499 14.44773136 19.18091711 44.13934288 56.25292779 43.74697879 3691 1170 428 76 0.3171 0.1158 0.0206
lucas_2k 4.068021738 5.988135561 12.18175264 21.902093 36.32800032 47.99066416 52.00933584 1797 556 216 42 0.3094 0.1202 0.0233
mesa_2k 7.96936592 15.32562283 20.86178676 28.22666687 37.81823553 52.71027307 47.28973736 1512 531 233 53 0.3515 0.1543 0.0349
mgrid_2k 1.774994663 3.645573126 9.506618728 28.76230969 40.90246919 48.60636797 51.39363203 3238 1010 365 57 0.3120 0.1129 0.0175
swim_2k 0.853347871 1.482842604 3.671285424 5.322639619 26.58898752 33.56610623 66.43384721 2456 772 275 49 0.3145 0.1120 0.0201

wupwise_2k 0.743313618 5.248973448 17.9474739 27.45660453 37.66482233 47.07516796 52.92483204 3233 1022 396 63 0.3160 0.1224 0.0195
art_2k 7.283331723 12.23540119 16.49315851 28.89786636 36.68032618 45.752205 54.247795 802 245 95 22 0.3060 0.1187 0.0269

ammp_2k 9.072037666 16.22804392 26.99815399 37.48912743 46.27302047 56.03337482 43.96666965 3063 964 324 53 0.3148 0.1059 0.0172  


	Instruction Temporal Locality: The instruction temporal locality metric is quantified by computing the average distance (in terms of number of instructions) between two consecutive accesses to the same static instruction (instrn_tlocality), for every
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