
Exploiting Instruction Reuse to Enhance Microprocessor Simulation

Ravi Bhargava, Lizy K. John, Francisco Matus �

Electrical and Computer Engineering Department

The University of Texas at Austin

fravib,ljohn,matusg@ece.utexas.edu

Abstract

The use of software simulation to model modern high-performance microprocessors is becoming increas-

ingly challenging as microprocessors grow in complexity. Accurate and meaningful performance analysis

of an out-of-order, superscalar microprocessor is complicated by the fact that no component of the system

is truly orthogonal to the rest of the system. At the same time, each component of the system requires a

�ne level of simulation. Therefore, there exists a tradeo� between the accuracy of results and the amount

of time necessary to create a simulation environment and perform the simulations.

Based on the behavior of programs, this study proposes a structure that can decrease the simulation

time of microprocessor software simulators, and in some cases even improve the accuracy of simulation.

This is accomplished by taking advantage of the knowledge that the same static instructions are executed

many times dynamically. We recreate an approximate copy of the object code, which we call the resur-

rected code, using instructions from the dynamic instruction stream of the simulator. For any style of

simulation, the resurrected code can be used to decrease the time spent decoding instructions, which is

often signi�cant in simulation as it is in actual processor execution. Along with decreasing simulation

time, the resurrected code provides an improvement in accuracy for trace based simulators which are not

provided with a program code segment. In trace based simulation, it is possible to fetch instructions from

the resurrected code structure after a mispredicted branch and then introduce them into the simulated

processor as an actual processor would do. This allows for a more realistic modeling of mispredicted

path execution. In addition, the structure provides an elegant method for gathering statistical informa-

tion regarding the use of speci�c static instructions, and becomes an easy means for quickly specifying

internal simulator-speci�c hints and directions.

In this paper, implementations of the resurrected code are detailed, as well as the treatment of wrong

path instructions in trace-driven timing simulators. We describe and analyze the impact of introducing

wrong path speculative instructions for a series of C, C++, Java, and Fortran programs in a trace-

driven processor simulation environment. We �nd that for 92% to 99% of mispredicted branches, the

resurrected code can supply all the proper wrong path instructions needed to more accurately model

mispredicted paths.

�L. John is supported by the National Science Foundation under Grants CCR-9796098 (CAREER Award), and EIA-
9807112, and a grant from the Texas Advanced Technology Program. F. Matus is also with Advanced Micro Devices.

1

1 Introduction

Accurate simulation of modern microprocessors is an important process in both academic and industrial

research [1]. The time required to produce simulated results is often just as important as the accuracy

of the simulation, if not more important. This time includes creating the simulation environment,

validating the tools used in simulation, producing relevant test cases, and the running of the simulations

themselves.

It is common practice to simulate the performance of microprocessors using combinations of software

and hardware techniques. As modern processors are becoming more complex, the process of performing

accurate, cycle-level simulation is becoming increasingly challenging. To maintain the level of accuracy

needed for meaningful simulations, simulators are becoming more detailed, less portable, less
exible,

and slower. While the accuracy of the results are important, obtaining them in reasonable time is

equally desirable.

1.1 Methods of Simulation

Functional simulators [2, 3, 4] simulate the entire register level transfer of data and can reproduce

identical program outputs to the processor that it is modeling. Functional simulators are often execution

driven or program driven. Execution driven simulation [5] is a relatively fast technique that executes

many of the instructions on the host machine instead of simulating all of the instructions. Execution-

driven simulators take an executable (often cross-compiled into a simulated instruction set architecture)

as the input. Program-driven simulation is similar to execution-driven simulation. Program-driven

simulation [4] will consume an uninstrumented executable and perform analysis on this executable.

Functional simulators are very accurate tools for simulating microarchitectures. Combining this

accuracy with public releases of validated functional simulators, functional simulation is becoming a

preferred method of computer architecture performance evaluation. Unfortunately, this style of simula-

tion is often restricted by the complexity of modeling functionality. It is often the case that functional

simulators require source code and a modi�ed compiler to produce an executable that can be simulated.

2

Sometimes, the source code is even compiled into its own unique instruction set architectures (ISA) [2].

Another restriction of functional simulation occurs when modeling the functionality of operating

system calls. This often requires extensive coding, operating system speci�c tricks, or restricting the

type of executables that can be modeled. Dealing with these issues of system calls results in simulators

that either cannot execute all types of executables, or simulators that become tightly coupled with the

operating system on which they are being run.

In general, functional, execution-driven simulation requires a large and complex infrastructure. This

is very di�cult for any architecture, but especially for complex CISC architectures like the X86. The

e�ort to build the system is man-hour intensive, as is the veri�cation process. Unless the infrastructure

is correctly partitioned, it is quite di�cult to make changes without causing many potential bugs.

Of course, current functional simulators are designed to run today's popular benchmarks which are

often accompanied by source code, allowing for simulator-dependent alterations. Whether such bench-

marks are representative of common and commercial applications is debatable, but it is not debatable

that the modeling of state-of-the-art applications and workloads should be the force driving micropro-

cessor design [1]. With this in mind, it is desirable to model applications that may not have publicly

available source code. Even with source code, these applications tend to contain more optimization

(including hand optimization) than popular compilers can achieve. Hence, we consider it extremely

important to be able to accurately model these workloads.

Trace-driven timing simulators have the ability to simulate more quickly than functional simulators

and tend to have more freedom in the development stage. In trace-driven simulation, details from the

dynamic execution stream of a process or processes are recorded and then fed directly or via a �le to a

software timing model of a microprocessor. Traces are most commonly produced by software monitoring

methods such as trapping, manipulating object code [6] or by hardware monitoring methods [7].

Trace generation tools such as Shade [8] are very robust. Shade can trace any single-threaded SPARC

executable regardless of system calls, compiler, or availability of source code. In addition, it is possible

to trace operating system e�ects without any dilation by a hardware trace generator [7]. For functional

3

simulators to study these e�ects, instrumentation and modi�cations of the entire operating system calls

are required. With these
exibilities, more realistic workloads can be analyzed using traces.

Another motivation for using trace-driven timing simulation is the current existence of many trace-

driven simulators and tracing tools. Trace-driven simulation also enjoys the advantages of portability

and
exibility. In its simplest form, it requires only a trace and simulation software. While trace

generation systems have several constraints such as a dependency on operating system, compilers,

etc., the generated traces and the simulator can be transported across platforms rather easily. For

applications with no source code, traces are the most convenient way to capture the instruction stream

of the program. Trace-driven simulation helps to decouple speci�c issues in trace generation from

issues in simulation. Several microprocessor companies tend to favor separate teams working on trace

generation tools and simulation. Due to stability and familiarity, trace based simulations supply a high

level of comfort and con�dence.

1.2 Inaccuracies in Trace Based Simulation

While developing and maintaining a trace based simulator is relatively easier than other alternatives,

a primary drawback is the inability to accurately simulate speculative instruction fetching and the

subsequent execution. Speci�cally, speculative instructions are not yet adequately represented in traces.

In state-of-the-art processors, when a branch is predicted, the processor starts to fetch instructions from

the predicted target address. Many of these instructions are decoded, issued, and even executed, but are

not committed until the actual branch target is resolved. If there is a misprediction, these instructions

are
ushed (squashed) from the processor and are never seen by the tracing tool since tracing tools see

only the executed instruction stream.

Placing all the proper data in a trace so that a simulator can accurately execute misspeculated

instructions is a di�cult and expensive task. One proposed remedy is to use a trace-driven simulator

along with some other supporting techniques to acquire the information needed to properly simulate

speculative instruction execution. One such method is employed by Reilly and Edmondson with the

4

Alpha Microprocessor simulator [9] in which they use AINT [10] in conjunction with a trace-driven

simulator to supply basic blocks of instructions from speculated addresses. However, many of such

platform-restricted mechanisms need access to an instrumented executable or symbol tables.

The process of squashing has often been modeled in trace-driven simulation by stalling instruction

fetching until the mispredicted branch has been evaluated. Some simulators incorporate a �xed penalty

to model the branch misprediction [11]. This ignores the fact that the wrong path speculative instruc-

tions consume processor resources and a�ect the future state of the processor. Moudgill et al quanti�ed

the impact of not simulating mispredicted paths on a four-issue processor using programs from the

SPEC95 integer benchmark [12]. They found that the variation in instructions completed per cycle

is small (in all but one case it is less than 0.5%). They also found that mispredicted memory refer-

ences may lead to additional cache hits, acting as a natural type of prefetch mechanism. Although

these results are encouraging for users of trace-driven simulators, the growing concern is that increasing

instruction issue widths and degrees of speculation will lead to an unacceptable level of error.

In this paper, we propose a structure to improve the speed of many varieties of processor simulators by

taking advantage of program behavior, speci�cally the frequent reuse of instructions within sections of a

program and within the program as a whole. The simulator strategically stores information pertaining

to each unique instruction that is decoded. This process creates an approximate copy of the object code,

which we call the resurrected code [13]. When simulation takes place, dynamic instructions whose static

information has already been determined can forgo most of the time-consuming decode stage. This also

provides a means for simulator-speci�c internal message passing. In addition, the same structure can

be used to improve the simulation accuracy of trace based simulators. The resurrected code become

the source for fetching instructions along mispredicted paths. Mispredicted branch targets can access

the resurrected code and instructions can be fetched from there.

The paper is organized in the following manner. Section 2 discusses the implementation of the

resurrected code structure. Section 3 describes the bene�ts, including decreased simulation time and

5

improved accuracy of trace based simulation. Section 4 explains our simulation environment, tracing

tools and benchmarks. Section 5 is an analysis of the impact of the resurrected code structure on

trace-driven simulation. Section 6 concludes the paper.

2 Implementation of Resurrected Code

Figure 1.a illustrates the traditional approach to trace-driven simulation. In this approach, the simulator

receives instructions sequentially from the trace and these instructions trigger the simulation. When

a branch instruction is encountered, a mispredicted branch results in the simulator e�ectively stalling

until the branch is resolved and then a uniform branch misprediction penalty is applied. The instruction

streams along the mispredicted paths are not normally available for simulation. The resurrected code

proposed in this paper becomes a source for fetching the instructions for the mispredicted paths as

shown in Figure 1.b.

TRACE
Instruction

Stream Out-of-order Execution Core

TRACE-DRIVEN SIMULATOR

Correct

Mispredict Stall
Branch Predictor

Branches

TRACE-DRIVEN SIMULATOR

Branch Predictor
Mispredict

RESURRECTED
CODE Correct

Out-of-order Execution Core

Targets

Branches

Mispredicted

Dynamic Instruction Stream

Wrong Path Instructions

TRACE

(a) Traditional (b) With Resurrected Code

Figure 1: Traditional Use of Trace-Driven Simulator versus Trace-Driven Simulation with Resurrected
Code

2.1 Data Structure

Ideally, the structure that holds the instruction information should be memory e�cient and quickly

accessible both while creating and using it. Instructions have been shown to have both temporal and

spatial locality, so instructions should, in general, be blocked together. On the other hand, one in every

four to six instructions can disrupt the control
ow of the program. So it is quite possible that within

these blocks there will be small \holes" where instructions are never reached during a certain execution

6

of a program.

Accounting for the above observations, we implement a dynamic, tree-like structure that is directly

indexable by the program counter (PC), and attempts to minimize the amount of memory allocated to

the holes. This resurrection tree is composed of nodes, where each non-leaf node contains pointers (in

C) to more nodes. Each non-leaf node need not contain any information other than the location of its

children. Leaf nodes do not contain the array of node pointers, but instead contain information about

the instructions they are representing as well as any additional information that suits the user.

It would be convenient for the nodes at each level of the tree to be represented by one structure

and therefore have the same number of children. This would require that each level of the tree may

potentially have 2n�x nodes, where n is the current level of the tree and x is the increase in size (in bits)

between levels. For example, a byte-addressable 32-bit address space like that in the X86 architecture,

could be represented by a four level tree (not including the root) where each node has 28�n potential

children per non-leaf node or perhaps a six level tree where each level has 26�n potential children per

non-leaf node. Figure 2 depicts a tree for a 32-bit address space with word (4 bytes) addressable

instructions, like in the UltraSPARC and other RISC processors. Since the last two bits of the program

counter are immaterial, the tree can be represented by six levels (seven including the root) with 25�n

potential nodes per level.

We choose x to be �ve so that we have seven levels, 0 - 6, where level 0 is the root node and

level 6 contains all of the unique, executed instructions. Notice that nodes at any location in the

tree are directly indexable by the program counter and require no comparison searching. Therefore all

instructions can be accessed in constant time. The distribution table in Figure 2 shows what percentage

of all allocated nodes are created at each level of the tree for the C programs. Approximately 95% of

all of the nodes created are leaf nodes, which contain the static instructions. This indicates that the

structure is composed primarily of useful nodes and is not causing an excess of intermediate nodes that

do not store instructions.

An alternative approach is to create a hash table which is indexable by the program counter. This

7

is ideal if every static instruction in an executable is executed and the table is the same size as the

number of static instructions. However, we �nd that only 6% to 54% of static instructions are ever

visited during the course of execution in several C, Fortran, and C++ programs [13]. Without prior

knowledge of the number of unique executed static instructions, building a memory e�cient hash table

would not be possible. Even with this knowledge, it is inevitable that collisions will take place in the

hash table, necessitating comparison searches to �nd the proper instruction. In fact, we �nd that about

10% of all accesses to a hash table equal to the size of unique static instructions results in a collision.

Lvl 1 Lvl 2 Lvl 3 Lvl 4 Lvl 5 Lvl 6

% Nodes

% Nodes
Full

Avg

Max

4.94270.42810.00630.0055 0.0393 94.732

0.0 0.0 0.0 0.09 6.81 N/A

1.75 2.0 12.5 135 1570 31,771

3 5 48 427 3964 68,585
(vortex) (vortex) (vortex) (gcc)(gcc)(vortex)

Level 0:

Level 6:

Level 5:

Level 4:

Level 3:

Level 2:

Level 1:

Leaf Leaf Leaf Leaf

Root
Distribution table of the tree and its nodes for C programs.

Figure 2: Resurrection Tree and Distribution Table

2.2 Static and Dynamic Generation of Resurrected Code

There are several ways in which the resurrected code can be coupled with an existing trace-driven

simulator. One choice is to create the resurrected code prior to running the simulation. Another choice

is to create the resurrected code dynamically as the simulation is being performed.

Creating the resurrected code before doing the actual full-processor simulation requires two passes

through the dynamic instruction stream. On the �rst pass through the stream, each instruction is

interpreted and then placed into the resurrection tree on the �rst instance of the instruction. On

subsequent instances of the instruction, the instruction need not be decoded.

Upon completion of the �rst pass, the resurrected code structure is complete and full simulation may

take place (illustrated in Figure 1.b). The second pass through the dynamic stream progresses in a

8

similar manner to traditional trace-driven simulation. Instructions no longer need to go through the

entire decode process since all instructions decoded information can be accessed in the resurrected code

using the program counter as an index.

The resurrected code may be stored in a �le and used over in many simulations as long as the

executable and data inputs do not change. This storage can be done in many di�erent ways depending

on the goals of the user. If an executable remains unchanged and will be run with several di�erent

inputs, the separately generated resurrected code information can be merged in an attempt to �ll in

some of the holes, providing better approximation of the object image.

In the case of trace based simulations, mispredicted branches can now be treated di�erently. On a

mispredicted branch, the resurrected code structure becomes the new source of instructions until the

branch target is resolved. When this happens, appropriate squashing takes place and the simulator

resumes accepting instructions from the trace.

It is also possible to create the resurrected code dynamically as full-processor simulation is taking

place. In this approach, instructions are placed into the resurrected tree and removed from the tree

in the same manner as the beforehand approach. With the dynamic approach, there is no need to

store resurrected code in a �le format and reload it each time. There is a small accuracy tradeo� when

implementing this approach. Branches that are mispredicted may be accessing a target that is not yet

in the resurrected code, but will be at some time in the future. This type of mispredicted branch target

is captured in the aforementioned static approach. This inaccuracy can be ameliorated by using an

instruction bu�er and dynamically performing the two-pass idea from the static approach.

3 Bene�ting from Resurrected Code

There are two primary ways in which microprocessor simulation can bene�t from the introduction of

resurrected code. The �rst is decreased simulation time and the second is improved accuracy for trace

based simulations.

9

3.1 Decreasing Simulation Time Using Resurrected Code

As ratios of dynamic instructions to static instructions clearly indicate, many unique static instructions

are executed many times dynamically. Typically, a simulator decodes each instruction as it is encoun-

tered. So the processor may decode some static instructions many times. Much of the information

being extracted is the same each time, such as opcode, logical registers, type of instruction, immediate

values, instruction address, and other indicator bits. All of this information can be stored in the resur-

rection tree. When an instruction enters the decode stage, it can index the tree and check if this static

information is already available due to an earlier decode of the same address. If so, the instruction does

not need to be decoded further and can simply maintain a pointer to the static information in the tree.

It is not unusual that the instruction decode stage of simulation is the most time-consuming. This

is the case in any style of simulator, including execution-driven and trace based simulators. Decode

routines are typically comprised of unpredictable control transfer sequences (such as a C case statement)

and may contain equally unpredictable pointers to lower-level decode functions. For these reasons, the

impact of improving the performance of decoding can greatly a�ect simulation time as a whole.

For X86 processors like the Intel Pentium II, the decode cost per instruction is high. CISC instructions

perform a multi-level decoding process where instructions are converted into one or more RISC-like

micro-operations. These micro-operations are then executed by an out-of-order execution core. The

decode operation can be accelerated by using the resurrected code data structure. Micro-operations can

be stored in the resurrected tree and therefore eliminate the entire decode time for any future references

to the same instruction. If this storage is too expensive, the �rst-level of decoding can be performed

to determine the type of the CISC operation and a pointer to the second-level decode function can be

stored in the resurrected code.

Like the micro-operation function pointer, other information associated with a particular static in-

struction can be stored in the tree, such as per-instruction statistics or hints to the simulator. Dynamic

information, like e�ective addresses, branch decisions, and indirect targets, is unique to each dynamic

10

instruction and will need to still be acquired on each reference to an instruction. Storing them in the

resurrected tree is an e�cient way to handle it. Finally, if there is self-modifying code in a program, an

additional check must be performed to guarantee that the opcode has not changed.

3.2 Improving Accuracy of Mispredicted Path Simulations

In trace-driven timing simulation, the trace provides information on whether or not a branch is taken

in the actual
ow of execution. If the prediction from the branch predictor contradicts the actual

resolution of the branch, then the resurrected code can be accessed. In many cases, the code found

in the resurrected tree can pass through the simulator like any other instruction. The exceptions are

memory access instructions, like loads and stores, and indirect control transfers.

Memory Accesses A unique load instruction in an executable may be executed many times. Each

time, it is possible for the load to have a di�erent address based on the source registers and
ow of

control. This address has to be provided by the trace since it cannot be calculated by a non-functional

simulator. When a load is encountered in the resurrected code, the trace is no longer providing correct

information about the instruction and the e�ective address is unknown. Some of the most important

e�ects of executed wrong path instructions are the e�ects on the data cache. So it is important to make

a good guess at the correct address for a misspeculated load or store instruction.

Many of the current value and address prediction techniques [14, 15, 16] could be used to help

e�ectively \guess" or predict the wrong path memory access addresses. For example, if some load or

store instruction previously accessed the following four addresses: 2000, 2004, 2008, 2012, then we

can predict with high con�dence that the next address will be 2016. Another high con�dence situation

results when the previous addresses are all identical or the e�ective address is static. In this case, we can

predict that the address will remain the same. For architectures that make heavy use of a stack, such as

the X86 architecture, there are stack based patterns that can be exploited as well. For addresses that

do not fall into these three categories, a slightly more random guess can be made based on a previous

11

history of addresses. Some examples are randomly picking one of the previous addresses, choosing the

most frequently accessed address, or deciding based on a weighted average. Any of these techniques

are acceptable due to the nature of non-functional, trace based simulation. Correct data values are not

necessary to proceed, so the focus is on accessing the correct areas of the memory.

Indirect Control Transfers A similar problem as the memory access problem arises on indirect

branches, jumps, and calls. The target for these instructions is provided by the trace along the correct

path, but if an indirect control transfer is encountered along the mispredicted path then the simulator

does not have enough information to proceed. Once again, a prediction needs to be made for the target.

Luckily, in most programs, indirect control transfers do not have many targets and it quickly becomes

apparent which target to choose. When this is not the case, like in object-oriented programs which

contain many virtual functions, the control transfer can be selected in a more random manner similar

to the memory access guesses. Branch target prediction mechanisms employed by processors can also

be used.

Incomplete Sequences from Resurrected Code The resurrected code is not a complete copy of

the original object code segment. Some portions of the executable are never executed, such as error

code and code not reached due to the input set. It is possible for the availability of resurrected code

instructions along a wrong path to end up (or start) at a \hole" in the resurrected code. Upon reaching

a hole, there are several choices for the simulator. The best choice is not as obvious as with the case of

memory references and control transfer targets.

The instruction immediately before a hole is often a conditional branch. When this is the case and

the simulation reaches a hole in the resurrected code along the wrong path, it can go back and take

the alternate path for the preceding branch. At this point it will �nd some code and can continue

executing until the branch that was misspeculated is resolved. This is not the path that the processor

predicts, but it is important to continue to execute instructions while the mispredicted branch is being

resolved. Another considered approach that can be used with or instead of the previous approach

12

involves marking the �rst instruction in the current basic block. When a wrong path instruction is not

found in the resurrected code, then simply return to the head of the basic block. This forms a loop

until the branch is resolved. The last set of options consists of stalling the processor or claiming the

branch resolved and returning to the normal execution stream.

4 Simulation Methodology

We perform trace-driven simulation to determine the impact of the proposed resurrected code structure.

Our simulation environment consists of a trace generated on a Sun UltraSPARC, a cycle-level, full

microprocessor simulator, and several benchmark suites.

4.1 Tracing and Pro�ling Tools

Traces are generated dynamically using the tool Shade [8] on a Sun UltraSPARC-II processor. Shade

is a tool that dynamically executes and traces SPARC executables. The traces represent the retired

instruction stream and do not contain register values. Shade is customizable and allows the user to

specify the exact trace information to collect. At these points, the trace information can be dynamically

handled in any manner. Shade only traces user and library code and does not analyze kernel code.

However, if we were to use traces that include operating system e�ects, our resurrected code would

handle it properly.

Detailed information can be collected dynamically for every instruction and opcode. We collect data

such as the opcode �elds (to identify type of branches), program counter, branch targets, and taken/not-

taken branch information. This information is then processed by our own software simulation tools.

4.2 Benchmarks

We use programs from SPEC CINT95, SPEC CFP95, SPEC JVM98, as well as a suite of C++ programs.

Short descriptions of all the benchmark programs are in Table 1. Our C++ suite has been used to study

the behavior of C++, speci�cally the cost of virtual functions calls [17] [18]. Three programs from the

13

oating-point SPEC, CFP95, are analyzed for our study. These programs are computation-intensive

and written in Fortran. The SPEC JVM98 benchmark suite [19] is a series of Java programs supplied as

Java byte code. These programs are run using the Java Virtual Machine (JVM) version 1.1. Multiple

threads are simulated within the JVM and not run natively on the operating system. The traces studied

for JVM98 are the dynamic instructions produced by the JVM interpreting and executing the Java byte

code of the benchmark programs.

Table 1: Benchmark Descriptions

Program Input/Flags Description of Program

SPEC CINT95: C programs

compress95 test.in Compresses large text �les

gcc amptjp.i Compiles pre-processed source

go 2stone9.in Plays the game Go against itself

li train.lsp Lisp interpreter

m88ksim -c ctl.in Simulates the Motorola 88100 processor

perl scrabbl.pl scrabbl.in Performs text and numeric manipulations

SPEC JVM98: Java Programs

compress -s1 A popular LZW compression program.

jess -s1 NASA's CLIPS rule-based expert systems.

db -s1 Data management benchmarking software from IBM.

javac -s1 The JDK Java compiler from Sun Microsystems.

mpegaudio -s1 The core algorithm decoding an MPEG-3 audio stream.

jack -s1 A real parser-generator from Sun Microsystems.

Suite of C++ Programs

deltablue 3000 Incremental data
ow constraint solver

eqn eqn.input.all Type-setting program for math. equations

idl all.idl SunSofts IDL compiler 1.3

ixx object.h Som Plus Fresco.idl IDL parser generating C++ stubs

richards 1 Operating system simulation benchmark

SPEC CFP95: Fortran Programs

fpppp natoms.in Performs multi-electron derivatives

hydro2d hydro2d.in Hydrodynamical Navier Stokes equations

tomcatv tomcatv.in Generation of 2-D coordinate system

4.3 Full Simulation

To analyze the impact of the resurrected code in a full processor environment, we use a detailed, trace-

driven, cycle-level, timing simulator that models all resource contention as well as speculative execution.

Shade is the front-end of the simulator. It takes any SPARC executable (source code not necessary) as

input and then drives the execution core with a dynamic stream of instructions. Therefore, the simulator

14

uses the SPARC instruction set architecture [20] and handles the SPARC nuances in a proper fashion

(e.g. register windows, conditional instructions, condition code registers, delay slots). While Shade

executes the program with functional correctness, the simulation core does not simulate register-level

passing of data and is therefore only a cycle-by-cycle timing simulator.

For this study, the base architecture model is loosely based on a combination of the Sun UltraSPARC-

II microarchitecture and features from the SimpleScalar sim-outorder default simulation model [2]. The

model is a four-wide machine, i.e. four-wide issue, decode, and retire. This model is shown in Figure 3.

The execution core of the base model contains two basic integer ALU's with one cycle latency and

one cycle throughput (represented by 1-1), one integer multiply/divide unit (3-1 for multiply, 20-19 for

divide), two basic
oating point (FP) ALU's (2-1), one FP multiply-divide-square root unit (3-1 for

multiplies, 12-12 for divides, 24-24 for square root), and two load-store units (1-1). Each of these units

is supplied by an eight entry, �rst-available reservation station. The load-store unit calculates e�ective

addresses and then dispatches the loads and stores to the proper location - load queue or store bu�er.

Branch addresses are calculated in the decode stage if possible. The simulator uses a separate 48-entry

reorder bu�er (ROB) and register �le for
oating point and integer instructions, as in the UltraSPARC.

Stores are allocated entries in the ROB.

Our study requires the simulation of dynamic branch prediction hardware in order to identify when

misspeculation occurs. We use the Gshare branch prediction scheme as described by McFarling in [21].

The primary predictor is 2048 entries, direct-mapped, and indexed by the program counter plus �ve

global history bits. This predictor is accompanied by a 512-entry, direct-mapped branch target bu�er

(BTB) to predict target addresses for the predicted branches.

We are most interested in branches that begin fetching from the wrong target address due to mis-

prediction. There are two cases in which this happens and a branch misprediction is reported. One

case surfaces when Gshare mispredicts the branch. The other occurrence is when the Gshare method

correctly predicts a branch is taken, but the branch instruction's target address is not correct in the

BTB. If Gshare predicts the branch is not taken, then the BTB is not consulted.

15

Figure 3: Overview of Simulated Microarchitecture

Register

File
Register

INT

FP

File

Integer Load
Store
Unit

Integer
ALU ALU Mult/Div

Load
Store
Unit

FP
Mult/Div

SqRt
ALU

FP FP
ALU

Reservation Stations

Address

Translation
Queue

Load

(MOB)

Store Buffer

L1 Data Cache

Integer

INT

FP

Reorder

Reorder

Buffer

Buffer

Instruction Cache

Instruction
Fetch

Dispatch

Decode

Branch

Calculation
and

Prediction

16

The cache hierarchy simulation model is derived from cachesim5 which is available with the Shade

tool set. The L1 instruction cache is a 16 KB, two-way set-associative, write-through cache with a

block size of 32 bytes, a hit latency of one cycle and uses the LRU replacement algorithm. The L1

data cache is a 16 KB, four-way set-associative. write-through cache with a block size of 32 bytes, a

hit latency of one cycle and uses the LRU replacement algorithm. The L2 cache is a uni�ed, 1 MB,

four-way set-associative, write-back, write-allocate cache with a block size of 64 bytes, a hit latency of

six cycles, and uses a random replacement scheme. Address translations are given a constant latency

of one cycle (assuming TLB hits or in�nite main memory).

Finally, the resurrected code is implemented as well. The resurrected code is created beforehand to

prevent the slight disadvantage that results from dynamic creation. When the simulator is executing

along the mispredicted path and encounters an instruction that is not in the resurrected code, no more

instructions are fetched from the resurrected code. This allows us to evaluate the e�ectiveness of the

resurrected code as a source for wrong path instructions.

5 Impact and Analysis

Table 2 reports some characteristic of the benchmarks that are studied. Total Instr are the total number

of instructions issued by the simulator. This includes wrong path and retired instructions. Long running

simulations are ended at approximately 250 million instructions. % RC Instr are the percentage of the

Total Instr that are wrong path instructions from the resurrected code. % Branches are the percentage

of the Total Instr that are branches. % Mispredict represents the percentage of all the branches that

are mispredicted by the branch prediction unit of the simulator. The misprediction rate along with

the percentage of branches relates directly to the number of times that resurrected code needs to be

accessed.

The impact of the resurrected code on the execution of a program is best shown with the resurrected

code instruction percentage in Table 2. When this percentage is low, traditional timing simulators

are not su�ering signi�cant accuracy losses, but once this percentage begins to grow, approximating

17

the impact of wrong path instructions is no longer advisable. This table shows that when using the

resurrected code structure, the percentage of wrong path instructions ranges from less than one percent

in the Fortran code to 27% in the C++ code. This percentage is not directly related to any one

characteristic of the program. It is a function of many characteristics - the number of branches, the

misprediction rate, the average time to resolve a branch, and the number of wrong path instructions

available in the resurrected code. Remember that for this study of resurrected code e�ectiveness, we are

terminating the wrong path access if once an instruction along the mispredicted path is not available

in the resurrected code.

Table 2: Benchmark Characteristics

Benchmark Total Instr %RC Instr %Branches %Mispredict

gcc 255M 3.89745 17.9024 11.1949

li 172M 3.12769 17.2188 7.17111

compress95 42M 8.66767 10.9306 8.61377

m88ksim 124M 1.71845 13.6253 2.6591

go 273M 10.3733 13.3304 22.4224

perl 42M 3.08663 15.8848 10.2973

compress 250M 1.34541 8.21657 4.52915

db 88M 3.21797 14.0275 7.49158

jack 251M 1.61124 10.1666 5.24806

javac 204M 3.00627 13.525 6.90501

jess 253M 3.07519 12.8812 7.07266

mpegaudio 251M 1.23916 7.75227 4.6606

deltablue 41M 25.4161 6.22501 12.3228

eqn 48M 17.3604 9.42446 17.4756

idl 85M 21.8395 2.65526 16.4061

ixx 30M 15.1617 7.74375 15.1446

richards 67M 27.4873 8.17629 18.1409

fpppp 243M 0.101341 1.29608 8.69944

hydro2d 247M 0.533453 14.268 2.75581

tomcatv 247M 1.23992 17.2669 5.16266

Total Instr are the total number of instructions issued, including wrong path instructions. % RC Instr are the percentage
of the Total Instr that are from the resurrected code. % Branches are the percentage of the Total Instr that are branches.
% Mispredict represents the percentage of all the branches that are mispredicted.

Table 3 illustrates a more in-depth look at how the resurrected code is performing. The table presents

the average run length which is the number of wrong path instructions executed from the resurrected

code before a branch is resolved or an instruction is not found in the resurrected code. The next column

of the table shows what percentage of wrong path accesses into the resurrected code are completely

18

successful, % Complete Runs, and the fourth column shows what percentage are cut short by a missing

instruction in the resurrected code, % Incomplete Runs. These numbers are also shown graphically in

Figure 4. Along with these percentages in the table are the average run lengths of the successful accesses

(column 3) and the incomplete accesses (column 5).

Table 3: Characteristics of Wrong Path Accesses

Benchmarks Avg Run Length % Complete Runs Complete Avg % Incomplete Runs Incomplete Avg

gcc 1.53282 96.2352 1.49234 3.76483 2.56746

li 2.25462 98.6498 2.25251 1.35023 2.40866

compress95 5.75522 97.4103 5.67324 2.58968 8.83877

m88ksim 2.88976 92.1436 2.62136 7.8564 6.03765

go 3.16642 95.6717 3.22277 4.32826 1.92079

perl 1.0593 93.4304 0.825984 6.56956 4.37745

compress 2.15051 95.6985 2.00174 4.30148 5.4604

db 2.37987 94.3183 2.2362 5.68169 4.76482

jack 2.30996 95.3751 2.20628 4.62494 4.44801

javac 2.57011 96.7709 2.49351 3.22913 4.86571

jess 2.66014 96.0798 2.5856 3.92018 4.48706

mpegaudio 2.43668 97.2755 2.35058 2.7245 5.51094

deltablue 4.59549 99.1978 4.60399 0.802208 3.54477

eqn 1.49341 96.4448 1.37921 3.55524 4.59146

idl 2.99445 96.9867 2.86113 3.01328 7.28563

ixx 1.60074 96.5479 1.42273 3.45208 6.57946

richards 0.758869 99.9954 0.758727 0.0046 3.87195

fpppp 0.848098 98.6521 0.846684 1.34786 0.951604

hydro2d 1.35015 96.6171 1.39515 3.3829 0.0648255

tomcatv 1.3725 98.2111 1.38713 1.78892 0.569438

Notice that in all cases, over 92 percent of resurrected code accesses are completed successfully. This

indicates that the resurrected code does a competent job of approximating the object code image. It

is interesting to notice that the percentage of complete accesses is not directly related to any one of

the characteristics presented in this study. Successful accesses are not a function of average run length,

misprediction rate, number of branches, or of the percentage of static code instructions that are touched

[13]. Instead, there is some path-based redundancy property associated with a program where programs

have a tendency to execute both paths of a working set of branches and then frequently execute along

those paths.

Another observation is that wrong path accesses that do not complete successfully are longer than

19

accesses that do complete successfully. The longer the simulator remains in the resurrected code, the

chance of encountering a hole increases. It is interesting to look at the distribution of the lengths of the

wrong path resurrected code accesses. If the number of sequential wrong path accesses brought into a

machine shows a low deviation from the average, then uniform penalties may well be a good way to

approximate the wrong path e�ects.

Figure 4: Percentage of Complete and Incomplete Wrong Path Resurrected Code Accesses

C Programs C++ Programs

Java Programs Fortran Programs

Figure 5 shows a breakdown for each benchmark of the number instructions found in the resurrected

code following each mispredicted branch. Note that the access lengths are fairly regular for the Java

and Fortran program and a majority of the accesses are short, in the less than four instruction range.

For the C and C++ programs, this is not the case. The number of instructions that are introduced into

the simulation due to the use of resurrected code along the wrong path varies greatly. This indicates

20

that a uniform misprediction penalty is not going to model these programs properly. These wrong path

accesses to the resurrected code can be ended due to a mispredicted branch becoming resolved or a hole

in the resurrected code. The access lengths are therefore a property of the resurrected code, program

behavior, and processor model.

Figure 5: Wrong Path Access Length for All Accesses

C Programs C++ Programs

Java Programs Fortran Programs

Table 4 reports the instruction mix of the wrong path instructions fetched from the resurrected code.

The classes of instructions represented in the table are instructions that have the most impact on the

processor. All instructions consume resources such as physical registers and reservation station entries.

Loads and stores cause clutter of the load queue and store bu�er. Loads may even proceed far enough

that they access the cache. In these benchmarks, as much as 5% of wrong path loads make a cache

access.

21

Table 4: Instruction Mix of Wrong Path Instructions Fetched from Resurrected Code

Benchmark % Loads % Stores % Branches % Loads to Cache

gcc 23.2795 04.6946 12.5186 4.267

li 31.9055 12.9008 15.2739 2.868

compress95 16.5678 10.9529 13.813 4.444

m88ksim 12.28 03.00082 18.661 3.619

go 15.8291 07.47483 12.5616 5.492

perl 19.3525 06.88849 13.4495 1.712

compress 18.6642 02.39492 15.4584 3.662

db 11.9013 03.52667 20.1537 4.022

jack 13.3168 04.38963 18.3014 4.429

javac 10.6024 03.61854 21.095 3.912

jess 13.7517 03.54733 19.6948 4.540

mpegaudio 12.9837 03.23379 20.055 4.048

deltablue 11.7917 03.94386 12.8409 2.321

eqn 12.674 03.47143 18.735 3.147

idl 14.848 06.51755 17.4596 4.796

ixx 19.9524 05.2864 12.2186 3.450

richards 33.0823 07.1196 00.119921 0.0

fpppp 40.1704 24.4148 02.22202 1.358

hydro2d 20.3805 04.75228 12.616 2.473

tomcatv 29.0301 07.56081 09.82348 1.814

6 Conclusion

We introduce a structure, called resurrected code, to improve the accuracy of mispredicted path simu-

lations and decrease the simulation time of microprocessor software simulators by creating an approx-

imates copy of the object code. The resurrected code can be created before running full processor

simulation or during the simulation. By storing static decoding information and simulator-speci�c

hints in the resurrected code, the simulator does not need to replicate costly decoding and instruction

initialization work.

The resurrected code can be easily used to increase the accuracy of trace based simulation. Non-

functional, timing simulation allows for a wider selection of programs to simulate, but traditionally

does not model speculation with high degrees of accuracy. The resurrected can be used as a source for

speculative fetching and execution along mispredicted paths. The handling of memory access instruc-

tions, and control transfer instructions is addressed. We run simulations on a full-processor, cycle-level

trace-driven simulator and analyze the impact of allowing a timing simulator to introduce instructions

22

along mispredicted paths. We �nd that up to 27% of instructions in a program can be wrong path

instructions that are fetched from the resurrected code. We also �nd that only 1% to 7% of accesses

to the resurrected code do not complete due to lack of instructions. These results indicate that in

addition to reducing the simulation time in a variety of simulation frameworks, the resurrected code

can signi�cantly improve the realistic modeling of speculative microprocessors within a simple, trace

based simulation framework.

References

[1] P. Bose and T. M. Conte, \Performance Analysis and Its Impact on Design," IEEE Computer,
pp. 19{22, May 1998.

[2] D. Burger, T. Austin, and S. Bennett, \Evaluating Future Microprocessors: The SimpleScalar Tool
Set," Tech. Rep. CS-TR-96-1308, University of Wisconsin, Madison, WI, July 1996.

[3] V. S. Pai, P. Ranganathan, and S. V. Adve, \RSIM Reference Manual. Version 1.0.," Tech. Rep.
9705, Department of Electrical and Computer Engineering, Rice University, July 1997.

[4] B. Grayson, \Armadillo: A High-Performance Processor Simulator," Tech. Rep. TR-PDS-1996-008,
The University of Texas at Austin, May 1996.

[5] R. C. Covington, S. Madala, V. Mehta, J. R. Jump, and J. B. Sinclair, \The Rice Parallel Processing
Testbed," in 1988 ACM SIGMETRICS Conference on Measurement and Modeling of Computer

Systems, (Santa Fe, New Mexico), pp. 4{11, May 1988.

[6] T. M. Conte and C. E. Gimarc, Fast Simulation of Computer Architectures. Kluwer Academic
Publishers, 1995.

[7] SpeedTracer, a hardware trace generator system for the X86, AMD, Austin.

[8] R. F. Cmelik and D. Keppel, \Shade: A Fast Instruction-Set Simulator for Execution Pro�ling,"
Tech. Rep. SMLI 93-12 and UWCSE 93-06-06, Sun Microsystems Laboratories, Incorporated, and
the University of Washington, 1993.

[9] M. Reilly and J. Edmondson, \Performance Simulation of an Alpha Microprocessor," IEEE Com-

puter, pp. 50{58, May 1997.

[10] A. Paithankar, \AINT: A Tool for Simulation of Shared-Memory Multiprocessors," Master's thesis,
University of Colorado, Boulder, Colo., 1996.

[11] B. Black and J. P. Shen, \Calibration of Microprocessor Performance Models," IEEE Computer,
vol. 31, pp. 59{65, May 1998.

[12] M. Moudgill, J. Wellman, and J. E. Moreno, \An approach to quantifying the impact of not
simulating mispredicted branches," Workshop Digest of the PAID Workshop held in conjuction

with ISCA98, pp. 60{66, July 1998.

23

[13] R. Bhargava, L. K. John, and F. Mathus, \Accurately Modeling Speculative Instruction Fetching
in Trace-driven Simulation," in Proc of Int. Performance, Computing, and Communications Con-

ference, Feb 1999. To appear.
http://www.ece.utexas.edu/ ravib/papers/tracefetch.pdf.

[14] G. S. Tyson and T. M. Austin, \Improving the Accuracy and Performance of Memory Communi-
cations Through Renaming," Proc. 30th Intl. Sym. on Microarchitecture, pp. 218{227, Dec. 1997.

[15] A. Moshovos, S. Breach, T. N. Vijaykumar, and G. Sohi, \Dynamic Speculation and Synchro-
nization of Data Dependences," in Proc. 24th International Symposium on Computer Architecture,
pp. 181{193, June 1997.

[16] Y. Sazeidis, S. Vassiliadis, and J. Smith, \The Performance Potential of Data Dependence Specu-
lation and Collapsing," in Proc. 29th International Symposium on Microarchitecture, pp. 238{247,
November 1996.

[17] K. Driesen and U. Holzle, \The Direct Cost of Virtual Function Calls in C++," in OOPSLA-96,
(San Jose, Calif.), pp. 306{323, Oct 1996.

[18] B. Calder, D. Grunwald, and B. Zorn, \Quantifying Behavioral Di�erences Between C and C++
Programs," Tech. Rep. CU-CS-698-94, University of Colorado, Boulder, Jan 1994.

[19] Standard Performance Evaluation Corporation, \SPEC JVM98 Benchmark."
http://www.spec.org/osg/jvm98/.

[20] D. L. Weaver and T. Germond, The SPARC Architecture Manual (Version 9). Sparc International,
Englewood Cli�s, NJ, USA, 1995.

[21] S. McFarling, \Combining Branch Predictors," Tech. Rep. TN-36, Digital Western Research Labs,
Palo Alto, Calif., Jun 1993.

24

