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Abstract

Performance evaluation of modern, highly spec-
ulative, out-of-order microprocessors and the corre-
sponding production of detailed, valid, accurate results
have become serious challenges. A popular evalua-
tion methodology is trace-driven simulation which pro-
vides the advantage of a highly portable simulator that
is independent of the constraints of the trace gener-
ation system. While developing and maintaining a
trace-driven simulator is relatively easier than other
alternatives, a primary drawback is the inability to ac-
curately simulate speculative instruction fetching and
subsequent execution. Fetching from an incorrect path
occurs often in a speculative processor, however it is
di�cult to capture this information in a trace.

This paper investigates a scheme to accurately
model instruction fetching within a trace-driven frame-
work. This is accomplished by recreating an approx-
imate copy of the object code segment, which we call
resurrected code, using a preliminary pass through the
trace. We discuss a fast and memory-e�cient method
for implementing this resurrected code. In addition,
we characterize UltraSPARC traces of C, C++, and
Fortran programs generated using Shade to determine
the potential of this method. Using these traces, and
a modest branch predicting scheme, we �nd that in 14
of 16 cases more than 99% of all branches will �nd
their target instruction in the resurrected code. Fur-
thermore, on these occasions, a large amount of con-
secutive instructions are available along the mispre-
dicted path. These results indicate that the inaccura-
cies associated with speculative fetching in trace-driven
simulation can be signi�cantly reduced using this res-
urrected code.
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1 Introduction

Accurate simulation of modern microprocessors is
an important process in both academic research and
the industry [1]. Just as important as the accuracy of
the simulation, if not more important, is the time re-
quired to produce results from the simulation. This
time includes creating the simulation environment,
validating the tools used in simulation, producing rel-
evant test cases, and the running of the simulations
themselves.

One existing method of simulation is trace-driven
simulation where details from the dynamic execution
stream of a process or processes are recorded and used
to drive a software timing model of a microproces-
sor. Traces are most commonly produced by software
monitoring methods such as trapping or manipulating
object code [2] or by hardware monitoring methods.

One motivation for using trace-driven simulation is
that many trace-driven simulators and tracing tools
already exist. Due to stability and familiarity, these
simulators supply a high level of comfort and con�-
dence. While storing traces can be cumbersome and
the actual simulation can be relatively slow, the main-
tenance and development of existing trace-driven sim-
ulators has proven to be more simple and convenient
than alternatives.

Trace-driven simulation also enjoys the advantages
of portability and 
exibility, requiring only a trace and
some simulation software in its simplest form. While
trace generation systems have several constraints such
as dependency on operating system, compilers, etc.,
the generated traces and the simulator can be trans-
ported across platforms rather easily. For interpreted
languages, like Java, where there is no executable,
traces are the most convenient way to capture the in-
struction stream of the program.

There are several alternatives to traditional trace-
driven simulation. Execution driven simulation [3] is
a relatively fast technique that executes many of the



instructions on the host machine instead of simulating
all of the instructions. Execution-driven simulators [4]
[5] take an executable (cross-compiled into a simulated
instruction set architecture) as the input and therefore
do not require a trace. Each of these methods has its
drawbacks, and whether it is availability, portability,
accuracy or robustness, there is still a place for trace-
driven simulation.

The major drawback of trace-driven simulation is
the inability of trace-generation mechanisms to report
all of the speculation that takes place in modern su-
perscalar processors. Speci�cally, speculative instruc-
tions are not yet adequately represented in traces.
In state-of-the-art processors, when a branch is pre-
dicted, the processor starts to fetch instructions from
the predicted target address. Many of these instruc-
tions are decoded, issued, and even executed, but are
not committed until the actual branch target is re-
solved. If there was a misprediction, these instruc-
tions are 
ushed from the processor (squashing) and
are never seen by the tracing tool.

This process of squashing has often been modeled
by stalling instruction fetching until the mispredicted
branch has been evaluated. Some simulators incor-
porate a penalty to model the branch misprediction
[6]. This ignores the fact that these speculative in-
structions consume processor resources and a�ect the
future state of the processor. Moudgill et al from IBM
quanti�ed the impact of not simulating mispredicted
paths on a four-issue processor using programs from
the SPEC95 integer benchmark [7]. They found that
the variation in instructions completed per cycle is
small (in all but one case it is less than 0.5%) and does
vary in any one direction. They also found that mis-
predicted memory references may lead to additional

cache hits, acting as a natural type of prefetch mecha-
nism. Although these results are encouraging for users
of trace-driven simulators, the growing concern is that
increasing instruction widths and degrees of specula-
tions will lead to an unacceptable level of error.

One proposed remedy is to use a trace-driven sim-
ulator along with some other technique to acquire the
information needed to properly simulate speculative
instruction execution. One such method is performed
by Reilly and Edmondson with their Alpha Micropro-
cessor simulator [8] in which they use Aint [9] in con-
junction with a trace-driven simulator to supply basic
blocks of instructions from speculated addresses.

In this paper, we propose stepping through a trace
once, strategically storing all the instructions that are
accessed in the sequence of their address to create an
approximate copy of the source code, which we call

the resurrected code. The resurrected code is later
used in conjunction with the trace in order to perform
accurate simulation. We present a method and data
structure for creating and reusing the resurrected code
e�ciently. The analysis of our benchmark programs
show that often less than 1% of all branches branch to
an instruction that is not in the resurrected code.

The paper is organized in the following manner.
Section 2 explains our simulation environment, in-
cluding our tracing tools and benchmarks. Section 3
describes our method for implementing the proposed
technique. Section 4 is an analysis of the e�ectiveness
of the resurrected code structure. Section 5 concludes
the paper.

2 Simulation Environment
2.1 Tracing and Pro�ling Tools

Traces are generated dynamically using the tool
Shade [10] on a Sun UltraSPARC-II processor . Shade
is a tool that dynamically executes and traces SPARC
executables. It is customizable and provides several
sections in which the user can specify the exact trace
information to collect. At these points, the trace in-
formation can be dynamically handled in any manner.
Shade only traces user and library code and does not
analyze kernel code.

Detailed information can be collected dynamically
for every instruction and opcode. We collect data such
as the opcode �elds (to identify type of branches), pro-
gram counter, branch targets, and taken/not-taken
branch information. This information is then pro-
cessed by our own software simulation tools.

To collect static information, such as the number of
static instructions, we use spix and spixstats which
are part of SpixTools [11]. Spix requires that programs
be statically compiled, therefore all of executables that
we analyze with SpixTools and Shade are statically
compiled. We use spix and spixstats primarily for
cross-checking and validation.

2.2 Benchmarks

We use programs from SPEC CINT95, SPEC
CFP95, and a suite of C++ programs. Eight of the
SPEC integer programs, CINT95, are used in our
study - compress, gcc, go, ijpeg, li, m88ksim,

perl, and vortex. These are the same programs
used in Moudgill et al's study [7] of mispredicted
path penalty. Five programs from the 
oating-point
SPEC, CFP95, are analyzed for our study - fpppp,
hydro, su2cor, tomcatv, and wave5. These pro-
grams are computation-intensive and written in For-
tran [12]. (The remaining SPEC CFP95 programs
are not included due to time and length considera-
tions.) The �nal suite of programs are written in



Table 1: Benchmark Descriptions

Program Input Description of Program
SPEC CINT95: C programs
compress95 test.in Compresses large text �les
gcc amptjp.i Compiles pre-processed source
go 2stone9.in Plays the game Go against itself
ijpeg vigo.ppm Performs jpeg image compression
li train.lsp Lisp interpreter
m88ksim -c ctl.in Simulates the Motorola 88100 processor
perl scrabbl.pl scrabbl.in Performs text and numeric manipulations
vortex vortex.in Builds, manipulates 3 interrelated databases

SPEC CFP95: Fortran Programs
fpppp natoms.in Performs multi-electron derivatives
hydro2d hydro2d.in Hydrodynamical Navier Stokes equations
su2cor su2cor.in Masses of elementary particles are computed
tomcatv tomcatv.in Generation of 2-D coordinate system
wave5 wave5.in Solve's Maxwell's equations on a cartesian mesh

Suite of C++ Programs
deltablue 3000 Incremental data
ow constraint solver
eqn eqn.input.all Type-setting program for math. equations
idl all.idl SunSofts IDL compiler 1.3
ixx object.h Som Plus Fresco.idl IDL parser generating C++ stubs
richards 1 Operating system simulation benchmark

C++ and have been used to study the behavior of
C++, speci�cally the cost of virtual functions calls
[13] [14]. These programs are deltablue, eqn, idl,

ixx, and richards. Short descriptions of these pro-
grams are in Table 1.

Table 2 provides a description of the basic charac-
teristics of the benchmarks. Static instructions are
acquired from spixstats and represent the unique
instructions available in the executable. Dynamic in-
structions represent the number of instructions exe-
cuted by each program. Long running programs are
stopped at one billion instructions. The branch per-
centage refers to the percentage of dynamically exe-
cuted instructions that are branches. Unconditional
calls, jumps, and branches that break the instruction

ow are considered to be branches and are included in
our branch analysis.

2.3 Branch Prediction

Our study requires the simulation of dynamic
branch prediction hardware in order to identify when
misspeculation occurs. We use the Gshare branch pre-
diction scheme as described by McFarling in [15]. The
primary predictor is 2048 entries, direct-mapped, and
indexed by the program counter plus �ve global his-
tory bits. This predictor is accompanied by a 512-
entry, direct-mapped branch target bu�er (BTB) to
predict target addresses for the predicted branches.

We are most interested in branches that start fetch-
ing from the wrong location due to misprediction.

There are two cases in which this happens and this
is when we report a branch misprediction. One case
surfaces when Gshare mispredicts the branch. The
other occurrence is when the Gshare method correctly
predicts taken, but the branch instruction's target ad-
dress is not correct in the BTB. In all other cases, the
prediction is based directly on Gshare.

3 Implementation

The objective of the paper is to present a frame-
work for accurate simulation of instruction fetching
in a trace-driven simulator. Figure 1.a illustrates the
traditional approach to trace-driven simulation. The
simulator receives instructions sequentially from the
trace and these instructions fuel the simulation. For
branch instructions, a branch predictor mispredict re-
sults in the simulator e�ectively stalls until the branch
is resolved. The instruction stream corresponding to
the mispredicted paths are not normally available for
simulation. The resurrected code proposed in this pa-
per becomes a source for fetching the instructions from
the mispredicted paths.

3.1 Data Structure

Ideally, the structure that holds the instruction in-
formation should be memory e�cient and quickly ac-
cessible both while creating and reusing it. Instruc-
tions have been shown to have both temporal and
spatial locality, so instructions should, in general, be
blocked together. On the other hand, one in every



Table 2: Benchmarks Characteristics

Benchmark Static % static code Dynamic Instr. % Branches % branches
Program Instructions visited (in millions) (dynamic) mispredicted

compress 44,214 6.7 38.8M 11.71 10.29
gcc 403,581 17.0 267M 20.25 14.40
go 96,981 54.6 373M 15.55 26.48

ijpeg 95,673 16.56 1000M 8.36 11.31
li 71,303 10.58 170M 20.98 14.14

m88ksim 71,367 14.46 125M 17.28 9.85
perl 118,799 15.34 41.7M 20.80 15.34
vortex 171,421 9.68 1000M 21.54 9.68

fpppp 91,104 13.06 258M 1.31 8.32
hydro2d 77,799 6.33 1000M 11.87 3.43
su2cor 75.984 15.58 1000M 14.20 8.38
tomcatv 66,901 7.85 1000M 7.95 8.45
wave5 111,645 19.65 1000M 5.12 7.78

deltablue 30,539 15.14 41.1M 23.91 6.84
eqn 43,868 26.00 48.2M 21.65 10.73
idl 84,554 18.47 85.5M 25.65 12.81
ixx 72,741 18.07 30.3M 22.64 11.54

richards 22,023 6.83 6.7M 25.30 20.74

four to six instructions can disrupt the control 
ow of
the program. So it is quite possible that within these
blocks there will be small holes where instructions are
never reached.

Accounting for the above observations, we imple-
ment a dynamic, tree-like structure that is directly
indexable, and attempts to minimize the amount of
memory allocated to the \holes". The resurrection
tree is predictably composed of \nodes", where each
non-leaf node contains pointers (in C) to more nodes.
In addition, each non-leaf node need not contain any
other information. Leaf nodes do not allocate memory
for the array of node pointers and must contain infor-

mation about the instructions they are representing.

The resurrection tree is designed with a 32-bit,
byte-addressable address space and 32-bit wide in-
struction format in mind. All instructions are 32-bits
wide, so the program counter (PC) is always incre-
mented by four bytes. Therefore the last two bits are
unimportant and are truncated, leaving 30 bits. It
would be convenient for the nodes at each level of the
tree to be represented by one structure and therefore
have the same number of children. This would re-
quire that each level of the tree to potentially have
2n�x nodes, where n is the current level of the tree
and x is the increase in size (in bits) between levels
(i.e. level 0 contains the root and would have 20�x = 1
node).

We choose x to be �ve so that we have seven levels,
0 - 6, where level 0 is the root node and level 6 con-
tains all of the unique, executed instructions. Notice

that nodes at any level of the tree are directly index-
able by the program counter and require no search-
ing. Therefore all instructions can be accessed in con-
stant time. The distribution table in Figure 2 shows
what percentage of all nodes created are created at
each level for the C programs. Approximately 95%
of all of the nodes created are leafs which contain the
static instructions. This indicates that the structure
is not causing an excess of intermediate nodes that do
not store instructions and therefore is e�ciently using
memory.

3.2 Using Resurrected Code

Doing complete speculative simulation using the
resurrected code methodology requires two passes
through the trace. On the �rst pass through the trace,
each instruction is interpreted and then placed into the
resurrection tree on the �rst instance of the instruc-
tion. On subsequent instances of the instruction, the
instruction can be ignored. The presence of a branch
predictor is not necessary on the initial pass unless
trace characterization statistics (such as the ones pre-
sented in this paper) are desired.

Upon completion of the �rst pass, the resurrected
code structure is complete and full simulation may
take place (illustrated in Figure 1.b). The second pass
through the trace progresses in a similar manner to
traditional trace-driven simulation except in the case
of mispredicted branches. On a mispredicted branch,
the resurrected code structure becomes the new in-
struction source until the branch target is resolved.
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Figure 1: Traditional Use of Trace-Driven Simulator versus Trace-Driven Simulation with Resurrected Code

When this happens, appropriate squashing takes place
and the simulator resumes accepting instructions from
the trace. On the occasion that an instruction is not
present in the resurrected code, it may be necessary
to revert to the stalling technique of traditional trace-
driven simulation.

The resurrected code may be stored in a �le and
used in several simulations. This storage can be done
in many di�erent manners depending on the goals of
the user.

Table 3: Analysis of Resurrected Code

Benchmark % empty % with
Program targets a branch

compress95 0.025 99.74
gcc 0.952 88.76
go 0.035 99.69

ijpeg 0.042 99.42
li 0.117 98.82

m88ksim 0.703 92.51
perl 0.373 87.45
vortex 1.096 88.14

fpppp 0.091 98.86
hydro2d 0.253 90.35
su2cor 0.002 97.18
tomcatv 1.460 80.73
wave5 0.436 83.10

deltablue 0.124 73.99
eqn 0.471 85.22
idl 0.090 68.38
ixx 0.565 78.86

richards 0.002 99.97

% empty targets is the percentage of all dynamic branch targets

that are not found in resurrected code. % with a branch is

the percentage of the continuous code sequences that follow a

mispredicted branch which contain at least one branch.

4 E�ectiveness

For this study, the most revealing statistic is the
frequency at which speculated branch targets attempt
to access instructions that are not in the resurrected
code. This information is presented in the �rst col-
umn of Table 3 as the percentage of speculated branch
targets that have no corresponding instruction in the
resurrected code. This occurs less than 1% of the time
in 16 of the 18 applications studied and less than 1.5%
in all of the applications.

These percentages reveal the portion of the time
that one can not properly model the speculative fetch-
ing of a microprocessor. In these few cases, it is nec-
essary to choose an alternative technique until the
branch target is resolved. This technique could be
a variety of techniques, including stalling until the
branch is resolved, random execution, or executing the
next available instruction sequence. The signi�cance
of these low empty target percentages become appar-
ent by comparing them to the percentage of mispre-
dicted branches found in Table 2. Without resurrected
code, those mispredict percentages represent how of-
ten this stalling occurs. Notice that the percentage of
branches that stall range from 3.43% to 26.48% with-
out the resurrected code, and improve to around 1%
with the resurrected code. There is an improvement
of one order of magnitude in most cases.

When branch targets are speculated, they begin to
fetch starting at a certain instruction address. We re-
fer to the number of consecutive instructions available
at any such target as a continuous code sequence. Fig-
ures 3, 4 and 5 show a breakdown of the continuous
code sequence sizes along mispredicted paths for each
benchmark. We can see that in general the size of
the continuous code sequences are pretty large. Al-
though modern machines do path-based fetching, it is
a reassuring to see that for most programs there is a
signi�cant sequential stream of code available to fetch
if required.
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Figure 2: Resurrection Tree and Distribution Table

Figure 3: Breakdown of continuous code sequence
lengths along mispredicted paths for C Programs

Figure 4: Breakdown of continuous code sequence
lengths along mispredicted paths for C++ Programs

On the occasions that the continuous code sequence
is zero, the simulator could revert to the stalling tech-
nique of traditional trace-driven simulators. We can
see that tomcatv and vortex have the highest per-
centage of empty branch targets and accordingly the
worst accuracy with the resurrected code. It is in-
teresting to note that these two programs also have
relatively low branch misprediction rates. In general,
we found no correlation between the branch mispre-
diction rate of a program and the potential accuracy
increase with resurrected code.

Figure 5: Breakdown of continuous code sequence
lengths along mispredicted paths for Fortran Pro-
grams

The second column of Table 3 is the percentage
of continuous code sequences following a mispredict
which contain a branch. This number is signi�cant
because once the fetch mechanism reaches a branch
while speculatively fetching, it makes another specula-
tive decision based on the branch predictor and follows



that path. We can see that a large percentage of the
continuous code sequences in the C and Fortran pro-
grams contain at least one branch and in most cases
many more.

5 Conclusions
In this study, we investigate a scheme to improve

the accuracy of trace-driven simulation of speculative
processors. We create a structure called resurrected
code by taking a preliminary pass through the trace
and recreating an approximate copy of the code seg-
ment within an executable. During trace-driven sim-
ulation, a speculative fetch unit can access the resur-
rection tree like object code or an instruction cache to
obtain instruction opcodes.

We construct the resurrected code such that it is
a relatively inexpensive method for signi�cantly re-
ducing the impact of speculative mispredicted paths.
With this structure in place, we �nd that a trace-
driven simulator can fetch from the proper branch tar-
get for over 99% of all branches in 16 of our 18 bench-
marks and more than 98.5% in all benchmarks. With-
out the proposed structure, traditional trace-driven
simulators accurately model speculative instruction
fetching only for correct branch predictions, which oc-
cur for only 74% to 97% of branches in our bench-
marks. This is a signi�cant increase in the ability of
trace-driven simulation to mimic the true activity of
a speculative processor.
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