Confusion by All Means

Muhammad Faisal Igbal and Lizy K. John
University of Texas at Austin
{igbal,ljohn} @ece.utexas.edu

Abstract—Performance of computers is usually measured by
using benchmark suites. There has been a long debate among
computer architects on how to aggregate the individual program
results to present a summary of performance over the entire
suite. Many researchers have criticised the use of Geometric
Mean (GM) but SPEC continues to use it to report performance.
Mashey [7] has strongly supported the use of GM. According
to Mashey, the programs in a benchmark suite like SPEC
are samples of some population of programs. It is important
that we model the distribution of population correctly before
calculating any statisitics and making conclusions based on those
statisitcs. Mashey also conjectures that Lognormal distribution is
a better model than the Normal ditribution for such benchmark
suites. Since GM is the back-transformed average of a Lognor-
mal distribution, its use as a measure of central tendency is
statistically correct. In this study, we evaluate the correctness
of this Lognormal assumption using the large repository of
performance results for SPEC CPU2006 published on SPEC’s
website. Utilizing different tests for normality, we find out
that although Lognormal distribution models the performance
results better than the Normal distribution, there is a very
large percentage of machines which are neither Normal nor
Lognormal. Our study indicates that most of the non-normality
is caused by small number of outliers. We study the causes of
these outliers and evaluate the use of Coefficeint-of-Variance to
identify outliers. We also present some suggestions on how to
deal with these outliers.

Index Terms—Benchmark Means, Geometric Mean, Normality
Test, Lognormal Distribution

I. INTRODUCTION

There is a long history of debate on how to summarize
the performance of a benchmark suite and which mean is an
appropriate measure of the central tendency [6], [5], [8], [10],
[3], [7]. There have been strong arguments both in favour of
and against the use of each type of mean. Citron et al. [1]
present a detailed history of this discussion. In this section,
we discus some of the arguments made in this regard.

According to Lilja [6] arithmetic mean is proportional to
execution time and hence is the right measure for time based
metrics. He also argues that harmonic mean should be used for
rate based metrics and weighted arithmetic or harmonic mean
should be used for time and rate based metrics respectively
if weights of individual programs are different. He strongly
opposes the use of geometric mean as a measure of central
tendency. He shows that although geometric mean produces
consistent ordering of machines when Normalized times are
compared, this ordering is consistently wrong with reference
to the total execution times of the benchmarks. Hence he
concludes that ‘geometric mean is not the appropriate mean
for summarizing times or rates, irrespective of whether they
are Normalized’.

Similarly John [5] argues that weighted arithmetic or har-
monic mean can be used to correctly represent performance.
She shows with numerical examples that both arithmetic
and harmonic means yield correct orderings with respect to
execution times if these means are appropriately weighted.
She also maintains that geometric mean is not an appropriate
measure since it is not proportional to the execution times of
the benchmarks.

On the other hand Fleming et al. [3] studies all three types
of mean and vote in favour of geometric mean since it always
produces consistent rank order among the machines. The most
convincing arguments in favour of geometric mean have come
from Mashey [7]. He has performed detailed characterization
of workload analysis and argues that benchmarks like SPEC’s
CPU benchmarks are examples of Sample Estimation of Rel-
ative Estimation of Programs (SERPOP) i.e these benchmark
are a sample which is used to represent a population of pro-
grams which might run on a particular machine. He argues that
performance of machines on benchmarks like SPEC can be
better modelled using Lognormal distribution than the Normal
distribution. Geometric Mean which is the back transformed
average of Lognormal distribution is the statistically appro-
priate measure to be used. Also, the analysis done by Lilja
and John [6], [5] can be considered as Workload Analysis With
Weights (WAW) where the user knows exactly which programs
will run on the machine and the relative frequency/importance
of the programs. In case of WAW analysis, weighted AM or
HM are indeed the correct measures for algebraic calculations
as pointed out by these researchers. Most of the benchmarking
efforts, however, try to do the SERPOP analysis and hence
we’ll deal with this kind of anlaysis in the remainder of the
paper. We evaluate the correctness of Lognormal assumption
using SPEC CPU2006 data with three different tests for
normality: Lillie Test, Shapiro-Wilks Test and D’Agostino-
Pearson Test. We also evaluate the effectiveness of COV in
identifying the outliers and present some suggestions on how
to deal with these outliers.

II. Is GEOMETRIC MEAN AN APPROPRIATE METRIC?

When comparing performance of machines based on the
benchmark results, we are actually comparing distribution of
performances. It is important that we understand the nature of
these distrubtions before calculating any statisitics and making
conclusions based on those statistics. In case of Normal dis-
tributions, “mean” can be a good measure of central tendency.
But if the distribution is not Normal then mean does not give
us any useful information about the central tendency and we
should be careful while interpreting the mean. Sometimes a

transformation of data can yield a Normal distribution and
calculation of statistics in the transformed domain can be
very useful. In the case of a benchmark suite like SPEC,
Lognormal distribution is of particular interest. Lognormal
distribution is the ditribution of samples whose Logarithm
is normally distributed. As Mashey [7] has pointed out, GM
can be thought of as the the back-transformed mean of a
Lognormal distribution
n . 1 n
GM =7, = r;)n = exp(— In(x; (D
7= (a0 = eon(Y in(a)

i.e if we take the mean of logarithm of all samples and the
back trasform from logarithm, we get the geometric mean. In
other words if

o 1 n
Ty = Zl logiow; 2)
then
Mean = exp(z,) = GM 3)

Thus it is statistically correct to use GM if the data can be
modeled using the Lognormal distribution. Furthermore, the
speedup numbers are calculated as the ratio of execution time
of a program on a given machine to execution time on the base
machine. There is nothing in the real world that distinguishes
base machine A from other machines B. Ratios of A/B are
just as valid as B/A. This is the real fundamental reason why
one has to use some metric that works that way, so that if
A is 2X faster than B, B better be .5X as fast as A, which
only works if we take the logarithms. Arithmetic means of
ratios dont have that property, although with small dispersions,
normal may be a good quick approximation, and the AM and
GM are close anyway. In the case of becnhmark suites like
SPEC 2006, Lognormal distribution can cater for small outliers
better than the Normal distribution and thus should be a better
model for the results. Mashey has shown with one example
from SPEC CPU2000 results that Lognormal distribution can
better model the data. In this paper, we utilize the base results
available for SPEC CPU2006 from SPEC’s website for about
2000 machines and test how well the Normal or Lognormal
distribution models the data.

A. Tests for Normality

The easiest and most obvious way of testing for normality is
to draw the histogram and visually see how well this histogram
resembles the bell-shaped curve. But this is not the most
accurate way of testing for normality, especially when the
sample sizes are very small as in our case (12 data samples
for SPECint and 17 for SPECfp). With small sample sizes,
discerning the shape of the histogram is a difficult task and
the histogram shape can change significantly just by changing
the interval width of the histogram. A better way of testing
for normality is to use the normality tests. We perform three
different normality tests to verify the assumption of normality
for SPEC CPU2006 results. All three tests are frequentist tests.
Frequentist tests use hypothesis testing and the decision is
made using a null hypothesis. Null hypothesis is the basic
assumption that is put forward when making a statistical

inquiry and is usually denoted by Hj. The validity of the null
hypothesis is tested using the statistical test which calculates
a test-statistic. In hypothesis testing, the significance level
() is the criterion used for rejecting the null hypothesis.
First, the difference between the results of the experiment
and the null hypothesis is determined. Then, assuming the
null hypothesis is true, the probability (p-value) is computed
that the difference can be at least as large as observed. If
the p-value is less than or equal to the significance level(«),
then the null hypothesis is rejected. If the test shows that we
should reject the null hypothesis, it is done in favour of an
alternative hypothesis, represented as Hi. In our study the
hypthesis testing can be formalized as:

HO: Samples are from a Normal Distribution
Hl:

The three tests that we use have different ways of calculating
the test statistic and differ in how they quantify the deviation
of the actual distribution from a Gaussian distribution. A good
discussion on normality tests can be found in [4]. We present
a summary of the three tests that we are using:

1) Lillie Test: This test is an adaptation of Kolmogrov-
Smirnov test with mean and variance of the Normal distribtion
not specified in the null hypothesis. This test first estimates
the population mean and variance from the sample data. It
then compares the cumulative distribution of samples with the
expected cumulative Normal distribution. The test statistics is
based on the largest discrepancy similar to KS-test i.e. for a
vector x of samples the test statistic is given as

KS = maz|SCDF(z) — CDF(x)| 4

where SCDF is the empirical cdf estimated from the sample
and CDF is the Normal cdf with mean and standard deviation
equal to sample mean and standard deviation. We performed
this test using the 1illietest () function available in
Matlab. We performed a two sided 1illietest () with an
a of 0.05. The result h returned by this test is 1 when we
can safely reject the null hypothesis i.e, When the p—value
calculated by the test is smaller than the signigicance level a.

2) Shapiro-Wilk Test: This test is (semi/non) parametric
analysis of variance and is useful in detecting broad range
of departures from the normality of sampled data. This test is
considered to be more powerful in detecting the non-normality
than the “distance” tests like the Lillie Test. This test is shown
to work for number of samples between 3 and 5000. Most
authors agree that this is the most reliable test for normality
for small to medium size samples. The test statisitic for this

test is given as
n 2
Q_ aiw)
=1
S — ®)

D (@wi—m)

i=1

W =

where z; are the ordered sample values(z; being the smallest)
and a; are the constants generated from the means, variances
and covariances of the ordered statistics of a sample of size
n from a Normal distribution. The small values of W are

Samples are not from a Normal Distribution

an evidence of departure from normality. This test was also
performed in matlab with a of 0.05.

3) D’Agostino-Pearson test: This test asseses the normality
using skewness (to quantify the asymmetry of the distribution)
and kurtosis (to quantify the shape i.e, peakedness of the
distribution). A Normal distribution is assumed to have a
kurtosis value equal to 0. A higher kurtosis means that the
distribtion is peakier and a negative kurtosis means that the
distribtion is flatter than the Normal distribution. Also, a
Normal distribution has a skew of zero. A positive skew means
that there is a long tail to the right of mean and a negative skew
means a tail to the left. D’ Agostino-Pearson test first calculates
skew and kurtosis of the sample data and then calculates how
far each of these values differs from the value expected with a
Normal distribution. Finally it calculates a single p-value based
on these discrepencies. A smaller p-value means departure
from the normality. Again, we performed this test using an
o of 0.05.

B. Do SPEC CPU2006 results follow a Lognormal Distribu-
tion?

We performed all three normality tests for SPEC CPU2006
(both SPECint and SPECfp) results obtained from SPEC’s
website. The data used in this paper includes all the results
which were published on or before September 9, 2010. For
normality-testing, we apply the tests on speedup data i.e.
runtime on machine under test/run time on the base machine
and for Lognormality testing, we use logarithm(speedup) data.

Table I lists the results of normality tests. Columns la-
beled 'Normal’ and ’Lognormal’ represent the number of
machines which passed the normality test for speedup and
logarithm(speedup) numbers respectively. The numbers given
in the two columns are not exclusive i.e. a machine can be
considered both Normal and Lognormal. The columns labeled
”None” show number of machines which were identified as
neither Normal nor Lognormal. We can see that, although
Lognormal models data better than the Normal distribution,
the proportion of machines showing Lognormal (or Normal)
behaviour is very small. If the sample values are close to each
other, both Normal and Lognormal assumptions are equally
correct to model the data. When the standard deviation in-
creases i.e. the distrubutions start having a long tail or a skew,
the fit for Normal distribution worsens but the Lognormal
distribution still fits in case of small outliers. Figure 1(a) shows
a typical example of a machine whose results (SPEClInt in this
particular example) show a non-Normal behaviour. But the
logarithm of speedup numbers can be considered Normal as
identified by shapiro-wilk test. Taking logarithm of speedup
numbers decreases both skew and kurtosis and brings the
distribution closer to an ideal Normal distribution. This is
typically the case with this category of machines where skew
is caused by presence of a small-medium outlier. Figure 1(b)
shows an example of the second category of machines. Here
the outlier is far away from other programs and even taking
logarithm cannot reduce the skew to the desired values.

We also found very small fraction of machines (12/2125)
which could be modeled by Normal distribution but not by

Lognormal. In all these cases, taking logarithm made kurtosis
negative, resulting in a a distribution which is flatter than
a Normal distribution. Figure 1(c) shows example of such
a machine. Results from D’agistino-pearson Test in Table
I for SPECint show that percentage of machines exhibiting
Normal or Lognormal behaviour is only 13% and 19% re-
spectively. Even with Lillie Test, which is considered the
weakest, percentage of Normal and Lognormal machines is
only 16% and 34% respectively. The percentage of Lognormal
machines is a little higher in case of SPECfp i.e, 50%, 30% and
25% using Lillie, Shapiro-Wilk and D’ Agostino-Pearson Tests
repectively. From these results Lognormal seems to be a better
representation of distribution than Normal. In these situations
GM is statistically the correct measure of cetral tendency. But,
Lognormality cannot be assumed in general as suggested by
high percentage of non-Lognormal machines in the results. In
such situations, the results and statistics should be interpreted
very carefully.

C. What are the causes of Non-normality?

In order to analyze our data set, we calculated the first
four moments; Arithmetic Mean, Standard Deviation, Skew
and Kurtosis. Then we performed exploratory data analysis to
hunt for the odd cases.

1) SPECint: Almost all of the machines which show the
non-Normal behavior have high standard deviation. This high
standard deviation is usually caused by presence of an outlier.
On a detailed inspection we found that this non-normality is
caused by a single outlier i.e. 462 .1ibguantum. These ma-
chines compile 462.1libgquantum with —-parallel flag
enabled. These machines are multi-core machines and support
multiple threads, so the performance of libquantum on these
machines shoots up. 462.libquantum is a C library for
simulation of quantum mechanics and is easy to parallelize.
Part of the speedup also comes from the availability of 64 bit
hardware since the benchmark uses 64-bit arithmetic very ex-
tensively in its algorithm [2]. Infact, all of the top 10 machines
for SPECint have the speedup number for 462 . 1ibquantum
greater than 600. Compiler teams of most of the vendors seem
to have cracked this benchmark with compiler flags and cache
management instructions. They can focus on just this particular
program and get very high values of GM. Thus optimizing
for 462.1ibquantum is just blowing the numbers away.
Such high numbers for one or two outliers badly wreck any
statistics approach. Similar things have happened in the past.
For example, in the original SPEC89 benchmarks, cache-
blocking compilers achieved similar performance gains for
matrix300. It is important that we identify and isolate the
outliers otherwise any statistics calculated with such a data set
will not be reliable.

2) SPECfp: The situation in SPECfp is not very different.
There is a high percentage of machines which show the
non-(log)-Normal behaviour. If we sort the machines with
respect to standard deviation, we can easily find out the two
outliers in non-Normal machines namely 410 .bwaves and
436 .CactusADM. Both these programs are compiled using
autoparallelization. The vendors are able to get very high

Lillie Test Shapiro-Wilk Test Dagos-Pearson Test
benchmark | Total Machines | Normal | Lognormal | None | Normal | Lognormal | None | Normal | Lognormal | None
SPECint 2125 341 709 1415 362 526 1587 266 398 1723
SPECfp 2066 690 1469 597 696 1169 882 565 987 1057
TABLE I
RESULTS OF THE NORMALITY TEST FOR SPEC CPU2006
7t skew =2.8035 35 skew =1.536

kurtosis =8.5891

Freq.

kurtosis =3.1577

40 60 60

speedup

100 120 140

B0 1

5 2 25 3 35 i 45 5 55 &
log(speedup)

(a) Typical Machine which is non-Normal but Lognormal (NovaScaleR410 F2 Intel Core i3-540, 3.06 GHz)

skew =3.4452
kurtosis =11.9048

00
speedup

8

7

skew = =2.8697
kurtosis =8.9997
sk

Sk
o I
3 4 5 G 7 B

log(speedup)

(b) Typical Machine which is neither Normal nor Lognormal (ASUS RS300-E6 (P7F-E) Intel Xeon X3470)

2

skew =0.85792
kurtosis =0.3328

3

skew =0.33492
kurtosis =-0.37006

25

75
speedup

25
log(speedup)

(c) Typical machine which is Normal but not Lognormal (IBM System X 3250 Intel Xeon X3220)

Fig. 1. Histograms of Typical Cases from the SPEC CPU2006 results

performance numbers for these programs as compared to the
other programs. In contrast to SPECint programs which are
relatively easy to group, there is a possibility that SPECfp pro-
grams need to be categorized into scalar, vectorizable, and par-
allelizable etc programs. Indeed, programs like 410 .bwaves
and 436 .cactusADM do begin to form a second distribution
and should be treated separately from other programs. SPEC
has encountered similar situations in the past. Initially they
begun with one single benchmark suite containing both intger
and floating point benchmarks. But as soon as they realized

the existence of bi-modal distribution in case of integer and
floating point programs, they separated the benchmark suite
into separate integer (SPECint) and floating point (SPECfp)
benchmarks. Similarly SPECfp programs may need to further
get split into scalar, vectorizable, parallelizable, and not mixed
together. All it takes is one like 410 .bwaves to skew results
and badly damage the predictability.

III. HOW TO DEAL WITH NON-NORMALITY?

Although Lognormal distribution is able to model
SPEC2006 data better than the Normal distribution, it can
do so only in case of small outliers. If the outliers are very
far away or there are multi-modal distributions, data cannot
be modeled correctly even by Lognormal distribution. It is
important that we identify these outliers and deal with them
accordingly. In this section we present our recommendations
to deal with such situations.

A. Report a Measure of Dispersion

A measure of dispersion should be very useful in identi-
fying the weird cases. It helps in quantifying the ranges and
confidence within which to expect most of the benchmarks.
Digital Review magazine in 1980s used to report confidence
interval, standard deviation and variances for this purpose. In
our opinion, Coefficient of Variation (COV) should even be a
better measure than standard-deviation and variances. COV is
defined as

COV = standard_deviation/mean (6)

COV is a better measure because standard deviation must be
understood relative to the mean and if one is interested in
comparing distributions with different means, co-efficient of
variation should be used.

At the moment SPEC gives just one number (GM) and it
does not provide any measure of dispersion. Although measure
of dispersion can be calculated directly from SPEC’s data,
a single number like COV can really alert the user about
weirdness of results i.e. outliers or multi-modal distributions.
In fact in our results, all the machines which have co-efficient
of variance greater than 1 are identified as non-Lognormal
by all three normality tests. Table II shows the COV of both
Lognormal and non-Lognormal machines in detail. We have
used the results of Shapiro-Wilk test for table II.

SPECint SPECfp
Lognormal \ non-Lognormal | Lognormal \ non-Lognormal
COV(Avg.) 0.41 \ 1.57 0.42 \ 0.95
TABLE II

AVERAGE VALUE OF COV FOR NORMAL AND NON-NORMAL MACHINES

Fig. 2 plots the COV for SPECint for both Lognormal
and non-LogNormal machines. We can see that COV of all
the Lognormal machines is less than 1. We found some
cases where non-Lognormal machines showed small COV.
The non-Lognormality in these cases is due to high kurtosis
(more peakier of distribution) value. This means that more
benchmarks are closer to each other. Obviously, if more
benchmarks are close to each other, then GM (or any other
mean) is a correct measure of central tendency and can be
used safely. High COV value always correctly identifies the
weird cases of outliers.

= =-Lognormal

«—Non-Lognormal

Coefficient of Variation

1 501 1001 1501 2001

Sample Number

Fig. 2. COV values for Lognormal and non-Lognormal Machines (samples
are in decreasing order of COV)

B. Isolate and treat the outliers separately

Once we have identified the outliers, we need to treat them
separately from other programs. In case of SPECint, since we
find only one outlier, it is easy to just reomve it from the stats
and use the mean of remaining benchmarks. We removed the
outliers, 462 .1ibquantum from SPECint, 410.bwaves
and 436.cactusADM from SPECfp and ran the normality
tests again. Results are listed in Table III.

From the table we can see that more than 97%, 90% of the
machines in both shapiro and Dagos test are Lognormal for
integer and floating point benchmarks respectively. Thus we
can see that after removing the outliers, the distribution can be
considered as Lognormal and GM can give a good measure
of central tendency. The non-normality in the remaining cases
is generally due to high kurtosis value. This means that
distributions are peakier than the Normal distribution and now
GM (or any mean) is a good measure of central tendency since
we don’t have any outliers.

C. Use a Ranking System not just the Mean

A ranking system can be very useful when a user is
comparing multiple alternative machines. Instead of just using
mean to compare the performance of machines, one can use
a ranking system like “Borda Counts”[9]. This is a single
winner election method and has roots in French Revolution. In
this method the voters rank candidates in order of preference.
The Borda count selects the winner by giving each candidate
a certain number of points corresponding to the position in
which he or she is ranked by each voter. The person with most
points is declared the winner. In our context, if we are trying
to compare n alternative machines, we can rank order the
machines for each program based on the performance. Then
based on these ranks, each machine will get points for each
program. The sum of all the points will decide the final rank
for that machine. This type of ranking system is good, since
one outlier does not blow away all the statistics. A machine
has to perform consistently well in order to be declared as

Lillie Test Shapiro-Wilk Test Dagos-Pearson Test
benchmark | Total Machines | Normal | Lognormal | Normal | Lognormal | Normal | Lognormal
SPECint 2125 1137 1684 2050 2112 1826 2079
SPECfp 2066 1886 2017 1782 1852 1683 1899
TABLE III
RESULTS OF THE NORMALITY TEST AFTER REMOVING THE OUTLIERS
winner. Thus a proper ranking system should be used when ACKNOWLEDGEMENTS

we are rank ordering the machines. Use of a single mean, as
done by Citron et al in their study [1] to rank the machines,
is not the correct approach.

D. Generating a Single Number

Computer architects agree that one number like GM or HM
can not tell the whole story. But it is sometimes important
to get only one number for the purpose of comparisons. We
believe that, in these situations, the dispersion of data should
be incorporated into this number. One way to do it is to
make the final benchmark score inversely proportional to COV.
Something like

1
BenchmarkScore (m)(GM) (7

or ’
BenchmarkScore = (m)(GM) (8)

In this way the machines with high Co-efficient of variance
will be penalized more. And the machines in which all the
programs perform almost equally will not be penalized. This
score number will ensure that nobody will be able to rank
better, just by doing program specific optimization on one or
two programs of the benchmark suite. More research needs to
be done in order to find appropriate values of k and to idetify
more variables that can be incorporated in equation 8.

IV. CONCLUSIONS

Evaluating multiple machines based on performance on a
becnhmark suite is generally a SERPOP analysis. In case of
small outliers, Lognormal is a better model for distribution of
performance than Normal distribution. The results of normality
tests show that Lognormal distribution can not be assumed in
general. The existence of outliers and multimodal distributions
can badly wreck any statistics approach. With relatively small
numbers of benchmarks, it is almost inevitable that there be
outliers, and one of the questions raised for future research is:
how many benchmarks do you need to improve confidence?
A measure of dispersion such as COV can be very useful in
identifying such situations. Once an outlier or a multi-modal
distribution is identified, one should treat the weird cases very
carefully. We also advocate the use of a proper ranking system
instead of just the GM in order to rank order the machines.
Also, even if a single number is ultra important, the score
should take the measure of dispersion into account in addition
to the mean as shown in equation 8. A lot of research needs
to be done in order to find a proper ranking system and fine
tuning the performance score numbers like the one in equation
8.

We would like to than John R. Mashey for his valuable
feedback. We would also like to thank Vincent Davis and
Youngtaek Kim for their help in improving this manuscript.

REFERENCES

[1] Daniel Citron, Adham Hurani, and Alaa Gnadrey. The harmonic or
geometric mean: does it really matter? SIGARCH Comput. Archit. News,
34(4):18-25, 2006.

[2] Dong Ye et al. Performance characterization of spec cpu2006 integer
benchmarks on x86-64 architecture. IISWC, 2006.

[3] Philip J. Fleming and John J. Wallace. How not to lie with statistics:
the correct way to summarize benchmark results. Commun. ACM,
29(3):218-221, 1986.

[4] Zar J. H. Biostatistical Analysis (2nd edition). Prentice-Hall, 1999.

[5] Lizy Kurian John. More on finding a single number to indicate overall
performance of a benchmark suite. ACM Computer Architecture News,
2004.

[6] David J. Lilja. Measuring Computer Performance: A Practitioner’s
Guide. Cambridge University Press, 2000.

[7]1 John R. Mashey. War of the benchmark means: time for a truce.
SIGARCH Comput. Archit. News, 32(4):1-14, 2004.

[8] Patterson and Hennessy. Computer Architecture:
ware/Software approach. Morgan Kaufman Publishers.

[9] Donald G. Sari. Mathematical structure of voting paradoxes, positional
voting. Economic Theory, 15, 2000.

[10] J. E. Smith. Characterizing computer performance by a single number.
Communications of ACM, october 1998.

The Hard-

