
Enhanced Hierarchical Instruction Scheduling

For Tiled Dataflow Architectures

Muhammad Umar Farooq and Lizy John

Department of ECE,
The University of Texas at Austin

ufarooq@mail.utexas.edu,ljohn@ece.utexas.edu

http://www.ece.utexas.edu

Abstract. Increasing on-chip wire delay along with the distributed na-
ture of processing elements, makes instruction scheduling for tiled dataflow
architectures very crucial. Our analysis reveals that careful placement of
most frequently executed sections of applications, and directly address-
ing resource contention can significantly improve the performance of the
application. The former reduces the operand network latency, while the
latter reduces stalls due to contention for processing elements. We aug-
ment one of the most recent instruction scheduling algorithms —hier-
archical instruction scheduling —to treat loops as a first class entity in
placement decisions. In this approach, we avoid splitting the loop be-
tween domains, thereby reducing expensive inter-domain traffic by 6.5%
and increasing average IPC by 5.13%. In the presence of conditional
branches, and variable latency memory instructions, estimating resource
contention, at compile time, is not only complex, but also imperfect.
We suggest dynamic tracking of contending instructions, and their re-
location, once a contention threshold is exceeded. Results showed that
dynamic contention tracking reduced the average ALU conflicts by 23%,
thereby improving the average IPC by 14.22%. Combined together, these
augmentations improve the average IPC by 19.39% and over 30% for
some benchmarks.

Key words: tiled dataflow architectures, instruction scheduling, resource
contention, operand network latency.

1 Introduction

Tiled architectures are gaining popularity as an alternative to monolithic proces-
sors, because of their simpler designs, and scalability. TRIPS [1], WaveScalar [12],
RAW [13], and Smart-Memories [5] are examples of such architectures. Some ex-
amples of these architectures consist of processing elements (PEs), distributed
across a grid, and connected through an on-chip network [1][12]. Their perfor-
mance largely depends on the instruction scheduling. As opposed to monolithic
processors, instruction scheduling for tiled architectures has two aspects: (1)



2 Muhammad Umar Farooq, Lizy John

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

D$

SB

Net
work

PE

D$

DR

DR D$

DR

D$

DR

Dynamic Relocator

DomainPod

Cluster

network
To opearand

Input
Routing

FU

Input Queues

PE Control and 
Scheduling

Output Queues

Output
Routing

From
operand
network

a) b)

Fig. 1. a) Processing Element (PE) b)WaveScalar Cluster

temporal —decides when to fetch an instruction (2) spatial —decides where
to execute an instruction. Scheduling for monolithic processors focuses on the
temporal aspect of scheduling. However, for tiled architectures, scheduling also
decides where an instruction should be executed in the grid. A good instruc-
tion scheduling can reduce operand network latency by placing dependent in-
structions on the same or adjacent tiles, while minimizing the contention for
tile resources and maintaining high ILP. Previous attempts at solving resource
contention problem for tiled architectures relied on profiling[4] or compile time
heuristics[2]. In the presence of variable latency memory instructions, estimating
at compile time, whether an instruction will contend with another instruction is
impossible. For example, in case a load instruction misses in L1 cache, all its con-
sumers will execute at a time that is different from their estimated firing time.
The focus of this work is to reduce the operand network latency by placing code
which is executed most frequently —loops —within a domain, and to minimize
resource contention by dynamically tracking/relocating contending instructions.

Our target architecture is WaveScalar [12]. In this architecture, the basic
processing element (PE) is a 5-stage in-order pipeline. Two adjacent PEs form a
pod, and communicate through a low-latency bypass network. Four pods make
a domain, communicating over a fixed latency pipelined network. Four domains
constitute a cluster, and communicate through a fixed-route network switch. Sev-
eral clusters combine to form a grid. Inter-cluster communication is through a
dynamic-routed packet network. Recently, a hierarchical instruction scheduling
algorithm [6] has been proposed for the WaveScalar architecture, which par-
titions the application’s dataflow graph into smaller groups, and assign these
groups to PEs. We augmented hierarchical instruction scheduling algorithm to
take into consideration the control flow information (i.e. loops) while partition-
ing the dataflow graph. We also explored addressing contention for execution
resources dynamically by relocating instructions that contend with other in-
structions within their PE past some pre-defined threshold.



Instruction Scheduling For Tiled Dataflow Architectures 3

We compared the performance of the augmented algorithm with the original
algorithm on WaveScalar [12] simulator using benchmarks from EEMBC [11]
benchmark suites.

In the next section, we will discuss the background, and the original hierar-
chical scheduling algorithm. Section 3 describes our augmentations to the origi-
nal algorithm. Our evaluation methodology, and results are shown in section 4.
Section 5 discusses related work. Section 6 concludes the paper.

2 Background

We begin this section by giving an overview of the target architecture for the
scheduling techniques presented here. We will then explain the state of the art
in instruction scheduling for this architecture which is the baseline for our com-
parisons.

2.1 WaveScalar Architecture

WaveScalar is a dataflow architecture. As in other dataflow architectures, a pro-
gram is represented as a dataflow graph, and instruction dependencies are ex-
plicit [3][10][8][12]. There is no program counter, instructions are fetched and
placed on the grid as they are required. There is no register file, the result pro-
duced by an instruction is directly communicated to all the consumers. In this
architecture, instructions are grouped in blocks called Waves. Waves can be de-
fined as acyclic dataflow graphs, for which each instruction executes at most
once every time the wave is executed, and to which control can enter at a single
point. On exit and re-entry to this acyclic dataflow graph, the wave number is in-
creased. Waves are used to support memory models of imperative programming
languages such as C. Each dynamic instruction is identified by a tag, which is
the aggregate of its wave number and location on the grid. When an instruction
has received all its input operands for a particular matching wave number, it
fires, provided an ALU is available, and there is room to store the result in the
output queue. The output is temporary stored in the output queue before it is
communicated to the consumers.

Figure 1(b) shows the basic WaveScalar Microarchitecture. The substrate
consists of replicated clusters connected through a dynamically routed packet
network. Each cluster consists of four domains, communicating through a fixed-
route network switch, which has a 4 cycle latency. Additionally, each cluster has
a 32KB 4-way set associative L1 data cache, and a store buffer. Each domain is
composed of eight PEs, grouped into pairs of two. Each pair is called a pod. Pods
communicate through a fixed 1 cycle latency pipeline network. Adjacent pods
form a half-domain, with 2 cycle communication latency. Within PE, instructions
communicate through a bypass network. Each PE, shown in Figure 1(a), is a
5-stage in-order pipeline with a small instruction cache capable of holding 64
static instructions. Each PE has a 16 entry input queue, and an 8 entry output
queue.



4 Muhammad Umar Farooq, Lizy John

Domain 1 Domain 2

a) b)

Fig. 2. a) Application Dataflow Graph b)Coarse Grain Scheduling

Loading instructions onto the grid is done through co-operation of the mi-
croarchitecture and the runtime system. When a token is generated, as a result
of the dataflow firing rule [6], if the consumer instruction is not already on the
grid, the runtime system is signalled [6]. The place for the instruction can be
decided by consulting either a statically constructed table or use of an online
algorithm which creates a new mapping.

2.2 Hierarchical Instruction Scheduling Algorithm

Recently, a hierarchical instruction scheduling algorithm [1] has been proposed.
It breaks the instruction scheduling problem into two phases – Coarse grain
and Fine grain. Coarse grain phase assigns instructions to domains according to
their execution order, while fine grain phase refines initial placement, and assigns
instructions to the PEs. Coarse grain scheduling uses instruction execution order,
obtained through profiling, to assign instructions to a domain, and when the
domain is full, it moves to the next domain, thereby assigning all the instructions
to some domain. Figure 2 shows an example of how an application dataflow graph
shown in 2(a) is assigned to domains during coarse grain scheduling 2 (b).

Once all the instructions are assigned to some domain, fine grain scheduling
refines the assignments, and generates the final placement of instructions to the
PEs. Fine grain scheduling has two passes. Pass one forms groups of instructions
within each domain according to the topology of the dataflow graph. It uses two
parameters (a)MaxDepth - which controls how many dependent instructions are
assigned to the same PE, (b) MaxWidth - which limits the amount of parallelism
within each PE. A higher value of MaxDepth will reduce operand network latency
since more dependent instruction will be assigned to the same PE. A higher value
MaxWidth will increase the ALU contention as more parallel instructions will
share the PE resources. Pass two of the fine grain scheduling does the assignment
of the groups formed in phase one to the processing elements. In doing so, this



Instruction Scheduling For Tiled Dataflow Architectures 5

Domain 1 Domain 2

Fig. 3. Fine Grain Scheduling

phase uses the parameter DepDegree. This parameter has a value between zero
and one, and is used to control how much emphasis there is on inter-group
operand dependencies in the choice of PE for a group. A value close to zero will
determine a PE for the placement with most dependencies to the instructions
in the group. A value close to one will assign the group to the PE with least
dependencies with the instructions of the group at hand. Figure 3 shows the
final instruction placement after fine grain scheduling.

3 Enhanced Hierarchical Instruction Scheduling

This section will explain our augmentations to the baseline hierarchical instruc-
tion scheduling algorithm.

3.1 Loop Awareness

Loops are structures where a program spends most of its time. Careful placement
of instructions within a loop can significantly improve the performance of the
program by reducing long operand latencies. The baseline algorithm does not
differentiate between sequential code within and outside loop constructs, when
assigning instructions to domains. During the coarse grain scheduling, the base-
line algorithm uses profiled execution order to assign instructions to domains.
Once a domain is completely full (512 instructions for the current implemen-
tation), the algorithm moves to the next domain until all the instructions in
the program are assigned to some domain in the grid. However, this sequen-
tial assignment of instructions to domain could result in a loop being split into
two different domains (see Figure 2) thereby increasing the inter-domain traffic
proportional to the execution frequency of the loop.

In our algorithm, a counter Scurr is maintained during the coarse grain place-
ment phase. Every time an instruction is assigned to a domain, this counter is
incremented. When the coarse grain placement algorithm encounters an instruc-
tion that is in a loop it checks the static size of the loop Sloop. If Sloop is < Smax

- Scurr where Smax is the maximum instructions that can fit in a domain, it con-
tinues the assignment to the current domain since the loop can completely fit in



6 Muhammad Umar Farooq, Lizy John

Domain 1 Domain 2 Domain 1 Domain 2 Domain 3

a) b)

Fig. 4. a) Loop assignment with baseline algorithm b)Loop assignment with
augmented algorithm

the current domain. If Sloop is > Smax implying that the loop can not completely
fit in any domain it continues with the assignment to the current domain. If
however Smax - Scurr < Sloop < Smax then the assignment to the current domain
is stopped and entire loop is assigned to a new domain. Doing so decreases the
amount of inter-domain communication that would have taken place if the loop
was divided between domains. Figure 4 shows a sample placement of a loop with
the baseline algorithm shown in 4(a) and with the use of our algorithm shown
in 4(b).

3.2 Dynamic Contention Tracking

Resource contention can cause underused execution resources on the processing
elements. One of the shortcomings of static instruction scheduling is its imper-
fect estimation of resource contention. For example, variable latency memory
instructions make it impossible to statically identify firing time of instructions
and their dependants. One can only estimate the firing time, but in case an
estimation goes wrong (e.g. because of cache miss), firing time of dependent in-
structions will be different from their estimated time, and can cause contention
with other instructions. Extensive research has been done to compute optimal
schedule. Profiling is used in [4] to assign cache hit or miss latency to memory
instructions. Load balancing heuristic is used in [2] to penalize instructions that
can cause resource contention. To account for imperfect estimates the algorithm
leaves single cycle slack in either direction for the firing time. These attempts
can, at best, produce an imperfect local(intra-block) contention estimate. When
attempting to find a placement for the dataflow graph corresponding to an ap-
plication on a grid, such estimates cannot be useful.

We propose a dynamic contention tracking algorithm. Instructions are as-
signed to the processing element according to the static scheduling algorithm.
A contention counter is associated with each instruction i, which is incremented
whenever instruction i contends with other instructions in the processing el-
ement. When the contention counter for instruction i reaches the contention



Instruction Scheduling For Tiled Dataflow Architectures 7

threshold, a relocation request for instruction i is generated. Implementation de-
tails of dynamic contention tracking algorithm are further explained in the next
section.

To allow relocation within the same domain, processing elements are not
filled to completion during initial instruction assignment. Relocation outside the
initial domain is not considered, as it would increase the communication cost
of the instruction with its producers and consumers and could also result in a
loop being split into different domains. During relocation, the cost of placing
instruction i is computed for all the PEs in that domain, including the original
PE using the algorithm shown in Figure 5. Instruction i is assigned to the PE
with the minimum cost. If no PE within the domain has cost less than the
original PE, then instruction i is not relocated. After relocation the contention

counter for that instruction is set to zero. The cost consists of three components:

a) communication cost between producer of instruction i to instruction i.

b) contention cost of instruction i in PE.

c) communication cost between instruction i to its consumers.

Computing the (a) and (c) portions of the cost is straight forward as each
instruction knows its producers and consumers. Computing contention cost in-
volves finding whether an instruction i if placed in PE p will contend with the
instructions already present in PE p. One simple approach for finding if two
instructions will contend with each other is to check if they have the same pro-
ducer. There are two problems with this approach. First an instruction can have
multiple producers for the same data e.g. instructions in the merge block fol-
lowing a conditional branch. Secondly instructions that do not have a common
producer but can possibly fire at the same time are not considered. A second
approach is to maintain a history of the last ’k’ cycles each instruction became
ready. If two instructions have high correlation in their ready times, they are
likely to contend with each other if they are in the same PE. For our experi-
ments we use k=1. The instruction relocator keeps a record of whether or not
each instruction in the domain was ready in the previous cycle. When a relo-
cation request is issued this information is used to calculate contention cost of
each PE being considered. Results showed that even with k=1, ALU contention
is reduced significantly. We have assumed a 20 cycle penalty for the relocation
and announcing the relocation to the producers and consumers of the instruction
being moved. The penalty considered for instruction relocation has been consid-
ered the same as the penalty of bringing in an instruction on demand from L2.
Although this penalty may be a bit pessimistic some or all of the penalty can
be hidden beacuse an instruction relocation process starts as soon as the in-
struction reaches its contention threshold. If the next message to this instruction
being moved arrives after x cycles, then the actual penalty is (20 - x) cycles (zero
if x > 20).



8 Muhammad Umar Farooq, Lizy John

Input: Contending Instruction i
Output: PEnew —new location of instruction i
1: runningCost = infinity
2: for all PEs p in Domain do
3: Cost(i, p) = inputLatency(Producer(i), i) +

contentionCost(i, p) + outputLatency(i, Consumers(i))
4: if Cost(i, p) < runningCost then
5: runningCost = Cost(i, p)
6: PEnew = p
7: end if
8: end for

Fig. 5. Dynamic Contention Tracking Algorithm

PEs per Domain 8(4 pods)

PE Input Queue 16 entries

PE Output Queue 8 entries

Instructions per PE 64

ALUs per PE 2

L1 Cache 32KB, 4-way set associative,
128B line, 4 accesses per cycle

L2 Cache 16MB, 4-way set associative,
1024B line, 20 cycle access

Network Latencies

Within Pod 1 Cycle

Within Half Domain 2 Cycles

Within Domain 4 Cycles

Within Cluster 7 Cycles

Inter Cluster 7 + hop count

Table 1. Parameter settings for experimental evaluation.

3.3 Implementation of Dynamic Contention Tracking Algorithm

The dynamic contention tracking algorithm is implemented using a hardware
structure called the dynamic re-locator, see Fig 1(b). This is a distributed struc-
ture with one re-locator per domain. The purpose of this re-locator is to calculate
the best PE location for an instruction, whose contention counter exceeds the
threshold. This new PE location should have the least value cost function among
the 8 PEs in that domain. When an instruction surpasses the threshold, it sends
a request along with the PE location of its sources and sinks to the dynamic
re-locator in its domain. Once the re-locator receives this information, comput-
ing the communication cost between a candidate PE and PEs containing the
sources/sinks will not be costly. This is just a matter of adding numbers based
on the distance of the source and sink PEs. Computing the contention cost the
re-locator requires information about how many instructions became ready in
each PE in the previous cycle. Every cycle, each PE (8 of them) sends this in-



Instruction Scheduling For Tiled Dataflow Architectures 9

frequency of instruction moves (% of total)

Benchmark Total Static Static Insts ALU conflicts ALU conflicts 1-5 6-10 11-20 above 21
Insts Moved before opt. after opt. % % % %

fft00 15903 602 622365 549867 47.1 3.4 5.7 43.8

tblook01 15498 1198 791137 679818 49 22.7 6.9 20.9

fbital00 14774 383 1263916 883164 47.2 4.6 4.6 43.2

autcor00 14194 77 2823384 2179031 38.8 9 9 42.6

aifftr01 11856 1970 1698660 1286201 39.4 12.8 10.8 36.1

pntr01 16208 501 667252 580794 27.2 3.1 1.7 67

idctrn01 21412 3832 2054979 1618157 68.8 7.7 5.7 17

conven00 14677 363 2510123 1864493 40.4 2.4 4.9 51.4

viterb00 15278 627 938309 620596 58.8 12.3 5.1 22.4

bitmnp01 17437 1349 446836 303761 45.9 23.2 22 8

Average 1381696 1056588 46.1 10.1 7.6 36.2

Table 2. ALU contention and frequency of instruction relocation during dynamic
contention tracking.

formation to the local re-locator in their domain. Upon receiving a relocation
request, these 8 stored values are observed by the re-locator to calculate the
contention cost of each PE, which is incorporated into the overall cost function
of each PE. Another job of re-locator is to inform all the sources/sinks about the
updated location of the instruction. This will only be done when an instruction
is re-located, and not every cycle. We envision doing this by letting all those
sources and sinks know in the same way they would know the place of an in-
struction being initially brought in from L2. Due to these similarities to an L1
miss and a 20 cycle penalty of accessing L2 we have considered a 20 cycle penalty
for the relocation

4 Experimental Evaluation and Results

The hierarchical placement explained in section 2 is the baseline for our eval-
uation. We carefully implemented the recent hierarchical instruction placement
presented in [6] within the publicly available WaveScalar toolchain. Then fol-
lowing changes were made to help evaluate our enhancements to the hierarchical
instruction scheduling.

a) We augmented the binary translator of WaveScalar, which is used to translate
binaries from an Alpha compiler to WaveScalar binaries, to consider control flow
information about the loops during the coarse grain scheduling phase.

b) We added to the simulator the dynamic contention tracking algorithm ex-
plained in Figure 5.

In order to show the effects of loop awareness and dynamic contention track-
ing, we ran benchmarks from the EEMBC benchmark suite. Each benchmark



10 Muhammad Umar Farooq, Lizy John

Fig. 6. Intra-domain communications: For each benchmark communication values
shown are averaged for all 128 combinations of depth, width and depdegree

ran for all the combinations of the parameters of the hierarchical instruction
placement algorithm (MaxDepth ∈ {2, 4, 8, 12, 16, 32, 50, 64, 128}, MaxWidth

∈ {1, 2, 3, 4, 6, 10}, and DepDegree ∈ {.1, .5, .9}). For each of the aforementioned
combinations each benchmark ran four times: 1) without loop optimization with-
out contention tracking, 2) with loop optimization without contention tracking,
3) without loop optimization with contention tracking, 4) with loop optimization
with contention tracking. For each benchmark we averaged the results for all the
combinations of MaxDepth, MaxWidth and DepDegree.

We setup three different experiments to see the effect of our approach on
(a) inter-domain traffic (b) ALU contention and (c) IPC. Table 1 shows pa-
rameter settings used in the evaluation. Following subsections will discuss these
experiments and their results.

4.1 Intra-Domain Communication

Inter-domain communication latency is 7 cycles, compared to maximum 4 cycles
within the domain. Reducing the inter-domain traffic can significantly improve
the performance. One way of reducing the inter-domain communication is to
avoid allowing the loops of a program to be placed in multiple domains. This
was the focus of our loop-awareness optimization. In order to evaluate the af-
fect of this optimization on intra-domain and inter-domain communication, we
measured these values with and without our loop awareness optimization. Ex-
periments showed that by confining the loops to a domain, average intra-domain
traffic increased by 6.5% and as high as 25.64% for some benchmarks (see Fig-
ure 6). 4 out of 10 benchmarks achieve 99.9+% intra-domain communication.
Some of the benchmarks (e.g. idctrn01) however showed a decrease in the intra-
domain traffic. This situation arises when a big loop with small iteration count
is assigned a new domain by our algorithm, thereby separating the loop instruc-



Instruction Scheduling For Tiled Dataflow Architectures 11

tions from their parent instructions. Since the iteration count is small, assigning
a new domain will not increase the intra-domain traffic, however it increases
the inter-domain communication between the parent instructions in one domain
and loop instructions in another. This situation can be avoided by profiling the
loop and starting new domains for only those loops that execute enough times
to justify paying the cost of separating the loop’s instructions from its producer
instructions and is the subject of future work.

4.2 ALU Contention

This experiment shows that dynamic relocation of contending instructions helps
reduce ALU contention. Our experiment shows that dynamic contention track-
ing algorithm reduces average ALU contention by 23%(see Table 2). Total ALU
contention with and without dynamic contention tracking algorithm and the
average number of instructions selected for relocation and their relocation fre-
quencies are shown in Table 2. We would also like to evaluate how accurate our
heuristics for relocation of instructions are. Table 2 shows that 46.1% of instruc-
tions were moved less than 6 times during the execution of the program. An
interesting observation from Table 2 is that most of the instructions are either
moved less than 6 times or they are moved for more than 20. This is because
during relocation an instruction either finds a PE in which it rarely contends
with other instructions early and stays there for a long period of time or it keeps
bouncing back and forth between two PEs. The back and forth movement of in-
structions between two PEs can be related to the following scenario. A number
of instructions start contending within a PE for execution resources. A subset of
these instructions reaches the relocation threshold and is moved. The remainder
of the contending instructions will also soon reach the threshold and will then
look for a place to be relocated. During the relocation process, this second sub-
set of instructions find the same PE that the first set had found due to the fact
that the producer and consumer communication benefits of that PE outweigh its
contention cost. This movement of instructions back and forth between two PEs
is clearly not desirable. The trade off that exists here is between the threshold
at which the relocation is initiated and the number of times we pay the price
of relocation in order to separate contending groups. A small threshold has the
advantage of separating contending groups quickly in order to acheive more par-
allelism while having to pay the price of relocation more often, whereas a large
threshold pays the relocation price less but pays more in terms of contention
while we wait for the threshold to be met. An appropriate threshold value can
be decided upon with help from profiling and using a metric such as the number
of iterations of loops in the program to guide the choice. This will set some sort
of upper bound on the value of the threshold in order for there to be any use in
relocating instructions and benefiting from less contention in future iterations of
the loop. A lower bound for the threshold value will involve the relocation cost.
We experimentally found the threshold of 20 used in these experiments to be a
sweet spot for the threshold.



12 Muhammad Umar Farooq, Lizy John

Fig. 7. IPC: For each benchmark IPC values shown are averaged for all 128 combina-
tions of depth, width and depdegree

4.3 IPC

Both increased intra-domain traffic and reduced ALU contention have signif-
icant positive impact on the IPC. Reducing the inter-domain communication
through loop awareness and ALU contention by dynamic contention tracking
algorithm improves average IPC by 19.39% and over 30% for some benchmarks
e.g., conven00 and autcor00. Figure 7 shows the individual and combined effect
of our enhancements on IPC. Note that for benchmarks idctrn01, combined IPC
decreases because of decrease in the intra-domain communication explained in
Section 4.1. However for these benchmarks increase in IPC due to reduction in
ALU contention is still achieved although outweighed by the decrease in IPC
due to decreased intra-domain communication.

5 Related Work

In this section we dicuss the most relevant work on algorithms designed for
instruction scheduling which have a spatial component.

5.1 Spatial Path Scheduling Algorithm

One of the most recent instruction schedulers proposed for tiled dataflow archi-
tectures is the SPS algorithm presented for the TRIPS infrastructure in [2]. The
spatial path scheduling algorithm factors in previously fixed locations which it
calls anchor points for each placement. An anchor point is an instruction whose
placement is known because it accesses a known location such as the register
file (if the architecture has one), a cache bank or other resources. As the place-
ment for instructions is decided upon, the instructions that have been placed
become new anchor points for the remainder of the instructions to be placed.
The proposed approach uses simulated annealing to estimate the best results
that are possible and uses heuristics to close the gap between the basic algo-
rithm explained above and the results obtained via simulated annealing. To do



Instruction Scheduling For Tiled Dataflow Architectures 13

so the basic algorithm is augmented with three heuristics: (1) local and global
ALU and network link contention modeling, (2) global critical path estimates
and (3) dependence chain path reservation. Using these heuristics the placement
cost function is modified to account for the mentioned criteria. In [2] it is shown
that with all the heuristics in place, the final scheduler improves over the basic
SPS algorithm by 7%, and is within 5% of the annealed results. This method is
not very suitable for a dataflow architecture such as WaveScalar because such an
architecture does not have register files to use as anchor points at the beginning
of the algorithm.

5.2 Instruction scheduling for clustered VLIW

A number of instruction scheduling algorithms have been proposed for clustered
VLIW architectures [4][7][9]. Unified assign and schedule [7] is a general schedul-
ing framework which is augmented with heuristics for the target architecture by
the compiler writer. This work was compared to the baseline hierarchical fine
grain algorithm in [1]. [9] predicts the inter-cluster communication cost of a
loop, and uses an integer-optimization method to control loop unrolling and
unroll-and-jam to limit the effects of inter-cluster data transfers. This method
differs from our algorithm in the way information from loops is used since it
does not address inter-cluster communication by taking loops into account in
instruction scheduling. By addressing minimization of inter-domain communi-
cation through placement our algorithm does not need to restrict unrolling to
limit this communication if a loop structure can fit in a domain of its own.

6 Conclusion

Loop-Awareness and Dynamic Contention Tracking were presented to the state
of the art hierarchical placement algorithm [6] —Loop aware hierarchical in-
struction scheduling improves the performance of tiled architectures by consid-
ering control flow information -specifically loop information- when doing coarse
grain instruction placement. This avoids splitting of loops into multiple domains
thereby increasing average intra-domain communication by 6.5% and average
IPC by 5.13% and as high as 15% for some benchmarks. Dynamic tracking and
relocation of contending instructions resulted in an average 23% reduction in
ALU conflicts thereby increasing average IPC by 14.22%. These two enhance-
ments put together achieved an average IPC improvement of 19.39% and over
30% for some presented benchmarks.

References

1. Doug Burger, Stephen W. Keckler, Kathryn S. McKinley, Mike Dahlin, Lizy K.
John, Calvin Lin, Charles R. Moore, James Burrill, Robert G. McDonald, William
Yoder, and the TRIPS Team. Scaling to the end of silicon with EDGE architec-
tures. Computer, 37(7):44–55, 2004.



14 Muhammad Umar Farooq, Lizy John

2. Katherine E. Coons, Xia Chen, Doug Burger, Kathryn S. McKinley, and Sun-
deep K. Kushwaha. A spatial path scheduling algorithm for EDGE architectures.
In ASPLOS-XII: Proceedings of the 12th international conference on Architectural
support for programming languages and operating systems, pages 129–140, New
York, NY, USA, 2006. ACM Press.

3. Jack B. Dennis and David P. Misunas. A preliminary architecture for a basic
data-flow processor. SIGARCH Comput. Archit. News, 3(4):126–132, 1974.

4. Enric Gibert, Jesus Sanchez, and Antonio Gonzalez. Effective instruction schedul-
ing techniques for an interleaved cache clustered VLIW processor. In MICRO 35:
Proceedings of the 35th annual ACM/IEEE international symposium on Microar-
chitecture, pages 123–133, Los Alamitos, CA, USA, 2002. IEEE Computer Society
Press.

5. Ken Mai, Tim Paaske, Nuwan Jayasena, Ron Ho, William J. Dally, and Mark
Horowitz. Smart memories: a modular reconfigurable architecture. In ISCA ’00:
Proceedings of the 27th annual international symposium on Computer architecture,
pages 161–171, New York, NY, USA, 2000. ACM Press.

6. Martha Mercaldi, Steven Swanson, Andrew Petersen, Andrew Putnam, Andrew
Schwerin, Mark Oskin, and Susan J. Eggers. Instruction scheduling for a tiled
dataflow architecture. In ASPLOS-XII: Proceedings of the 12th international con-
ference on Architectural support for programming languages and operating systems,
pages 141–150, New York, NY, USA, 2006. ACM Press.

7. Emre Ozer, Sanjeev Banerjia, and Thomas M. Conte. Unified assign and schedule:
A new approach to scheduling for clustered register file microarchitectures. In MI-
CRO 31: Proceedings of the 31st annual ACM/IEEE international symposium on
Microarchitecture, pages 308–315, Los Alamitos, CA, USA, 1998. IEEE Computer
Society Press.

8. Gregory M. Papadopoulos and David E. Culler. Monsoon: An explicit token-store
architecture. In ISCA ’98: 25 years of the international symposia on Computer
architecture (selected papers), pages 398–407, New York, NY, USA, 1998. ACM
Press.

9. Yi Qian, Steve Carr, and Philip H. Sweany. Optimizing loop performance for
clustered VLIW architectures. In PACT ’02: Proceedings of the 2002 International
Conference on Parallel Architectures and Compilation Techniques, pages 271–280,
Washington, DC, USA, 2002. IEEE Computer Society.

10. S. Sakai, y. Yamaguchi, K. Hiraki, Y. Kodama, and T. Yuba. An architecture
of a dataflow single chip processor. In ISCA ’89: Proceedings of the 16th annual
international symposium on Computer architecture, pages 46–53, New York, NY,
USA, 1989. ACM Press.

11. EEMBC Benchmark Scores. http://www.eembc.org.
12. Steven Swanson, Ken Michelson, Andrew Schwerin, and Mark Oskin. WaveScalar.

In MICRO 36: Proceedings of the 36th annual IEEE/ACM International Sympo-
sium on Microarchitecture, page 291, Washington, DC, USA, 2003. IEEE Computer
Society.

13. E. Waingold, M. Taylor, V. Sarkar, V. Lee, W. Lee, J. Kim, M. Frank, P. Finch,
S. Devabhaktumi, R. Barua, J. Babb, S. Amarsinghe, and A. Agarwal. Baring it
all to software: The raw machine. Technical report, Cambridge, MA, USA, 1997.


