
Compiler Controlled Speculation for Power
Aware ILP Extraction in Dataflow Architectures

Muhammad Umar Farooq, Lizy John, and Margarida F. Jacome

Department of Electrical and Computer Engineering
The University of Texas at Austin

ufarooq@mail.utexas.edu, ljohn@ece.utexas.edu

Abstract. Traditional predicated execution uses two techniques: top
predication – in which only the head of the dependence chain is predi-
cated, and bottom predication – in which only the tail of the dependence
chain is predicated. Top predication prevents speculative execution, thus
delivering minimum performance at minimum energy cost, while bottom
predication allows full speculation of the dependence chain, resulting in
maximum performance at maximum energy cost. In this paper, we pro-
pose a novel power-aware ILP extraction technique, denoted the ‘elastic-
block’, that combines these two extremes, exposing superior energy vs.
performance trade-offs. Each instruction in the elastic-block is explicitly
guarded by two predicates: the speculative, and the final. Instruction’s fi-
nal predicate is generated using traditional if-conversion technique, while
the speculative predicate has its default value statically assigned by the
compiler, enabling it to make power-performance trade-offs in the code.
Several energy saving code optimizations are proposed for the elastic-
block structure.

Keywords:Tiled dataflowarchitectures, predication, power-performance
trade-offs.

1 Introduction

The formidable increases in raw transistor density projected for the next 10-15
years pose tremendous scalability challenges to future processor designs, as to how
effectively use such devices. Tiled architectures, such as TRIPS, WaveScalar and
RAW [1][2][3] exhibit very promising characteristics in that respect –namely, their
decentralized organization eliminates several key scalability bottlenecks found in
conventional superscalar processors, and reduces overall circuit complexity, effec-
tive wire delays and verification effort [4][5]. These favorable characteristics make
tiled architectures highly relevant to the future of high performance computing.
Large machines, exploiting the huge numbers of raw transistors, possible to in-
tegrate in future silicon technologies, can be built in a scalable way, by simply
instantiating many such basic tiles on a processor’s chip, and then hierarchically
organizing them in a suitable way, see e.g. [1][2][3][6]. Aggressive instruction-level
parallelism (ILP) extraction is key to the performance of tiled architectures, in-
cluding WaveScalar, TRIPS, and RAW. Yet, performance/speed alone is not

A. Seznec et al. (Eds.): HiPEAC 2009, LNCS 5409, pp. 324–338, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Compiler Controlled Speculation 325

sufficient to quantify the effectiveness of such machines – achieving high energy
efficiency is equally critical, so as to aggressively reduce the machine’s energy con-
sumption and power dissipation for a given performance point. In this paper, we
propose a new power-aware ILP extraction technique, denoted the ‘elastic-block’,
and show that it exposes superior energy vs. performance trade-offs for tiled archi-
tectures. We implemented the elastic-block on the WaveScalar ISA and comput-
ing model [2], so as to experimentally demonstrate its effectiveness on a concrete
representative of the state-of-the-art in tiled dataflow architectures. Namely, we
show that, by using the elastic-block structure, one can deliver almost the same
performance of state-of-the-art aggressive ILP extraction techniques, while reduc-
ing the average number of instructions executed by 5.95%, and up to 9.95% for
some benchmarks, and the average number of messages exchanged between in-
structions by 6.4%, and up to 23% for some benchmarks – which directly trans-
lates in enhanced energy efficiency.

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

D$

SB

Net
work

D$

D$

D$

DomainPod

Cluster

PE

Fig. 1. WaveScalar Microarchitecture

In the next section we will give an overview of our target machine, WaveScalar.
Section 3 will introduce elastic-block and its characteristics. Section 4 will explain
implementation of elastic-block on WaveScalar. Our evaluation methodology and
results are shown in section 5. Section 6 discusses related work in this area.
Finally, in Section 7, we disscuss future work and conclude the paper.

2 Overview of Target Tiled Dataflow Machine:
WaveScalar

WaveScalar is a dataflow architecture. As in other dataflow architectures, a pro-
gram is represented as a dataflow graph and instruction dependencies are ex-
plicit [7][8]. There is no program counter, instructions are fetched and placed on
the grid as they are required. There is no register file, the result produced by an
instruction is directly communicated to all the consumers. In this architecture,
instructions are grouped in blocks called waves. Waves can be defined as acyclic
dataflow graphs for which each instruction executes at most once every time the

326 M.U. Farooq, L. John, and M.F. Jacome

wave is executed, and to which control can enter at a single point. On exit and
re-entry to this acyclic dataflow graph, the wave-number is increased.

Each dynamic instruction is identified by a tag which is the aggregate of its
wave-number and location on the grid. When an instruction has received all its
input operands for a particular matching wave-number, it fires, provided there
is room to store the result in the output queue, and an ALU is available. The
output is temporary stored in the output queue before it is communicated to
the consumers. Figure 1 shows the basic WaveScalar Microarchitecture. The
substrate consists of replicated clusters connected through a dynamically routed
packet network. Each cluster consists of four domains, communicating through
a fixed-route network switch which has a 4 cycle latency. Additionally, each
cluster has a 32KB 4-way set associative L1 data cache, and a store buffer.
Each domain is composed of eight processing elements (PEs), grouped into pairs
of two. Each pair is called a pod. Pods communicate through a fixed 1 cycle
latency pipeline network. Within PE instructions communicate through a bypass
network. Figure 2 shows the 5-stage in-order PE pipeline. Each PE has a small
instruction cache capable of holding 64 static instructions. Each PE has a 16
entry input queue and an 8 entry output queue.

matching

cycle 4cycle 0 cycle 1 cycle 2 cycle 3

A[0]

A[1] A[1]A[0]

A

A[0] A[1]

z[0]
z[0]=A[0]+A[1]

A[1]A[0]

I
n
p
u
t

O
u
t
p
u
t

re
a

d
y. q

u
e

u
e

E
x
e
c
u
t
e

D
i
s
p
a
t
c
h

M
a
t
c
h table

Fig. 2. Processing Element (PE) pipeline stages

2.1 Pipeline Stages of a PE

1. INPUT: Accepts input operand messages arriving from other PEs and
from itself, and places the operands in the pipeline registers for the next
stage.

2. MATCH: Operands are moved from the pipeline registers to the matching
table at an index computed by XOR hash of the wave-number, thread-id,
and destination instruction number of each operand. MATCH also deter-
mines which instructions have all their operands with the matching wave-
number, thread-id and are ready to fire. It then issues all ready instructions
to the DISPATCH stage by placing their matching table index in the ready
queue.

Compiler Controlled Speculation 327

control dependence

B1

B4

B3B2 p2_s = T

p2_s = F

p2_fp1_fp1_s = T

p1_f

p2_f

TT

TT

F

p1_f and p2_f are defined
in B1

Elastic−Block

(p1_f, p2_f, ...)

(p1_f,...) (p2_f,....)

(....)

(....)

data dependence
B1

B3B2

lo
ng

 d
ep

en
de

nc
y

ch
ai

n

B4

80% 20%

a)
b)

Fig. 3. Illustrating elastic-blocks. (a) Original control flow graph annotated with the
dynamic frequency of execution of basic-blocks B2 and B3. B3 is depicted with a
longer box relative to B2 in order to represent the fact that it contains much longer
dependence chains. (b) Structure of resulting elastic-block code, with distinct default
values assigned to the speculative predicate of instructions within B3, depending on
their depth in the corresponding dependence chains.

3. DISPATCH: Removes the matching table indices from the ready queue,
reads the corresponding operands from the matching table and forwards
them to EXECUTE stage for execution.

4. EXECUTE: Instruction executes sending its results to the output queue.
5. OUTPUT: Removes the entries from the output queue sending them to

the consumer instructions.

For better understanding of WaveScalar microarchitecture, we refer the read-
ers to [9].

3 Power Aware ILP Extraction with Elastic-Blocks

In this section, we introduce the elastic-block and discuss its operation and
power-aware features, in contrast to previous techniques.

3.1 The Elastic-Block Structure: Definition, Power-Aware ILP
Extraction, and Energy Saving Code Optimizations

Guarding instructions with speculative and final predicates. The key
innovation introduced in the elastic-block structure is the ability to explicitly
guard instructions with two predicates – the speculative, and the final predicate.

328 M.U. Farooq, L. John, and M.F. Jacome

The instruction’s final predicate is generated using traditional if-conversion tech-
nique [10][11]. Specifically, all control dependencies within the code region tar-
geted for elastic-block formation are converted into data dependencies, similarly
to what is done, e.g., in hyperblock [12], conditional branches are replaced with
comparison instructions which set the final predicate of all instructions that are
control dependent on such branches. Even if generated using well known tech-
niques, the final predicate is a very unique operand type in our target dataflow
ISA, in that an instruction may actually execute even if the value of its final
predicate is still unknown. Speculative predicates, in turn, always have a de-
fault value statically assigned by the compiler – as it will be seen, different such
assignments can implement distinct power-performance trade-offs in the code.
Speculative predicates explicitly enable control speculation – that is, when the
speculative predicate of an instruction is set to TRUE, if all ‘regular’ operands
of that instruction become available, while the value of its final predicate is still
unknown, the instruction becomes ready for execution.

We noted that within an elastic-block, the compiler can selectively and indi-
vidually define which instructions should be speculatively executed, and which
should not. Indeed, while the value of the final predicate of all instructions within
a basic-block must necessarily be identical, this need not be the case for their
corresponding speculative predicates – the fact that each instruction keeps its
own copy of the speculative predicate in our target tiled dataflow architecture al-
lows such a discrimination to be made in a very natural/simple way. Of course,
the value of the speculative predicate, as the name suggests, is only relevant
while the instruction’s final predicate is not available – namely, if an instruction
receives its final predicate while still waiting for other (regular) operands, the
value of the final predicate alone determines if the instruction will be executed
or squashed prior to execution.

In turn, if the speculative predicate of an instruction is set to FALSE, then
control speculation is explicitly disabled, that is, the instruction will not be
ready for execution until it actually receives its final predicate value. If such
final predicate happens to be FALSE, the instruction is locally squashed prior
to execution. Otherwise, it, of course, executes. Note that, the semantics of our
final predicate is, thus, somewhat different form that of the standard predication
model adopted, for example in [13], due to performance reasons, instructions
always execute, and their predicates are only used to decide if their results
should be committed or not. Reflecting that fact, traditional hyperblock selection
approaches, such as [12], do not favour the inclusion of large basic-blocks in a
hyperblock, since such blocks utilize many machine resources and may actually
end up negatively impacting performance, as opposed to enhancing it. As will
be seen below, the elastic-block’s increased flexibility enables such aggressive
performance-enhancing ILP extraction techniques to be enhanced with energy
awareness and efficiency considerations.

Note finally that, whenever control speculation is explicitly enabled in the
elastic-block, φ functions may need to be inserted in the corresponding code,
so as to potentially reconcile multiple (speculative) definitions/updates of the

Compiler Controlled Speculation 329

same variable, i.e., make sure that only the ‘right’ value is actually sent to
the corresponding consumers. As discussed in more detail in Section 4, such
φ functions are implemented by move instructions, each guarded by the same
final predicate used on the actual basic-block where the value, being sent, was
generated.1

Simple illustrative example of power-aware ILP extraction using the
elastic-block. Consider the weighted control graph shown in Figure 3(a). In
this simple example, a conditional branch instruction in basic-block B1 defines
two control paths, one through basic-block B2 and another through basic-block
B3. Although the control path through B3 is taken much less frequently than
that through B2 (on average 1 out of 5 times, as indicated in the figure), B3 also
contains much longer data dependence chains. So, even if executed infrequently,
B3 takes much longer than B2 to complete, so much so that it does actually
impact overall performance. Assume also, that control speculation would sub-
stantially improve performance for this code segment, i.e., performance can be
enhanced by starting to execute B2 and/or B3’s instructions, prior to knowing
which control path will be taken. Figure 3(b) illustrates how such performance
can be delivered, in an energy efficient way, using the elastic-block structure.

Note first that, as alluded to before, all control dependencies in the elastic-
block region have been converted into data dependencies using standard if-
conversion – as indicated in Figure 3(b), final predicates (denoted as p1 f and
p2 f) guard the instructions originally in basic-blocks B2 and B3 respectively,
and their corresponding predicate-define instructions have been ‘inserted in B1’.
Note further that, in the simple example of Figure 3, B1 and B4 represent sim-
ple straight line code that always executes, and thus, the compiler can directly
assign the default value TRUE to the speculative predicate of the corresponding
instructions, thereby, eliminating the need for final predicate.

The key idea in energy-aware ILP extraction is to enable the selective specula-
tion of only those instructions that may actually payoff in terms of performance
enhancement, thus avoiding wasteful energy spending. In the case of the illus-
trative code segment shown in Figure 3, for example, the compiler has detected
that a performance gain can be achieved by speculating all of the instructions in
the most commonly executed block, i.e., B2, and thus it did set the default value
of their corresponding speculative predicates (denoted p1 s in Figure 3(b)) to
TRUE. Accordingly, the instructions in B2 will become ready for execution as
soon as they receive all of their ‘regular’ operands, but their final predicate. In
addition, the compiler has detected that speculatively executing a select subset
of the instructions in B3, namely, those located ‘early’ in B3’s long dependence
chains, would also give a relevant performance gain. Accordingly, it did set the
speculative predicates of that select subset of B3’s instructions to TRUE, and
assigned FALSE to the remaining (see p2 s values in Figure 3(b)). As alluded
to before, since each instruction keeps its own copy of the speculative predicate,
such a discrimination can be made in a very simple way. Note finally that, as
1 Naturally, the speculative predicate of such move instruction is always FALSE, see

Figure 3(b).

330 M.U. Farooq, L. John, and M.F. Jacome

���
���
���

���
���
���

B1

B4

B3B2

p2_s = F

p1_s = T

p1_f

p2_f

T

T

F

p2_f

(p1_f, p2_f, ...)

p2_s = T

p2_s = T

(p2_f,....)

Optimized

Elastic−Block

B1

B4

B3B2 p2_s = T

p2_s = F

p2_fp1_fp1_s = T

p1_f

p2_f

TT

TT

F

p1_f and p2_f are defined
in B1

(p1_f,...) (p2_f,....)

(....)

(....)

(p1_f, p2_f, ...)

Elastic−Block

a) b)

Fig. 4. Illustrating elastic-block code optimizations. (a) Non-optimized version. (b)
Optimized version with elimination of final predicate messages. The edges in figure
(b) represent only final predicate messages, for clarity. As it can be seen, the final
predicate is no longer sent to the instructions originally in B2 – this is represented by
placing the symbol bottom (⊥) in the corresponding field. In fact, the final predicate is
now only sent to the first non-speculative instruction in the dependency chains of B3.
Specifically, instructions that have data dependencies to these need not receive their
final predicate as well, and in fact can be again made speculative, since they cannot
execute unless their non-speculative predecessors send them their operands. So, we use
transitivity effects to eliminate again final predicate messages.

indicated above, although the final predicates guarding B2 and B3’s instructions
are necessarily mutually exclusive (i.e., p2 f != p1 f), the speculative predicates
guarding these blocks need not be, and in fact frequently will not be – this is
why we have adopted naming conventions explicitly distinguishing among such
predicates.

Energy Saving Code Optimizations. When an instruction is speculatively
executed, yet its final predicate turns out to be FALSE, there is nothing to be
done in the local context of the instruction – as alluded to above, the φ functions
in the elastic-block code will make sure that only correct values are actually sent
to the appropriate consumers. In fact, if the compiler can determine that the final
predicate of an instruction will never arrive prior to its speculative execution, or
will rarely do so, the message containing the final predicate should not even be
sent to that particular instruction, thus reducing energy consumption as well as
message traffic – this is one of the key energy saving optimizations that can be
performed in elastic-block code, symbolically illustrated in block B2 and in the
upper third of block B3, by placing the bottom or ‘absence’ symbol (⊥) in the
corresponding final predicate fields, see Figure 4(b).

A second type of energy saving optimization can be done by directly relying
on the very nature of the dataflow model and exploiting the transitivity of data
dependencies inside a basic-block – this second type of optimization is symbol-
ically illustrated in the bottom third of block B3 of Figure 4(b). Specifically,

Compiler Controlled Speculation 331

Fig. 5. Example of if-then-else predication/speculation. (a) source code, (b) non-
predicated WaveScalar assembly code segment, (c) assembly code segment after pred-
ication along with default setting for speculative predicate. General format for the
predicated WaveScalar assembly instruction is ‘opcode destination(s), source(s), final
predicate, speculative predicate’. Note that since basic-block B0 is a straight line code,
its speculative predicate is set to T, eliminating the need for final predicate. In B1 and
B2, depending on power-performance trade-off, amount of speculation can be adjusted
from any where between full speculation to no speculation by setting the default value
for speculative predicate appropriately.

any non-speculative instruction that consumes data from at least one other non-
speculative instructions that is guarded by the same final predicate, can be
immediately converted into a speculative instruction, since it cannot possibly
execute unless the producer of that operand has already executed – so, by tak-
ing advantage of such transitivity within a basic-block, no final predicate needs
to be explicitly sent to these ‘dependent instructions’, as indicated by placing
the bottom symbol (⊥) in the corresponding field in Figure 4(b).

Implementation details on the WaveScalar architectures will be given in Sec-
tion 4, and the impact of the above optimizations will be experimentally quan-
tified for representative benchmarks, in Section 5.

4 Implementation on WaveScalar

This section will explain our implementation of elastic-block, and related opti-
mizations, on a concrete representative of the state-of-the-art in tiled dataflow
architectures, WaveScalar.

4.1 ISA Extensions

Figure 5(a) and 5(b) shows a simple if-then-else construct and its correspond-
ing non-predicated WaveScalar assembly code. Figrue 5(c) shows our modified
predicated WaveScalar assembly code. Changes are explained as below:

332 M.U. Farooq, L. John, and M.F. Jacome

Adding speculative and final predicates: In the modified code, the exe-
cution of each instruction is guarded by two additional 1-bit operands – final
predicate and the speculative predicate. Final predicate receives its value from
predicate-define instruction (I6 in Figure 5(c)), which is also part of our ISA
extension. Unlike final predicate, the value of speculative predicate is set by the
compiler (either T or F) through program analysis, thus enabling the compiler
to make power-performance trade-off in the code. Note that, basic-block B0 con-
tains straight line code, its speculative predicate is set to T, eliminating the need
for final predicate. Basic-blocks B1 and B2 have p0 and p1 respectively as their
final predicate.

Addition of phi (φ) instruction: In Figure 5(c), instructions from basic-blocks
B1 and B2 can execute speculatively (if speculative predicate is set to T). This
requires addition of φ instructions (I13, I14 in Figure 5(c)) in the merge block
B3. φ instruction takes two input values and a final predicate and, depending
on the final predicate value, produce one of the inputs on its output. For correct
execution, φ instruction can’t execute speculatively and should wait for final
predicate to arrive.

Removing rho (ρ) instruction: Figure 5(b) shows non-predicated, non-
speculative WaveScalar assembly code. Instructions are executed only from the
‘taken’ path. Instructions from ‘not-taken’ path are prevented from execution by
blocking their input operands using rho (ρ) instruction. The rho (ρ) instruction
(I7 in Figure 5(b)), is a conditional split instruction. The ρ instruction takes an
input value and a boolean output selector. It directs the input to one of two
possible outputs depending on the selector value, effectively steering data values
to the instructions in either basic-block B1 or B2. Speculative execution, how-
ever, allows execution from both basic-blocks i.e. B1 and B2. This is achieved by
removing the ρ instruction and directly connecting its input operand with the
input operands of its destination instructions.

4.2 Microarchitecture Support for Predicated and Speculative
Execution

This section will explain microarchitecture modifications to the PE pipeline
stages in order to support predication, and speculation.

Processing Element Modifications. Changes were made in the first two
stages, namely INPUT and MATCH, of the PE pipeline described in Section 2.

1. Modified INPUT stage: Accepts input operands arriving from other PEs
and from itself with the following additional logic: If the arriving operand is a
‘final predicate’ operand with a FALSE value, the corresponding instruction is
squashed by invalidating its entry in the matching table. However, this can lead
to two special situations. Firstly, late arriving operands of an already squashed
instruction will get a permanent entry in the matching table. Secondly, con-
sumers of an squashed instruction keep waiting for the operand to arrive. To
address the first situation each instruction has its ‘current valid wave-number’

Compiler Controlled Speculation 333

Table 1. Evaluating readiness of an instruction

Data operand Final predicate Spec. predicate Action Taken
? ? * wait for data to arrive
? TRUE * wait for data to arrive
? FALSE * squash the instruction

data available ? FALSE wait for final predicate to arrive
data available ? TRUE execute instruction speculatively
data available TRUE FALSE execute instructions normally
data available FALSE FALSE squash the instruction

? = has not arrived, * = don’t care

stored in the instruction cache. When an instruction is dispatched to the ready
queue or squashed (if its final predicate is FALSE), its wave-number is stored as
the ‘current valid wave-number’. If the wave-number of an arriving operand is
less or equal to ‘current valid wave-number’, it is not entered in the matching ta-
ble. Second situation actually can never arise. If all the consumers of an squashed
instruction and the squashed instruction itself are in the same basic-block, say
B, they all will receive the same final predicate and eventually will be squashed.
If however, consumers of an squashed instruction are in the merge block, they
will receive their operands from the basic-block whose final predicate evaluates
to TRUE i.e. sibling of B.

2. Modified MATCH stage: With non-speculative execution, an instruction
only becomes ready to execute when all its operands have arrived. However,
speculative execution requires modifying the logic that determines the readiness
of an instruction. Table 1 lists all possible cases and the corresponding action
taken.

4.3 Power-Performance Trade-Off Using Compiler Analysis

Traditionally the focus of compiler optimization has been on improving perfor-
mance (see for example [14] and the references therein). However, performance
alone is not sufficient to measure the effectiveness of machines. Other metrics
such as energy efficiency and power dissipation are equally important. Unfortu-
nately, there has been little effort to analyze the role of compiler in achieving
high energy efficiency.

Elastic-block enables the compiler to make power-performance trade-offs in
the code. Compared to ‘hyperblock’ [12], ‘elastic-block’ is capable of achieving
more power-performance trade-off points. During hyperblock formation a basic-
block is either fully included or fully excluded. With elastic-block, the com-
piler can selectively and individually define which instructions in the basic-block
should be speculatively executed, and which should not. During the elastic-block
formation, compiler profiles the execution frequeucy of individual basic-blocks,
and partitions the instructions into ‘levels’ based on their dependence depth.
Instructions that receive their operands from outside the elastic-block are at
level-1. Instructions dependent on level-1 instructions are at level-2 and so on.

334 M.U. Farooq, L. John, and M.F. Jacome

Table 2. Power-Performance Trade-off Points obtained using Elastic Block

Amount of Speculation Cycles Taken Instructions Executed

No speculation 9*60 + 11*40 = 980 6*100 + 2*60 + 4*40 + 3*100 = 1180

Only B1 7*60 + 11*40 = 860 6*100 + 2*100 + 4*40 + 3*100 = 1260

B1 + B2 7*60 + 7*40 = 700 6*100 + 2*100 + 4*100 + 3*100 = 1500

B1+ {I9} in B2 7*60 + 10*40 = 820 6*100 + 2*100 + 100 + 3*40 + 3*100 = 1320

B1 + {I9, I10} in B2 7*60 + 9*40 = 780 6*100 + 2*100 + 2*100 + 2*40 + 3*100 = 1380

B1 + {I9, I10, I11} in B2 7*60 + 8*40 = 740 6*100 + 2*100 + 3*100 + 40 + 3*100 = 1440

Note: Hyper blocks can only achieve first three points

Based on the execution frequency of the basic-block and the dependence level
of the instruction, compiler decides whether to set the speculative predicate of
that instruciton to TRUE or FALSE for a given power-performace point. Con-
sider the same example shown in Figure 5(a) and its corresponding assembly
in Figure 5(c). Assume that this code executes 100 times with basic-block B1
executing 60 times and basic-block B2 executing 40 times. Basic block B0 con-
tains straight line code, its speculative predicate is set to TRUE, eliminating the
need for final predicate. B1 and B2 are guarded by final predicate p0 and p1
respectively. Speculative predicate for instructions in B1 and B2 can be assigned
either TRUE or FALSE. For this example, each instruciton is assumed to be sin-
gle cycle. Instruction’s execution cycle (both when executed speculatively and
non-speculatively) is also shown in Figure 5(c). Table 2 shows various operating
points that are achieved by selective speculation of instructions in a elastic-block
structure. First row in Table 2 shows a low performance but most power efficient
operating point where no instruction is speculatively executed. Third row shows
the best performance but least power efficient point where both basic-blocks B1
and B2 are fully speculated. Rest of the rows shows several operating points
between these two extremes.

5 Performance Analysis

5.1 Experimental Methodology

Elastic-block technique and related optimizations are implemented in WaveScalar
compiler/binary-translator, and necessary microarchitectural support is provided
in the WaveScalar simulator. Speculative execution is supported on all instructions
but stores, phi and predicate-define instructions. Benchmarks from SPEC 2000,
MediaBench, EEMBC benchmark suites are used for the evaluation. Our exper-
imental setup was designed to evaluate the effectiveness and flexibility of elastic-
blocks at exploiting the power-performance trade-off. Several configurations, each
with varying depth of speculation, are computed by the compiler, by choosing dif-
ferent values for speculative predicate. For each configuration, the benchmarks are
run till completion. IPC is notameaningfulmetric in our case, sincehigher IPCdoes
not necessarily mean higher performance because of ‘unnecessary instructions’ ex-
ecuted due to predication/speculation. So, we will measure: (1) number of cycles

Compiler Controlled Speculation 335

3.2 3.3 3.4 3.5 3.6 3.7 3.8

x 10
6

6.5

7

7.5

8

8.5

9
x 10

6

cycles

in
st

ru
ct

io
ns

crafty

1.85 1.9 1.95 2 2.05 2.1 2.15

x 10
5

4.4

4.6

4.8

5

5.2

5.4

5.6
x 10

5 vpr

cycles

in
st

ru
ct

io
ns

3.7 3.75 3.8 3.85 3.9 3.95 4

x 10
5

1.1

1.15

1.2

1.25

1.3

1.35
x 10

6 g721

cycles

in
st

ru
ct

io
ns

3 3.5 4 4.5

x 10
4

8.5

9

9.5

10

10.5

11
x 10

4 dither

cycles

in
st

ru
ct

io
ns

1.5 1.6 1.7 1.8 1.9 2 2.1

x 10
6

2.65

2.7

2.75

2.8

2.85

2.9

2.95

3

3.05
x 10

6 pntr

cycles

in
st

ru
ct

io
ns

1.5 1.6 1.7 1.8 1.9

x 10
5

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8
x 10

5 rotate

cycles

in
st

ru
ct

io
n

13.4%

24.7%

10.1%

17.4%

6.24%

14.5%

28.1%

16.2%

26.3%

12.5%

19.8%

17.3%

 b_pred

t_pred

 b_pred

t_pred

 b_pred

t_pred

 b_pred

t_pred

 b_pred

t_pred

 b_pred

t_pred

Fig. 6. Power-Performance trade-off points between top predication (t pred) and bot-
tom predication (b pred)

required to execute the application, which roughly relates to performance; and (2)
corresponding total number of executed instructions; and (3) number of operand
and predicate messages exchanged during that execution, which along with the in-
structions executed corresponds to the power consumed during execution.

5.2 Results

Adding predication and speculation improved WaveScalar average performance
by 16.9% (for bottom predication), compared to no speculation (top predication),
see Figure 6. However, this increase in performance comes at an steep cost of
17.51% extra instructions executed, and 14.35% additional messages sent, which
is unwarrented for high performance, low power computing. Figure 6 and 7
shows that almost similar performance gain, 15.96%, can be achieved with an
average 11.56% increase in instructions and 7.95% increase in operand messages,
a reduction of 5.95% and 6.4% respectively. Another high performance point
with 13.93% performance gain, can be achieved with an average 7.74% increase
in instructions and 3.1% increase in operand messages, a reduction of 9.77%
and 11.25% respectively. Operand messages, shown in Figure 7, scales with the
number of instructions executed. Using the optimization explained earlier in
Figure 4(b), predicate messages are independent of the number of instructions
executed, see Figure 7.

336 M.U. Farooq, L. John, and M.F. Jacome

3.2 3.3 3.4 3.5 3.6 3.7 3.8

x 10
6

4.2

4.25

4.3

4.35

4.4

4.45

4.5

4.55

4.6

4.65

4.7
x 10

7

cycles

op
er

an
d_

m
sg

crafty

2

4

6

8

10

12

14

16
x 10

6

pr
ed

_m
sg

3.7 3.75 3.8 3.85 3.9 3.95 4

x 10
5

5.85

5.9

5.95

6

6.05

6.1

6.15
x 10

6 g721

cycles

op
er

an
d_

m
sg

1

2

3

4

5

6

7
x 10

5

pr
ed

_m
sg

3 3.5 4 4.5

x 10
4

3.55

3.6

3.65

3.7

3.75

3.8

3.85
x 10

5 dither01

cycles

op
er

an
d_

m
sg

0

2

4

6

8

10

12
x 10

4

pr
ed

_m
sg

1.85 1.9 1.95 2 2.05 2.1 2.15

x 10
5

1.9

2

2.1

2.2

2.3

2.4
x 10

6 vpr

cycles
op

er
an

d_
m

sg
1

2

3

4

5

6

7

8
x 10

5

pr
ed

_m
sg

1.5 1.6 1.7 1.8 1.9 2 2.1

x 10
6

1

1.05

1.1

1.15

1.2
x 10

7 pntrch01

cycles

op
er

an
d_

m
sg

0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

pr
ed

_m
sg

1.5 1.6 1.7 1.8 1.9

x 10
5

1.4

1.6

1.8

2

2.2

2.4
x 10

6 rotate01

cycles
op

er
an

d_
m

sg
0

1

2

3

4

5

6
x 10

5

pr
ed

_m
sg

operand_msg

pred_msg

operand_msg

pred_msg

pred_msg

pred_msg

operand_msg

pred_msg

operand_msg

operand_msg

pred_msg

operand_msg

Fig. 7. Illustrating operand and predicate messages for the corresponding power-
performance trade-off points shown in Figure 6

6 Related Work

DataFlow Predication for EDGE Architectures
Smith et al. has proposed dataflow predication for EDGE architectures [15].
Smith et al. uses top or bottom predication, in which either the first or the last
instruction of a dependence chain is predicated. Top predication delivers low
performance and low energy computation, as instructions are not executed spec-
ulatively, while bottom predication results in high performance and high energy
computation as all the instructions in the dependence chain, except the bottom
instruction, are fired speculatively. The focus of this work is to combine these two
extremes, allowing the compiler to decide the optimal depth of speculation, for a
given power-performance point. Second, in EDGE architecture, each instruction
has a two-bit predicate field that specifies whether that instruction is predicated
on a TRUE predicate, a FALSE predicate, or unpredicated. However, in our
proposed work the speculative predicate is another operand, initially set by the
compiler, but later can be modified through messages, thus allowing run-time
adaptation, which is a subject of future work.

Predication for Superscalar Architectures
Mahlke et al. proposed a compiler structure, hyperblock, that groups together
most frequently executed basic-blocks from different control paths, allowing ef-
fective scheduling for these basic-blocks [12]. In case of an hard-to-predict branch
(say 60/40), basic-blocks from ‘both’ control-flow paths are included in the

Compiler Controlled Speculation 337

hyperblock , and all instructions in these basic-blocks are executed all the time.
In our proposed ‘elastic-block’ structure, basic-blocks from ‘both’ control-flow
paths will be included, but speculative execution of instructions in these basic-
blocks will be proportional to their execution frequency. Kim et al. combined
the use of conditional branches, for easy-to-predict branches, with predicated
execution, for hard-to-predict branches [16]. Their motivation for not converting
every conditional branch into predicated code is twofold: First, the processor
needs to fetch useless instruction, thus wasting the fetch bandwidth. Second,
compared to branch prediction in which instructions are executed before the
branch is resolved, predicated instructions add extra delay, as they have to wait
for the predicate value to be ready. In our proposed work, we transformed all
branches to predicated code, as we don’t have the aforementioned overheads:
First, instructions are stored on the execution grid, once they are fetched from
the memory, and second, predicated instructions can execute speculatively before
the predicate value is ready (by setting p s = TRUE).

7 Conclusion and Future Work

A novel power-aware ILP extraction technique, that combines predication with
speculation, is introduced for tiled dataflow architectures. Each instruction in
this flexible structure, denoted the elastic-block, is guarded explicitly by two
predicate operands: the final predicate, and the speculative predicate. By assign-
ing the default value of speculative predicate to TRUE, compiler can selectively
and individually enable the speculation of only those instructions that may actu-
ally payoff in terms of performance improvement, thus avoiding wasteful energy
spending. This is in contrast to the existing techniques for predicated execution,
namely top predication and bottom predication, in which either the head or the
tail of the dependence chain is predicated. Results showed that by merging top
and bottom predication, and allowing the compiler to determine the depth of
speculation, performance close to traditional predication can be delivered while
improving the energy efficiency. The key advantage of elastic-block structure will
be its inherent potential for run-time adaptivity, and is a subject of future work.

References

1. Burger, D., Keckler, S.W., McKinley, K.S., Dahlin, M., John, L.K., Lin, C., Moore,
C.R., Burrill, J., McDonald, R.G., Yoder, W.: The TRIPS Team: Scaling to the
End of Silicon with EDGE Architectures. Computer 37(7), 44–55 (2004)

2. Swanson, S., Michelson, K., Schwerin, A., Oskin, M.: WaveScalar. In: MICRO 36:
Proceedings of the 36th Annual IEEE/ACM International Symposium on Microar-
chitecture, Washington, DC, USA, p. 291. IEEE Computer Society, Los Alamitos
(2003)

3. Waingold, E., Taylor, M., Sarkar, V., Lee, V., Lee, W., Kim, J., Frank, M., Finch,
P., Devabhaktumi, S., Barua, R., Babb, J., Amarsinghe, S., Agarwal, A.: Baring It
All to Software: The Raw Machine. Technical report, Cambridge, MA, USA (1997)

338 M.U. Farooq, L. John, and M.F. Jacome

4. Hrishikesh, M.S., Keckler, S.W., Burger, D., Agarwal, V.: Clock Rate versus IPC:
The End of the Road for Conventional Microarchitectures. ISCA 00, 248 (2000)

5. Hunt, W.: Introduction: Special Issue on Microprocessor Verification. Formal Meth-
ods in System Design, 135–137 (2002)

6. Mai, K., Paaske, T., Jayasena, N., Ho, R., Dally, W.J., Horowitz, M.: Smart Mem-
ories: A Modular Reconfigurable Architecture. In: ISCA 2000: Proceedings of the
27th Annual International Symposium on Computer Architecture, pp. 161–171.
ACM Press, New York (2000)

7. Dennis, J.B., Misunas, D.P.: A Preliminary Architecture For a Basic Data-flow
Processor. SIGARCH Comput. Archit. News 3(4), 126–132 (1974)

8. Papadopoulos, G.M., Culler, D.E.: Monsoon: An Explicit Token-Store Architec-
ture. In: ISCA 1998: 25 years of the International Symposia on Computer Archi-
tecture (selected papers), pp. 398–407. ACM Press, New York (1998)

9. Putnam, A., Swanson, S., Mercaldi, M., Petersen, K.M.A., Schwerin, A., Oskin,
M., Eggers, S.: The Microarchitecture of a Pipelined WaveScalar Processor: An
RTL-based Study. Technical report, Washington, DC, USA (2004)

10. Allen, J.R., Kennedy, K., Porterfield, C., Warren, J.: Conversion of Control De-
pendence to Data Dependence. In: POPL 1983: Proceedings of the 10th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pp.
177–189. ACM Press, New York (1983)

11. Park, J.C.H., Schlansker, M.S.: On Predicated Execution. Technical report, Palo
Alto, CA, USA (May 1991)

12. Mahlke, S.A., Lin, D.C., Chen, W.Y., Hank, R.E., Bringmann, R.A.: Effective
Compiler Support for Predicated Execution Using the Hyperblock. In: 25th Annual
International Symposium on Microarchitecture (1992)

13. Chang, P.P., Mahlke, S.A., Chen, W.Y., Warter, N.J., Hwu, W.m.W.: IMPACT:
An Architectural Framework for Multiple-Instruction-Issue Processors. In: ISCA
1991: Proceedings of the 18th Annual International Symposium on Computer Ar-
chitecture, pp. 266–275. ACM Press, New York (1991)

14. Wolfe, M.: High Performance Compilers for Parallel Computing. Pearson Education
POD (1995)

15. Smith, A., Nagarajan, R., Sankaralingam, K., McDonald, R., Burger, D., Keckler,
S.W., McKinley, K.S.: Dataflow Predication. In: MICRO 39: Proceedings of the
39th Annual IEEE/ACM International Symposium on Microarchitecture, Wash-
ington, DC, USA, pp. 89–102. IEEE Computer Society, Los Alamitos (2006)

16. Kim, H., Mutlu, O., Stark, J., Patt, Y.N.: Wish Branches: Combining Conditional
Branching and Predication for Adaptive Predicated Execution. In: MICRO 38: Pro-
ceedings of the 38th Annual IEEE/ACM International Symposium on Microarchi-
tecture, Washington, DC, USA, pp. 43–54. IEEE Computer Society, Los Alamitos
(2005)

	Introduction
	Overview of Target Tiled Dataflow Machine: WaveScalar
	Pipeline Stages of a PE

	Power Aware ILP Extraction with Elastic-Blocks
	The Elastic-Block Structure: Definition, Power-Aware ILP Extraction, and Energy Saving Code Optimizations

	Implementation on WaveScalar
	ISA Extensions
	Microarchitecture Support for Predicated and Speculative Execution
	Power-Performance Trade-Off Using Compiler Analysis

	Performance Analysis
	Experimental Methodology
	Results

	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

