

The Role of Return Value Prediction in Exploiting
Speculative Method-Level Parallelism

Shiwen Hu, Ravi Bhargava and Lizy Kurian John

Laboratory for Computer Architecture
Department of Electrical and Computer Engineering

The University of Texas at Austin
{hushiwen, ravib, ljohn}@ece.utexas.edu

Abstract

This work studies the performance impact of return
value prediction in a system that supports speculative
method-level parallelism (SMLP). A SMLP system
creates a speculative thread at each method call. This
allows the method and the code from which it is called
to be executed in parallel. To improve performance, the
return values of methods are predicted in hardware so
that no method has to wait for its sub-method to
complete before continuing to execute. We find that
two-thirds of return values need to be predicted, and
perfect return value prediction improves performance
by an average of 44% over no return value prediction.
However, the performance of realistic predictors is
limited by poor prediction accuracy on integer return
values and unfavorable SMLP conditions. A new
Parameter Stride (PS) predictor is proposed to
overcome the deficiencies of the standard predictors by
predicting based on method arguments. Combining the
PS predictor with previous predictors results in an
average 7% speedup versus a system with hybrid return
value prediction and 21% speedup versus no return
value prediction.

1. Introduction

Much of the recent performance improvement in
microprocessors is the result of increasing and
exploiting instruction-level parallelism (ILP). However,
in general-purpose applications, the exploitable ILP is
strongly limited by data and control dependencies. To
further boost performance, different types of
parallelism must be identified and exploited.

Speculative thread-level parallelism is one such
promising approach where sequential programs are
dynamically split into threads that execute
simultaneously [5,13,14]. These threads are
speculatively issued before the dependencies with
previous threads are resolved, and provide a coarser
granularity for applying parallel execution. One of the
most popular points for spawning speculative threads is
at methods.

In speculative method-level parallelism (SMLP)
architectures [1,9,16], the original thread executes the
called method while a new speculative thread is

spawned to execute the code that follows the method’s
return. Inter-method data dependency violations are
infrequent, especially in object-oriented programming
languages such as Java. This property, as well as the
lack of inter-method control dependencies, makes
method-based thread generation a popular strategy for
creating speculative thread-level parallelism.

A speculative thread often encounters a return value
from a procedure that has not completed. To avoid a
rollback, the return value can be predicted if it is not
available at the time of use. In previous literature
[1,9,16], method-level speculation is performed using
simple prediction schemes, such as last value or stride
prediction. However, there are conflicting observations
on the importance of return value prediction [9,16].

The initial goal of the work is to further understand
the importance of return value prediction on speculative
method-level parallelism, which is clarified by the
runtime characteristics and performance results
obtained in this work. For instance, perfect return value
prediction reduces execution time by 44% versus a
system with no return value. Our other contributions
and observations include:
• There are plentiful opportunities for return value

prediction. Two-thirds of the dynamically
encountered methods return values, of which 94% of
the values are consumed within 10 instructions.

• Current predictors’ poor accuracy on integer return
values partly accounts for the performance gap
between perfect and realistic return value predictors.
Using a common value predictor, boolean return
values are most predictable (86%), while the integer
return values are the least predictable (18%).

• The SMLP environment also affects the prediction
accuracy of current return value prediction schemes.
Updating a global return value predictor in a SMLP
environment can lead to long delays in predictor
updates, which can be speculative and/or out of order.

• A new return value prediction scheme, the Parameter
Stride (PS) prediction, is proposed. Performing the
PS prediction overcomes some of the SMLP
environment obstacles and achieves an average 7%
speedup versus the best previous method for an 8-
CPU system.

The rest of this paper is organized as follows. In
Section 2, we provide background on speculative
method-level parallelism and return value prediction.
The simulation environment and the Java benchmarks
are described in Section 3. Return values are
characterized in Section 4. The Parameter Stride
predictor is presented and analyzed in Section 5.
Previous efforts are discussed in Section 6, and we
conclude in Section 7.

2. SMLP and Return Value Prediction

In this section, we review the concept of speculative
method-level parallelism and the role of return value
prediction.

2.1. Speculative Method-Level Parallelism

In a sequential execution architecture, a method is
executed by the same thread that calls it. After the
thread finishes executing the method, it continues
executing from the original call point. This process is
illustrated in Figure 1a, in which method metA is
invoked in method main. When a method call is
encountered in a SMLP architecture, the original thread
executes the method as before. At the same time, a new
speculative thread is spawned to execute the code
beyond the method call (Figure 1b and 1c). By
introducing an additional post-method speculative
thread that can be executed on a separate processor, a
SMLP architecture can exploit parallelism that cannot
be uncovered by typical superscalar microarchitectures.

main() {

...

call metA();

metA(){
...
return rA;
}

uA=...;
...

...

}

main() {

...

call metA();

metA(){
...
return rA;
}

uA=pred_rA;
...

...

uA=real_rA;
...

...

}

Rollback due to
misprediction

Create
speculative
thread

main() {

...

call metA();

metA(){
...
return rA;
}

uA=pred_rA;
...

...

}Predict
correctly

Create
speculative
thread

(a) Sequential
Execution

(b) SMLP Execution with
Return Value Misprediction

(c) SMLP Execution with Correct
Return Value Prediction

normal

speculative

Figure 1. Comparison of Sequential and SMLP
Execution Models

2.2. Role of Return Value Prediction

To expose more method-level parallelism, one of the
most important techniques is return value prediction
[1,9,16]. When a return value usage is encountered in a
speculative thread, a predicted value is used if the real
return value is not available. Typically, the speculative
thread consumes the return value soon after the thread
is produced by the original thread. Therefore the
original thread will not have enough time to generate

the return value for the speculative thread and the
predicted return value is used in most cases (further
explored in Section 4).

The speculative thread continues to execute while the
original thread completes the method and computes the
corresponding return value. When a method completes,
the correct and predicted return values are compared. If
the return value is mispredicted, the speculative thread
must rollback to either the beginning of the thread or
the position where the return value is first used. In
either case, a mispredicted return value leads to wasted
resources and increased computing time. Figure 1b and
1c illustrate the difference between a return value that is
incorrectly predicted and one that is correctly predicted.
For the non-void methods, the full benefits of method-
level speculation can only be realized by accurate return
value prediction.

3. Simulation Methodology

This section describes the simulation environment
utilized to evaluate the effects of return value prediction
on speculative method-level parallelism.

3.1. Simulation Environment

The LaTTe JVM [17] executes the Java programs by
an advanced JIT compiler, which is modified to insert
annotated code into the compiled native code of Java
methods. Those markers indicate events such as method
invocations, methods returns, parameter values, return
values, and uses of the return values.

The JVM is functionally executed and simulated
using Sun’s Shade analysis tool [2]. When the
annotated methods execute, the customizable Shade
analyzer recognizes a method’s execution by a pair of
invocation/return markers and extracts instructions and
other annotated events within the markers. JVM-
specific operations, such as class loading and garbage
collection, are excluded from our analysis. By doing so,
we focus on the characteristics of programs, instead of
one specific JVM. The Shade analyzer then feeds a
summarized account of the program’s execution to the
SMLP simulator.

3.2. Benchmarks

Table 1 presents the evaluated benchmarks from
SPEC JVM98 [18], which contains a group of
representative general-purpose Java applications. While
a method in a C program can return multiple values (e.g.
a structure), a Java method returns at most one value.
This is one of the features that make Java programs
more attractive for our research. However, Java and C
programs have been shown to have similar
characteristics with regards to speculative method-level
parallelism [16]. Hence, the results of the paper are not
limited to Java programs.

Table 1. Benchmarks and Runtime Characteristics

Name Dynamic
Instructions

Static
Methods

Dynamic
Method Calls

Avg. Instr. /
Method

compress 3310M 205 1.76M 1883
db 393M 216 46.4K 8461
javac 826M 495 172K 4790
jess 750M 559 273K 2743
mpegaudio 968M 304 343K 2826
mtrt 592M 264 638K 927

3.3. SMLP Execution Model

In our model, speculative method-level parallelism is
supported by a chip multiprocessor (CMP), which uses
simple scalar processor cores [5,13]. In the execution
model, each memory access and inter-thread
communication take one cycle to complete. This design
choice places the focus on the interactions between
inherent method-level parallelism and return value
prediction. Previous literature on SMLP [1,9,16] shows
that such simplification does not compromise the
accuracy of their study. The other features of the
considered SMLP execution model are:
• Each method invocation initiates a new speculative

thread. When all processors are occupied by other
tasks, the new tasks wait until there are free
processors and are issued in sequential order.

• A fixed 100-cycle overhead is applied to speculative
thread management tasks, such as thread creation,
thread completion, and rollbacks.

• Inter-method memory dependencies are maintained
and available values are forwarded to the consumer
threads. A 4096-entry, two-delta stride load value
predictor predicts unavailable load values [3,7].

• All threads must commit in sequential order, and data
dependences are checked when a thread tries to
commit. If a thread has used a mispredicted return or
load value, the thread rolls back to where the value is
first used. All threads created by this thread are
terminated.

Various return value predictors are used throughout
the analysis. By default, the stride return value predictor
is 1024 entries and uses the two-delta strategy [3]. The
context return value predictor uses a 1024-entry value
history table and 4096-entry value prediction table [11].
The hybrid return value predictor consists of a stride
and a context predictor [15]. For return value prediction,
low-latency value prediction is not a big issue since the
predicted result is not used until a speculative thread is
created, which takes one hundred cycles.

4. Characterization of Return Values

In this section, the characteristics of Java methods
and their return values are analyzed, and the
predictability of return values in a SMLP environment
is studied.

4.1. Runtime Method Characteristics

Table 1 shows the runtime method characteristics for
the suite of Java programs. The number of static
methods is interesting because it provides an estimate
for the table size required for one-level predictors (e.g.
a stride return value predictor). Also relevant to this
study is the instructions per method invocation, which
indicates the granularity of the thread size. On average,
a dynamic method is called every 3600 instructions.

In method-level speculation, one of the pending
problems is to find the balance between method-level
parallelism and thread overhead. For example, frequent
invocations of short methods may hurt performance due
to the thread management overhead [16]. LaTTe
alleviates the problem by dynamically inlining suitable
virtual methods. Inlining benefits SMLP architectures
by reducing the number of short methods. Thread
management overheads become more tolerable under
these circumstances.

4.2. Using Return Values

In a SMLP environment, not all methods need return
value prediction. Void methods do not need return
value prediction because they do not return a value. For
a non-void method, if its return value is never used,
then return value prediction is not necessary for the
methods. Figure 2 sorts all dynamically invoked
methods into three categories based on the return values:
used, unused, and void return values. For most
applications, at least half of the methods return a value
that is used, and on average 66% of dynamic methods
return a used value. These methods can potentially
benefit from return value prediction. Unused method
returns are the smallest among the three categories,
ranging from 0.1% for mpeg to 11% for db.

0%

20%

40%

60%

80%

100%

 comp db javac jess mpeg mtrt average

U
sa

ge
 D

is
tr

ib
ut

io
n

Used Return Values Unused Return Values Void Methods

Figure 2. Usage Distributions of Return Values
(sequential execution)

A used return value does not always necessitate a
return value prediction. If the number of instructions
between the method return and the first use of the return
value is large enough, then it is possible that the return

value is produced before the speculative thread uses it.
Such a method does not need return value prediction.
Figure 3 presents the percentages of used return values
that occur within 10 and 100 instructions of the method
invocations. On average, 94% of return values are used
within the first 10 instructions, and 98% are used within
the first 100 instructions. These are very short distances
considering the number of instructions per dynamic
method invocation (presented in Table 1). This result
confirms that return value prediction will be useful for
most methods that return a value.

75%

80%

85%

90%

95%

100%

comp db javac jess mpeg mtrt average

U
sa

ge
 D

is
ta

nc
e

Used within 10 instr. Used within 100 instr.

Figure 3. Percentages of Used Return Values that
Occur Within 10 and 100 Instructions of the Method
Invocations (sequential execution)

4.3. Return Type Breakdown

The Java language uses different bytecodes to
indicate the return type of a method. Since the SPEC
JVM98 benchmarks are integer programs, the most
common return types are void, boolean, reference and
integer (Figure 4). Reference return values are memory
addresses that indicate object fields or array elements in
the heap. On average, half of the return values are of
type integer, and 34% method invocations return no
values. Reference and boolean return values are less
frequent, and both represent less than 10% of all the
return values.

Individual programs display different return type
characteristics. The program javac has the largest
percentage of integer return values since it translates
Java source code into bytecodes, which are represented
by integer return values. In contrast with the other
benchmarks, comp and mpeg have almost no reference
return values, which confirms with the previous
observation [12] that both programs have little heap
activity. Finally, jess and mpeg have the largest
percentage of boolean return values.

0%

20%

40%

60%

80%

100%

comp db javac jess mpeg mtrt average

R
et

ur
n

T
yp

e
B

re
ak

do
w

n

Integer Boolean Reference Void

 Figure 4. Return Type Breakdown (sequential
execution)

Figure 5 shows the prediction accuracies categorized
by the return types for a stride return value predictor
during sequential execution. For all applications,
boolean values are the easiest to predict, with an
average prediction accuracy of 86%. This is primarily
because they have only two possible values. On
reference return values, four out of six benchmarks
have prediction accuracies above 60%. Most reference
return values of those applications point to a few
frequently accessed fields [12]. On average, the
prediction accuracy for reference return values is 61%,
which is much higher than an average prediction
accuracy of 18% for integer return values.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

comp db javac jess mpeg mtrt average

P
re

di
ct

io
n

A
cc

ur
ac

y

Boolean Reference Integer

Figure 5. Return Value Prediction Accuracies by
Return Types (sequential execution; stride return value
predictor)

4.4. Impact of SMLP Execution

Figure 6 shows the prediction accuracies of return
value predictors under both sequential and SMLP
execution. These results are presented to show the
effects that speculative, out-of-order return value
predictor updates have on prediction accuracy.

When the simulation environment changes from
sequential execution to SMLP execution, the accuracies
of all predictors drop, but the context-based predictor is
most sensitive to SMLP execution. The average
prediction accuracy for the stride predictor is 36% for

sequential execution, but falls to 30% for SMLP
execution. The average prediction accuracies of the
context and the hybrid predictors drop 17% and 9%
respectively.

Differences in the return value predictor update
patterns account for the drop in accuracy. In the SMLP
environment, stride and context-based predictors suffer
for two reasons. The first reason is that the predictors
depend on detecting a regular pattern. While a
predictable pattern of values may exist in sequential
execution, if the predictor updates occur out of order
and speculatively, the patterns are less likely to exist.
Likewise, patterns that are detected in a SMLP
environment might not actually exist. The second
reason these predictors suffer is because their prediction
is based on the return values currently stored in the
predictors. Even if the proper pattern is established for a
method, if the most recently captured value is not the
most recently executed value, then the prediction will
be incorrect.

While it may seem counterproductive to update the
return value predictor speculatively and out of order,
our experiments show that performing in-order, non-
speculative return value predictor updates during thread
commitment actually leads to worse performance due to
the long delays between updates which result in stale
predictor values.

0%

20%

40%

60%

80%

100%

comp db javac jess mpeg mtrt average

Pr
ed

ic
ti

on
 A

cc
ur

ac
y

Sequential (SVP) SMLP (SVP)
Sequential (CVP) SMLP (CVP)
Sequential (HYBS) SMLP (HYBS)

Fig
ure 6. Prediction Accuracy For Sequential and SMLP
Environments (8-CPU SMLP; SVP is stride predictor,
CVP is context predictor, HYBS is hybrid predictor)

5. Parameter Stride Prediction

 The value predictors studied thus far are skewed by
SMLP execution. However, in return value prediction,
we have an additional valuable input - method
parameters (i.e. arguments). This work proposes to
improve prediction accuracy by utilizing one
relationship, the parameter stride (PS), between method
parameters and return values. This relationship is not
targeted or detected by any of the previous return value
predictors discussed.

5.1. Detecting the Parameter Stride

The PS relationship exists when a method’s return
value equals the sum of one parameter value and a
constant value. For example, a method may do some
operations on the elements of an array, which is
referenced as a parameter of the method. If the method
ultimately returns the reference to the next array
element, the return value will be the initial reference
value plus the size of one array element. Another
example is a method that operates on an object, with the
object reference as one of the parameters and the return
value. In such a case, the stride is zero.

5.2. Implementation

Figure 7 shows the organization of the parameter
stride predictor. It is comprised of two tables: the
parameter selection table (PST) and the parameter
prediction table (PPT). The PST is used to detect the
parameter stride pattern for new methods. Once a
pattern is detected the method is placed in the PPT,
which makes the return value predictions.

The PST is a small, fully associative table. To store
all the parameters and strides, PST entries have more
fields than PPT entries. The ‘#’ field of the PST stores
the number of parameters in the method, and a PST
entry stores at most eight parameter and stride pairs.

The PPT is 4-way set associative. A PPT set is
indexed by the lower bits of a method address, and then
verified by comparing the higher bits of the method
address with the tags of the chosen set. The state ‘s’ of
PPT indicates the current state, i.e. PS pattern detected
or not, of a method. The ‘cs’ field of PPT stores either
the parameter stride or the last value, depending on the
state. In the case that all entries are occupied, both
tables use the LRU algorithm to choose which entry to
be replaced by the incoming method.

method address

2 3
tag s cp PST: parameter selection table

32 3 32 32 … 32 32 #: number of parameters
 ID # p1 s1 … pn sn pN: parameter value

sN: stride for pN

PPT: parameter prediction table
s: state bits

Return Value cp: candidate parameter
cs: stride or last value

-
-

Parameters

Select
Param

32

+

PST

…

PPT

cs

Se
t

0

…

Figure 7 Organization of Parameter Stride Predictor
(Bold lines indicate multiple values)

The predictor requires at least two invocations of the
same method before it can provide a prediction. When a
method is first encountered, a PPT entry is allocated for
the method, and its state bits are set to indicate the
detection state of the method. A PST entry is also
allocated and the method’s parameters are stored in

fields p1 through pn. When the method’s return value
is available, the strides between the return value and
parameters are computed and stored in the same PST
entry in fields s1 through sn.

When the method is invoked the second time, its
current parameters overwrite the old ones in the PST
entry. After the method computes its return value, the
new strides are computed and compared with the old
strides. If one stride pair has the same value, the method
possesses the parameter stride pattern. When a
parameter stride is detected, the corresponding
parameter number and stride value are stored in the
PPT entry, and the PST entry is freed. To predict, the
appropriate parameter value is selected by the cp field
of the PPT entry, then added to the stride value to
obtain the predicted return value. If no parameter stride
pattern is detected for a method, simple last value
prediction is used instead. The last value is stored in the
cs field.

Updating the PS predictor is fairly simple. Once the
parameter stride pattern is detected for a method, its
PPT entry needs no further updates since our
experiments indicate that methods will always keep that
pattern. This stability reduces the effect of speculative
updates on the PS predictor. For those methods that do
not possess the parameter stride pattern, their cs fields
are updated by their most recent return values. Other
details of the predictor are presented in [6].

5.3. Prediction coverage

Table 2 provides the percentages of static methods
(Static) as well as dynamic return values (Dynamic)
that are correctly predicted by the parameter stride
pattern. In addition, the table shows the percentage of
overall return values that are correctly predicted by the
PS prediction but not by all other predictors
(Uncovered). On average, about 13% of dynamically
encountered return values exhibit a predictable
parameter stride pattern, and 47% of these return values
can not be predicted by other types of return value
predictors.

Table 2. Percentage of Methods and Return Values
that Possess the Parameter Stride Pattern
(sequential execution)

 comp db javac jess mpeg mtrt average
Static 13.5% 12.0% 7.1% 7.0% 15.0% 12.5% 11.2%
Dynamic 11.0% 24.5% 3.2% 10.2% 13.0% 14.6% 12.8%
Uncovered 0.1% 14.7% 2.9% 8.2% 5.4% 4.5% 6.0%

Two properties of the parameter-stride pattern make

it useful for return value prediction. First, the PS pattern
is very stable. Our experiments show that once the PS
relationship is established for a method, it rarely
changes. Second, once the relationship is established,

PS prediction does not rely on the update order. These
attributes allow PS prediction to overcome some
difficulties that SMLP imposes on other predictors.

5.4. Performance Impact

Figure 8 shows the impact of return value prediction
on speedup for an 8-CPU SMLP system over the
baseline 1-CPU sequential system. For each program,
the normalized speedup is presented for four different
return value prediction scenarios: no return value
prediction, traditional hybrid prediction (HYBS),
hybrid prediction with parameter stride prediction
(HYBS-PS), and perfect return value predictor. HYBS-
PS is the hybrid of HYBS and a PS predictor with 8-
entry PST and 512-entry PPT.

The first observation is that realistic return value
prediction improves the SMLP performance. On
average, the HYBS predictor improves performance by
14% versus no return value prediction. The program
comp shows the smallest improvement among all
programs, which is mostly due to the poor prediction
accuracy (Figure 6). Combining PS prediction with
previously studied predictors improves the performance
of the SMLP environment. For the HYBS-PS predictor,
the average speedup versus no return value prediction is
21%, and 7% versus the HYBS predictor. For three of
the benchmarks (jess, mpeg and mtrt), the
HYBS-PS predictor provides more than 10%
performance improvement over the hybrid predictor.

On average, perfect return value prediction achieves a
44% speedup over no return value prediction. The
performance gap between perfect and realistic return
value prediction is caused by realistic predictors’ poor
accuracy on integer return values and the unfavorable
SMLP conditions. It also shows that SMLP execution
can still benefit significantly from more accurate return
value prediction.

0

0.5

1

1.5

2

2.5

3

3.5

comp db javac jess mpeg mtrt average

Sp
ee

du
p

No Return Value Prediction HYBS
HYBS-PS Perfect Return Value Prediction

Figure 8. Normalized Speedups For Different Return
Value Prediction Schemes (8-CPU SMLP execution)

Note that higher return value prediction accuracy
may not mean higher performance. For instance, a
correctly predicted speculative method can still be

rolled back if the method that calls it is rolled back due
to a failed return value prediction. Furthermore, the
performance improvement is affected by the available
speculative method-level parallelism, which varies by
programs.

6. Related Work

Recent research has focused on method-level
speculation, but provide limited discussion on the issue
of return value prediction. Chen and Olukotun [1]
demonstrate that the Java virtual machine is an effective
environment for exploiting speculative method-level
parallelism. Although a simple return value prediction
is incorporated in their simulator, there is no specific
discussion about its effects. Oplinger et al [9] observe
that employing return value prediction schemes, such as
last value and stride prediction, leads to significant
speedups over no return value prediction. Warg and
Stenstrom [16] compare the speedups achieved under
perfect, stride, and no return value prediction for a
group of C and Java programs. The performance
improvements gained by perfect return value
predictions for the Java programs are generally very
small. A notable difference in their simulation
environment is that all Java programs are compiled to
native code by a less sophisticated GCC Java compiler
and executed without a JVM. As a result, the Java
methods are compiled without inlining, and are much
smaller than those in our simulation environment.
Consequently, the abundance of thread management
overhead in their simulation environment impairs the
performance improved by accurate return value
prediction.

Marcuello et al. analyze a value prediction technique
specifically for architectures with thread-level
parallelism [8]. They propose an increment predictor
that predicts the thread output value of a register as the
thread input value of the same register plus a fixed
increment. Although the increment concept is similar to
the parameter stride of this work, the PS pattern may
exist between different registers and hence cannot be
uncovered by the increment predictor. For instance, in
SPARC processors, the registers held a method’s
parameters always differ with the register held the
method’s return value. Hence, the increment predictor
cannot be used for PS prediction in SPARC machines.

Gumaraju and Franklin study the effects of a single-
program, multi-threaded environment on branch
prediction [4]. They similarly observe that the
multithreading affects the branch history and decreases
the branch prediction accuracy. However, the thread-
correlation branch prediction scheme that they propose
will not help return value prediction in a SMLP
environment.

Rychlik and Shen briefly discuss the locality of
method return values [10]. They observe the difference

in argument and return values between successive
invocations of methods. Instead of looking for
relationships between arguments and return values, they
are searching for repetition of values.

7. Conclusion

In this work, we characterize method return values in
Java programs and discuss the role of return value
prediction in a system that supports speculative
method-level parallelism. The study is done using
general-purpose Java programs running on an advanced
Java virtual machine with an aggressive JIT compiler.

We find that return value prediction has the potential
to greatly improve performance, and we identify
possible characteristics that can be exploited by return
value predictors. Two-thirds of dynamically
encountered methods return a value. Of those, boolean
return values are the most predictable (prediction
accuracy of 86%). Integer return values are the least
predictable (18%) and prove to be a big challenge for
SMLP systems.

Further analysis into the behavior of the return value
predictors reveals that the SMLP environment creates
performance-related problems. Predictor updates are
done speculatively and potentially out of sequential
order. Stride and context-based strategies are inherently
sensitive to this change in update behavior, hurting their
performance in a SMLP environment. Therefore, we
propose a Parameter Stride return value predictor
designed specifically to cope with the SMLP behavior.
The PS predictor makes predictions based on method
argument values and a fixed stride that, once computed,
rarely changes. The PS predictor complements the
previous predictors, increasing performance by 7%
versus hybrid return value prediction and by 21% over
a system with no return value prediction.

Acknowledgements
We would like to thank the anonymous reviewers for

their suggestions that provided more depth to this work.
This research is partially supported by the National
Science Foundation under grant number 0113105, and
by AMD, Intel, IBM, Tivoli and Microsoft
Corporations.

References

[1] M. Chen and K. Olukotun, “Exploiting Method-
Level Parallelism in Single-Threaded Java Programs”,
in Proc. PACT 1998, 1998, pp. 176–184.

[2] R. Cmelik and D. Keppel, “Shade: A Fast
Instruction-Set Simulator for Execution Profiling”, in
Proc.SIGMETRIC 1994, 1994, pp. 128–137.

[3] F. Gabbay and A. Mendelson, “Speculative
execution based on value prediction”, Technical Report
1080, Technion – Israel Institute of Technology, 1997.

[4] J. Gummaraju, and M. Franklin, “Branch
prediction in multi-threaded processors”, in Proc.
PACT 2000, 2000, pp. 179-188.

[5] L. Hammond, B. Hubbert, etc, “The Stanford
Hydra CMP”, in IEEE Micro, V.20 No.2, Mar. 2000,
pp. 71–84.

[6] S. Hu, R. Bhargava and L. John, “The Role of
Return Value Prediction in Exploiting Speculative
Method-Level Parallelism”, TR-020822-02, University
of Texas at Austin, 2002.

[7] M. Lipasti, C. Wilkerson and J. Shen, “Value
Locality and Load Value Prediction”, in Proc.
ASPLOS’7, 1996, pp. 138–147.

[8] P. Marcuello, J. Tubella, and A. González, “Value
Prediction for Speculative Multithreaded Architectures”,
in Proc. MICRO’32, 1999, pp. 230–236.

[9] J. Oplinger, D. Heine, and M. Lam, “In Search of
Speculative Thread-Level Parallelism”, in Proc. PACT
1999, 1999, pp. 303–313.

[10] B. Rychlik and J. P. Shen, “Characterization of
Value Locality in Java Programs”, in IEEE/WWC’3,
2000, pp. 12–23.

[11] Y. Sazeides and J. E. Smith, “The Predictability of
Data Values”, in Proc. MICRO’30, 1997, pp. 248–258.

[12] Y. Shuf, M. Serrano, etc, “Characterizing the
Memory Behavior of Java Workloads: A Structured
View and opportunities for Optimizations”, In Proc.
SIGMETRIC 2001, 2001, pp.194 - 205

[13] G. Sohi, S. Breach and T. Vijaykumar,
“Multiscalar Processors”, in Proc. ISCA’22, 1995, pp.
414–425.

[14] J. Steffan and T. Mowry, “The Potential for Using
Thread-level Data Speculation to Facilitate Automatic
Parallelization”, in Proc.HPCA’4, 1998, pp. 2–13.

[15] K. Wang and M. Franklin. “Highly Accurate Data
Value Prediction Using Hybrid Predictors”, in Proc.
ISCA’30, 1997, pp. 281–290.

[16] F. Warg and P. Stenstrom, “Limits on Speculative
Module-level Parallelism in Imperative and Objective-
oriented Programs on CMP Platforms”, in Proc. PACT
2001, 2001, pp. 221–230.

[17] B. Yang, S. Moon, etc, “LaTTe: A Java VM Just-
in-Time Compiler with Fast and Efficient Register
Allocation”, in Proc. PACT 1999, 1999, pp. 128–138.

[18] SPEC JVM98 Benchmarks, at
http://www.spec.org/osg/jvm98.

