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Abstract 

This work studies the performance impact of return 
value prediction in a system that supports speculative 
method-level parallelism (SMLP). A SMLP system 
creates a speculative thread at each method call. This 
allows the method and the code from which it is called 
to be executed in parallel. To improve performance, the 
return values of methods are predicted in hardware so 
that no method has to wait for its sub-method to 
complete before continuing to execute. We find that 
two-thirds of return values need to be predicted, and 
perfect return value prediction improves performance 
by an average of 44% over no return value prediction. 
However, the performance of realistic predictors is 
limited by poor prediction accuracy on integer return 
values and unfavorable SMLP conditions. A new 
Parameter Stride (PS) predictor is proposed to 
overcome the deficiencies of the standard predictors by 
predicting based on method arguments. Combining the 
PS predictor with previous predictors results in an 
average 7% speedup versus a system with hybrid return 
value prediction and 21% speedup versus no return 
value prediction. 

 

1. Introduction 

Much of the recent performance improvement in 
microprocessors is the result of increasing and 
exploiting instruction-level parallelism (ILP). However, 
in general-purpose applications, the exploitable ILP is 
strongly limited by data and control dependencies. To 
further boost performance, different types of 
parallelism must be identified and exploited.  

Speculative thread-level parallelism is one such 
promising approach where sequential programs are 
dynamically split into threads that execute 
simultaneously [5,13,14]. These threads are 
speculatively issued before the dependencies with 
previous threads are resolved, and provide a coarser 
granularity for applying parallel execution. One of the 
most popular points for spawning speculative threads is 
at methods.  

In speculative method-level parallelism (SMLP) 
architectures [1,9,16], the original thread executes the 
called method while a new speculative thread is 

spawned to execute the code that follows the method’s 
return. Inter-method data dependency violations are 
infrequent, especially in object-oriented programming 
languages such as Java. This property, as well as the 
lack of inter-method control dependencies, makes 
method-based thread generation a popular strategy for 
creating speculative thread-level parallelism.  

A speculative thread often encounters a return value 
from a procedure that has not completed. To avoid a 
rollback, the return value can be predicted if it is not 
available at the time of use. In previous literature 
[1,9,16], method-level speculation is performed using 
simple prediction schemes, such as last value or stride 
prediction. However, there are conflicting observations 
on the importance of return value prediction [9,16]. 

The initial goal of the work is to further understand 
the importance of return value prediction on speculative 
method-level parallelism, which is clarified by the 
runtime characteristics and performance results 
obtained in this work. For instance, perfect return value 
prediction reduces execution time by 44% versus a 
system with no return value. Our other contributions 
and observations include: 
• There are plentiful opportunities for return value 

prediction. Two-thirds of the dynamically 
encountered methods return values, of which 94% of 
the values are consumed within 10 instructions.  

• Current predictors’ poor accuracy on integer return 
values partly accounts for the performance gap 
between perfect and realistic return value predictors. 
Using a common value predictor, boolean return 
values are most predictable (86%), while the integer 
return values are the least predictable (18%). 

• The SMLP environment also affects the prediction 
accuracy of current return value prediction schemes. 
Updating a global return value predictor in a SMLP 
environment can lead to long delays in predictor 
updates, which can be speculative and/or out of order. 

• A new return value prediction scheme, the Parameter 
Stride (PS) prediction, is proposed. Performing the 
PS prediction overcomes some of the SMLP 
environment obstacles and achieves an average 7% 
speedup versus the best previous method for an 8-
CPU system. 



  

The rest of this paper is organized as follows. In 
Section 2, we provide background on speculative 
method-level parallelism and return value prediction. 
The simulation environment and the Java benchmarks 
are described in Section 3. Return values are 
characterized in Section 4. The Parameter Stride 
predictor is presented and analyzed in Section 5. 
Previous efforts are discussed in Section 6, and we 
conclude in Section 7. 

2. SMLP and Return Value Prediction 

In this section, we review the concept of speculative 
method-level parallelism and the role of return value 
prediction.  

2.1.  Speculative Method-Level Parallelism 

In a sequential execution architecture, a method is 
executed by the same thread that calls it.  After the 
thread finishes executing the method, it continues 
executing from the original call point. This process is 
illustrated in Figure 1a, in which method metA is 
invoked in method main. When a method call is 
encountered in a SMLP architecture, the original thread 
executes the method as before. At the same time, a new 
speculative thread is spawned to execute the code 
beyond the method call (Figure 1b and 1c). By 
introducing an additional post-method speculative 
thread that can be executed on a separate processor, a 
SMLP architecture can exploit parallelism that cannot 
be uncovered by typical superscalar microarchitectures. 
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Figure 1. Comparison of Sequential and SMLP 
Execution Models 

2.2.  Role of Return Value Prediction 

To expose more method-level parallelism, one of the 
most important techniques is return value prediction 
[1,9,16]. When a return value usage is encountered in a 
speculative thread, a predicted value is used if the real 
return value is not available. Typically, the speculative 
thread consumes the return value soon after the thread 
is produced by the original thread. Therefore the 
original thread will not have enough time to generate 

the return value for the speculative thread and the 
predicted return value is used in most cases (further 
explored in Section 4). 

The speculative thread continues to execute while the 
original thread completes the method and computes the 
corresponding return value. When a method completes, 
the correct and predicted return values are compared. If 
the return value is mispredicted, the speculative thread 
must rollback to either the beginning of the thread or 
the position where the return value is first used. In 
either case, a mispredicted return value leads to wasted 
resources and increased computing time. Figure 1b and 
1c illustrate the difference between a return value that is 
incorrectly predicted and one that is correctly predicted. 
For the non-void methods, the full benefits of method-
level speculation can only be realized by accurate return 
value prediction. 

3. Simulation Methodology 

This section describes the simulation environment 
utilized to evaluate the effects of return value prediction 
on speculative method-level parallelism.  

3.1.  Simulation Environment 

The LaTTe JVM [17] executes the Java programs by 
an advanced JIT compiler, which is modified to insert 
annotated code into the compiled native code of Java 
methods. Those markers indicate events such as method 
invocations, methods returns, parameter values, return 
values, and uses of the return values.  

The JVM is functionally executed and simulated 
using Sun’s Shade analysis tool [2]. When the 
annotated methods execute, the customizable Shade 
analyzer recognizes a method’s execution by a pair of 
invocation/return markers and extracts instructions and 
other annotated events within the markers. JVM-
specific operations, such as class loading and garbage 
collection, are excluded from our analysis. By doing so, 
we focus on the characteristics of programs, instead of 
one specific JVM. The Shade analyzer then feeds a 
summarized account of the program’s execution to the 
SMLP simulator.  

3.2.  Benchmarks 

Table 1 presents the evaluated benchmarks from 
SPEC JVM98 [18], which contains a group of 
representative general-purpose Java applications. While 
a method in a C program can return multiple values (e.g. 
a structure), a Java method returns at most one value. 
This is one of the features that make Java programs 
more attractive for our research. However, Java and C 
programs have been shown to have similar 
characteristics with regards to speculative method-level 
parallelism [16]. Hence, the results of the paper are not 
limited to Java programs.  



  

Table 1. Benchmarks and Runtime Characteristics 

Name Dynamic 
Instructions 

Static 
Methods 

Dynamic 
Method Calls 

Avg. Instr. / 
Method 

compress 3310M 205 1.76M 1883 
db 393M 216 46.4K 8461 
javac 826M 495 172K 4790 
jess 750M 559 273K 2743 
mpegaudio 968M 304 343K 2826 
mtrt 592M 264 638K 927 

 

3.3.  SMLP Execution Model 

In our model, speculative method-level parallelism is 
supported by a chip multiprocessor (CMP), which uses 
simple scalar processor cores [5,13]. In the execution 
model, each memory access and inter-thread 
communication take one cycle to complete. This design 
choice places the focus on the interactions between 
inherent method-level parallelism and return value 
prediction. Previous literature on SMLP [1,9,16] shows 
that such simplification does not compromise the 
accuracy of their study. The other features of the 
considered SMLP execution model are: 
• Each method invocation initiates a new speculative 

thread. When all processors are occupied by other 
tasks, the new tasks wait until there are free 
processors and are issued in sequential order.  

• A fixed 100-cycle overhead is applied to speculative 
thread management tasks, such as thread creation, 
thread completion, and rollbacks.  

• Inter-method memory dependencies are maintained 
and available values are forwarded to the consumer 
threads. A 4096-entry, two-delta stride load value 
predictor predicts unavailable load values [3,7]. 

• All threads must commit in sequential order, and data 
dependences are checked when a thread tries to 
commit. If a thread has used a mispredicted return or 
load value, the thread rolls back to where the value is 
first used. All threads created by this thread are 
terminated. 

 

Various return value predictors are used throughout 
the analysis. By default, the stride return value predictor 
is 1024 entries and uses the two-delta strategy [3]. The 
context return value predictor uses a 1024-entry value 
history table and 4096-entry value prediction table [11]. 
The hybrid return value predictor consists of a stride 
and a context predictor [15]. For return value prediction, 
low-latency value prediction is not a big issue since the 
predicted result is not used until a speculative thread is 
created, which takes one hundred cycles. 

4. Characterization of Return Values 

In this section, the characteristics of Java methods 
and their return values are analyzed, and the 
predictability of return values in a SMLP environment 
is studied. 

4.1.  Runtime Method Characteristics 

Table 1 shows the runtime method characteristics for 
the suite of Java programs. The number of static 
methods is interesting because it provides an estimate 
for the table size required for one-level predictors (e.g. 
a stride return value predictor). Also relevant to this 
study is the instructions per method invocation, which 
indicates the granularity of the thread size. On average, 
a dynamic method is called every 3600 instructions.   

In method-level speculation, one of the pending 
problems is to find the balance between method-level 
parallelism and thread overhead. For example, frequent 
invocations of short methods may hurt performance due 
to the thread management overhead [16]. LaTTe 
alleviates the problem by dynamically inlining suitable 
virtual methods. Inlining benefits SMLP architectures 
by reducing the number of short methods. Thread 
management overheads become more tolerable under 
these circumstances.  

4.2.  Using Return Values 

In a SMLP environment, not all methods need return 
value prediction. Void methods do not need return 
value prediction because they do not return a value. For 
a non-void method, if its return value is never used, 
then return value prediction is not necessary for the 
methods. Figure 2 sorts all dynamically invoked 
methods into three categories based on the return values: 
used, unused, and void return values. For most 
applications, at least half of the methods return a value 
that is used, and on average 66% of dynamic methods 
return a used value. These methods can potentially 
benefit from return value prediction. Unused method 
returns are the smallest among the three categories, 
ranging from 0.1% for mpeg to 11% for db. 
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Figure 2. Usage Distributions of Return Values 
(sequential execution) 

A used return value does not always necessitate a 
return value prediction. If the number of instructions 
between the method return and the first use of the return 
value is large enough, then it is possible that the return 



  

value is produced before the speculative thread uses it. 
Such a method does not need return value prediction. 
Figure 3 presents the percentages of used return values 
that occur within 10 and 100 instructions of the method 
invocations. On average, 94% of return values are used 
within the first 10 instructions, and 98% are used within 
the first 100 instructions. These are very short distances 
considering the number of instructions per dynamic 
method invocation (presented in Table 1). This result 
confirms that return value prediction will be useful for 
most methods that return a value. 
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4.3.  Return Type Breakdown 

The Java language uses different bytecodes to 
indicate the return type of a method. Since the SPEC 
JVM98 benchmarks are integer programs, the most 
common return types are void, boolean, reference and 
integer (Figure 4). Reference return values are memory 
addresses that indicate object fields or array elements in 
the heap. On average, half of the return values are of 
type integer, and 34% method invocations return no 
values. Reference and boolean return values are less 
frequent, and both represent less than 10% of all the 
return values. 

Individual programs display different return type 
characteristics. The program javac has the largest 
percentage of integer return values since it translates 
Java source code into bytecodes, which are represented 
by integer return values. In contrast with the other 
benchmarks, comp and mpeg have almost no reference 
return values, which confirms with the previous 
observation [12] that both programs have little heap 
activity. Finally, jess and mpeg have the largest 
percentage of boolean return values. 
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 Figure 4. Return Type Breakdown (sequential 
execution) 

Figure 5 shows the prediction accuracies categorized 
by the return types for a stride return value predictor 
during sequential execution. For all applications, 
boolean values are the easiest to predict, with an 
average prediction accuracy of 86%. This is primarily 
because they have only two possible values. On 
reference return values, four out of six benchmarks 
have prediction accuracies above 60%. Most reference 
return values of those applications point to a few 
frequently accessed fields [12]. On average, the 
prediction accuracy for reference return values is 61%, 
which is much higher than an average prediction 
accuracy of 18% for integer return values. 
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Figure 5. Return Value Prediction Accuracies by 
Return Types (sequential execution; stride return value 
predictor) 

4.4.  Impact of SMLP Execution 

Figure 6 shows the prediction accuracies of return 
value predictors under both sequential and SMLP 
execution. These results are presented to show the 
effects that speculative, out-of-order return value 
predictor updates have on prediction accuracy. 

When the simulation environment changes from 
sequential execution to SMLP execution, the accuracies 
of all predictors drop, but the context-based predictor is 
most sensitive to SMLP execution. The average 
prediction accuracy for the stride predictor is 36% for 



  

sequential execution, but falls to 30% for SMLP 
execution. The average prediction accuracies of the 
context and the hybrid predictors drop 17% and 9% 
respectively.  

Differences in the return value predictor update 
patterns account for the drop in accuracy. In the SMLP 
environment, stride and context-based predictors suffer 
for two reasons. The first reason is that the predictors 
depend on detecting a regular pattern. While a 
predictable pattern of values may exist in sequential 
execution, if the predictor updates occur out of order 
and speculatively, the patterns are less likely to exist. 
Likewise, patterns that are detected in a SMLP 
environment might not actually exist. The second 
reason these predictors suffer is because their prediction 
is based on the return values currently stored in the 
predictors. Even if the proper pattern is established for a 
method, if the most recently captured value is not the 
most recently executed value, then the prediction will 
be incorrect. 

While it may seem counterproductive to update the 
return value predictor speculatively and out of order, 
our experiments show that performing in-order, non-
speculative return value predictor updates during thread 
commitment actually leads to worse performance due to 
the long delays between updates which result in stale 
predictor values. 
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5. Parameter Stride Prediction 

    The value predictors studied thus far are skewed by 
SMLP execution. However, in return value prediction, 
we have an additional valuable input - method 
parameters (i.e. arguments). This work proposes to 
improve prediction accuracy by utilizing one 
relationship, the parameter stride (PS), between method 
parameters and return values. This relationship is not 
targeted or detected by any of the previous return value 
predictors discussed. 

5.1.  Detecting the Parameter Stride 

The PS relationship exists when a method’s return 
value equals the sum of one parameter value and a 
constant value. For example, a method may do some 
operations on the elements of an array, which is 
referenced as a parameter of the method. If the method 
ultimately returns the reference to the next array 
element, the return value will be the initial reference 
value plus the size of one array element. Another 
example is a method that operates on an object, with the 
object reference as one of the parameters and the return 
value. In such a case, the stride is zero.  

5.2.  Implementation 

Figure 7 shows the organization of the parameter 
stride predictor. It is comprised of two tables: the 
parameter selection table (PST) and the parameter 
prediction table (PPT). The PST is used to detect the 
parameter stride pattern for new methods. Once a 
pattern is detected the method is placed in the PPT, 
which makes the return value predictions. 

The PST is a small, fully associative table. To store 
all the parameters and strides, PST entries have more 
fields than PPT entries. The ‘#’ field of the PST stores 
the number of parameters in the method, and a PST 
entry stores at most eight parameter and stride pairs.  

The PPT is 4-way set associative. A PPT set is 
indexed by the lower bits of a method address, and then 
verified by comparing the higher bits of the method 
address with the tags of the chosen set. The state ‘s’ of 
PPT indicates the current state, i.e. PS pattern detected 
or not, of a method. The ‘cs’ field of PPT stores either 
the parameter stride or the last value, depending on the 
state. In the case that all entries are occupied, both 
tables use the LRU algorithm to choose which entry to 
be replaced by the incoming method. 
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Figure 7 Organization of Parameter Stride Predictor 
(Bold lines indicate multiple values) 

The predictor requires at least two invocations of the 
same method before it can provide a prediction. When a 
method is first encountered, a PPT entry is allocated for 
the method, and its state bits are set to indicate the 
detection state of the method. A PST entry is also 
allocated and the method’s parameters are stored in 



  

fields p1 through pn. When the method’s return value 
is available, the strides between the return value and 
parameters are computed and stored in the same PST 
entry in fields s1 through sn. 

When the method is invoked the second time, its 
current parameters overwrite the old ones in the PST 
entry. After the method computes its return value, the 
new strides are computed and compared with the old 
strides. If one stride pair has the same value, the method 
possesses the parameter stride pattern. When a 
parameter stride is detected, the corresponding 
parameter number and stride value are stored in the 
PPT entry, and the PST entry is freed. To predict, the 
appropriate parameter value is selected by the cp field 
of the PPT entry, then added to the stride value to 
obtain the predicted return value. If no parameter stride 
pattern is detected for a method, simple last value 
prediction is used instead. The last value is stored in the 
cs field.  

Updating the PS predictor is fairly simple. Once the 
parameter stride pattern is detected for a method, its 
PPT entry needs no further updates since our 
experiments indicate that methods will always keep that 
pattern. This stability reduces the effect of speculative 
updates on the PS predictor. For those methods that do 
not possess the parameter stride pattern, their cs fields 
are updated by their most recent return values. Other 
details of the predictor are presented in [6]. 

5.3.  Prediction coverage 

Table 2 provides the percentages of static methods 
(Static) as well as dynamic return values (Dynamic) 
that are correctly predicted by the parameter stride 
pattern. In addition, the table shows the percentage of 
overall return values that are correctly predicted by the 
PS prediction but not by all other predictors 
(Uncovered). On average, about 13% of dynamically 
encountered return values exhibit a predictable 
parameter stride pattern, and 47% of these return values 
can not be predicted by other types of return value 
predictors. 

 

Table 2. Percentage of Methods and Return Values 
that Possess the Parameter Stride Pattern 
(sequential execution) 

 comp db javac jess mpeg mtrt average 
Static 13.5% 12.0% 7.1% 7.0% 15.0% 12.5% 11.2% 
Dynamic 11.0% 24.5% 3.2% 10.2% 13.0% 14.6% 12.8% 
Uncovered  0.1% 14.7% 2.9% 8.2% 5.4% 4.5% 6.0% 

 
Two properties of the parameter-stride pattern make 

it useful for return value prediction. First, the PS pattern 
is very stable. Our experiments show that once the PS 
relationship is established for a method, it rarely 
changes. Second, once the relationship is established, 

PS prediction does not rely on the update order. These 
attributes allow PS prediction to overcome some 
difficulties that SMLP imposes on other predictors. 

5.4.  Performance Impact  

Figure 8 shows the impact of return value prediction 
on speedup for an 8-CPU SMLP system over the 
baseline 1-CPU sequential system. For each program, 
the normalized speedup is presented for four different 
return value prediction scenarios: no return value 
prediction, traditional hybrid prediction (HYBS), 
hybrid prediction with parameter stride prediction 
(HYBS-PS), and perfect return value predictor. HYBS-
PS is the hybrid of HYBS and a PS predictor with 8-
entry PST and 512-entry PPT.  

The first observation is that realistic return value 
prediction improves the SMLP performance. On 
average, the HYBS predictor improves performance by 
14% versus no return value prediction. The program 
comp shows the smallest improvement among all 
programs, which is mostly due to the poor prediction 
accuracy (Figure 6). Combining PS prediction with 
previously studied predictors improves the performance 
of the SMLP environment. For the HYBS-PS predictor, 
the average speedup versus no return value prediction is 
21%, and 7% versus the HYBS predictor. For three of 
the benchmarks (jess, mpeg and mtrt), the 
HYBS-PS predictor provides more than 10% 
performance improvement over the hybrid predictor. 

On average, perfect return value prediction achieves a 
44% speedup over no return value prediction. The 
performance gap between perfect and realistic return 
value prediction is caused by realistic predictors’ poor 
accuracy on integer return values and the unfavorable 
SMLP conditions. It also shows that SMLP execution 
can still benefit significantly from more accurate return 
value prediction.  
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Note that higher return value prediction accuracy 
may not mean higher performance. For instance, a 
correctly predicted speculative method can still be 



  

rolled back if the method that calls it is rolled back due 
to a failed return value prediction. Furthermore, the 
performance improvement is affected by the available 
speculative method-level parallelism, which varies by 
programs. 

6. Related Work 

Recent research has focused on method-level 
speculation, but provide limited discussion on the issue 
of return value prediction. Chen and Olukotun [1] 
demonstrate that the Java virtual machine is an effective 
environment for exploiting speculative method-level 
parallelism. Although a simple return value prediction 
is incorporated in their simulator, there is no specific 
discussion about its effects. Oplinger et al [9] observe 
that employing return value prediction schemes, such as 
last value and stride prediction, leads to significant 
speedups over no return value prediction. Warg and 
Stenstrom [16] compare the speedups achieved under 
perfect, stride, and no return value prediction for a 
group of C and Java programs. The performance 
improvements gained by perfect return value 
predictions for the Java programs are generally very 
small. A notable difference in their simulation 
environment is that all Java programs are compiled to 
native code by a less sophisticated GCC Java compiler 
and executed without a JVM. As a result, the Java 
methods are compiled without inlining, and are much 
smaller than those in our simulation environment. 
Consequently, the abundance of thread management 
overhead in their simulation environment impairs the 
performance improved by accurate return value 
prediction. 

Marcuello et al. analyze a value prediction technique 
specifically for architectures with thread-level 
parallelism [8]. They propose an increment predictor 
that predicts the thread output value of a register as the 
thread input value of the same register plus a fixed 
increment. Although the increment concept is similar to 
the parameter stride of this work, the PS pattern may 
exist between different registers and hence cannot be 
uncovered by the increment predictor. For instance, in 
SPARC processors, the registers held a method’s 
parameters always differ with the register held the 
method’s return value. Hence, the increment predictor 
cannot be used for PS prediction in SPARC machines. 

Gumaraju and Franklin study the effects of a single-
program, multi-threaded environment on branch 
prediction [4]. They similarly observe that the 
multithreading affects the branch history and decreases 
the branch prediction accuracy. However, the thread-
correlation branch prediction scheme that they propose 
will not help return value prediction in a SMLP 
environment.  

Rychlik and Shen briefly discuss the locality of 
method return values [10]. They observe the difference 

in argument and return values between successive 
invocations of methods. Instead of looking for 
relationships between arguments and return values, they 
are searching for repetition of values.  

7. Conclusion 

In this work, we characterize method return values in 
Java programs and discuss the role of return value 
prediction in a system that supports speculative 
method-level parallelism. The study is done using 
general-purpose Java programs running on an advanced 
Java virtual machine with an aggressive JIT compiler. 

We find that return value prediction has the potential 
to greatly improve performance, and we identify 
possible characteristics that can be exploited by return 
value predictors. Two-thirds of dynamically 
encountered methods return a value. Of those, boolean 
return values are the most predictable (prediction 
accuracy of 86%). Integer return values are the least 
predictable (18%) and prove to be a big challenge for 
SMLP systems. 

Further analysis into the behavior of the return value 
predictors reveals that the SMLP environment creates 
performance-related problems. Predictor updates are 
done speculatively and potentially out of sequential 
order. Stride and context-based strategies are inherently 
sensitive to this change in update behavior, hurting their 
performance in a SMLP environment. Therefore, we 
propose a Parameter Stride return value predictor 
designed specifically to cope with the SMLP behavior. 
The PS predictor makes predictions based on method 
argument values and a fixed stride that, once computed, 
rarely changes. The PS predictor complements the 
previous predictors, increasing performance by 7% 
versus hybrid return value prediction and by 21% over 
a system with no return value prediction.  
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