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Abstract—Extensive research has focused on estimating power
to guide advances in power management schemes, thermal hot
spots, and voltage noise. However, simulated power models
are slow and struggle with deep software stacks, while direct
measurements are typically coarse-grained. This paper introduces
WattWatcher, a multicore power measurement framework that
offers fine-grained functional unit breakdowns. WattWatcher
operates by passing event counts and a hardware descriptor
file into configurable back-end power models based on McPAT.
Researchers and vendors can add other processors to our
tool by mapping to the WattWatcher interface. We show that
WattWatcher, when calibrated, has a MAPE (mean absolute
percentage error) of 2.67% aggregated over all benchmarks when
compared to measured power consumption on SPEC CPU 2006
and multithreaded PARSEC benchmarks across three different
machines of various form factors and manufacturing processes.
We present two use cases showing how WattWatcher can derive
insights that are difficult to obtain through other measurement
infrastructures. Additionally, we illustrate how WattWatcher can
be used to provide insights into challenging big data and cloud
workloads on a server CPU. Through the use of WattWatcher, it is
possible to obtain a detailed power breakdown on real hardware
without vendor proprietary models or hardware instrumentation.

I. INTRODUCTION

Estimating power and energy consumption of processors
is a critical concern on modern machines. Currently, coarse
grained measurements can be obtained through hardware
power counters or external probes. However, emerging work-
loads, such as big data applications, typically contain a mix of
functional-unit and thread-level interactions. While processor
wide power metering may be useful for high level policies,
coarse grained approaches often mask important internal power
consumption trends.

Some examples of modern trends that can be difficult
to observe with most current power monitoring tools are
shown in Figure 1. In Figure 1(a), the total power en-
velope differs substantially from the power consumption of
each individual cores. This is an increasingly common trend
in complex applications with significant OS interaction, or
multi-node applications that separate network progress threads
from the application itself. Isolating and understanding per
core consumption is critical for researching and applying per
core DVFS, power capping, and power gating techniques.
Figure 1(b) illustrates another example where the proportion
of dynamic power spent by each of the major functional units
changes as the application executes through different phases.
Correctly capturing these fine-grained variations is critical for
studies in thermal analysis and voltage noise.

The most popular fine-grained power estimation technique,
cycle accurate simulation, can offer a high degree detail.
However, simulation is extremely slow and not used to estimate
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Fig. 1. Illustration of important fine-grained monitoring features.

power in any real-time environment. Additionally, cycle accu-
rate simulation frequently struggles with the complex software
stacks inherent to emerging workloads. While simulators are
becoming more and more robust, most still struggle with
virtual-machine based languages like Java which comprise the
heart of many big data stacks. Many more still do not factor
in the complex interplay of kernel code and context switching
between OS managed threads and application programs.

In this paper, we present WattWatcher, a real-time power
monitoring framework that estimates power on live systems
and can deliver the level of detail illustrated in Figure 1
for any workload. WattWatcher is a methodology and ac-
companying tool-kit that uses detailed configurable models
from the computer architecture simulation domain and adapts
them for power modeling on live multicore systems. The
WattWatcher toolkit works by collecting performance events
from the system under test (SUT) and passing them through
easily customizable power models. Our work offers several
contributions over the prior art, and carves out a unique and
important spot in available power estimation methodologies:

1) WattWatcher can model a variety of different processors
with its extensible configuration interface. The statistics col-
lected by WattWatcher are generic enough to apply to most
modern processors in a variety of form factors. Researchers
and vendors can add other processors to our tool by mapping
these machines to the WattWatcher interface.

2) WattWatcher’s power models require only a small amount
of coarse grained calibrations at important p-states and c-
states. Most curve fitting and learning based models require
an extensive amount of training over a wide enough sample
space to cover all possible program types that will be run in the
future. WattWatcher avoids training by specifically modeling
all of the major functional units in a microprocessor using
McPAT.

3) WattWatcher offers power breakdowns at the individual
core and functional unit granularity. This supports advanced



TABLE I. RELATIVE CLASSIFICATION OF PRIOR WORK AND

WATTWATCHER.
Approach Accuracy Detail Frequency Cost Speed
Direct Measurement ++ - us-ms - Fast

Power PMCs + - ms = Fast

Curve Fitting = = us-s + Offline

Simulators + + ns + Slow

WattWatcher + + ms + Fast

research that requires a finer level component breakdown than
is available from coarse grained monitoring tools.

Throughout this paper, we illustrate a robust validation of
WattWatcher over a three different SUTs of various vendors
and form factors. We show that WattWatcher achieves a 2.67%
MAPE (mean average percentage error) when compared to
the highly accurate RAPL coarse grain monitoring hardware.
Additionally, we present several case studies on traditional
and emerging workloads. These case studies illustrate how
WattWatcher can show microarchitectural trends that are
missed by prevalent power monitoring tools.

This paper is organized into several sections that present
the WattWatcher methodology and toolkit. Section II surveys
the prior art and explains the benefits and limitations of other
approaches. Section III explains the design of WattWatcher.
Section IV evaluates how WattWatcher performs on three
different processors. Section V presents two example use cases
and a power study of difficult to simulate big data workloads.
Finally, section VI concludes the paper.

II. BACKGROUND

A great deal of work has gone into estimating processor
power, both within the research community and by industry
professionals. Table I breaks down the approaches used by
previous researchers and computing professionals into several
different categories, each with their own strengths and weak-
nesses. Existing approaches are classified using the following
relative scale, where +/++ indicates an advantage, = is neutral,
and - indicates a disadvantage.

Direct Measurements: A commonly utilized methodology in
the field for power measurement is to install an external analog
power probe directly to the SUT [1]. While these devices can
be highly accurate depending on the quality of the probe,
there are a number of drawbacks. First, the level of detail
from wall probe measurements is very coarse and reflects
the entire power consumption of all devices that draw energy
from that outlet. More fine grained isolation of components
requires destructive shunting of potentially very high current
circuits. Additionally, isolating the power consumption at a
functional unit level in the core is not possible using external
tools. Finally, scale-out deployments would require a probe on
every machine, driving up the cost of buying already expensive
monitoring equipment.

Curve Fitting: The methodology most prevalent in academia
correlates performance counters to power using curve fitting
and machine learning models [2][3][4][5][6]. Carefully de-
signed and calibrated regressions can discover correlations
between performance events and power. While these method-
ologies are often effective, they require extensive training
and calibration. A poor training set can lead to incorrect
results. Training also implicitly ties these models to a particular
microarchitecture and limits deployability, since a SUT must
already have a way of measuring power before training can
occur.

TABLE II. EVENTS COLLECTED BY WATTWATCHER

Category Hardware Events
General Context Switches, Frequency, Voltage, Cycles

Frontend Branch Mispredictions, IC Misses, iTLB Misses, uops Issued

LS/Caches L1 Misses/Hits, L2 Misses, LLC Misses, dTLB Misses

Execution FP Scalar, FP Packed, FP Width

Retirement uops Retired

Power Performance Monitoring Counters (PMCs): Intel’s
Running Average Power Limit (RAPL) [6] and AMD’s Appli-
cation Power Management (APM) [7] frameworks now provide
performance counters that can estimate power consumption
on a target platform. Although these counters were designed
primarily to perform power capping, they can also be used as
a generic metering device. Intel’s embodiment of this concept
has been verified by the research community [8] and is widely
accepted as an accurate power measurement framework with
very low overhead. Unfortunately, they are not useful for fine
grained analysis, since they only report power at the package
or aggregate processor core granularity.

Power Simulators: A number of low level power models exist
as part of a particular architectural simulator, or that can be
plugged into a generic performance simulator [9][10][11][12].
These power models extract detailed functional-unit level ac-
cesses from their respective performance simulators to provide
detailed statistics at any required time resolution. However,
power models that rely on performance simulators are limited
by the traditional problems associated with microprocessor
simulation, such as extremely slow runtime, simulator bugs,
and incompatibility with certain programs.

III. WATTWATCHER: OVERVIEW AND OPERATION

In this paper we introduce WattWatcher, a tool that mea-
sures and modifies performance events in live systems to drive
detailed configurable power models. WattWatcher estimates
structure and functional unit access patterns to produce input
traces suitable for power and timing models traditionally
associated with cycle accurate simulation. By calling into
the back-end power model at a much larger time granularity
than traditional cycle accurate simulators, we can utilize these
power models in a realtime environment.

There are a number of configurable power simulators that
could serve as the backend for WattWatcher [9][13][10][12].
For the specific embodiment of the tool presented in this
paper, we have chosen to implement WattWatcher around
McPAT [10], due to its frequent updates, verification, and
popularity within the computer architecture community. In
McPAT, the individual functional units and caches modeled by
CACTI [11] are combined into a complete multicore processor
model. The following sections describe how WattWatcher
integrates real hardware information into the back-end model
and the layout of the tool.

A. Modeling
Since most configurable architectural power models are

originally designed for simulation environments, they require
a large number of input statistics representing precise events
inside the microarchitecture. However, researchers have noted
a tight correlation between power consumption and only a few
important hardware events that are exposed as performance
counters [2]. Generally, dynamic power consumption is largely
dependent on overall machine activity, which can be expressed
by active cycles and instructions. Additionally, many events
in a microarchitecture are tightly correlated, such as LLC
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Fig. 2. WattWatcher mapping layer translates machine dependent counters
into general purpose McPAT events.

misses/prefetches and memory controller activity, allowing
power for some functional units to be estimated without an
explicit counter.

WattWatcher leverages this knowledge by using relatively
few counters to estimate a large number of statistics needed for
McPAT’s power model. Keeping the required counters small
and general purpose reduces error related to counter multi-
plexing and increases compatibility of WattWatcher accross
many different microarchitectures and processor types. Figure
2 illustrates WattWatcher’s transformation of raw counter data
into McPAT compatible statistics. Essentially, every microar-
chitecture requires a mapping file that defines the relationship
between a microarchitecture’s performance counters and the
backend McPAT event counts. These mapping files contain
a number of mapping rules that combine and manipulate
counters into detailed McPAT events. Some of these events,
such as cycles and instructions, can be directly estimated
from generally available performance counters. Others, such
as the number of reads and writes to an ROB for out-of-
order processors, requires some reasonable assumptions and
estimations. To provide transparency into the mapping process,
we show some selected samples from a typical x86 OoO
microarchitecture in Table II. Additionally, we show how the
mapping rules convert the counters to McPAT events. Identity
rules are omitted for brevity.

OoO Engine Statistics: These structures include the reorder
buffer, instruction window, and reservation stations. McPAT
requires read and write access counts to each one of these
structures. Accesses related to the instruction window and
reservation stations are estimated directly based on the x86
uops issued. Access related to the RoB and common data buses
on the backend are estimated based on the number of uops
retired. The difference between the issued and retired uops are
used to determine write accesses to components that commit
microarchitectural state.

Register File Statistics Register file access are estimated
based on the number and type of instructions issued. We
differentiate between integer and floating point register files.
While there is an explicit accounting for floating point uops,
there is no corresponding counter for integer instructions.
Therefore, we classify all instructions other than floating
point as integer. We then assume that integer instructions will
perform on average two reads to the integer register file, and
one write. Similarly for floating point, where the width of
the read and the number of instructions is determined by
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Fig. 3. WattWatcher P-State (DVFS) modeling on on SUT0. Line labels
indicate the voltage for the performance state frequency on the x-axis.

characteristics of the instruction (single vs. double precision
and packed vs. scalar). This model is most likely an overcount
of the number of register file accesses. However, a similar
accounting of register file accesses has been performed before
and found to be a reasonable approximation [14].

Memory Hierarchy Statistics For memory hierarchy ac-
cesses, we rely heavily on a ’trickle-down’ approach [2].
For demand caching events, we explicitly track misses at all
levels of the cache, but do not count accesses accept for
the L1 caches. Access to all further caches in the hierarchy
are estimated based on miss events from the higher level.
This technique is used on all cache levels and extends to
the integrated memory control. Such a technique is a good
approximation when cache line sizes are consistent, but are
less accurate when cache line sizes vary or there is a significant
amount of request combining at lower levels of the hierarchy.
Prefetches for levels of the cache which support them are
counted separately using the appropriate counters, since these
are difficult to estimate otherwise.

Duty Cycle In addition to raw event counts, WattWatcher
estimates the duty cycle of the functional units in the machine.
The instructions issued to each functional unit is divided by
the number of cycles in the time interval to obtain the duty
cycle. For instructions such as floating point or multiply, the
instruction is weighted by the latency of the functional unit as
provided by the appropriate processor documentation. This is
to ensure an appropriate duty cycle for these components in
the presence of heavy pipelining.

Not all of the events used for this example OoO processor
will apply to other processor types. Fortunately, McPAT is
capable of modeling processors of various different types, from
massive out of order execution engines, to more conservative
in-order designs. All that is required is a different machine
configuration and corresponding mapping file. As part of this
work, we have developed mapping functions for an AMD
Piledriver, Intel Haswell, Intel Sandy Bridge, and an older Intel
Penryn microarchitecture.

B. Calibration
Although WattWatcher focuses on modeling fine-grained

functional unit power variations, it can also model power
states exposed through ACPI. While WattWatcher will work
out of the box, the underlying McPAT performance model-
ing has been found to consistently underestimate the power
of the processor[10]. In order to counteract these effects,
WattWatcher employs a small amount of calibration at different
operating points using either RAPL or hardware probes in the
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system. The baseline power results collected by WattWatcher
are multiplicatively scaled based on the cores p-states/c-states
using the following calibration methodology.

For performance states (P-states), we force the processor
into an no-op loop at each available p-state and measure
the power consumed on the system. We then feed in the
voltage id and operating frequency from the machine status
register into the WattWatcher tool. As an example, Figure
3 shows the DVFS calibration phase for one of our test
machines over all available performance states. The points
on the lines correspond to available P-states in the system
and the labels correspond to the operating voltage at that
P-state. These results indicate that uncalibrated WattWatcher
correctly models the power trends in the curve, but consistently
underestimates the magnitude by approximately 25%. This is
in accordance with the numbers reported by McPAT [10] for
Intel processors. Additionally we have found that the accuracy
of the backend McPAT model increases as the voltage and
frequency are increased, a trend reflected over all machines
we studied. WattWatcher uses the error generated by this one-
time calibration to scale future results to obtain the correct
power.

For idle power states, WattWatcher employs a similar
calibration technique to determine power at different C-states.
However, it does not attempt to calibrate itself to the measured
values. Instead, it simply reports the calibrated value when
it detects a core transition into an idle state. The unique
combination of power gating and clock gating used during idle
states is highly vendor dependent, and cannot be adequately
described using a general purpose power modeling tool like
WattWatcher. This is acceptable since there is extremely little
variation in power dissipation while a core is in an idle state.

If no coarse grained measurement tool is available in the
system, then WattWatcher can be calibrated using static esti-
mates. One reasonable static calibration method would involve
utilizing the numerous studies comparing McPAT to com-
mercial processors performed by other researchers [15][10]
to scale the output of WattWatcher. Another C-state specific
calibration technique could use the datasheet optimal C-state
dissipation numbers for the processor in question [16]. Finally,
if only the relative difference in power consumption over
time is needed by the end user, then WattWatcher can skip
calibration and be used out of the box.

C. Tool Overview
WattWatcher is a toolkit that integrates a number of Linux

utilities and McPAT together with configurable system models

and functional unit estimators. The toolkit is divided up into
three components: the Controller, Analyzer, and Collector.
These three elements work together and interact with each
other to comprise the full WattWatcher toolkit. A description
of how these elements operate together in a common workflow
is presented in Figure 4 and is described in the following
paragraphs in detail.

Controller: All user interaction with the WattWatcher system
is initiated via the Controller module. The user passes a
number of parameters to the Controller at startup, such as the
location (hostname) of the SUT(s) and the counter descriptor
file containing the umask and event numbers. The WattWatcher
Controller opens a connection to the SUT(s) and queries it to
gather high level statistics on microarchitectural features such
as cache layout, number of CPUs, and core frequency. These
statistics are used to populate an XML file that represents the
machine configuration in McPAT. Functional unit information
is estimated from a pre-populated table of common system
configurations. This information can also be overridden by
a user’s custom configuration file, in the event that auto-
matic discovery is insufficient, or the microarchitecture is
very unconventional. The Controller then stores the system
configuration for later use and proceeds to launch the Collector
with the counter descriptor and machine configuration.

Collector: The Collector is in charge of gathering runtime
statistics on the SUT. Towards this end, the Collector uses
the popular Linux performance monitoring tool, perf [17].
Perf logs hardware performance counter information at a user
defined sampling rate. The counter descriptor file provided by
the Controller determines exactly which hardware events to
collect, and how to classify them. For live analysis mode, the
Collector constantly pipes the data to the Analyzer for imme-
diate processing. For off-line analysis, the data is buffered on
the Collector node and sent in bulk at the end of a run.

Analyzer: The Analyzer is the main module of the
WattWatcher toolchain. It is responsible for turning the raw
data transferred by the Collector into power estimates for the
SUT. It first takes the raw data format output by the collector
and parses it into McPAT compatible format. The raw data
is combined with the system configuration obtained by the
Controller to produce an XML file that represents the topology
and runtime behavior of the SUT. This information can then
be passed directly into McPAT for real time data reporting, or
archived for offline analysis. Any missing input parameters to
McPAT are estimated from the provided statistics. The results
of a McPAT run are then output to the directory specified by the
user in an easy-to-parse comma separated values (csv) format.

The setup in Figure 4 is simply one example of how
WattWatcher can be configured to monitor power on a target
system. One can also run the Analyzer and Controller on
the SUT, or the Controller and Analyzer can be configured
to monitor more than one system on a cluster consisting of
homogeneous or heterogeneous machines.

D. Overheads and Limitations
While WattWatcher fills an important role in power estima-

tion frameworks, it is not a universal panacea. The limitations
of the toolkit must be understood in order to make sure it is ap-
plied in appropriate contexts. The most fundamental limitation
of WattWatcher is that it inherits the inaccuracies of the McPAT
model which it is based upon. As such, WattWatcher does
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Fig. 5. Comparison of WattWatcher to RAPL power counters. The x-axis is the runtime of the benchmark in seconds.

require some calibration to optimally monitor coarse grained
power fluctuations imposed by P-state and C-state transitions.
Additionally, WattWatcher does not currently model or detect
changes in power caused by chip aging or environmental
effects. Finally, “hidden” coarse grained power states not
visible to the OS will not be detected by the WattWatcher
system.

Like any real-time analysis tool, there are overheads asso-
ciated with running WattWatcher. In a configuration similar
to that shown in Figure 4, the overheads on the SUT are
only from the Collector. The main computational overhead
of the Collector is from accessing the perf userspace tools.
Perf related overheads are well understood and quantified [18],
measured in units of thousands of cycles per event access.
Since the tool limits the sampling rate to 100ms, the overhead
of querying even a large number of performance counters in
that time period is less than 1% on a machine with a core
clock of at least 100MHz.

For configurations where all the components are run on the
SUT, the overhead is higher. While the Controller overhead
is negligible, the Analyzer module must run the McPAT
program for every sample point. To accelerate McPAT, we
have adopted a scheme where the individual CACTI models
are stored in a database [19] the first time they are calculated.
Every subsequent request for the same CACTI model will be
drawn from this database instead of being recomputed, similar
to [20]. Regardless, we recommend reserving one core of
the system to handle the overhead of the analysis module.
Reserving a core also offers the additional advantage that
the energy consumption of the toolkit itself can be ignored
by configuring the collector to ignore the monitoring core.
For server processors this is an effective solution, as future
trends point to more and more cores per socket. For embedded
applications, we strongly recommend separating the toolkit as
shown in Figure 4.

IV. VALIDATION

In this section, we validate WattWatcher on processors
from three different vendors, form factors, and manufacturing
technologies as illustrated in Table III. For our studies, we use

TABLE III. SUTS USED TO EVALUATE THE PROPOSED METHODOLOGY.
Alias Model Form Factor TDP
SUT0 Intel i7 2720QM Laptop (32nm) 45W

SUT1 Intel i7 4700QM Laptop (22nm) 47W

SUT2 AMD A10-6800K Desktop (32nm) 100W

the SPEC CPU2006 [21] and PARSEC [22] benchmark suites.
SPEC is an industry standard single-threaded performance
benchmarking toolkit, and PARSEC is a research benchmark
suite for multicore systems. For all benchmarks, we use the
largest input size available to guarantee a runtime in excess of
several minutes on our fastest machines.

During validation we do allow C-states that do not change
operating frequency or voltage to avoid no-op loops and
polling on idle threads. We calibrate coarse grained power
for all processor performance and idle states as described in
section III-B. All references to hardware measured power will
refer to the appropriate power monitoring counters in AMD
(APM) and Intel (RAPL) machines.

A. Time Variant Analysis
We now illustrate how WattWatcher correctly measures

total power over time when compared to RAPL counters on
SUT0. For subsequent validation, we do not allow frequency
or voltage modulation, as we would like to show that our
tool captures small variations in power related to functional
unit activity. The results have been scaled in accordance with
the DVFS study so that we can identify fine-grained errors.
All data was sampled once every second, over the complete
execution of the program and is presented in Figure 5. The total
power contribution of each individual core has been added to
equal total processor power consumption. We aggregate across
all cores since the RAPL does not allow for finer grained
breakdowns.

Starting from the top left, Figure 5 shows mcf, xalancbmk,
bwaves, dealII, canneal, and facesim. There are two bench-
marks represented from each of SPECint, SPECfp, and PAR-
SEC. Results are reported in three ways: instantaneous error,
MAPE (mean absolute percentage error) and Pearson’s cor-
relation coefficient. Instantaneous error represents the abso-
lute value of the error at each sample point and MAPE is
simply the sum of the residuals presented as a percentage of
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TABLE IV. ERROR ACROSS SUTS:
MAE(W)/RMSE(W)/MAPE(%W).

SPECint SPECfp PARSEC TOTAL

SUT0 0.39/0.42/2.78 0.25/0.29/1.75 1.09/1.26/5.65 0.47/0.55/2.85

SUT1 0.41/0.45/2.51 0.36/0.39/2.10 0.85/0.96/4.81 0.51/0.57/2.97

SUT2 1.31/1.64/1.68 1.62/2.13/2.06 2.17/2.83/2.84 1.69/2.19/2.18

RAPL power. Pearson’s correlation coefficient indicates how
well WattWatcher tracks RAPL, with 1 indicating a perfect
correlation, and 0 indicating no correlation.

WattWatcher correlates with RAPL counters extremely
well, with all correlation coefficients greater than 0.9.
Figure 5(c) in particular is almost perfectly captured by
WattWatcher. From the other figures, we can see that there
are two primary sources of error in WattWatcher estimation.
The first involves WattWatcher under/over estimating the entire
workload by a small constant value. This is illustrated by
the sources of error in Figures 5(b), 5(e), and 5(d). The
second source of error springs from rapid changes in power.
While the upwards and downward trends are almost always
captured correctly, the raw magnitude of power spikes is
occasionally incorrect. This can be seen most clearly in Fig-
ures 5(f) and 5(a). Despite these small inaccuracies, however,
WattWatcher trends very well and the total error for these
workloads is less than 5%.

B. Aggregate Analysis
Figure 6 illustrates the accuracy of WattWatcher summed

over the duration of each program execution on SUT0. The
results are presented as MAE (mean absolute error), RMSE
(root mean squared error), and MAPE (mean absolute percent-
age error). For the SPECint workloads WattWatcher achieves
a MAE of 0.39 W, RMSE of 0.42 W, and MAPE of 2.78%.
SPECfp workloads exhibit slightly better accuracy due to their
repetitive and periodic nature, with a MAE of 0.25 W, RMSE
of 0.29 W, and MAPE 1.75%. PARSEC workloads exhibit a
very different power profile than their counterparts in SPECint
and SPECfp. These workloads are highly multithreaded, and
display a great deal of variance when compared with the sin-
gle threaded workloads, and within themselves. WattWatcher
achieves a MAE of 1.09 W, RMSE of 1.26 W, and MAPE of
5.65% for the multithreaded PARSEC workloads. PARSEC’s
error is generally higher than SPEC’s due to the presence of
multiple active cores. For SPEC, only one of the cores is active
at a time, and the other three cores only use leakage power,
which is much easier to estimate. Overall, the MAPE across
all workloads on this SUT is 2.85%.

We have also verified WattWatcher over two other SUTs,
but only perform a deep dive into SUT0 due to space con-
straints. Table IV shows the total MAPE of WattWatcher over
the three SUTs that we tested. The two Intel machines (SUT0
and SUT1) both display similar trends in accuracy across
the three categories of programs. The AMD machine (SUT2)
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Fig. 7. Core-wise breakdown for two PARSEC workloads.

displayed less application dependent variations in power than
the other two machines, resulting in similar error rates among
the programs. We anticipate that this is primarily due to the
differences in form factor (laptop vs desktop) rather than an
intrinsic difference in the vendors themselves.

We cannot verify the functional unit power consumption
in our evaluation, due to the difficulty of measuring real
hardware power for the individual functional units in isolation.
While it is true that an over-estimation in one component and
an under-estimation in another could lead to correct overall
trends, we believe that our consistent high accuracy against
the RAPL counters minimizes this possibility. Furthermore,
our underlying power model, McPAT, has been validated for
accuracy at the functional unit level against several RTL
models of real hardware in the prior work [10][15].

V. CASE STUDIES

We will now illustrate an important aspect of the
WattWatcher framework; the ability to monitor individual pro-
cessor components on live systems. Understanding the power
consumption of each component within the core is an essential
feature for researchers. Identifying power hungry and idle areas
and transitions within a core can help provide insights into the
design of highly aggressive clock and power gating strategies.
Additionally, a proper component-wise power profile allows
for accurate thermal and voltage noise modeling using any
number of available tools [23][24] that accept detailed power
traces.

A. Core Breakdown
WattWatcher is capable of isolating the power consumption

of individual cores on a processor package. While RAPL coun-
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ters and external probes can provide a total estimation of aggre-
gate power, they do not provide a per core breakdown. Such a
breakdown is useful for per core power management strategies
and research. Figure 7 illustrates the blackscholes and canneal
PARSEC workloads profiled at a core level by WattWatcher.
In Figure 7(a), The individual cores track the trends of the
processors power consumption, except for the area marked
as ‘Active Thread’. This represents the workload setup phase
in PARSEC, which is single threaded. Figure 7(b) illustrates
the core-wise power breakdown of canneal, which has been
broken down into three phases. Phase 1 is the workload setup
stage, which is single threaded as in blackscholes. For Phase
2, all cores on the machine are active, but vary greatly in
their activity level as threads are spawned, destroyed, and
migrated between processor cores. Finally, Phase 3 illustrates
relatively constant power consumption among all cores except
core 1, which is idle. WattWatcher reveals these differences in
core behavior, which is masked when using tools that force
aggregation of power.

B. Functional Unit Breakdown
WattWatcher can also analyze individual cores at the level

of functional units. Figure 8 presents dynamic power sampled
every one second from the single active core of the dealII
workload. The total power consumption illustrates a periodic
trend with a few spikes in the upper plateau. However, the
aggregate trend masks the intricacies of each functional unit.
The individual functional unit breakdown exhibits significant
variation in dynamic power, with no one functional unit
perfectly representing the trends in aggregate power. The most
interesting interaction in this workload concerns the L2 cache,
OoO engine and the D-Cache. During the instances marked
‘Sample 1’ and ‘Sample 2’ the OoO and D-cache experience
a drop in dynamic power consumption, while the L2 cache
spikes dramatically. In ‘Sample 1’, this trend is completely
masked by looking at total power, since the drop in OoO and
D-cache power is almost the same as the increase in L2 power.
In ‘Sample 2’, the L2 cache causes a spike that appears in
aggregate power. Neither one of these trends would be visible
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by simply looking at aggregate power metering such as those
provided by RAPL, but are visible using WattWatcher.

C. Big Data Workloads
One major benefit of the WattWatcher framework is that

it allows for the analysis of large, multi-node and emerging
workloads that are extremely difficult to simulate in detail.
One example of such a workload are the important big data and
cloud programs. These workloads often operate over multiple
nodes and require a large software stack. In this section,
we will show how WattWatcher can be used to explore the
power consumption of this class of workload. For this study,
we will focus on the popular MapReduce [25] programming
paradigm. Our workloads are selected from the HiBench suite
[26] and are run on a multi-socket Xeon E5405 server platform
supporting idle states. Each socket has a TDP of 80W.

Figure 9 shows the power consumption averaged across
the execution of each workload broken down into leakage and
dynamic power. We see from the figure that power consump-
tion varies significantly among workloads, with approximately
50W swing (25W per socket) between the most and least
power hungry workloads. To understand why there is such
variation in power, we superimpose a line illustrating CPU
utilization onto the graph. For these Hadoop based workload,
there is a significant amount of startup code and IO that
prevents the CPU from remaining active for the entire duration
of the workload. Therefore, some workloads (such as scan)
are able to save power by placing idle cores into low power
modes. The most power hungry workload is the WordCount
benchmark, which counts the occurrences of a word in a
document by splitting the document, combining the partial
sums of words with documents, and using the reduce tasks



to compute the total sum. WordCount is generally known
as a CPU-bound workload past initialization[26], so the fact
that it consumes the most power corresponds well with prior
work. One interesting observation is that the so called ’sleep’
workload is actually not one of the more power efficient
workloads. We suspect that sleep is using an inefficient spin-
loop to implement its sleeping subroutine, burning a significant
amount of power during the main portion of its run-time.

Figure 10 shows a transient analysis of the WordCount
benchmark. The first 20 seconds of execution are a period
of low-power workload initialization, followed by a 100s
primary phase where power is cyclic with Map/Reduce wave
scheduling, and concluding with a trailing off of the power
profile while the final Reduce straggler tasks asynchronously
complete. While WordCount is the most power hungry work-
load, we have observed that many of the workloads show
similar transient trends due to the common steps inherent in
Hadoop frameworks. In terms of functional unit breakdown,
the core components consume most of the power dissipated
throughout execution, although core ALU power does decrease
slightly during the bulk of the steady state execution.

VI. CONCLUSION

Researchers and chip designers must understand power
dissipation in every major processor subsystem for a variety
of workloads. However, the currently available tools for power
measurement offer detail at too coarse a granularity to be
useful for many researchers. Likewise, the best available
method for detailed power estimation, cycle accurate simula-
tion, suffers from extensive runtimes and a difficult to simulate
software stack.

Towards this end, we have developed WattWatcher, a
modern power estimation framework for emerging workloads.
WattWatcher delivers real-time, fine-grained power estimations
without the difficulty or time investment involved in simulating
a deep software stack. Additionally, WattWatcher does not
require significant training like curve fitting power models,
and can offer the user a complete breakdown at the functional
unit level. WattWatcher is capable of automatically reading
the system configuration from a host machine to calibrate
the power estimation tool, and can successfully sample power
at ms granularity with minimal overhead. We show that
WattWatcher, when correctly calibrated, has a MAPE of 2.67%
of measured power consumption when compared to hardware
power on SPEC CPU 2006 and PARSEC benchmarks aggre-
gated across three different machines of differing form factors
and manufacturing processes. Additionally, we motivate the
use of WattWatcher through several real-world case studies on
traditional and emerging workloads. Through the use of this
methodology, it is possible to obtain a detailed power break-
down on a variety of workloads without vendor proprietary
models or probes.
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