
Automated di/dt Stressmark Generation for

Microprocessor Power Distribution Networks

Youngtaek Kim and Lizy Kurian John

Department of Electrical and Computer Engineering

The University of Texas at Austin

Austin, TX

young.kim@utexas.edu ljohn@ece.utexas.edu

Abstract— In this paper, we propose a method for automated

di/dt stressmark generation to test maximum voltage droop in a

microprocessor power distribution network. The di/dt stressmark

is an instruction sequence which draws periodic high and low

current pulses that maximize voltage fluctuations including

voltage droops. In order to automate di/dt stressmark generation,

we devise a code generator with the ability to control instruction

sequencing, register assignments, and dependencies. Our

framework uses a Genetic Algorithm in scheduling and

optimizing candidate instruction sequences to create a maximum

voltage droop. The simulation results show that our

automatically generated di/dt stressmarks achieved more than

40% average increase in voltage droop compared to hand-coded

di/dt stressmarks and typical benchmarks in experiments

covering three micro-processor architectures and five power

distribution network (PDN) models. Additionally, our method

considers all the units in a microprocessor, as opposed to a

previous ILP scheduling method that handles only execution

units.

Keywords - voltage droop; microprocessor power distribution

network; di/dt stressmark; system-level power-aware design

I. INTRODUCTION

Reliability has become an important consideration in
computer system design because of increases in complexity,
decreases in supply and threshold voltages, and increases in
frequency. Errors due to di/dt noise are an important reliability
issues, caused by inductance in the power distribution network
(PDN). Periodic, large current load variations may cause di/dt
noise. Identifying di/dt noise effects on a microprocessor is
very important in preventing voltage emergencies, which may
cause timing violations and/or improper behavior of a
component [5].

In a microprocessor, the supply voltage is provided through
a PDN, which can be represented as a distributed RLC circuit
with resonance frequencies (Fig. 1). Varying current (di/dt) can
cause fluctuations of the supply voltage that are proportional to
the inductance (L) of the circuit (ѵ = L∙di/dt). Voltage droop is
maximized if the periodic, large current variation occurs at the
resonance frequency of the PDN. A resonance frequency in the
mid-frequency (50~200MHz) range is the most significant [1].
Significant supply voltage droop may cause reliability
problems in a microprocessor. Low voltage increases the delay
of signals, which could affect the timing between two flip-flops

in a microprocessor circuit. Also, insufficient voltage could fail
to set bit-signals properly and lead to soft errors.

Vdd Iload

Board Package On-Chip

Lb Lp Lc

Cb

Rb

Cp

Rp

Cc

Rc

Figure 1. Generalized Lumped Power Distribution Network Model

(can be extended to complex, distributed model [2])

To identify the maximum voltage droop caused by di/dt
noise, designers can use typical benchmarks. However, most
benchmarks, such as SPEC CPU2006, focus on high
performance, so they may not generate periodic, high and low
current draw under normal condition [5]. Moreover, typical
benchmarks require a long simulation time for system-level
designs. Therefore, there is a need for a stressmark that causes
severe voltage droops in a short simulation time.

On the other hand, in many cases, designers manually
generate a di/dt stressmark to test their processor/system.
However, the manual generation of a di/dt stressmark is tedious
and time-consuming. Designers need to recreate stressmarks
whenever an architectural change occurs. In addition, the
search space is extremely large, so it is not feasible for
designers to manually generate and test every possible
combination of parameters, configurations, and instructions to
fully utilize a processor/system.

In this paper, we propose an automatic di/dt stressmark
generation framework to produce significant voltage droops.
We utilize a Genetic Algorithm to generate and optimize
candidate di/dt stressmarks. To efficiently explore the large
search space, we reduce the number of instructions, devise an
instruction structure, and assign registers for scheduling. The
results show that the automated di/dt stressmark always induces
higher voltage droop than hand-coded di/dt stressmarks and
typical benchmarks. Current waveform analysis also
demonstrates the effectiveness of our di/dt generation method.

In this paper, we make the following key contributions:

 We propose an automatic framework to generate an
effective di/dt stressmark without comprehensive
knowledge of a microprocessor system.

 We utilize a Genetic Algorithm to generate a
benchmark that creates a maximum voltage droop in a
given microprocessor and PDN.

 Our automated framework reduces designers’ time to
generate a hand-coded di/dt stressmark and/or to
simulate typical benchmarks that are possibly
irrelevant to inducing maximum voltage droop.

 Our di/dt stressmark generation method can target an
individual unit, the whole processor, or even more
complex architecture such as multiple processors and
GPUs.

 Our di/dt stressmark can be applied to PDN analysis
and circuit marginality tests.

We review the related works in Section II and explain our
di/dt stressmark generation framework in Section III. We
compare our method to a previous method in Section IV and
conclude in Section V.

II. RELATED WORK

A significant number of studies on di/dt problems have
been conducted. However, most of these studies focused on
prevention/avoidance [5][7], mitigation [10], or recovery from
the di/dt effect [9]. In contrast, there are three previous works
on creation of di/dt stressmarks to maximize voltage droop.

Joseph, Brooks, and Martonosi presented a hand-coded
di/dt stressmark in [5]. However, their di/dt stressmark was
manually crafted for the given architecture and focused only on
memory intensive behavior, such as loads and stores to increase
current draw by accessing L1 and L2 data caches.

Ketkar and Chiprout proposed a di/dt stressmark generation
methodology using integer linear program (ILP) scheduling
[6]. However, they focused only on execution portions of the
processor, so it is difficult to apply their technique to the entire
system.

Joshi et al. [11] mentioned that high-power and low-power
instruction sequences from two different power optimizations
can be attached to generate a di/dt stressmark. However, Joshi
et al. gave only a suggestion without implementation details or
results.

III. GENERATION OF DI/DT STRESSMARK

In this section, we present our di/dt stressmark generation
framework. A di/dt stressmark is an instruction sequence which
consists of a certain number of instructions that induces
extremely high and low current draws in order to make the
voltage fluctuate as much as possible within a very short period.
To generate and test such a di/dt stressmark, we utilize the
following simulation method and optimization algorithm.

A. Current-Voltage Simulation

In here, we describe our basic current-voltage simulation
framework. First, an instruction sequence is created as C or
assembly code with parameters and constraints such as
stressmark size and instruction types. Next, we compile the
program code and run it on a system simulator to estimate
current draw per cycle in a microprocessor. During the system
simulation, all the activities are counted every cycle and
converted as power consumption per cycle. To get
instantaneous current values, the obtained cycle power
numbers are divided by a DC supply voltage. Then, the current
trace from the system simulator is fed to the circuit simulator to
simulate voltage fluctuation. After collecting the voltage trace,
it is analyzed to identify a maximum voltage droop. The
instruction set architecture (ISA) in this paper is based on
Alpha because it is convenient to use the well-known system
and power simulator, SimpleScalar/Wattch [3]. However, our
method is not limited to a specific ISA or simulator, and it can
be applied to other ISAs such as x86 and SPARC. In our
framework, we use the HSPICE simulator, instead of the
convolution of an impulse response, because it is more accurate
and it is convenient to change RLC values to model a power
distribution network efficiently.

B. Reduction of Search Space

In order to explore the instruction scheduling space
efficiently, we need to reduce the number of instructions to be
considered. The search space is almost impossible to be
enumerated with all the different types of opcodes and register
combinations. Therefore, this step is necessary before
searching the instruction scheduling space to eliminate
redundant combinations of instructions and to reduce search
time significantly. Each instruction can be categorized into one
of a few groups: data type, arithmetic, logic, load/store, bit-
level, conditional move, and branch/jump. For data type, we
use both integer and floating-point types to utilize the
execution units maximally, but only the quad-word (64-bit)
type for integer and the double precision type for floating-point
are selected to draw large current due to multiple-bit changes.
For example, instructions such as add-bytes, add-words, and
add-double-words are not used in an instruction sequence. The
arithmetic and load/store instructions use different execution
units with different latencies, so they are considered
individually. For logic, bit-level, conditional move, and
branch/jump groups, one instruction can represent other
instructions if they use the same execution unit with the same
latency such as cmple (compare less than or equal) and cmpeq
(compare equal).

C. Genetic Algorithm for di/dt Stressmark

We applied a Genetic Algorithm (GA) for generating and
developing a di/dt stressmark. The Genetic Algorithm is known
to be very efficient in solving an optimization problem because
it controls the simulation to find a best fitness value for the
problem by killing inferior candidates and promoting superior
ones. In our framework, initially, random instruction sequences
are created, and they are forced to reproduce, mutate, and
compete for maximizing voltage droop as the algorithm
proceeds.

Figure 2. Instruction Sequence Generation for Genetic Algorithm

Fig. 2 depicts instructions, stressmark size, and candidates
for the di/dt stressmark in the Genetic Algorithm. An
instruction consists of an opcode (OPCODE), operands (OR),
and dependencies and is represented as a bit-string for the
chromosome. A certain number of chromosomes are placed in
an individual (stressmark size) that becomes an instruction
sequence and a possible di/dt stressmark. Population is a
collection of individuals and corresponds to one generation.

The Genetic Algorithm guides our simulations as shown in
Fig. 3, and generates a di/dt stressmark as an output. With a
control parameter setting, initial instruction sequences are
generated and consist of a population in the first generation. All
the individuals in the population are evaluated for the objective
function – maximum voltage droop - with multiple simulations.
Then, two of the high ranked individuals in the population are
selected for reproduction, and they exchange a certain number
of instructions with each other. The rate of reproduction is
called crossover rate and it affects the overall optimization
results because crossover rate determines the speed of
convergence of the algorithm. After crossover, the
characteristic of each individual can be changed by mutation
that converts one or multiple bits of an individual instruction.
Such GA operations repeat for a given number of generations,
and a maximum voltage droop is determined at the end of the
last generation.

D. Dependency Control and Register Assignment

One of the knobs in the automatic framework is
dependencies between instructions. Data dependencies cause a
pipeline stall in a processor until it is resolved. In [5],
dependencies are used to cause low current draw during part of
a resonant period, and the same register is assigned to a target
register of an instruction and a source register of a following
instruction. Prior research [5] chose a floating-point divider
instruction, divt, as the only stalling instruction, but we do not
impose this limitation. Any instruction is able to have a
dependency with the previous instructions, and its operand
registers are assigned according to the dependency.

IV. EXPERIMENTAL RESULTS

In this section, we describe how we constructed our
framework and show the simulation results. The simulators and
their configurations and power distribution networks are
carefully selected from the previous studies.

For the power (current) simulator, we select the
combination of SimpleScalar and Wattch [3] to estimate
current load variations per cycle in a microprocessor. We
modify the original simulator to generate a current trace per
cycle by dividing the power per cycle by the supply voltage.
For circuit simulation, HSPICE is used to simulate the current
trace and to measure voltage droop.

To apply the Genetic Algorithm to our simulation
environments, we use GAUL [4] which provides an open
source utility library for Genetic Algorithms including
population creation, evolution, and evaluation.

We configure three different architectures to see the
effectiveness and the architecture dependency of our di/dt
stressmark generation method (Table 1). The base architecture
configuration, Arch1 shown in Table 1, is an 8-wide
microprocessor with 3 GHz clock speed, based on the Pentium
4, similar to the configuration in [5]. For the second
architecture, Arch2, we decrease the number of resources
memory ports from 4 to 2 in order to reduce memory accesses,
and other parameters were also adjusted to a 4-wide
microprocessor. The last configuration, Arch3, is nearly the
same as Arch1, but we increase the latency of a key
component, fdiv unit from 12 to 18 cycles to see the
architecture dependency of our di/dt generation method.

TABLE 1. BASE ARCHITECTURE CONFIGURATION FOR SIMPLESCALAR

Parameter Arch1 Arch2 Arch3

CPU Clock 3 GHz 3 GHz

(1) Latency of

fdiv is
changed from

12 to 18.

(2) Other
parameters are

the same as

Arch1

Fetch/Decode/Iss
ue

8 / 8 / 8 instr. 4 / 4 / 4 instr.

EXU

8 alu,

2 mul/div,
4 falu,

2 fmul/fdiv,

4 mem-port

4 alu,

2 mul/div,
2 falu,

2 fmul/fdiv,

2 mem-port

RUU / LSQ 128 / 64 128 / 64

Branch Predictor
Combined,

64Kb

Combined,

32Kb

BTB 1K entries 512K entries

L1 I/D-Cache 64KB, 2-way 32KB, 2-way

L2 Cache 2MB, 8-way 1MB, 8-way

Figure 3. di/dt Stressmark Generation Framework using Genetic Algorithm

Then, we take the five different power distribution network
(PDN) circuits from the previous studies (Table 2). The first
PDN from [7] is simple, but shows mid-frequency behavior
which dominates the PDN’s characteristic. The second PDN
from [2] is an implementation of the Pentium 4’s PDN. The
third PDN used in [8] is also for Pentium 4, but has different
resonant frequency, current swing, and number of RLC stages
from PDN2. PDN4-A and PDN4-B [12] are the same circuits
with different decoupling capacitance values.

TABLE 2. FIVE DIFFERENT PDNS FOR CIRCUIT SIMULATION

PDN1

[7]

PDN2

[2]

PDN3

[8]

PDN4-A

[12]

PDN4-B

[12]

Resonant
Frequency

100MHz 100MHz 68MHz 150MHz 200MHz

Current

Swing
6-50A 3-20A 2-12A 5-16A 5-16A

#of RLC
Stages

1 4 5 2 2

To compare the effectiveness of our di/dt stressmark to that
of other methods, we run the SPEC CPU2006 suite with 100
million instructions, and program the hand-coded assembly
code in [5]. The hand-coded di/dt stressmark consists of two
parts; one is for low current draw, and the other is for high
current draw. The low current draw part is implemented with
the divider instruction, divt, which has a fixed, long latency.
The high current draw part use a store instruction, stq, which
store data to main memory through L1 and L2 caches. We find
the best maximum voltage droop by increasing the number of
the stq instruction from 0 to 200 under the given architecture
and PDN configurations. Effort is made to create the best
possible hand-coded baseline stressmark for comparison.

Table 3 compares the maximum voltage droop in milli-
Volts of SPEC CPU2006, the hand-coded stressmarks, and our
di/dt stressmarks. The larger number means the larger
maximum voltage droop, and only the worst voltage droop is
shown among the 22 SPEC benchmarks. Overall, our di/dt
stressmarks always invokes larger maximum voltage droops
than the other two methods. For Arch1, compared to SPEC
CPU2006 and the hand-coded stressmark, 35.7% and 15.7%
average increases in voltage droop are achieved by our
automated di/dt stressmark for the different PDNs, respectively.
In Arch2, architecture difference between Arch1 and Arch2
affects the performance of the di/dt stressmark, but our di/dt
stressmark is less architecture-dependent because the hand-
coded di/dt stressmark heavily depends on the number of
memory ports due to the store instruction. Considering Arch1
and Arch3, it is shown that the hand-coded di/dt stressmark
significantly depended on the specific instruction, divt,
executed in the fdiv unit whose latency is changed from 12 to
18 cycles. In contrast, our automated di/dt generation and
SPEC benchmarks for Arch3 make a similar range of voltage
droops to Arch1’s regardless of the execution cycle change of
the divider unit. This can also reveal that our automated di/dt
stressmark generation technique is architecture-independent.

TABLE 3. MAXIMUM VOLTAGE DROOPS OF SPEC CPU2006, HAND-CODED [5],
AND AUTOMATIC DI/DT STRESSMARKS

Arch.

Config.
PDN

SPEC

CPU2006

(Worst)

(mV)

Hand-

Coded

Droop

(mV)

Auto-

Stressed

Droop

(mV)

Improvement

(Auto. vs. SPEC/

Auto. vs. Hand.)

Arch1

PDN1 65.3 75.8 78.8 20.7% / 4.0%
PDN2 111.9 112.9 121.5 8.6% / 7.6%
PDN3 69.2 123.9 134.8 94.8% / 8.8%

PDN4-A 101.1 107.6 137.5 36.0% / 27.8%

PDN4-B 140.4 151.2 189.6 35.0% / 25.4%

Arch2

PDN1 26.4 29.0 34.9 32.2% / 20.3%
PDN2 53.8 55.8 82.2 52.8% / 47.3%

PDN3 41.8 45.8 60.5 44.7% / 32.1%

PDN4-A 44.0 39.1 56.8 29.1% / 45.3%
PDN4-B 53.7 46.5 82.4 53.4% / 77.2%

Arch3

PDN1 65.3 39.3 73.9 13% / 88%

PDN2 110.9 62.8 130.2 17% / 107%

PDN3 69.2 113.9 143.5 107% / 26%

PDN4-A 101.7 80.5 153.0 50% / 90%

PDN4-B 139.8 75.4 191.6 37% / 154%

Average (Overall) 79.6 77.3 111.4 40% / 44%

V. CONCLUSION

In this paper, we automatically generate a di/dt stressmark to
test the maximum voltage droop in a microprocessor power
distribution network. Our method removes the need for manual,
tedium of designers to test di/dt effects in a given architecture
and power distribution network. From the experimental results,
our di/dt stressmarks effectively induce a maximum voltage
droop, meeting the resonant frequency of a given PDN.

REFERENCES

[1] S. Pant and E. Chiprout, “Power Grid Physics and Implications for CAD,”
Proceedings of the 43rd annual Design Automation Conference, 2006.

[2] M. S. Gupta, J. L. Oatley, R. Joseph, G.-Y. Wei, and D. M. Brooks,
“Understanding voltage variations in chip multiprocessors using a
distributed power-delivery network,” Design, Automation & Test in
Europe Conference & Exhibition, 2007.

[3] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a Framework for
Architectural-level Power Analysis and Optimizations,” 27th Annual
International Symposium on Computer Architecture, 2000.

[4] Genetic Algorithm Utility Libray (GAUL), http://gaul.sourceforge.net/

[5] R. Joseph, D. Brooks, and M. Martonosi, “Control Techniques to
Eliminate Voltage Emergencies in High Performance Processors,” Int’l
Symposium on High-Performance Computer Architecture, 2003.

[6] M. Ketkar and E. Chiprout, "A Microarchitecture-based Framework for
Pre- and Post-silicon Power Delivery Analysis," 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, Dec. 2009.

[7] M. Powell and T. N. Vijaykumar, “Exploiting Resonant Behavior to
Reduce Inductive Noise,” Int’l Symp. on Computer Architecture, 2004.

[8] W. El-Essawy and D. Albonesi, “Mitigating Inductive Noise in SMT
Processors,” International Symposium on Low Power Electronics and
Design, 2004.

[9] M. S. Gupta, K. Rangan, M. D. Smith, G.-Y. Wei, and D. M. Brooks,
“DeCoR: A Delayed Commit and Rollback Mechanism for Handling
Inductive Noise in Processors,” Int’l Symp. on High-Perf Computer
Architecture, 2008.

[10] K. Hazelwood and D. Brooks, “Eliminating Voltage Emergencies via
Microarchitectural Voltage Control Feedback and Dynamic Optimization,”
International Symposium on Low-Power Electronics and Design, 2004.

[11] A. M. Joshi, L. Eeckhout, L. K. John, and C. Isen, “Automated
microprocessor stressmark generation,” International Symposium on High
Performance Computer Architecture, 2008, pp. 229–239.

[12] Stephen Kosonocky, AMD, personal communication.

