
Impact of Compiler Optimizations on Voltage Droops and 

Reliability of an SMT, Multi-Core Processor 
 

Youngtaek Kim    Lizy Kurian John 
Department of Electrical & Computer Engineering 

The University of Texas at Austin 

young.kim@utexas.edu 

 
Srilatha Manne†  Michael Schulte†  Sanjay Pant‡ 

†
AMD Research and 

‡
TE Power 

Advanced Micro Devices, Inc. 

srilatha.manne@amd.com 

 

 

 

 

ABSTRACT 

In ultra-low power era, one of the most effective ways of reducing 

power consumption is to lower supply voltage level. When 

programs execute on processors, voltage fluctuations can occur 

due to sudden changes in current draw between successive 

instructions. Such voltage fluctuations can reduce the voltage 

levels below acceptable levels and cause unreliable operation in 

microprocessors. Voltage droops due to di/dt effects have been 

studied in the past, however no prior work studies the effect of 

compiler optimizations on voltage droops. Past work has studied 

the impact of compiler optimizations on performance and power, 

but not reliability. In this paper, we analyze voltage droops with 

different compiler optimization levels. We also report 

corresponding performance, power and energy results to put the 

results into perspective. No clear trends could be observed 

regarding the effect of compiler optimizations on voltage droops. 

We conclude that dynamic voltage noise mitigation is necessary 

because we cannot guarantee voltage noise reduction with static 

compiler optimization.   

Categories and Subject Descriptors 

C.4 [PERFORMANCE OF SYSTEMS]: Performance 

attributes, Reliability, availability, and serviceability  

General Terms 

Reliability 

Keywords 

Supply voltage noise, low power, compiler optimization. 

1. INTRODUCTION 
Increasing CPU clock frequency for high performance has been 

limited because of power constraints. One of the most effective 

ways to decrease power is to scale down supply voltage. However, 

circuit becomes more susceptible to supply voltage noise due to 

near threshold voltage operations, and even a small amount of 

supply voltage fluctuation may cause reliability problems at the 

lower power supply voltages. Now designers need to analyze the 

supply voltage noise and  devise solutions for guaranteeing 

reliable processor behavior with very low supply voltages. Low 

power goals and techniques need to be managed in tandem with 

the reliability goals of the processor. 

Supply voltage fluctuation is caused by sudden change of current 

draw in microprocessors and the power distribution network. 

Parasitic inductance on the die, package and the board often 

disturb the current flow from the voltage regulator on board to 

processor components on die. Such disturbance causes a 

temporary lack of electric charges that is needed for powering the 

processor components. Decoupling capacitance can be a solution 

for storing and providing electric charges to processor 

components when voltage emergency arises. However, 

capacitance can also induce voltage fluctuation because of the 

characteristics of RLC circuit. 

The rate of current draw is affected by program behavior. When 

an instruction sequence flows through a microprocessor 

architecture, internal microprocessor components will be turned 

on and then be turned off, and it changes current draws. It is 

difficult to predict the amount of current draws cycle by cycle 

because many instructions are on the fly across different pipeline 

stages and different paths.  

The order of an instruction sequence, instruction scheduling, is 

important in performance and power. Compilers usually optimize 

scheduling for high performance, but do not for low power 

because it is difficult to provide power details for compilers. 

Compilers also affect the choice of instructions used to 

accomplish the task. 

In this paper we are highly motivated by Valluri and John [1], 

where the authors studied compiler impact on performance and 

power. Valluri and John [1] studied the impact of compiler 

optimizations on performance and power, and concluded that (1) 

performance improvement by reducing the number of instructions 

induces energy reduction and (2) performance improvement by 

increasing the overlap in program average induces power 

increment. We extend Valluri and John’s discussion [1] by adding 

a new perspective and by studying reliability with voltage droops 

while running various programs on a real SMT, multi-core 

processor hardware. 

This paper is based on measurement on actual hardware. In 

contrast to Valluri and John’s [1] methodology, we make the 

following improvements: 

 Power/Reliability: Average power [1] vs. Average power and 

voltage droop 
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 Experimental Methodology: Simulation study based on 

SimpleScalar/Wattch [1] vs. real hardware 

 Running Thread: Single-core/single-thread [1] vs. multi-

core/multi-threaded workloads  

 Runtime: partial run vs. entire run 

 Benchmark: SPEC95 vs. SPEC06 (multi-programmed) and 

miniFE and HPC Linpack (multi-threaded) 

We compare the performance between the cases with no 

optimization versus full optimization, because there were only 

slight differences among O1 to O4. 

We measure performance, power, and reliability with different 

compiler optimization levels. Then, we find energy with the 

measured performance and power numbers. 

2. RELATED WORK 
Valluri and John [1] studied compiler optimization effects on 

performance and power. The conclusions  are that (1) 

performance improvement by reducing the number of instructions 

brings energy reduction and that (2) performance improvement by 

increasing the overlap in program increases average power 

dissipation. 

However, in Error! Reference source not found., power is 

represented as average power of overall execution. It is 

problematic because voltage emergency occurs in much shorter 

period than the whole program execution time, that is, from tens 

of nano-seconds to micro seconds compared to several minutes. 

Reddi et al. proposed a dynamic scheduling workflow based on a 

checkpoint-and-recovery mechanism to suppress voltage 

emergencies [3]. Once a code part causes a voltage margin 

violation, it is registered as a hotspot, and NOP injection and/or 

code rescheduling is conducted by the dynamic compiler. This 

flow is independent of architecture or workload. However, users 

should be careful to set an initial voltage margin properly not to 

make voltage emergency so frequent. 

3. COMPILER SCHEDULING IMPACT ON 

PERFORMANCE, POWER, AND SUPPLY 

VOLTAGE VARIATION 
In [1], Valluri and John showed a data dependence graph (DDG) 

to show the possibility of peak power variation even with the 

same execution time (1/performance). We expand the DDG to 

explain voltage fluctuation due to switching activity of execution 

units and registers in Figure 1. To make it simple, we assume (1) 

that each operation has one cycle’s execution time except 

operation E. Operation E needs two cycles to run, (2) that 

operations do not consume extra cycles for register reads and 

writebacks, and (3) each operation, register read, and writeback 

consume one unit power per cycle. For example, when operation 

A executes, two register reads for operands, operation A’s 

execution, and one writeback complete in one cycle and consume 

four unit powers. 

Figure 1.(b) (c) (d) (e) represent four possible schedulings from 

Figure 1.(a). Performance, average power and energy are 

consistent over all the schedulings in Figure 1. However, peak 

power is changed according to the scheduling results, and this 

change causes voltage fluctuation because current draw is 

proportional to power. 

In Table 1, each column contains the number of usage of 

hardware resources and the total power is calculated in the last 

row. Both (b) and (e) have the largest peak power, 11, at cycle 2 

and cycle 1, respectively. However, the largest voltage droop may 

come at cycle 1 of (e) if an idle state, whose instantaneous power 

is nearly 0, comes first at cycle 0.  

4. EXPERIMENTAL RESULTS 
In this section, we show our experimental methodology and   the 

results. 

To analyze performance, power, and voltage droops with different 

compiler optimization levels, we run various benchmarks from a 

small but highly scalable program to a high performance program 

and a standard benchmark suite. Also we use real hardware 

system rather than a simulator. Through the measurement on 

silicon, we expect the study significantly reduces possible errors 

and uncertainty in the abstraction and modeling steps of a 

processor for simulation method. 

4.1 Experimental Setup 
In our experimental hardware system, we use a state-of-the-art 

x86-64 multi-core, SMT processor. Our AMD Bulldozer 

processor consists of four Bulldozer modules on the single 

processor chip, and each Bulldozer module includes two 

simultaneous multiple threads (SMT) hardware. One Bulldozer 

module has one 64 KB I-Cache, two 16 KB D-Caches for two 

hardware threads, and 2MB of L2 cache. Four Bulldozer modules 

share 8MB L3 cache. The Bulldozer architecture is described in 

more detail in [6]. 

For benchmarks, in addition to SPEC CPU 2006, we select 

miniFE [2], a scalable, multi-threaded program, which adjusts the 

problem size according to the number of multiple cores. Another 

program is High Performance Linpack (HP Linpack), which is 

well known for benchmarking Top 500 supercomputers [4][5]. 

Both miniFE and HP Linpack use OpenMPI [7] library for 

scalable, multi-threading technique to maximize the parallelism of 

multi-core processor. As a standard benchmark, SPEC CPU2006 

[8] can show various, normal program behavior by compiler 

optimization effect. We compile each benchmark with gcc/ 

gfortran 4.6.2 compiles each benchmark with –O0 and –O3 levels 

separately on Red Hat Enterprise 6 OS. 

We use several metrics to analyze the impact of compiler 

optimization levels on programs. Performance is measured in 

runtime or in the inverse of runtime, and is reported by a 

benchmark program itself. Power is measured in wattage, and is 

calculated from supply voltage and current variations measured as 

voltage drop on a unit resistor. Voltage droop is measured with 

oscilloscope and differential probes, which are attached to main 

supply voltage pins on the processor package. 

4.2 miniFE 
miniFE [2] is a mini-application that mimics finite element 

generation, assembly and solution for an unstructured grid 

problem. Table 2 shows runtime, power, voltage droop values 

according to the number of multiple threads. Each value is 

normalized to 1 thread (1T) case. 

Figure 2 shows the relative value of runtime, power, droop and 

energy at different number of multiple threads, compared to those 

of one thread case. The values are saturated starting 8 threads 



because of the processor’s architectural limitation (2 threads  per 

Bulldozer module; hence 8 threads from 4 modules). 

We observe the following: 

 At 8T or 16T, the runtime is reduced to one fifth of 1T.   

 At 8T, power increases up to three times compared to 1T. 

 Voltage droop slightly changes according to #of Ts.  

 Average power variation does not significantly affect voltage 

fluctuation. 

Then, we can conclude: 

 Voltage scaling will be needed for 8T and 16T if there is a 

power constraint. However, if the voltage margin is not 

enough, frequency scaling is required despite performance 

degradation. 

 Energy starts to saturate from 4T. Therefore, if thermal 

constraint should be considered, 4T is optimal not only for 

sustaining the same battery life  but also for keeping good 

performance. 

Table 1. Instantaneous Power at each cycle 
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Figure 1. Scheduling Example 



Voltage droops in miniFE are not seriously  impacted by compiler 

optimization levels because it highly depends on the OpenMPI 

library, which is already optimized with -O3. For Table 2 and 

Figure 2, we set its dimension to nx=150, ny=150, and nz=150. 

The high level of compiler optimization used in the library makes 

the difference between unoptimized and optimized code fairly 

small. 

Table 2. miniFE 

Metric 
#of Threads 

1T 2T 4T 8T 16T 

Runtime 1.00 0.51 0.28 0.20 0.20 

Power 1.00 1.38 2.16 2.86 2.81 

Vdroop 1.00 1.00 1.04 0.96 0.96 

Energy 1.00 0.71 0.61 0.58 0.57 

 

 
 

Figure 2. Relative Runtime, Power, Droop, and Enerby of 

miniFE 

 

4.3 High-Performance Linpack  
High-Performance(HP) Linpack benchmark is very popular to 

measure  performance of supercomputers (Top 500). First, we 

compiled and ran the benchmark with two different optimization 

levels, -O0 and -O3, but there is no difference in performance, 

power, and droop between -O0 and -O3. We found out that the 

benchmark highly depends on Basic Linear Algebra Subprogram 

(BLAS) library such as daxpy and dgemm. The library is 

necessary for multi-threading and is usually provided by a 

processor vendor for a specific architecture. For the processor 

vendor’s pre-compiled BLAS library on its developer’s site [9], 

we could not get the source codes of the library that is required to 

recompile the library with different compiler optimization levels. 

Finally, we obtained and used the original BLAS library on the 

national lab’s web page [10] for the following experiments. The 

performance of the original BLAS library is much worse than that 

of the processor vendor’s BLAS, but we could see the clear 

changes in performance, power, and voltage droop according to 

compiler optimization levels. 

In Table 3, HP Linpack’s performance is highly affected by 

optimization methods. The compiler optimization gives five times 

performance improvement than no optimization, and the library 

optimization by the processor vendor increases performance more 

than five times beyond the compiler optimized case. The 

performance results also show the importance of the library 

optimization for a multi-threaded application. 

The increases in performance usually are accompanied by 

increases in power, but it is reduced by 35% from -O0 to -O3. 

Even for AMD BLAS, power remains the same compared to -O0 

of original BLAS. It is interesting that we can obtain 29X 

performance improvement at the same power, by compiler 

optimizations. The tradeoff between  performance and power are 

not uniform between various benchmarks or between various 

optimizations. 

Voltage droop of HP Linpack changes by 7% with compiler 

optimization and by 5% with library optimization, compared to 

voltage droop without optimization. If very tight voltage margins 

are used to save power and energy, these voltage fluctuations can 

cause unreliable operation. 

Energy is calculated using the execution time  and power values. 

It is interesting that 89% and 97% of energy can be dramatically 

reduced by compiler and library optimizations, in the original 

BLAS and vendor-BLAS  respectively.      

For HP Linpack, we used the processor vendor’s recommended 

configuration for the problem dimension parameters [9]. 

Table 3. High-Performance Linpack (8T) 

Metric 
Original BLAS AMD BLAS 

O0 O3 O3 

Performance 1.00 5.83 29.17 

Power 1.00 0.65 1.00 

Vdroop 1.00 1.07 1.05 

Energy 1.00 0.11 0.03 

 

4.4 SPEC CPU2006  
We run all the SPECInt and SPECFp benchmarks in the SPEC 

CPU2006 suite to see performance, power, and voltage variation 

in a multi-programmed manner. Each SPEC benchmark is a 

single-threaded program, so multiple copies of the same program 

are running on each Bulldozer module to calculate SPECrate. 

First we run each benchmark with a single thread on one of four 

Bulldozer modules with an affinity in order not to cause thread 

migration effect that could distort voltage droop measurement 

results.  Then, we run 4 copies of the same program on each 

Bulldozer module (there are 4 Bulldozer modules in the current 

processor) and compare 4T cases to 1T cases. 

The single thread performance is discussed first. Table 4 presents 

the relative values of -O3 when -O0’s value is equal to 1.00. 

Every SPECrate value in Table 4 is greater than 1.00 meaning that 

performance is always improved with compiler optimization.  

However, power does not show any uniform trend with compiler 

optimization. Voltage droop changes from -15% to +15% 

according to benchmark, but it has no trend, either. 

Next, we study impact of compiler optimization on 4T cases 

(Table 5), and compare the effects to 1T cases. 

Performance improvement (SPECrate), due to optimization, is 

less in 4T case compared to single thread case. It is because of the 

contention of multiple threads for shared resources such as L3. 



Table 4. SPEC06 1T Results with –O3 (normalized to –O0) 

Benchmark SPECrate Power Vdroop Energy 

perlbench 1.41 0.98 1.09 0.70 

bzip2 2.41 1.00 0.85 0.41 

gcc 1.91 1.00 1.00 0.52 

mcf 1.88 1.05 1.00 0.56 

gobmk 1.78 1.00 1.00 0.56 

hmmer 3.54 1.01 1.00 0.29 

sjeng 1.72 0.99 0.89 0.57 

libquantum 2.05 0.98 0.89 0.48 

h264ref 2.79 1.01 0.96 0.36 

omnetpp 2.14 0.96 1.00 0.45 

astar 2.21 0.97 0.96 0.44 

xalancbmk 5.17 0.97 1.09 0.19 

bwaves 3.38 1.04 1.15 0.31 

gamess 2.82 1.02 1.09 0.36 

milc 3.45 0.97 0.89 0.28 

zeusmp 3.43 1.01 1.04 0.29 

gromacs 2.39 1.01 0.92 0.42 

cactusADM 4.05 0.99 1.00 0.25 

leslie3d 5.48 1.02 1.00 0.19 

namd 3.70 1.00 1.00 0.27 

dealII 8.12 0.95 0.96 0.12 

soplex 2.59 0.93 1.00 0.36 

povray 2.73 0.96 1.00 0.35 

calculix 9.39 0.97 1.00 0.10 

GemsFDTD 4.85 1.00 0.96 0.21 

tonto 1.88 0.99 0.96 0.53 

lbm 1.94 0.94 1.08 0.48 

wrf 4.85 0.96 1.00 0.20 

sphinx3 3.38 1.00 1.04 0.30 

 

 

Table 5. SPEC06 4T Results with –O3 (normalized to –O0) 

Benchmark SPECrate Power Vdroop Energy 

perlbench 1.43 0.94 1.20 0.65 

bzip2 2.39 0.96 1.00 0.40 

gcc 1.72 0.93 0.93 0.54 

mcf 1.24 0.96 0.86 0.77 

gobmk 1.77 0.96 1.16 0.54 

hmmer 3.54 0.98 1.04 0.28 

sjeng 1.71 0.94 1.00 0.55 

libquantum 1.04 0.92 0.89 0.89 

h264ref 2.79 1.00 1.08 0.36 

omnetpp 1.53 0.85 1.04 0.55 

astar 1.97 0.91 0.93 0.46 

xalancbmk 3.99 0.84 0.92 0.21 

bwaves 2.35 0.96 1.14 0.41 

gamess 2.82 1.05 1.03 0.37 

milc 1.46 0.79 1.00 0.54 

zeusmp 2.86 0.96 1.03 0.34 

gromacs 2.41 1.01 0.87 0.42 

cactusADM 3.17 0.92 1.14 0.29 

leslie3d 2.07 0.85 1.00 0.41 

namd 3.69 1.06 0.91 0.29 

dealII 7.59 0.94 1.04 0.12 

soplex 1.35 0.82 0.90 0.61 

povray 2.72 0.98 1.04 0.36 

calculix 9.34 1.00 0.96 0.11 

GemsFDTD 1.76 0.83 1.03 0.47 

tonto 1.82 1.01 1.00 0.55 

lbm 0.99 0.92 0.91 0.92 

wrf 3.76 0.91 1.03 0.24 

sphinx3 2.28 0.84 1.00 0.37 

 

 

Even though none of four threads run on the same Bulldozer 

module, contentions are unavoidable for L3 and memory accesses. 

Most benchmarks take less power in -O3 compared to -O0 

indicated by the ratios in column 2 except gamess, gromacs and 

tonto. This could be because idle time out of total runtime 

increases due to resource contentions. 

The voltage droop changes from -15% to +15% according to 

benchmark, but it has no clear trend with optimizations. In some 

benchmarks such as h264ref, voltage droop increases when 

compiler optimization for 4T cases, but voltage droop decreases 

with compiler optimization for 1T case. 

With compiler optimization, energy is reduced from 30% to 90% 

in 1T, and from 7% to 89% in 4T. Due to the degradation of 

performance in 4T, 4T’s energy reduction ratio with compiler 

optimization decreases, compared to 1T. 

The following is the summary of our observations: 

 Regarding compiler optimization and its effect on 

performance:  programs compiled with -O3 are faster than 



those with -O0 in most cases. However, lbm did not follow 

this trend with 4T.  

 Regarding compiler optimization and power:  relatively code 

with -O0 optimization level (i.e. unoptimized code) need 

more power than O3s. This observation follows the 

observation in [1]. 

 Regarding compiler optimization and supply voltage droop: 

we cannot conclude anything because of mixed trend in the 

results. About one third of the benchmarks  show more 

droops in the optimized case and about a third of  the 

benchmarks show less droop in the optimized case. About a 

third of the benchmarks show no difference in the droop 

between optimized and unoptimized code. 

 Regarding compiler optimization and energy: energy 

reduction is always observed, but the amount of savings can 

vary largely benchmark by benchmark.  

    Another perspective is the impact of multithreading on voltage 

fluctuations and hence reliability. When SPEC programs are run 

in the SPECrate mode, the droops increase as we go from 1T to 

4T cases.  

5. SUMMARY AND CONCLUSION 
We conducted experiments to study the impact on compiler 

optimizations on the voltage fluctuations during program 

execution. Several programs were run with optimized and 

unoptimized versions of code from the same program, and 

performance, power, energy and voltage fluctuations studied.    

We can conclude the following:  

 Energy can be dramatically reduced by increasing the 

number of threads and performing compiler optimization. 

 Performance can be significantly improved by compiler 

optimizations. 

 Trends in average or maximum power during execution 

cannot be correlated in a systematic manner with 

performance. The intricacies of the code sequences and the 

functional units bring unpredictable trends between 

performance and power trade-offs. 

 Generally we cannot predict how voltage droop would 

change with optimization levels.                                       

 In some cases, performance, power, and voltage droop can be 

improved with compiler optimization. (mcf, lbm, etc.) 

 Short-runtime could give different results in voltage droop. 

Therefore, designers utilizing simulations for such studies 

should be careful  interpreting simulation results, which are 

run with very short time compared to real hardware.  

 Voltage droop is not much changed with compiler and 

library optimizations in miniFE and HP Linpack. Therefore, 

only with compiler optimization, supply voltage reliability is 

mainly affected by load-line effect [11], i.e., resistive part 

rather than inductive part of processor and power distribution 

network circuit. 

 If we cannot predict voltage droop change with static 

compiler optimization, a dynamic mitigation method can be 

useful. 
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