
Impact of Compiler Optimizations on Voltage Droops and

Reliability of an SMT, Multi-Core Processor

Youngtaek Kim Lizy Kurian John
Department of Electrical & Computer Engineering

The University of Texas at Austin

young.kim@utexas.edu

Srilatha Manne† Michael Schulte† Sanjay Pant‡

†
AMD Research and

‡
TE Power

Advanced Micro Devices, Inc.

srilatha.manne@amd.com

ABSTRACT

In ultra-low power era, one of the most effective ways of reducing

power consumption is to lower supply voltage level. When

programs execute on processors, voltage fluctuations can occur

due to sudden changes in current draw between successive

instructions. Such voltage fluctuations can reduce the voltage

levels below acceptable levels and cause unreliable operation in

microprocessors. Voltage droops due to di/dt effects have been

studied in the past, however no prior work studies the effect of

compiler optimizations on voltage droops. Past work has studied

the impact of compiler optimizations on performance and power,

but not reliability. In this paper, we analyze voltage droops with

different compiler optimization levels. We also report

corresponding performance, power and energy results to put the

results into perspective. No clear trends could be observed

regarding the effect of compiler optimizations on voltage droops.

We conclude that dynamic voltage noise mitigation is necessary

because we cannot guarantee voltage noise reduction with static

compiler optimization.

Categories and Subject Descriptors

C.4 [PERFORMANCE OF SYSTEMS]: Performance

attributes, Reliability, availability, and serviceability

General Terms

Reliability

Keywords

Supply voltage noise, low power, compiler optimization.

1. INTRODUCTION
Increasing CPU clock frequency for high performance has been

limited because of power constraints. One of the most effective

ways to decrease power is to scale down supply voltage. However,

circuit becomes more susceptible to supply voltage noise due to

near threshold voltage operations, and even a small amount of

supply voltage fluctuation may cause reliability problems at the

lower power supply voltages. Now designers need to analyze the

supply voltage noise and devise solutions for guaranteeing

reliable processor behavior with very low supply voltages. Low

power goals and techniques need to be managed in tandem with

the reliability goals of the processor.

Supply voltage fluctuation is caused by sudden change of current

draw in microprocessors and the power distribution network.

Parasitic inductance on the die, package and the board often

disturb the current flow from the voltage regulator on board to

processor components on die. Such disturbance causes a

temporary lack of electric charges that is needed for powering the

processor components. Decoupling capacitance can be a solution

for storing and providing electric charges to processor

components when voltage emergency arises. However,

capacitance can also induce voltage fluctuation because of the

characteristics of RLC circuit.

The rate of current draw is affected by program behavior. When

an instruction sequence flows through a microprocessor

architecture, internal microprocessor components will be turned

on and then be turned off, and it changes current draws. It is

difficult to predict the amount of current draws cycle by cycle

because many instructions are on the fly across different pipeline

stages and different paths.

The order of an instruction sequence, instruction scheduling, is

important in performance and power. Compilers usually optimize

scheduling for high performance, but do not for low power

because it is difficult to provide power details for compilers.

Compilers also affect the choice of instructions used to

accomplish the task.

In this paper we are highly motivated by Valluri and John [1],

where the authors studied compiler impact on performance and

power. Valluri and John [1] studied the impact of compiler

optimizations on performance and power, and concluded that (1)

performance improvement by reducing the number of instructions

induces energy reduction and (2) performance improvement by

increasing the overlap in program average induces power

increment. We extend Valluri and John’s discussion [1] by adding

a new perspective and by studying reliability with voltage droops

while running various programs on a real SMT, multi-core

processor hardware.

This paper is based on measurement on actual hardware. In

contrast to Valluri and John’s [1] methodology, we make the

following improvements:

 Power/Reliability: Average power [1] vs. Average power and

voltage droop

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, to republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SRAS’12, September 19, 2012, Minneapolice, MN, USA.

Copyright © 2012 ACM 978-1-4503-1777-1 /12/09... $15.00.

mailto:young.kim@utexas.edu

 Experimental Methodology: Simulation study based on

SimpleScalar/Wattch [1] vs. real hardware

 Running Thread: Single-core/single-thread [1] vs. multi-

core/multi-threaded workloads

 Runtime: partial run vs. entire run

 Benchmark: SPEC95 vs. SPEC06 (multi-programmed) and

miniFE and HPC Linpack (multi-threaded)

We compare the performance between the cases with no

optimization versus full optimization, because there were only

slight differences among O1 to O4.

We measure performance, power, and reliability with different

compiler optimization levels. Then, we find energy with the

measured performance and power numbers.

2. RELATED WORK
Valluri and John [1] studied compiler optimization effects on

performance and power. The conclusions are that (1)

performance improvement by reducing the number of instructions

brings energy reduction and that (2) performance improvement by

increasing the overlap in program increases average power

dissipation.

However, in Error! Reference source not found., power is

represented as average power of overall execution. It is

problematic because voltage emergency occurs in much shorter

period than the whole program execution time, that is, from tens

of nano-seconds to micro seconds compared to several minutes.

Reddi et al. proposed a dynamic scheduling workflow based on a

checkpoint-and-recovery mechanism to suppress voltage

emergencies [3]. Once a code part causes a voltage margin

violation, it is registered as a hotspot, and NOP injection and/or

code rescheduling is conducted by the dynamic compiler. This

flow is independent of architecture or workload. However, users

should be careful to set an initial voltage margin properly not to

make voltage emergency so frequent.

3. COMPILER SCHEDULING IMPACT ON

PERFORMANCE, POWER, AND SUPPLY

VOLTAGE VARIATION
In [1], Valluri and John showed a data dependence graph (DDG)

to show the possibility of peak power variation even with the

same execution time (1/performance). We expand the DDG to

explain voltage fluctuation due to switching activity of execution

units and registers in Figure 1. To make it simple, we assume (1)

that each operation has one cycle’s execution time except

operation E. Operation E needs two cycles to run, (2) that

operations do not consume extra cycles for register reads and

writebacks, and (3) each operation, register read, and writeback

consume one unit power per cycle. For example, when operation

A executes, two register reads for operands, operation A’s

execution, and one writeback complete in one cycle and consume

four unit powers.

Figure 1.(b) (c) (d) (e) represent four possible schedulings from

Figure 1.(a). Performance, average power and energy are

consistent over all the schedulings in Figure 1. However, peak

power is changed according to the scheduling results, and this

change causes voltage fluctuation because current draw is

proportional to power.

In Table 1, each column contains the number of usage of

hardware resources and the total power is calculated in the last

row. Both (b) and (e) have the largest peak power, 11, at cycle 2

and cycle 1, respectively. However, the largest voltage droop may

come at cycle 1 of (e) if an idle state, whose instantaneous power

is nearly 0, comes first at cycle 0.

4. EXPERIMENTAL RESULTS
In this section, we show our experimental methodology and the

results.

To analyze performance, power, and voltage droops with different

compiler optimization levels, we run various benchmarks from a

small but highly scalable program to a high performance program

and a standard benchmark suite. Also we use real hardware

system rather than a simulator. Through the measurement on

silicon, we expect the study significantly reduces possible errors

and uncertainty in the abstraction and modeling steps of a

processor for simulation method.

4.1 Experimental Setup
In our experimental hardware system, we use a state-of-the-art

x86-64 multi-core, SMT processor. Our AMD Bulldozer

processor consists of four Bulldozer modules on the single

processor chip, and each Bulldozer module includes two

simultaneous multiple threads (SMT) hardware. One Bulldozer

module has one 64 KB I-Cache, two 16 KB D-Caches for two

hardware threads, and 2MB of L2 cache. Four Bulldozer modules

share 8MB L3 cache. The Bulldozer architecture is described in

more detail in [6].

For benchmarks, in addition to SPEC CPU 2006, we select

miniFE [2], a scalable, multi-threaded program, which adjusts the

problem size according to the number of multiple cores. Another

program is High Performance Linpack (HP Linpack), which is

well known for benchmarking Top 500 supercomputers [4][5].

Both miniFE and HP Linpack use OpenMPI [7] library for

scalable, multi-threading technique to maximize the parallelism of

multi-core processor. As a standard benchmark, SPEC CPU2006

[8] can show various, normal program behavior by compiler

optimization effect. We compile each benchmark with gcc/

gfortran 4.6.2 compiles each benchmark with –O0 and –O3 levels

separately on Red Hat Enterprise 6 OS.

We use several metrics to analyze the impact of compiler

optimization levels on programs. Performance is measured in

runtime or in the inverse of runtime, and is reported by a

benchmark program itself. Power is measured in wattage, and is

calculated from supply voltage and current variations measured as

voltage drop on a unit resistor. Voltage droop is measured with

oscilloscope and differential probes, which are attached to main

supply voltage pins on the processor package.

4.2 miniFE
miniFE [2] is a mini-application that mimics finite element

generation, assembly and solution for an unstructured grid

problem. Table 2 shows runtime, power, voltage droop values

according to the number of multiple threads. Each value is

normalized to 1 thread (1T) case.

Figure 2 shows the relative value of runtime, power, droop and

energy at different number of multiple threads, compared to those

of one thread case. The values are saturated starting 8 threads

because of the processor’s architectural limitation (2 threads per

Bulldozer module; hence 8 threads from 4 modules).

We observe the following:

 At 8T or 16T, the runtime is reduced to one fifth of 1T.

 At 8T, power increases up to three times compared to 1T.

 Voltage droop slightly changes according to #of Ts.

 Average power variation does not significantly affect voltage

fluctuation.

Then, we can conclude:

 Voltage scaling will be needed for 8T and 16T if there is a

power constraint. However, if the voltage margin is not

enough, frequency scaling is required despite performance

degradation.

 Energy starts to saturate from 4T. Therefore, if thermal

constraint should be considered, 4T is optimal not only for

sustaining the same battery life but also for keeping good

performance.

Table 1. Instantaneous Power at each cycle

 (b)’s Instantaneous Power (c)’s Instantaneous Power (d)’s Instantaneous Power (e)’s Instantaneous Power

A

B

D

F

E

C

Cycle 1

Cycle 2

Cycle 4

Cycle 3

A

B

D

F

E

C

 (a) (b) (c)

A

B

D

F

E

C

A

B

D

F

E
C

 (d) (e)

Figure 1. Scheduling Example

Voltage droops in miniFE are not seriously impacted by compiler

optimization levels because it highly depends on the OpenMPI

library, which is already optimized with -O3. For Table 2 and

Figure 2, we set its dimension to nx=150, ny=150, and nz=150.

The high level of compiler optimization used in the library makes

the difference between unoptimized and optimized code fairly

small.

Table 2. miniFE

Metric
#of Threads

1T 2T 4T 8T 16T

Runtime 1.00 0.51 0.28 0.20 0.20

Power 1.00 1.38 2.16 2.86 2.81

Vdroop 1.00 1.00 1.04 0.96 0.96

Energy 1.00 0.71 0.61 0.58 0.57

Figure 2. Relative Runtime, Power, Droop, and Enerby of

miniFE

4.3 High-Performance Linpack
High-Performance(HP) Linpack benchmark is very popular to

measure performance of supercomputers (Top 500). First, we

compiled and ran the benchmark with two different optimization

levels, -O0 and -O3, but there is no difference in performance,

power, and droop between -O0 and -O3. We found out that the

benchmark highly depends on Basic Linear Algebra Subprogram

(BLAS) library such as daxpy and dgemm. The library is

necessary for multi-threading and is usually provided by a

processor vendor for a specific architecture. For the processor

vendor’s pre-compiled BLAS library on its developer’s site [9],

we could not get the source codes of the library that is required to

recompile the library with different compiler optimization levels.

Finally, we obtained and used the original BLAS library on the

national lab’s web page [10] for the following experiments. The

performance of the original BLAS library is much worse than that

of the processor vendor’s BLAS, but we could see the clear

changes in performance, power, and voltage droop according to

compiler optimization levels.

In Table 3, HP Linpack’s performance is highly affected by

optimization methods. The compiler optimization gives five times

performance improvement than no optimization, and the library

optimization by the processor vendor increases performance more

than five times beyond the compiler optimized case. The

performance results also show the importance of the library

optimization for a multi-threaded application.

The increases in performance usually are accompanied by

increases in power, but it is reduced by 35% from -O0 to -O3.

Even for AMD BLAS, power remains the same compared to -O0

of original BLAS. It is interesting that we can obtain 29X

performance improvement at the same power, by compiler

optimizations. The tradeoff between performance and power are

not uniform between various benchmarks or between various

optimizations.

Voltage droop of HP Linpack changes by 7% with compiler

optimization and by 5% with library optimization, compared to

voltage droop without optimization. If very tight voltage margins

are used to save power and energy, these voltage fluctuations can

cause unreliable operation.

Energy is calculated using the execution time and power values.

It is interesting that 89% and 97% of energy can be dramatically

reduced by compiler and library optimizations, in the original

BLAS and vendor-BLAS respectively.

For HP Linpack, we used the processor vendor’s recommended

configuration for the problem dimension parameters [9].

Table 3. High-Performance Linpack (8T)

Metric
Original BLAS AMD BLAS

O0 O3 O3

Performance 1.00 5.83 29.17

Power 1.00 0.65 1.00

Vdroop 1.00 1.07 1.05

Energy 1.00 0.11 0.03

4.4 SPEC CPU2006
We run all the SPECInt and SPECFp benchmarks in the SPEC

CPU2006 suite to see performance, power, and voltage variation

in a multi-programmed manner. Each SPEC benchmark is a

single-threaded program, so multiple copies of the same program

are running on each Bulldozer module to calculate SPECrate.

First we run each benchmark with a single thread on one of four

Bulldozer modules with an affinity in order not to cause thread

migration effect that could distort voltage droop measurement

results. Then, we run 4 copies of the same program on each

Bulldozer module (there are 4 Bulldozer modules in the current

processor) and compare 4T cases to 1T cases.

The single thread performance is discussed first. Table 4 presents

the relative values of -O3 when -O0’s value is equal to 1.00.

Every SPECrate value in Table 4 is greater than 1.00 meaning that

performance is always improved with compiler optimization.

However, power does not show any uniform trend with compiler

optimization. Voltage droop changes from -15% to +15%

according to benchmark, but it has no trend, either.

Next, we study impact of compiler optimization on 4T cases

(Table 5), and compare the effects to 1T cases.

Performance improvement (SPECrate), due to optimization, is

less in 4T case compared to single thread case. It is because of the

contention of multiple threads for shared resources such as L3.

Table 4. SPEC06 1T Results with –O3 (normalized to –O0)

Benchmark SPECrate Power Vdroop Energy

perlbench 1.41 0.98 1.09 0.70

bzip2 2.41 1.00 0.85 0.41

gcc 1.91 1.00 1.00 0.52

mcf 1.88 1.05 1.00 0.56

gobmk 1.78 1.00 1.00 0.56

hmmer 3.54 1.01 1.00 0.29

sjeng 1.72 0.99 0.89 0.57

libquantum 2.05 0.98 0.89 0.48

h264ref 2.79 1.01 0.96 0.36

omnetpp 2.14 0.96 1.00 0.45

astar 2.21 0.97 0.96 0.44

xalancbmk 5.17 0.97 1.09 0.19

bwaves 3.38 1.04 1.15 0.31

gamess 2.82 1.02 1.09 0.36

milc 3.45 0.97 0.89 0.28

zeusmp 3.43 1.01 1.04 0.29

gromacs 2.39 1.01 0.92 0.42

cactusADM 4.05 0.99 1.00 0.25

leslie3d 5.48 1.02 1.00 0.19

namd 3.70 1.00 1.00 0.27

dealII 8.12 0.95 0.96 0.12

soplex 2.59 0.93 1.00 0.36

povray 2.73 0.96 1.00 0.35

calculix 9.39 0.97 1.00 0.10

GemsFDTD 4.85 1.00 0.96 0.21

tonto 1.88 0.99 0.96 0.53

lbm 1.94 0.94 1.08 0.48

wrf 4.85 0.96 1.00 0.20

sphinx3 3.38 1.00 1.04 0.30

Table 5. SPEC06 4T Results with –O3 (normalized to –O0)

Benchmark SPECrate Power Vdroop Energy

perlbench 1.43 0.94 1.20 0.65

bzip2 2.39 0.96 1.00 0.40

gcc 1.72 0.93 0.93 0.54

mcf 1.24 0.96 0.86 0.77

gobmk 1.77 0.96 1.16 0.54

hmmer 3.54 0.98 1.04 0.28

sjeng 1.71 0.94 1.00 0.55

libquantum 1.04 0.92 0.89 0.89

h264ref 2.79 1.00 1.08 0.36

omnetpp 1.53 0.85 1.04 0.55

astar 1.97 0.91 0.93 0.46

xalancbmk 3.99 0.84 0.92 0.21

bwaves 2.35 0.96 1.14 0.41

gamess 2.82 1.05 1.03 0.37

milc 1.46 0.79 1.00 0.54

zeusmp 2.86 0.96 1.03 0.34

gromacs 2.41 1.01 0.87 0.42

cactusADM 3.17 0.92 1.14 0.29

leslie3d 2.07 0.85 1.00 0.41

namd 3.69 1.06 0.91 0.29

dealII 7.59 0.94 1.04 0.12

soplex 1.35 0.82 0.90 0.61

povray 2.72 0.98 1.04 0.36

calculix 9.34 1.00 0.96 0.11

GemsFDTD 1.76 0.83 1.03 0.47

tonto 1.82 1.01 1.00 0.55

lbm 0.99 0.92 0.91 0.92

wrf 3.76 0.91 1.03 0.24

sphinx3 2.28 0.84 1.00 0.37

Even though none of four threads run on the same Bulldozer

module, contentions are unavoidable for L3 and memory accesses.

Most benchmarks take less power in -O3 compared to -O0

indicated by the ratios in column 2 except gamess, gromacs and

tonto. This could be because idle time out of total runtime

increases due to resource contentions.

The voltage droop changes from -15% to +15% according to

benchmark, but it has no clear trend with optimizations. In some

benchmarks such as h264ref, voltage droop increases when

compiler optimization for 4T cases, but voltage droop decreases

with compiler optimization for 1T case.

With compiler optimization, energy is reduced from 30% to 90%

in 1T, and from 7% to 89% in 4T. Due to the degradation of

performance in 4T, 4T’s energy reduction ratio with compiler

optimization decreases, compared to 1T.

The following is the summary of our observations:

 Regarding compiler optimization and its effect on

performance: programs compiled with -O3 are faster than

those with -O0 in most cases. However, lbm did not follow

this trend with 4T.

 Regarding compiler optimization and power: relatively code

with -O0 optimization level (i.e. unoptimized code) need

more power than O3s. This observation follows the

observation in [1].

 Regarding compiler optimization and supply voltage droop:

we cannot conclude anything because of mixed trend in the

results. About one third of the benchmarks show more

droops in the optimized case and about a third of the

benchmarks show less droop in the optimized case. About a

third of the benchmarks show no difference in the droop

between optimized and unoptimized code.

 Regarding compiler optimization and energy: energy

reduction is always observed, but the amount of savings can

vary largely benchmark by benchmark.

 Another perspective is the impact of multithreading on voltage

fluctuations and hence reliability. When SPEC programs are run

in the SPECrate mode, the droops increase as we go from 1T to

4T cases.

5. SUMMARY AND CONCLUSION
We conducted experiments to study the impact on compiler

optimizations on the voltage fluctuations during program

execution. Several programs were run with optimized and

unoptimized versions of code from the same program, and

performance, power, energy and voltage fluctuations studied.

We can conclude the following:

 Energy can be dramatically reduced by increasing the

number of threads and performing compiler optimization.

 Performance can be significantly improved by compiler

optimizations.

 Trends in average or maximum power during execution

cannot be correlated in a systematic manner with

performance. The intricacies of the code sequences and the

functional units bring unpredictable trends between

performance and power trade-offs.

 Generally we cannot predict how voltage droop would

change with optimization levels.

 In some cases, performance, power, and voltage droop can be

improved with compiler optimization. (mcf, lbm, etc.)

 Short-runtime could give different results in voltage droop.

Therefore, designers utilizing simulations for such studies

should be careful interpreting simulation results, which are

run with very short time compared to real hardware.

 Voltage droop is not much changed with compiler and

library optimizations in miniFE and HP Linpack. Therefore,

only with compiler optimization, supply voltage reliability is

mainly affected by load-line effect [11], i.e., resistive part

rather than inductive part of processor and power distribution

network circuit.

 If we cannot predict voltage droop change with static

compiler optimization, a dynamic mitigation method can be

useful.

6. ACKNOWLEDGMENTS
Lizy John and Youngtaek Kim are partially supported by NSF

grant 1117895 and by AMD unrestricted research funding. This

work was conducted when Youngtaek Kim was an intern at AMD

Research. We thank lots of AMD people who gave great help and

comments during this research.

7. REFERENCES
[1] Madhavi Valluri and Lizy K. John. Is Compiling For

Performance == Compiling For Power?. In Proceedings of

5th Annual Workshop on Interaction Between Compilers and

Computer Architectures (INTERACT-5), Jan. 2001.

[2] https://software.sandia.gov/mantevo/about.html

[3] Vijay Janapa Reddi, Simone Campanoni, Meeta S. Gupta,

Michael D. Smith, Gu-Yeon Wei, David Brooks, Kim

Hazelwood. Eliminating Voltage Emergencies via Software-

Guided Code Transformations. ACM Transactions on

Architecture and Code Optimization (TACO), vol. 7, iss. 2,

Sep. 2010.

[4] http://www.top500.org/

[5] http://www.netlib.org/benchmark/hpl/

[6] M. Butler, L. Barnes, D. D. Sarma, and B. Gelinas.

Bulldozer: An Approach to Multithreaded Compute

Performance. IEEE Micro, vol.31, no.2, pp.6-15, Mar. 2011.

[7] http://www.open-mpi.org/

[8] http://www.spec.org/cpu2006/

[9] http://developer.amd.com/libraries/appmathlibs/Pages/default

.aspx

[10] http://www.netlib.org/blas/

[11] C. Lefurgy, A. Drake, M. Floyd, M. Allen-Ware, B. Brock, J.

Tiemo, and John Carter. Active Management of Timing

Guardband to Save Energy in POWER7. In Proceedings of

the 44th Annual International Symposium on

Microarchitecture, Dec. 2011.

