
Automatically Selecting Representative Traces for Simulation Based on Cluster 
Analysis of Instruction Address Hashes 

 
Yue Luo and Lizy Kurian John 

The University of Texas at Austin 
Department of Electrical and Computer Engineering 

IBM Mentor: Alex Mericas 
Processor Performance, Advanced CEC Engineering 

IBM Server Group 
 
 
 

Abstract 
 

Simulation of standard benchmarks is the most 
important method for computer architects to evaluate 
architectural enhancement.  However, modern 
benchmarks usually take prohibitively long time to run in 
cycle accurate simulator.  In this paper we propose a 
simple method that is based on clustering analysis of 
instruction address hashes to identify representative 
simulation intervals.  Preliminary results show that the 
instruction address hash is an acceptable feature to 
capture the microarchitectural behavior of benchmarks. 
Future experiment plans are also laid out. 
 
1. Introduction 
 

Simulation of standard benchmarks is the most 
important method for computer architects to study the 
characteristics of workloads and to evaluate design 
tradeoffs.  Modern benchmarks are no longer small 
kernels or synthesized toy programs.  They are very close 
to real world programs and often take a long time to 
execute.  Moreover, modern superscalar microprocessors 
are becoming increasingly complex; thus simulators 
modeling the processors are also becoming complex and 
slow.  As a result, running a benchmark on a detailed 
microarchitecture simulation model can take prohibitively 
large simulation times.  Table 1 shows the number of 
instructions executed by some SPECint2000 benchmarks 
with reference dataset and the time to do the complete 
simulation on a 1GHz Pentium III machine with sim-
outorder, the detailed out-of-order superscalar simulator 
from the SimpleScalar 3.0 tool set. Full system simulation 
of emerging workloads on complete system simulators 
such as SimOS  also often takes prohibitively large 
amounts of simulation time. 

 
 
 
 

Table 1. Number of instructions and simulation time of 
selected SPECint2000 benchmarks with reference data 

set.  The benchmark is shown as program name with input 
data set name. 

 
Since running simulation to completion is impractical, 

a popular practice is to fast forward up to several billion 
instructions to skip the initialization phase of the program, 
and then simulate several hundred of millions of 
instructions in detail.  However, analysis has shown that 
this practice often results in large errors with respect to 
full simulation [1].  Random sampling is easy to 
implement, but often faces problems due to cache state 
loss. Therefore, it is important to develop a methodology 
to select representative sections of traces to accurately 
evaluate processor design.   

An ideal trace selection scheme should meet the 
following criteria: 

1. The error of metrics (e.g. IPC, cache miss rate) 
of simulation of selected trace with respect to full 
simulation is small.  This requires the scaled down trace 
preserve the key characteristics of the execution, such as 
thread-level and fine-grain parallelism, temporal and 
spatial locality of the memory references, predictability of 
branches, operating system activity, distribution of time 
spent in program segments, etc. 

2. The selected trace is a small portion of the full 
trace so that simulation time can be greatly reduced. 

3. The trace selection method is microarchitecture 
independent.  If the selected trace is representative of the 
full simulation on only a specific hardware configuration, 

Benchmark Number of 
instructions 
(million) 

Simulation 
time (hour) 

gcc-166 46917 52.2 
bzip2-source 108878 104.9 
eon-rushmeier 57870 63.8 
gzip-graphic 103706 173.1 
vortex-1 118976 110.6 
vpr-route 84068 98.9 
crafty 191882 221.4 



it is not of much use because simulations are usually 
employed to study various hardware enhancements.   

4. The trace selection method is simple to 
implement and fast to execute.  If trace selection takes as 
much time as full simulation, we would rather choose the 
latter. 

5. The trace selection method is flexible.  It can not 
only be used with single-process user-code-only simulator 
(e.g SimpleScalar), but also work with multiprocessor full 
system simulator (e.g. SimOS).  

In this project, we investigate an automatic 
representative trace selection scheme based on cluster 
analysis of instruction address hash.  We compare the new 
scheme with published research and explore the design 
space. 

 
2. Related Work 
 

Ever since the standard industry benchmarks became 
unwieldy for detailed simulation, researchers have been 
devising methods to reduce traces and simulation time.  
Yet no one single method has been adopted as the 
standard practice in computer architecture research 
community. 

One of the traditional ways to reduce workloads for 
simulators is to reduce the problem size.  MinneSPEC [3] 
is a set of reduced input set for SPECcpu2000.  It reduced 
the simulation time by 20% to 50%.  But it still takes too 
long to simulate. Also, it requires an understanding of 
each application in order to produce a reliable, reduced 
input dataset.  But there is no systematic method to design 
the reduced data set, which is the biggest problem for this 
approach. 

Another means of reducing the runtime cost of 
processor simulation is time sampling.  The sampling 
points within the program are chosen either randomly or 
uniformly or non-uniformly.  The advantage of time 
sampling is that it provides good coverage.  But  cache 
state loss problem is a difficulty encountered when 
sampled traces are used. Also, it is difficult to decide on 
the sample size and skip size. Sampling does not take 
advantage of the phase behavior commonly observed in 
program execution [4].  In one phase, the program 
repeatedly execute the same part of the code and follows 
similar path every time.  Therefore, multiple samples in 
one phase are usually redundant because they give very 
close results in all aspects.   

A better approach than random sampling is 
representative sampling, which chooses representative 
samples that accurately reflect an application’s runtime 
behavior.  Representative trace selection is usually based 
on cluster analysis, a technique widely used in data 
mining to identify patterns in data.  SPEClite [5] uses 
such technique.  First the benchmark is run on an Itanium 
machine.  Performance counters are used to gather event 
counts every 1 million instructions.  Since the processor 

has 4 event counters, the benchmark is run multiple times 
to gather the 29 performance metrics.  Every 1-million 
instruction sample interval is represented as a 29-
dimension vector.  The 29 metrics are not totally 
independent, so principal component analysis is 
performed to identify the five principal metrics.  Thus the 
dimension of the vector for each sample interval is 
reduced to 5.  Finally, cluster analysis is conducted on the 
new vectors.  One cluster identified is a group of sample 
intervals that exhibit similar behavior.  The interval that is 
closest to the cluster centroid is chosen to be the 
representative sample for all the samples in that cluster. 
The number of intervals in that cluster is the weight for 
this sample.  The results show that 0.1% representative 
sampling can be as accurate as 3% uniform sampling.  
That is 30X reduction in simulation time over uniform 
sampling.  The main disadvantage of SPEClite is its 
dependence on microarchitecture.   The metrics are 
collected on a specific processor.  There is no guarantee 
that the selected sample intervals are sill representative on 
a different processor.   In addition, it is hard to 
synchronize the sample intervals between measurement 
on real hardware and simulator.  This will become 
unachievable when server workloads are studied.  Every 
execution of the same multi-threaded program on a 
machine will be different.   

SimPoint [1] is another representative sampling 
method.  It runs ATOM instrumented binary, which is 
much faster than cycle-accurate simulator (sim-outorder), 
to gather Basic Block Vectors (BBV) for each 100 
million-instruction interval.  A basic block is a section of 
code that is executed from start to finish with one entry 
and one exit.  They use the frequencies with which basic 
blocks are executed as the metric to compare different 
sections of the application’s execution to one another.  A 
Basic Block Vector is a single dimensional array, where 
there is a single element in the array for each static basic 
block in the program. The dimension of BBV (static basic 
block count) ranges from 2,756 to 102,038.   Clustering 
method become ineffective at such high dimensionality.  
So random projection is used to reduce the dimension to 
15. And then cluster analysis is performed to come up 
with the representative samples and weight for each 
sample.  SimPoint has the main advantage of 
microarchitecture independence.  It guarantees that the 
highly executed part of code (hotspots) will be sampled.  
However, SimPoint suffers from two disadvantages.  
First, BBV is difficult to get.  Second, the basic block 
concept does not scale to full system simulation of 
servers.  When interrupt happens, it may break a basic 
block.  Also, it is hard to separate the instruction streams 
of different processes running the same code. 

 
R-metric [2] is a metric proposed by Iyengar et al to 

measure the representativeness of the reduced trace. A 
basic block that is qualified by the branching history of 



length k and by the preceding (n-1) qualified basic blocks 
is called a fully-qualified basic block ω with parameters n 
and k. R-metric R(n, k) is defined as: ∑ ×−×=

ω ττ ωωω
τ

)())()((
||

1
),( , sizecountscaledknR T

 

∀ fully qualified basic blocks ω with parameters n, k 
such that 

0))()(( , ≥− ωωτ TT countscaled  

where  
)(ωτcount  is the number of occurrences of qualified 

basic block w in the reduced trace τ 
)(, ωτTscaled  is the expected scaled count for  in a 

representative trace of size |τ| 
)(ωsize is the number of instructions in ω 

R-metric is more rigorous than BBV because it 
incorporates not only the execution frequency of each 
basic block, but also the path of the execution (i.e. how 
one basic block is reached).  Iyengar et al [2] also gives 
an algorithm to calculate the reduced trace while retaining 
the representativeness (minimizing the R-metric).  
Because path information is taken into consideration, the 
number of fully qualified basic blocks is at least one order 
larger than the number of basic blocks.  This makes the 
algorithm’s time complexity very high.  As a result R-
metric is used at IBM to evaluate the representativeness 
of the reduced trace, but how to come up with such a 
reduced trace still relies on trial-and-error and the 
expertise of the performance engineer. 

 
3. Algorithm 
 

We  use instruction address hash to represent one trace 
interval.  And then cluster analysis is conducted to select 
the representative trace intervals. Hash vector HV is a 
one-dimension array of N elements initialized to 0.  
HashFun() is a hashing function.  It takes an address as 
input and generates an integer in the range of [0, N-1].  
When an instruction at address addr is executed, the 
operation done on HV is HV[HashFun(addr)]++.  The 
result is a hash vector for each trace interval.  Then cluster 
analysis is performed on all the hash vectors to select the 
representative intervals. 

The underlying idea of instruction address hash is 
similar to BBV.  Both assume that the execution 
frequency of every static instruction has a major impact 
on the execution behavior of the code, and that the 
microarchitecture metrics such as IPC, cache miss rate are 
decided by execution behavior.   Yet, instruction address 
hash shows two major advantages over BBV.  First, it is 
much easier to obtain than BBV.   It is very complicated 
and expensive to compute basic block-based parameters.  
Functional simulators such as sim-safe in SimpleScalar, 
or ARIA, an IBM internal tool, can run much faster than 
cycle accurate simulators.  With one pass of functional 

simulation, we can get all the hash vectors.  Second, the 
concept of instruction address hash scales to full system 
simulation.  As long as there are instructions executing, 
we can easily get the hash vectors, whereas the meaning 
of BBV is not clear if multiple processes are running with 
system interrupts coming in to break a basic block from 
time to time. 
 
4. Preliminary Results and Future Plans 
 

Establishing validity of the proposed scheme requires 
extensive experimentation. Preliminary results are 
presented here. We simulated selected SPECint2000 
benchmarks with SimpleScalar tool set.  Statistics are 
collected for every 100 million-instruction interval as in 
SimPoint.  With the sim-outorder simulator, 
microarchitecture metrics such as IPC, cache miss rate, 
branch misprediction rate are collected for each interval.  
The hash vector of each interval is collected with sim-
safe, the functional simulator. 

 
4.1 Relation between instruction address hash 
and performance metrics 

 
First we wish to decide if instruction address hash is a 

feature representative of the behavior of the execution 
interval.  A good representative feature must have the 
following property:  If two intervals show very similar 
features, the performance metrics should also be very 
close.  In this experiment, the dissimilarity of hash vectors 
is measured by their Manhattan distance.  The vector is 
first normalized so that the sum of all the N elements 
equals to 1.  The Manhattan distance of two vectors a and 
b is computed as ∑−

=

−=
1

0

||),(
N

i
ii babaistManhattanD  

The distance has a range of [0,2]. If two vectors are the 
same, they bear a distance of 0.  The more dissimilar the 
two vectors are, the larger the distance is.   Figure 1 
shows the relationship between the Manhattan distance 
and relative cycle difference between intervals.   The x-
coordinate of a data point is the distance between the hash 
vectors of two intervals and the y-coordinate is the 
relative difference in cycles between the two intervals.  
The data points close to the origin show that if the 
distance of hash vectors of two intervals is small, the 
difference in cycles is also small.  Figure 2 shows the 
relationship between average distance and average 
relative difference in cycles. Each data point in Figure 2 is 
the result of the moving average of the data points in 
Figure 1.  It clearly shows the distinct characteristic of the 
benchmarks.  For gcc-166, there is a large range of 
distance, indicating varying code execution frequency.  It 
also shows a large variation of CPI in different parts of 
the code.  Though gzip-graphic, also executes different 



part of the code with different frequency, the CPI does not 
change much at different portions of the code.  On the 
other hand, vpr-route does not exhibit large variation in 
code frequency, but its CPI range is relative large 
indicating drastically different microarchitectural 
behavior at different parts of the code.  Finally, there is 
crafty, which does not change much in either code 
frequency or CPI.  However different the benchmarks 
may be, each line starts from the origin, and the difference 
in cycles increases with the distance of hash vectors. 
Therefore, instruction address hash appears to be an 
acceptable feature to describe and distinguish trace 
segments. 

 

 
(a) gcc-166 

 

 
 (b) gzip-graphic 

Figure 1.  Correlation between distance of hash vectors 
and difference in cycles (Manhattan distance, 16 

dimensions) 
 

 Figure 2. Correlation between average distance of hash 
vectors and average difference in cycles (Manhattan 

distance, 16 dimensions) 
 

4.2 Number of simulation intervals 
 
The number of intervals in the reduced trace 

corresponds to the number of clusters because we select 
exactly one interval from every cluster to represent all 
intervals in the cluster.  How to choose the number of 
clusters (k) is a difficult question and there is no agreed-
upon method in the data mining research community.   
SimPoint chooses the k to maximize Bayesian 
Information Criterion (BIC) score.  However, all such 
methods in data mining try to find the natural clusters in 
the data, so they avoid splitting a cluster if there is no 
clear cluster structure within it.  Our goal is different: we 
try to minimize the distance between intervals inside a 
cluster.  Therefore, when the average distance is large, we 
have to split the cluster to ensure small error in 
performance metrics even if the data points (intervals) in 
the cluster do not show any sub cluster structure.  Figure 2 
can give us some guidance on choosing the number of 
simulation intervals.  For gcc, a large number of intervals 
have to be simulated to reduce the final error, because the 
CPI is very different from interval to interval.  On the 
other hand, a couple of intervals may be enough for crafty 
because it does not show much variation.  Figure 2 is 
drawn after full detailed simulation of the benchmarks.  
Therefore it is impractical to use it as a guidance in real 
work.   We are looking into the vast body of sampling 
theory for solving this problem. 

 
4.3 R-metric 

 
R-metric is a very rigorous metric to evaluate the 

representativeness of the reduced trace.  It is used inside 
IBM to test the quality of the reduced trace.  We plan to 
investigate how the instruction address hash relates to R-
metric.  We also want to explore the method to combine 
R-metric with cluster analysis to automatically select 
simulation intervals that show small R-metrics with 
respect to the full simulation.  

 



4.4 Other Clustering Algorithms 
 
There are many clustering algorithms as a result of 

active research in the data mining community.  Both 
SPEClite and SimPoint use k-means method.   K-means 
algorithm is easy to implement and exhibits low time 
complexity.  However, it is known to be susceptible to 
outliers.  In addition, it does not directly give the 
representative interval of each cluster.  It uses the centroid 
of a cluster to represent the cluster.   A centroid does not 
correspond to any real data point, so after cluster analysis 
the interval closest to the centroid is chosen to represent 
the cluster.   On the other hand, another clustering 
algorithm, k-medoids, directly selects one data point 
(medoid) to represent a cluster.   K-medoid methods are 
very robust to the existence of outliers.  In addition, 
clusters found by k-medoid methods do not depend on the 
order in which the objects are examined.  We plan to try 
CLARANS method [5], which is a recent k-medoid 
method with relatively low time complexity.  We want to 
investigate the impact of the different clustering 
techniques on the final simulation error. 

 
4.5 Dimensionality 

 
BBV has up to hundreds of thousands of dimensions.  

At such high dimension, clustering algorithms suffer from 
the so-called “curses of dimensionality” if simple 
Euclidean distance is used.  SimPoints uses random 
projection to reduce the dimension to 15.  It projects the 
original high dimension data to a randomly selected 15-
dimension space.  The projection matrix is filled by 
random value between –1 and +1.  Hashing is similar to 
the random projection used in SimPoint.  Both methods 
try to reduce the dimensionality of the data.  But hashing 
is much simpler.  It is equivalent to randomly put +1 in 
the projection matrix and it does the matrix multiplication 
on the fly.  Obviously, when the dimension is over-
reduced, two data points (intervals) that is separable in the 
original high dimension space may become too close.  
Therefore, the quality of clustering will suffer.  Since 
researchers in data mining have proposed using cosine 
distance to do clustering directly at high dimensionality, 
we plan to investigate the impact of dimension reduction 
and search for the optimal dimensionality. 

 
4.6 Distance Measurement 

 
For any clustering technique, the choice of distance to 

measure the dissimilarity of two intervals is very 
important.  In the above example, we used Manhattan 
distance after the sum of elements of every hash vector is 
normalized to 1.  SPEClite and SimPoint use Euclidean 
distance after the dimension is reduced to 5 or 15.  Cosine 
distance is a newly proposed distance metric, which has 
been successfully applied to cluster analysis of web text 

[6].  We plan to investigate the difference of Manhattan 
distance and cosine distance. 

 
Acknowledgements: This research is supported by the 
IBM Center for Advanced Studies. It is also partly 
supported by the National Science Foundation under grant 
0113105. 
 
References 
 
[1] T. Sherwood, E. Perelman, G. Hamerly, B Calder, 
“Automatically Characterizing Large Scale Program 
Behavior”, Proceedings of ASPLOS X, 2002. 
[2] V. S. Iyengar, L. H. Trevillyan, P. Bose, 
"Representative Traces for Processor Models with Infinite 
Cache", Proceedings of HPCA-2, 1996. 
[3] A. KleinOsowski, D. J. Lilja, “MinneSPEC: A New 
SPEC Benchmark Workload for Siumulation-Based 
Computer Architecture Research”, Computer Architecture 
Letters, vol 1, number 2, 2002. 
[4] J. Cook, R. L. Oliver, E. E. Johnson, “Examining 
Performance Differences in Workload Execution Phases”, 
Proceedings of the Fourth Annual IEEE International 
Workshop on Workload Characterization, 2001 
[5] R. T. Ng, J. Han, “Efficient and Effective Clustering 
Methods for Spatial Data Mining”, Proceedings of the 
20th VLDB Conference, 1994 
[6] A.Strehl, J. Ghosh and R. Mooney, "Impact of 
Similarity Measures on Web-page Clustering", in Proc. 
AAAI workshop on AI for Web Search, K. Bollacker 
(Ed), TR WS-00-01, AAAI Press, July 2000, pp. 58-64. 
 
 


