Using Statistical Theory to Study Issuesin Microprocessor Simulation

Yue Luo and Lizy K. John

Department of Electrical and Computer Engineering
The University of Texas at Austin
luo@ece.utexas.edu ljohn@ece.utexas.edu

IBM Technical Contact: Alex Mericagrocessor Performance, Systems Group

Abstract benchmarks on detailed microarchitecture simulation
models can take prohibitively large simulation times.
Simulation of benchmarks has been the most importantTElb'E 1 shows the time to simulate selected SPECint2000

tool for computer architects to evaluate computer designs.benchmarks on a 1GHz Pentium Ill machine with sim-
In this paper, we employ statistical theory to study sdver outorder, the detailed out-of-order superscalar simulator
key issues in microprocessor simulation. Sampling is anfrom the SimpleScalar 3.0 tool set [2]. It usually takes
effective technique to reduce simulation time. SomesSeveral days to simulate one program. Some berrkbma
approaches in the past use large number of small samplesin the suite, which we could not afford to fully study,
while some other approaches use fewer numbers of largefequire weeks of simulation time.

Samp|es_ While fewer numbers of |arger chunks is Table 1. Number of instructions and simulation
convenient, we study autocorrelation in programs and time of selected SPECint2000 benchmarks with

demonstrate that large chunks of continuous instructions reference data set. The data set name is
do not capture additional information from the instruction integrated with the benchmark name.
stream. The high autocqrrelati_on demonstrated by Benchmark Number of | Simulation
programs favors small sampling units. ingtructions | time (days)
Simulation is often used to evaluate the speedup of some (million)
microarchitectural enhancement. By applying ratio gcc-166 46,917 2.2
estimator in sampling theory we quantify the error of bzip2-source 108,878 4.4
speedup measurements. Our result shows that speedup has eon-rushmeier 57,870 27
smaller sampling error than CPI. gzip-graphic 103,704 7.2
Next, we examine the validity of several reduced data vortex-1 118,976 4.6
sets for SPECint 2000. Using reduced data sets is an vpr-route 84,068 4.1
alternative to sampling, when one wants to reduce crafty 191,882 9.3

simulation time. Although the reduced data sets show CPIs

vastly different from the reference data sets, the speedup Since full simulation is impractical, a popular praciite

from the reduced data set is not statistically differeotfr ~ computer architecture research is to fast forwaribb#l of

the speedup from the reference data set. Confidencanstructions to skip initialization phase of the progrand

interval of speedup should be used as a guide to set targethen simulate in detail several hundred million camtigs

accuracy for designing new simulation techniques. Suchinstructions. However, previous work has shown that this

future research needs to focus on more efficient andpractice often results in large errors with respecfutb

accurate warm-up mechanisms. simulation [12, 16]. To reduce simulation time yetiret
good accuracy, researchers have employed many other
technigques. Sampling and using reduced input sets are two

1. Introduction of them.

Simulation of standard benchmarks has been the most Sampling techniques simulate multiple chunks of
popular method for computer architects to study the designcontinuous instructions selected from the complete
tradeoffs. Modern benchmarks are no longer small kernelgnstruction stream. The instruction stream for sirtiote
or synthesized toy programs. Instead, they are Vesgc remains the same as the original, but only a smattidra
to real world programs and often take a long time to Of the original instruction stream is actually simulated i
execute. Moreover, modern superscalar microprocessoréletail resulting in greatly reduced simulation times. oA |
are becoming increasingly complex; and so are theOf work has been done in this area. However, much

simulators modeling the processors. As a result, runningrésearch work follows an ad-hoc approach: the newly
proposed technique is evaluated solely experimentally in a

few test cases to demonstrate its accuracy. Conge. ¢4] implications. As discussed in Section 5, it providegetr
applied sampling theory to processor simulation. They accuracies for designing new simulation methods.
show how to calculate the confidence interval to quantify

the error. Recently, Wunderlich et. al. [17] used sampling 2- Autocorrelation and itsimplication on

theory as guidance to design systematic samplingSamplesize

simulation. These statistical sampling approaches alow

confidence interval to be calculated to quantify the Before going on, we first clarify some basic termimglo
accuracy of the simulation without Simulating the whole because the same terms are often used diﬁerent|y in
instruction stream. different research papers. We follow the established
MinneSPEC [11] is representative of the reduced inputterminology in statistical sampling theory. The oridiiog
set approach. It consists of a set of reduced inputt@ets instruction stream is divided intdN non-overlapping
SPECcpu 2000 benchmarks. Therefore, when MinneSPEChunks ofm continuous instructions. Each chunk is a basic
is used, even though the benchmark programs remain th@imulation unit, or @ampling unit The sampling unit size
same, the dynamic instruction stream is smaller thanof is the number of instructions in each chunk).(The
the reference data set. KleinOsowski et. al [11] aliyef populationrefers to all the chunks that constitute the full
profiled the SPEC programs and crafted the reduced inpuinstruction stream.Population sizes the total number of
set so that MinneSPEC shows a program path profile verysampling units in the full instruction stream, dendeth
similar to that of the reference data set. this paper. Asampleconsists of selected chunks that are
In this paper, we employ statistical sampling theory to actually simulated and measured (In practice, more
study several important issues in microprocessorinstructions are simulated for warming up
simulation. First, we examine the problem of samplinig microarchitecture). The number of sampling units in a
size. That is, we try to determine how large a chuhk (t sample is thesample sizeexpressed as. The ratio of
basic sampling unit) should be to achieve certain simnlat sample size and the population size is sempling
accuracy while simulating as few instructions as possibl fraction, denoted by the lettér (=n/N).
Some approaches in the past use large number of small For convenience, systematic sampling is often used but
samples [17], while some other approaches use fewelis shown to be equivalent to simple random sampling in
numbers of larger samples [16]. While fewer numbers of processor microarchitectural simulation [17]. The @PI
larger chunks is convenient, it is important to know each sampled unit is measurgd, (=1, .., n). The CPI of

whether increasing the chunk size really capturesw@rg the full simulation (population meam,) is estimated as
information than a smaller chunk. We study s 1Q (eq 2.1)
Y=y=o2y, '
i=1

autocorrelation in programs to investigate the infation
content of the instruction stream and its variatior wine.
Our investigation indicates high autocorrelation in the) . ~))
studied programs, favoring small sampling units. confidence interval of at confidence level (&1 is
Another contribution of the paper is the use of ratio (Y= 20125, Y + Z012Sy) (eq2.2)
estimator to quantify accuracy of common metrics used in\yhere z.,,, is the (1a/2) quantile of a unit normal
simulation. ~ Traditionally, analysis of simulaton _ o R
methodologies has been based on achieving accurate CHlistribution, ands; is the standard deviation of.

(Cycles Per Instruction). However, the goal of most The final error of sampling simulation comes fromot
simulation is to quantify the impact of some sources. The first source is the measurement éreor
microarchitectural enhancement. Often, the final restilt jnaccuracy in measuring the CPI of each samplinig).un
simulation is the speedup, not the absolute value of ©PI. T get the accurate CPI of a sampling unit, theesthall
section 3, we show how to use sampling theory to design anmjcroarchitectural structures in the simulator mibst
experiment to quantify the accuracy of speedup. We showgorrect at the beginning of the sampling unit.piactice, a
that the sampling error in speedup estimation isnymber of instructions before the sampling unit are
significantly less than the error in CPI estimation. simulated tovarm upthe structure to obtain approximately
Next, we compare different reduced input sets to answercorrect microarchitectural states. Currently, theosm
the question: which data set is the most represeetafiv. 5ccurate warm up is by functionally simulating eland
the reference data set. We view SPECint 2000 as a samplgranch predictor throughout the full instructioream [10,
from all CPU intensive integer programs. We observe tha 17]. we assume that the measurement error is iteglig
none of the reduced input sets are statistically this section. The second type of error, whictésfocus of
representative enough for CPI estimations, but athefn thjs paper, comes from sampling itself, which ididated

are suffiqiently representative for s_pee_du_p estimates. by the variancesz. Similarly, we use theoefficient of
The view that a benchmark suite is just a sample from Y

the set of programs that it represents has importamvariation (cov=gy /y) to indicate the relative error. For

When normal distribution assumption applies, the

example, following Equation 2.2 at confidence lewél
99% the relative error of measured CPI is less thagov.

In sampling simulation of microprocessors, we face
unique question: we need to determine the number ofdifferent benchmarks on different scales. Mostchemarks
instructions in a sampling unitm{. For example, if we
have a budget of simulating 500 million instructprio
achieve a small error, should we simulate 5 chafilkkDO
million instructions each, or 5000 chunks of 100,00
instructions each? And why?

In this study, we assume that the warm up overlead
constant. Although rarely true in practice, thiswsption

enables us to focus on the inherent property of thesmall

benchmark instruction stream instead of beingdiman to
a particular warm up scheme. We begin by studyfirey
autocorrelation of the instruction stream. The GPé&ach
sampling unit is measured. The sequence of thes,CPI
ordered in time, becomes a time seri@atocorrelation

function of a time seri@a, Vo, .

Autocorrelation

Y is defined as

A= Z(Y W~ y)/Z(y -9 (eq 2.3)

is the correlatlon coefficient betm

neighbor sampling units with a lag (distancel.of

Autocorrelation

1.0
0.8
06 a5 " M
0.4 .h-‘.-::‘m-n“
gy %’&f&?ﬂf&fiﬁ
0.0 T
BT X Tt R R A A

-0.2

0 20 40 60 80 100

million instructions
——(cc-166 —s— bzip2-source A crafty eon-rushmeier‘
—%—Qzip-graphic ~—e—\ortex-1 —+— \pr-route

Figure la. Autocorrelation of CPI with 1 million

Autocorrelation

1.0

0.8

o ’%‘M\

0.2 Tz,

Axa

AAAAA‘AAAAA AAAA}AAAA
A odad
o i

LY VY
ey
700

0.0

-0.2

-0.4

-0.6
0

30

20 50
100 million instructions

—o—gcc-166
—%— gzip-graphic —e—\ortex-1

—s— bzip2-source A crafty

eon-rushmeiet
—+— \pr-route

Figure 1b. Autocorrelation of CPIl with 100 million

instruction sampling unit

The full simulations of the 7 benchmarks in Tablaré

divided into sampling units.

Figure 1 shows the

autocorrelation of CPI of the sampling units fore th
benchmarks. The two sub-figures show the autdedioe

of different scale.

In Figure 1a, each sampling im1

million instructions, whereas the sampling unitesig 100
million instructions in Figure 1b.
It is clear that the autocorrelation curve is difa for

show a decreasing autocorrelation with increasing
distances, but some exhibit periodicity in theirl @&lues.
In this study we focus on the sign of the autodatien.
Most benchmarks show high positive autocorrelatiah.
few benchmarks exhibit some negative autocorrelatio
values but the negative values have smaller maimigeLg.
gzip-graphic in Figure 1a, bzip2-source in Figubd. 1At
lags all the benchmarks show high positive
autocorrelation, which means that the CPI of omepsag
unit is closely related to the units in its closgghborhood.
The sign of autocorrelation especially at small slag
determines the effectiveness of larger samplingspurais
shown next.

As we have pointed out earlier, the standard dewiaf
the sample meansg() is used to evaluate the accuracy of

the sample design. The smaller the standard dewijatie
more accurate the sample result is. We ¢jgg to denote

our baseline standard deviation: sampling unit sizen
instructions and sample size ofunits. To evaluate the
benefit of larger sampling unit, we compare two
approaches of reducing the standard deviationthdrfirst
approach, we choose a sampling unit size thattimes
larger {*m instructions) whiling keeping the sample size
constant an. Let s (j) denote the standard deviation in

this case. In the second approach, the sampligiae is
not changed, but we take¢imes more units.g (j) is used

to denote the new standard deviation. Pleasethatehe
two approaches have the same number of measured
instructions jfm*n). It can be shown [1] that

5,(1) = }’Bwheres—m (eq 2.4

and

8,(J)= (.1) (eq 2.5)

Equation 2.4 and 2.5 show that the benefit of iasirey
sampling unit size is decided by the autocorretatip If
the neighbor sampling units are uncorrelatag@), then
the two approaches give the same accurqux)(:&y(j)).

If neighbor sampling units show positive correlatio
(>0), then increasing sample unit size is not effiti
(s;(j)>s,(j))- On the other hand, if neighbor sampling

units are negatively correlategn€0), then increasing
sample unit size gives more accurate result thareasing
sample size § (j)<s(j)). Please also note that the

autocorrelationa, with different lagh has different weight
on the final result. The smaller the l&gis, the larger
impact it has on the final result.

As shown in Figure 1, the autocorrelations are Iyost
positive especially when the lag is small, resgltim
s;(j)>s,(j). Therefore, using larger sampling unit size is

does not give good improvement in accuracy. Talas
the conclusion, we calculats,(j) and s (j) from their

definition (not from Equation 2.4 and 2.5). Theuea
normalized tos, @ is plotted in Figure 2. The base

sampling unit is 1 million instructions in Figurea 2
(m=1¢P), and 100 million instructions in Figure 210%).
The x-axis isj, the normalized number of measured
instructions. Because different benchmarks shdfgrdnt
autocorrelation, thegy(j) curve is different for each

benchmark. But all benchmarks share the same)

curve (with legend “small-unit” in the figure). dtires 1
and 2 clearly reflect the relationship between
autocorrelation and standard deviation of CPI emtid by
Equation 2.4.
autocorrelation. As a result, it shows the larggahdard
deviation as the sampling unit size increases guréi 2a.
On the other hand, the autocorrelation of bzipZa®us
the lowest in Figure la. Thus it exhibits the letve
standard deviation in Figure 2a for larger sampling. At
the granularity of 100 million instructions, bzigBurce
shows some negative autocorrelation in Figure tbitss
standard deviation is very low in Figure 2b, eveeriap
the “small-unit” line for some points. This medhat up to
600 millions, increasing the sampling unit size ds
effective as taking more sampling units. Part oftex’s
autocorrelation is also negative, but the negatiakies
come too late. The positive autocorrelation wita small
lag has larger weight, resulting in relative higanslard
deviation for large sampling size in Figure 2b. W& can
see from Figure 2, except for a couple of point®zip2-
source, larger sampling unit does not give as narcbr
reduction in any of the benchmarks. Take crafgmfr
Figure 2b as an example. Suppose we use a chuhB0of
million instructions as a sampling unit and the 95%
confidence interval i when simulating crafty. If we
increase the chunk size to 1 billion instructiomsl &eep
the number of chunks the same, then we can onlgoexp
limit the error to 0.88, a marginal gain. However, if we
keep the chunk size as 100 million instructionst bu
sampling 10 times more chunks, then our error limgit
reduced to 0.32 even though the total number of
measured instructions stays the same as in theopsev
case.

To understand this result, we can consider coroalats
similarity or predictability. To get good sampling
accuracy, we want CPIs of our sample to cover ashnas
possible the CPI range of the population. Howeifea,
sampling unit shows high correlation to its neightiben
adding its neighbor to the simulation provides Iditt
additional information or coverage because the himg
unit is very similar to the original sampling urahd its

behavior is highly predictable with what we haveeatly

sampled. Therefore, simulating larger chunks of
instructions is not effective at improving sampling
accuracy.

One may expect the high autocorrelation to be ¢saltr
of phase behavior. If a program exhibits phasetieh a
sampling unit will show very similar CPI to its gbbor
units in the same phase. However, our experintenws
that high autocorrelation is more universal tharaggh
behavior. Figure 3 shows the CPI of every 100 iomill
instruction sampling unit for two benchmarks: verieand
crafty. Vortex-1 has been the subject of many ehas
behavior researches, whereas the CPI graph ofycsft
close to noise to human’s eyes. However, bothHreadks
exhibit high autocorrelation as shown in Figure 1b.

We believe that the underlying reason for high
autocorrelation is temporal locality. Because eshporal
locality, a sampling unit executes similar code andesses

In Figure la, gcc-166 has the highes similar data as its close neighbor, which resuitsvery

similar CPI as its neighbor. Temporal locality Haesen
proven to be a basic behavior of all programs armctists

on a wide range of scales (e.g. microprocessor ecach
hierarchy). Therefore, it is no surprise to ses timiversal
non-negligible autocorrelation in the instructiotream
simulation.

Normalized Standard Deviation

—e—(gcc-166

—— bzip2-source
crafty
eon-rushmeier

0.6

—x— gzip-graphic

04
—e—\ortex-1

—+— \pr-route

0.2
—=— small-unit

0 T T T T

0 20 40 60 80 100
Normalized number of sampled instructions (j)

(a) Base unit size is 1 million instructions

Normalized Standard Deviation

—e—(Qcc-166

—a— bzip2-source
—a— crafty
eon-rushmeier

—x— gzip-graphic
—e—\ortex-1
—+— \pr-route

—=— small-unit

10 20 30 40 | .50
Normalized number of sampled instructions (j)

Figure 2. Normalized standard deviation CPI for
different sampling unit sizes

vortex-1

16
1.4 \ r{
N Y A M

S 1 |
o |
008

0.6 L’“J

0.4

0.2

0 T T T T T
0 200 800 1000 1200

i?w%?ruction%oaoo million)
Figure 3a. CPI of every 100 million instruction
unit for vortex-1

Crafty

25

15 i

CPI

1

0.5

0

0 500 1500 2000

1000
instructions (100 million)
Figure 3b. CPI of every 100 million instruction
unit for crafty

In summary, the instruction stream shows high pasit
autocorrelation between close neighbor samplingsuve
have demonstrated mathematically that the
autocorrelation favors small sampling unit. Ousute
shows that simulating larger and larger continudusnks
of instructions is not an effective way to impr@aacuracy.
Because of the ubiquity of temporal locality, this
conclusion is expected to hold true for almospedigrams.

A word of caveat may be in order here. In the abov
discussion, we assume that the overhead of warns-up
constant.
increases if we reduce the sampling unit size aorease
the sample size. As such, the sampling unit sipeld be
a trade-off between accuracy and the simulatiomheaesl
depending on the specific warm-up scheme.

3. SAMPLING ERRORSIN SPEEDUP AND

CPI

Previous research on sampled simulation of
microprosessor generally focuses on the accuraGpobr
IPC. However, the goal of a simulation is usudlly
evaluate the benefit of some architectural enhaengnm
which case, the absolute value of CPI may not kelpv
important. Instead, an accurate estimate of teedyp is
often a more desired metric. We define the spe@&lap
the ratio of the CPI before the enhancement toa@tet the
enhancement when the same benchmark is run. There
nothing wrong with pursuing accurate CPI value beea
more accurate estimation of CPI will naturally desn
better accuracy of speedup. However, the accdoadhe
two metrics show different properties as we shedl later.

In reality, the warm-up overhead usually 4,

We employ the ratio estimator in sampling theory to
calculate the speedup and to quantify its erroor éach
sampling unit, there are two characteristigsandx; (i=1,

2, .., N). We randomly take a sample of simeand
measurey; andx, of each sampled unit1, 2, ...,n). Our
goal is to estimat®&, the ratio of the population meanyof

N N
to the population mean of (R=y /X = / x)

Based on sampling theory,is estimated as

R=%=iyi ix (eq 3.1)
i=1 i=1
Its variance is estimated as
V(R) = %(35 +R’s? - 2Rs,,) (eq 3.2)
2% =9 - %)

n-1

If the sample is large enough so that the normal
approximation applies, the confidence intervalRazan be
obtained as

(R=2 4 \V(R) R+ 2, \V(R)- (€934

Based on the above theory, we propose the following

high steps to calculate the speedup and quantify its error.

1. Divide the full instruction stream intd chunks ofm
continuous instructions. Take a systematic sample or
random sample of size
Measure the CPI of each sampled unit before the
architectural enhancement. Record all the CR)s (
Measure the CPI of theamesampled units after the
enhancement. Record all the CBji% (
Calculate the speedup, its standard deviation and
confidence interval with equations 3.1 through 3.4.
The key point is to make sure the same sampled units
are measured in the two simulation steps. Two problems
can potentially prevent us from achieving this. Firsthg t
instruction stream may be different in each run ofstme
benchmark. For a user mode simulator like SimpleScalar
this is caused by operating system calls (e.g gettimeofday
returning different result in each run. For examplgwio
runs of gcc-166, the difference in the number of dynamic
instructions was 332,372. Although this difference only
accounted for 0.00071% of the total instructions executed,
it would cause different units to be sampled in the twsru
because of the small sampling unit size (1,000 — 10,000
instructions). To solve this problem, one must make sur
that the dynamic instruction stream in each run istgxac
the same. In our experiment, we first captureeilodrace
with SimpleScalar sim-eio utility. Then all the bendrin
programs are run with the eio trace to guarantee the sam
instruction sequence. Secondly, the architecture siiolat
events are aligned with clock cycles, not instructidrigs
can cause problem for simulating superscalar processors,
which are capable of committing multiple instructionsin
single clock cycle. Suppose that one sample unit is from

2.

3.

instruction #100 to #199. In the first simulation,

size for the speedup is only a small fraction of thatOBI.

instructions #98-#101 are committed in the same cycle. Inlt will take fewer simulated instructions to achievee th

the second simulation with
enhancement, instructions #99-#103 are committed in one

the microarchitectural same accuracy for speedup than for absolute CPI value.
Table 2. Processor configurations

cycle. Obviously, the sampling units cannot be exakdy t

same in the two runs if we count whole cycles. €hae

two ways to solve the partial cycle problem. In thstfir

solution, ifi instructions are committed in one cycle, we
(artificially) allocate 1 cycle to every instruction in this
cycle. In the above example, instruction #100 and #101 in

Parameter 8-way (baseline) 16-way
Machine Width| 8 16
RUU/LSQ size| 128/64 256/128
32KB 2-way L1 |1 & |64KB 2-way L1 |1& D,
Memory Systen] D, 2 ports, 4 ports,

Unified 1M 4-way L2

Unified 2M 8-way L2

the first run will be counted as 2/4=0.5 cycles. This

4-way 128 entries

4-way 128 entries

approach strictly meets the ratio estimation requirgrbet ITLB/DTLB |4Way 256 entries | 4-way 256 entries
requires some additional book keeping. The other simpler 200 cycle miss 200 cycle miss penalt
approach, which we opted for in our experiment, use§——mm—— penalty
larger sample unit size. We start and stop measurithge at Latency Y1 1/12/100 cycles 1/16/100 cycles
boundary of clock cycles, but because of the large sampl 2 -ALU 16 FALU
unit (10,000 instructions) the misalignment of the samplg _ 12 -MuLUDIV 8 I-MUL/DIV
units in the two runs is negligible. Functional Units 2 EP-ALU 16 FP-ALU

We conducted an experiment to show the validity of 1 FP-MUL/DIV 4 FP-MUL/DIV

applying ratio estimation theory to sampled simulation.
Eight benchmarks from SPECcpu 2000 are simulated in
modified SimpleScalar 3.0 sim-outorder simulator, which
performs the above systematic sampling procedures. Ead

51Branch Predictor

h

Combined 2K tables
7 cycle misprediction
penalty

1 prediction/cycle

Combined 8K tables
10 cycle mispredictiorn
penalty

2 predictions/cycle

sampling unit is 10,000 instructions and 3,000 units in

every benchmark are simulated. Caches and branch ..,

predictors are continuously warmed up functionally as in 16000

14000

@ 8-way cpi
m 16-way cpi

[10, 17]. 4,000 instructions before every sampling unit are

O speedup

simulated with cycle accurate simulator to warm up other §12000
microarchitecture structure. An 8-way and a 16-way out- = “;iz

of-order superscalar processor are simulated to calculate &

. - - - 0
the speedup. The microarchitecture configurations are = .,

given in Table 2 [17]. 2000
The results are shown in Table 3. Table 3a shows the 0
CPI result for the 8-way configuration. “Sampling result”

art

| [|

equake

lucas

bzip2-
source

gce-166 vpr-route

gzip- vortex-1

random

column shows the CPI computed by sampling whereas Figure 4. Sample size required to achieve 2%

“True value” is the CPI from the full simulation bynsi
outorder. The actual relative error is shown in it
column. The estimated coefficient of variation (CQY¥)
shown in column 3. Table 3b shows the result for 16-way
configuration in the same format. The results for dppe

of 16-way machine vs 8-way machine are shown in Tabled
3c. The second column is the speedup calculated from
Equation 3.1 whereas the “True value”
ratio of the true CPIs of the two configurations. C@Y
speedup is shown in column 3.

First, we examine the coefficient of variation, which
indicates the error solely due to sampling. In all
benchmarks the speedup invariably shows smaller COV
than the CPI. The resultant benefit is that to aehie
specific limit of relative error, even fewer samplinnits
need to be measured than in CPI. Suppose that we veant ti}
relative error to be within 2% at the confidence levke
95%. The required sample size can be calculated fro
Equation 2.2 for CPI and Equation 3.4 for speedup. The
result is shown in Figure 4. Though required sample Sizeexperiment
varies greatly from benchmark to benchmark, the sample '

Equation 3.1.

is calculated as the

relative error at 95% confidence level

This conclusion may seem counter-intuitive at firshe T
speedup is calculated as the ratio of two CPls as in
Then how could the speedup be more
accurate than each CPI? The answer lies in thetHatt
ifferent parts of the benchmark program usually benefit
similarly from the microarchitectural enhancement even
though the absolute value of CPI may vary widely during
the execution. COV is an indicator of the degree of
variation in the population. The value of speedup is more
uniform among the sampling units than the value of CPI,
resulting in a smaller COV, and a tighter confidence
interval for the speedup.

Next, we look at the actual error, which consists of the
sampling error discussed above and the error due to
naccuracy in the measurement of the CPI of eachplkam

unit. The latter is mostly caused by inadequate warm-up of
mIarge microarchitecture structure. The most accuvaten-
up scheme [10, 17] in the literature is used in our
The caches and the branch predictor are

warmed up throughout the full simulation, but they are only used to evaluate computer performance. However, the
functionally simulated for most of the time. The reference data set takes such a long time to run theat it
speculative behavior is not modeled except for during theimpractical to use it to evaluate multiple microarchitesl

units that are simulated in detail. In some benchmé#hlss, alternatives by simulation. Besides sampling, reduced data
measurement error becomes dominant. For exampley giveset is another approach to reduce simulation time. The
a sample size of 3000, the COV for vpr-route is so small same program is executed and cycle accurate simulation is
that at 99% confidence level, the relative error af @PI done throughout the whole execution. But the input data
on the 16-way machine should be within 1.91%. However, set to the benchmark program is reduced resulting in much
the actual error is about 4%, so it is almost certtzén the shorter simulation time. Reduced data sets for SPECint
final error mainly consists of the measurement errbne 2000 include train, test and MinneSPEC. Test is not
error due solely to sampling decreases quickly when weintended to perform any simulations, while MinneSPEC is
increase the sample size. If we can accurately measire a small data set specifically designed for microprawess
30 million instructions (0.02%-0.06% of total dynamic simulation. Previous research evaluate the reduced data
instructions), the error in speedup will be below 1.5% for sets by comparing one program by one program the
all benchmarks except gcc. However, in reality the absolute value of CPI and other microarchitecture ngetric
measurement error due to imperfect warm-up quickly between the reduced data set and the reference d§fa set
becomes a limiting factor on the accuracy. Therefore 7].

future research on new simulation methodology needs to In this section, we take a different approach to evaluate
focus on more efficient and accurate warm-up techniques. the reduced data sets. Firstly, we recognize that tHefjoa

Table 3a. CPI for 8-way configuration a simulation experiment is to assess some architectural
Benchmark Sampling | COV True Reative improyement. Therefore, the accuracy in speedup & oft
result (%) value | error (%) more important than the accuracy in absolute CPI value.
art 1.0451] 0.7114 1.0442 0.0869 We will compare both CPI value and speedup. Secondly,
equake 1.3438 0.7937 1.3448 0.0707 Wwe do not base our conclusion on one to one comparfson o
lucas 24237 1.2774 2.4931 2.7825 benchmarks or on the “average” error. Instead, we vie
bzip2-source 0.6003 1.3915 0.5959 0.7322 SPECint 2000 as a sample from all the CPU intensive
gcc-166 0.5057 1.581¢4 0.5042 0.3037 integer programs in the world (the population). We assume
vpr-route 15603 0.2238 1.5410 1.2502 that SPECint 2000 is a simple random sample. (Unless
gzip-random 04243 0.8194 0.4224 0.4608 there is some randomness in the sampling, no statisti
vortex-1 10451 0.7112 1.0442 0.0869 theory can be developed for the approach and no statisti
Table 3b. CPI for 16-way configuration conclusion can be made about the population). By
Benchmark Sampling | COV True Relative comparing the reduced data sets, we are trying to find out if
result (%) value | error (%) they represent the same “population” as the referenee dat
art 0.5866| 0.6810 0.5923 0.9586 set does. As long as the populations are the same, the
equake 0.9309 0.6480 0.9318 0.1006 reduced data sets are equivalent to the reference data set
lucas 22679 1.4612 2.3535 3.5973 when used to evaluate the performance improvement of
gce-166 0.2816 2.421p 0.2714 3.7609 |f the populations are the same, then the median of the
vpr-route 1.3519 0.243p 1.3301 1.6409 hopulation should be the same. This question is best
gzip-random 0.3509 0.8923 0.34p8 1.2279 3nswered by hypothesis testing. Because we do not know
vortex-1 03235 07408 0.31q3 42485 the distribution of the CPI, we choose Wilcoxon signed
Table 3c. Speedup (16-way vs 8-way) rank test, which does not assume normal distribution, to
Benchmark Sampling | COV True Relative test the equality of the population median. The test
result (%) value | error (%) requires that the sampling units be independent of each
art 1.7816] 0.2770 1.7630 1.05%6 other. However, in some data set, one benchmark pnogra
equake 14437 0.3558 1.4482 0.0300 js run with several input sets. For example, the bzip2
lucas 1.0681 0'274; 1.0598 0.8452 program has 3 input sets in the reference data sevioRs
b(z:lcpﬁés:urce 11'725’5397 1()'1?1“70 11'82;_,388 ,féséfg research [5] has shown that the performance metrics for
g . Ty Y : : these input sets to the same benchmark program may be
vpr-route 1.1541 0.1300 1.1586 0.3844 : NS .
gzip-random 12123 0.1488 1.2215 0.7577 auite similar; thus their CPI and speedup are not
vortex-1 15689 02807 1.5942 1.7003 !ndependent_ of each other. If a program takes r_nultlple
input sets within one data set, we calculate the aritbmet
4. Comparing reduced data sets mean as the value for this program. As we cannotchftor

fully simulate the reference data set in sim-outorderyse
SPECcpu 2000 comes with three data sets: referencethe sampling method in the previous section to gatreer th
train, and test. Only the reference data set is supposed t speedup and CPI for reference data set. The sampling

method will incur some small errors, but they are igdge
compared to most errors in the reduced data set. The
relative errors in CPI and speedup of the different reduced

Table 4 Wilcoxon signed rank test of different
reduced data sets

d .
data sets are plotted in Figure 55ome benchmarks show Metrics ReduceTtlgtataset p—valuoeoeMs
very large errors when reduced input sets are used. Again CPlon8-way Train 0.02734
we see the repeated pattern: the error in speedup is offen ~ machine MinneSPEC 0.04881
much smaller than the error in CPI. It is also ieséing to Test 0.03711
note that the average error of test, train and MinneSPEC CP!on 16-way Train 0.01953
data set are close, with MinneSPEC showing an edgein th machine MinneSPEC 0.03711
speedup estimation. Then we use Wilcoxon signed rank Speedup (16- Test 0.999
test to test if the median of the two populations thes pflz g?v\sa)Way Train 0.375
same. Each reduced data set (test, train and MinneSPEC) i ' Y MinneSPEC 0.6953

tested against the reference dataset in terms of CBF 0

way machine, CPl on 16-way machine, and the speedup. Relative error in CPI on 8-way machine

The Wilcoxon test result is summarized in Table 4. We o.é——mest

choose a significance level of 0.05. Except for thedatt 58 & train

set on the 8-way machine, which barely passes theates 0.6 O MinneSPEC

this significance level, none of the reduced data setshiea 8;3

same median CPI as the reference data set. Howdver, a 037 2

the p-values for the speedup are above the significance 021{'@% Il; j]}

level. Therefore, using the reduced data set to evatuate 07

speedup in our experiment is not statistically differennfro & S & &£ & @*& é@* @@ &

using the reference data set. e T
By comparing different data set, we are not only Relative error in CPl on 16-way machine

interested in the population mean, but also we wantdo se 1

whether the populations follow the same distributiorthéf b Btest l

population distribution is the same, then the distributibn e mtrain

the sample mean will also be the same. To visualtyvsh 0.5 8 MinneSPEC

the distribution of sample mean, we employ bootstrapping 93 | |

[6], a modern computer-simulated, nonparametric 027 E ;[l]z iﬁ

technique to statistical inference. In our experimert, 0

draw 10,000 resamples. The histograms of the CPI and & S S & & @& o

speedup are shown in Figure 6. The x-axis is deliberately ¢ ¢ v € & °

drawn on the same scale for easy comparison. kvi®as _ _

that the distribution of the sample mean CPI fornesfee 5 Relative errorin speedup (16-way vs 8-way)

data set is far from normal. Furthermore, differdata set 0451 W test

shows vastly different distributions. The multiple pefks 0.35 B train

sample mean CPI distribution of reference data sethare 0.3 1 0 MinneSPEC

result of several programs (notably, mcf) showing 0‘02,3:

distinctively higher CPI than others. This propertynis 0-01?:

retained in test and MinneSPEC, where the CPIs ohall t (5 1 H I [I i Ij

benchmarks are closer to each other resulting in narrow 0-

and single-peak distribution. However, for the more S eSS fS & & & Q@@

important metrics, the speedup, the distributions of e TE S

different data set are more similar to each other. In _ . .

addition, the distribution of the sample mean of thedpee [19ure 5. Relative e”ogseg different reduced data

also looks more like normal distribution. A quantile-

guantile plot of the reference speedup against normal

distribution (Figure 7) shows that the distribution oé th
speedup of reference data set is fairly close to the alorm
distribution (but with slightly shorter tails).

1 we were not able to run perlbmk or parser in tineutitor, so we have
results for out of 12 SPECint benchmarks. Foredoedtatistical result,
more benchmarks are needed.

In summary, none of the reduced data set (test, train,
MinneSPEC) represents the reference data set in m@rms
CPI. However, one can use any of the reduced data set to
evaluate the speedup and draw the statistically same
conclusion about the performance of the processor. This
interesting observation is currently based only on our
experiment of two processor configurations. Although we
expect that the reduced data set and reference datalset wi

show more similarity in speedup than in CPl, more confidence interval of the speedup. We show that at the
experiments are needed to test its general applicability. same accuracy level, speedup requires smaller sample size
. . than CPI, so it is more efficient to estimate thefictence
5. Confidenceinterval of speedup interval directly with our method. Wunderlich et. also
showed that smaller sampling unit is more effective than
Computer designers run benchmarks to evaluate desigarge sampling unit that had been commonly used in
alternatives, but no user runs these benchmarks in theiprevious research. The evolution of SimPoint also éshib
everyday work. Therefore, the real question a computerthe trend of smaller sampling units. The precursor of
designer is trying to answer is: how well will thexquuter ~ SimPoint [15] simulated a large chunk (300 million) of
design perform for all CPU intensive workload in the wiorl instructions. The original SimPoint [16] used several 100
based on the result of the SPECcpu suite? To answer thmillion instruction chunks. In Variance Simpoint [14jet
question, we view SPECint as a random sample from alllatest version of SimPoint, on average about 100 chuinks o
CPU-intensive integer programs and calculate thel million instructions are simulated. We confirmed
confidence interval for the mean speedup. The previousWunderlich et. al's conclusion but we have further
section has shown that the mean speedup approximatelgxplored the underlying reason by studying the
follows the normal distribution. Therefore, Equatio2 2 autocorrelation of the instruction stream. We shaat this
can be used to calculate the confidence interval. temo ~ phenomenon is caused by high autocorrelation inside the
method is to use bias corrected bootstrapping [6], whichinstruction stream, which is an expected result of temporal
does not rely on the assumption of a particular underlyin locality.
distribution. The results are shown in Table 5. Tl la

column is the limit of relative error converted fraime Table 5. The confidence interval of speedup on a
confidence interval. We can see that bias corrected 16-way processor vs 8-way processor
bootstrapping often results in tighter interval. Confidence | Estimation | Confidence | Equivalent
The confidence interval can serve as guidance for target level method interval relative

accuracy when the computer architecture researcher error limit
designs future simulation techniques. If the limit chtiek Normal | (1.214, 1.441) 8.59
error is 8%, then the error in simulating each benckhmar 95% distribution
programs should be much smaller than 8% (e.g 1%). On Bias (1.232, 1.449) 8.29
the other hand, we should not shoot for unnecessary Corrected
accuracy such as an error of 0.1%, which will be vialste diglt(r)imﬁl)n (1.179, 1.476) 11%
of simulation resources. The current sampling sinuriati 99% Bi

. - ias (1.208, 1.485) 10%
gives an error below 4% (Table 3). It is close to ntket Corrected

requirement but smaller errors are still desirable.
Furthermore, most of today's microarchitectural
enhancement in literature does not offer a speedupges lar e
as the difference between a 16-way processor and an 8-way
processor. Therefore, the confidence interval fervthole
benchmark suite will be tighter and even smaller erirors
each benchmark program simulation are required.

1.5

14

6. Related work

Sample Guantiles

1.3

Wunderlich et. al. [17] proposed using multiple small
sampling units to get accurate simulation CPl. They

1.2

employed sampling theory to calculate the confidence = : : , ,
interval and to select the sample size at a givemracg -4 -z 0 2 a
requirement. SimPoint is another recently proposed Theoretical Guanles

sampling simulation scheme. It uses cluster analysistba Figyre 7. Quantile-quantile plot of the speedup of

on basic block vector to select representative simulation reference data set against normal distribution.
chunks. The latest version allows the user to quatitidy The line, which passes through the 1% and 3"

error in CPI with a confidence interval on the anai quartiles, is for comparison.

architecture for which the full simulation was done. Our

work focuses on measuring speedup instead of CPI, which

is more important to computer designers. More Hsu et. al. [8] compared the IPC and path profile of test
sophisticated sampling theory is employed to calculate thetrain, and reference data set. They studied how the

Test CPlI8-way Test CPl 18-way

Test Speedup 16-way

Density
0 2z 4 B 8 10 12
Density

oz 4 & & 10 12 14
6

r T T T 1
05 1.0 15 20 25

Train CPl 18-way
Train CPl 8-way

Density
20 A
Density

1.0
001 2 3 4 5 &6

00
o

MinneSPEC CPI 16-way

MinneSPEC CP| 8-way

it
01 2z 3 4 5 6 7
Density
4

Density
15 2n

1.0

05

00

Figure 6. Bootstrapped distribution of sample mean of CPI

difference will affect the effectiveness of profile skd instead of comparing program by program. While our
optimization. They found that the test data set idrfan study confirms that the CPI is quite different between th
the reference data set. Although the train datesdagtier reference and reduced data sets, we show that using
than the test data set, it still differs from theerefice data reduced data set to evaluate speedup will not result in
set significantly. Haskins et. al. [7] studied thefeténce statistically different conclusion.

in IPC, L1 data cache miss rate, and branch mispredicti Viewing the small set of benchmark programs as only a
rate between train, MinneSPEC and reference data setsample, and calculating the confidence interval to quantify
They concluded that the reduced input simulation canthe result of performance have been demonstrated in
produce significant errors in important program textbooks for computer architects [9, 13]. However, this
characteristics. Eeckhout et. al [5] did similar corrgmer technigue has seldom been used when researchers report
with principal component analysis and clustering analysis. their results based on a benchmark suite. We show the
They concluded that for some benchmark programs theconfidence interval using bootstrapping method without the
reduced data set is representative of the referencesefata normal distribution assumption. The confidence interval
whereas for others the behavior of reduced data settes qui can guide researchers to set target accuracy when iggsign
different. Recognizing the importance of speedup, we new simulation techniques.

compare the reduced data sets with reference data set in

terms of both CPI and speedup. We employed statistical

theory to compare the population each data set repsesen

7. Conclusion

In this paper, we employ statistical theory to study
several topics in microprocessor simulation. We computelS]
the autocorrelation within the instruction stream tovp
that a small sampling unit (1,000 — 10,000 instructions) is
more effective than large sampling unit at improving
simulation accuracy, as long as the warming up overhead®!
has not become the Ilimiting factor. We show
mathematically that the exhibited autocorrelation bairav
favors small sampling units.

We have applied ratio estimator and extended previous
sampling simulation method to calculate the speedup with
guantifiable accuracy. Our result shows that to aehéev
specified accuracy, it is not necessary to measuratiRé (8]
same accuracy. Speedup can be accurately measured with
fewer instructions sampled than CPI.

We have compared different reduced data set (test, train,
and MinneSPEC). We view the SPECint suite as a randomt9
sample from the population of all CPU intensive integer]
benchmarks it represents. We tested the population ofean
each reduced data set against the reference data set ahtf]
plotted the distribution of sample mean by bootstrapping.
We found that none of the reduced data sets can represent
the reference data set in terms of CPI because thmy sh
different median values and widely different distributions. [11]
However, in our experiment, reduced data sets are not
statistically different from the reference data seemwhsed
to evaluate the speedup. In addition, the sample mean o
the speedup approximately follows the normal distribution.
Confidence interval is useful for the users to evaltiate
performance of computers, and for researchers to get tar
accuracy when designing new simulation methods.

Ideally, only a tiny portion of the full dynamic
instruction stream is needed to get accurate speedu
estimation, and the sampling error can be easily reduged
increasing the sample size. In reality, however whaen-
up overhead is dominant in simulation time. The error in
the measurement of each sampling unit due to imperfect
warm-up quickly becomes the limiting factor on accuracy.
Future research in sampling simulation methodology needs[15]
to focus on more efficient and accurate warm-up
mechanisms.

[7]

f
[12]

I&ls]

[14]

8. References
[16]
[1] Banks, J., Carson, J.S., and Nelson, B.L. Descrete-Event
System Simulation. 2nd ed. Prentice Hall, 1999.
[2] Burger, D. and Austin, T.M. The SimpleScalar tool set,
version 2.0. Technical Report 1342, Computer Sciences
Department, University of Wisconsin-Madson, June 1997. [17]
[3] Cochran, W.G. Sampling Techniques, 3rd ed. John Wiley &
Sons, 1977.
[4] Conte, T. M., Hirsch, M. A. and Menezes, K. N. Reducing

state loss for effective trace sampling of superscalar

processors. In Proceedings of the 1996 International
Conference on Computer Design (ICCD) (October 1996),
468-477.

Eeckhout, L., Vandierendonck, H. and Bosschere, K.D.
Quantifying the impact of input data sets on program
behavior and its applications. Journal of Instruction-Level
Parallelism, Volume 5, April 2003

Efron, B. and Tibshirani, R.J. An Introduction to The
Bootstrap. Chapman & Hall. New York 1993.

Haskins, J. W. Jr., KleinOsowski, A. J., Skadron, K. and
Lilja, D. J. Techniques for accurate, acceleratedgssor
simulation: analysis of reduced inputs and sampling." Tech
Report CS-2002-01, University of Virginia Dept. of
Computer Science, Jan. 2002.

Hsu, W.C., Chen, H., and Yew, P.C. On the predictatufity
program behavior using different input data sets, In
Proceedings of the 6th Workshop on Interaction between
Compilers and Computer Architectures, (February 2002), 45-
53.

Jain, R.. The Art of Computer Systems Performance
Analysis. John Wiley & Sons, Inc. 1991.

Jimeno-Ochoa, L.M., Ibez, P. and Vials, V. Warm time
sampling: fast and accurate simulation of cache memary. |
Proceedings of the 22nd. Euromicro International
Conference (September 1996), 39-44.

KleinOsowski, A.J. and Lilja, D.J. MinneSPEC: A new
SPEC benchmark workload for simulation-based computer
architecture research, Computer Architecture Letters,
Volume 1, June, 2002.

Lafage, T. and Seznec, A. Choosing representative slices o
program execution for microarchitecture simulations: A
preliminary application to the data stream. In Proceedings of
the Third IEEE Annual Workshop on Workload
Characterization (September 2000), 102-110.

Lilja, D.J. Measuring Computer Performance: A
Practitioner's Guide. Cambridge University Press, Nevk,
NY, 2000

Perelman, E., Hamerly, G. and Calder, B. Picking
statistically valid and early simulation points. In é¥edings
of the International Conference on Parallel Architectunes a
Compilation Techniques (September 2003), 244-255.

Sherwood, T., Perelman, E., and Calder, B. Basic block
distribution analysis to find periodic behavior and siniatat
points in applications. In Proceedings of the International
Conference on Parallel Architectures and Compilation
Techniques (September 2001), 3-14.

Sherwood T., Perelman E., Hamerly G., and Calder B.
Automatically characterizing large scale program bedravi
In Proceedings of the International Conference on
Architectural Support for Programming Languages and
Operating Systems (October 2002), 45-57.

Wunderlich, R.E., Wenisch, T.F., Falsafi, B., and Hag, J
SMARTS: Accelerating microarchitecture simulation via
rigorous statistical sampling. In Proceedings of the 30th
Annual International Symposium on Computer Architecture
(June 2003), 84-95.

