
Using Statistical Theory to Study Issues in Microprocessor Simulation

Yue Luo and Lizy K. John
Department of Electrical and Computer Engineering

The University of Texas at Austin
luo@ece.utexas.edu ljohn@ece.utexas.edu

IBM Technical Contact: Alex Mericas, Processor Performance, Systems Group

Abstract

Simulation of benchmarks has been the most important

tool for computer architects to evaluate computer designs.
In this paper, we employ statistical theory to study several
key issues in microprocessor simulation. Sampling is an
effective technique to reduce simulation time. Some
approaches in the past use large number of small samples,
while some other approaches use fewer numbers of larger
samples. While fewer numbers of larger chunks is
convenient, we study autocorrelation in programs and
demonstrate that large chunks of continuous instructions
do not capture additional information from the instruction
stream. The high autocorrelation demonstrated by
programs favors small sampling units.

Simulation is often used to evaluate the speedup of some
microarchitectural enhancement. By applying ratio
estimator in sampling theory we quantify the error of
speedup measurements. Our result shows that speedup has
smaller sampling error than CPI.

Next, we examine the validity of several reduced data
sets for SPECint 2000. Using reduced data sets is an
alternative to sampling, when one wants to reduce
simulation time. Although the reduced data sets show CPIs
vastly different from the reference data sets, the speedup
from the reduced data set is not statistically different from
the speedup from the reference data set. Confidence
interval of speedup should be used as a guide to set target
accuracy for designing new simulation techniques. Such
future research needs to focus on more efficient and
accurate warm-up mechanisms.

1. Introduction
Simulation of standard benchmarks has been the most

popular method for computer architects to study the design
tradeoffs. Modern benchmarks are no longer small kernels
or synthesized toy programs. Instead, they are very close
to real world programs and often take a long time to
execute. Moreover, modern superscalar microprocessors
are becoming increasingly complex; and so are the
simulators modeling the processors. As a result, running

benchmarks on detailed microarchitecture simulation
models can take prohibitively large simulation times.
Table 1 shows the time to simulate selected SPECint2000
benchmarks on a 1GHz Pentium III machine with sim-
outorder, the detailed out-of-order superscalar simulator
from the SimpleScalar 3.0 tool set [2]. It usually takes
several days to simulate one program. Some benchmarks
in the suite, which we could not afford to fully study,
require weeks of simulation time.

Table 1. Number of instructions and simulation
time of selected SPECint2000 benchmarks with

reference data set. The data set name is
integrated with the benchmark name.

Since full simulation is impractical, a popular practice in
computer architecture research is to fast forward billions of
instructions to skip initialization phase of the program, and
then simulate in detail several hundred million contiguous
instructions. However, previous work has shown that this
practice often results in large errors with respect to full
simulation [12, 16]. To reduce simulation time yet retain
good accuracy, researchers have employed many other
techniques. Sampling and using reduced input sets are two
of them.

Sampling techniques simulate multiple chunks of
continuous instructions selected from the complete
instruction stream. The instruction stream for simulation
remains the same as the original, but only a small fraction
of the original instruction stream is actually simulated in
detail resulting in greatly reduced simulation times. A lot
of work has been done in this area. However, much
research work follows an ad-hoc approach: the newly
proposed technique is evaluated solely experimentally in a

Benchmark Number of
instructions

(million)

Simulation
time (days)

gcc-166 46,917 2.2
bzip2-source 108,878 4.4

eon-rushmeier 57,870 2.7
gzip-graphic 103,706 7.2

vortex-1 118,976 4.6
vpr-route 84,068 4.1

crafty 191,882 9.3

few test cases to demonstrate its accuracy. Conte et. al. [4]
applied sampling theory to processor simulation. They
show how to calculate the confidence interval to quantify
the error. Recently, Wunderlich et. al. [17] used sampling
theory as guidance to design systematic sampling
simulation. These statistical sampling approaches allow a
confidence interval to be calculated to quantify the
accuracy of the simulation without simulating the whole
instruction stream.

MinneSPEC [11] is representative of the reduced input
set approach. It consists of a set of reduced input sets to
SPECcpu 2000 benchmarks. Therefore, when MinneSPEC
is used, even though the benchmark programs remain the
same, the dynamic instruction stream is smaller than that of
the reference data set. KleinOsowski et. al [11] carefully
profiled the SPEC programs and crafted the reduced input
set so that MinneSPEC shows a program path profile very
similar to that of the reference data set.

In this paper, we employ statistical sampling theory to
study several important issues in microprocessor
simulation. First, we examine the problem of sampling unit
size. That is, we try to determine how large a chunk (the
basic sampling unit) should be to achieve certain simulation
accuracy while simulating as few instructions as possible.
Some approaches in the past use large number of small
samples [17], while some other approaches use fewer
numbers of larger samples [16]. While fewer numbers of
larger chunks is convenient, it is important to know
whether increasing the chunk size really captures any more
information than a smaller chunk. We study
autocorrelation in programs to investigate the information
content of the instruction stream and its variation with time.
Our investigation indicates high autocorrelation in the
studied programs, favoring small sampling units.

Another contribution of the paper is the use of ratio
estimator to quantify accuracy of common metrics used in
simulation. Traditionally, analysis of simulation
methodologies has been based on achieving accurate CPI
(Cycles Per Instruction). However, the goal of most
simulation is to quantify the impact of some
microarchitectural enhancement. Often, the final result of
simulation is the speedup, not the absolute value of CPI. In
section 3, we show how to use sampling theory to design an
experiment to quantify the accuracy of speedup. We show
that the sampling error in speedup estimation is
significantly less than the error in CPI estimation.

Next, we compare different reduced input sets to answer
the question: which data set is the most representative of
the reference data set. We view SPECint 2000 as a sample
from all CPU intensive integer programs. We observe that
none of the reduced input sets are statistically
representative enough for CPI estimations, but all of them
are sufficiently representative for speedup estimates.

The view that a benchmark suite is just a sample from
the set of programs that it represents has important

implications. As discussed in Section 5, it provides target
accuracies for designing new simulation methods.

2. Autocorrelation and its implication on
sample size

Before going on, we first clarify some basic terminology
because the same terms are often used differently in
different research papers. We follow the established
terminology in statistical sampling theory. The original full
instruction stream is divided into N non-overlapping
chunks of m continuous instructions. Each chunk is a basic
simulation unit, or a sampling unit. The sampling unit size
is the number of instructions in each chunk (m). The
population refers to all the chunks that constitute the full
instruction stream. Population size is the total number of
sampling units in the full instruction stream, denoted N in
this paper. A sample consists of selected chunks that are
actually simulated and measured (In practice, more
instructions are simulated for warming up
microarchitecture). The number of sampling units in a
sample is the sample size, expressed as n. The ratio of
sample size and the population size is the sampling
fraction, denoted by the letter f (=n/N).

For convenience, systematic sampling is often used but
is shown to be equivalent to simple random sampling in
processor microarchitectural simulation [17]. The CPI of
each sampled unit is measured (yi , i=1, .., n). The CPI of
the full simulation (population mean, Y) is estimated as ∑

=
==

n

i
iy

n
yY

1

1ˆ (eq 2.1)

When normal distribution assumption applies, the

confidence interval of Ŷ at confidence level (1-α) is
),(2/12/1 yy szyszy αα −− +− (eq 2.2)

where 2/1 α−z is the (1-α/2) quantile of a unit normal

distribution, and ys is the standard deviation of Ŷ .

The final error of sampling simulation comes from two
sources. The first source is the measurement error (i.e.
inaccuracy in measuring the CPI of each sampling unit).
To get the accurate CPI of a sampling unit, the state of all
microarchitectural structures in the simulator must be
correct at the beginning of the sampling unit. In practice, a
number of instructions before the sampling unit are
simulated to warm up the structure to obtain approximately
correct microarchitectural states. Currently, the most
accurate warm up is by functionally simulating caches and
branch predictor throughout the full instruction stream [10,
17]. We assume that the measurement error is negligible in
this section. The second type of error, which is the focus of
this paper, comes from sampling itself, which is indicated
by the variance 2

ys . Similarly, we use the coefficient of

variation (cov= ysy /) to indicate the relative error. For

example, following Equation 2.2 at confidence level of
99% the relative error of measured CPI is less than 2.58cov.

In sampling simulation of microprocessors, we face a
unique question: we need to determine the number of
instructions in a sampling unit (m). For example, if we
have a budget of simulating 500 million instructions, to
achieve a small error, should we simulate 5 chunks of 100
million instructions each, or 5000 chunks of 100,000
instructions each? And why?

In this study, we assume that the warm up overhead is
constant. Although rarely true in practice, this assumption
enables us to focus on the inherent property of the
benchmark instruction stream instead of being tied down to
a particular warm up scheme. We begin by studying the
autocorrelation of the instruction stream. The CPI of each
sampling unit is measured. The sequence of the CPIs,
ordered in time, becomes a time series. Autocorrelation
function of a time series y1, y2, …, yN is defined as ∑ ∑−

= =
+ −−−=

hN

i

N

i
ihiih yyyyyy

1 1

2)(/))((ρ , (eq 2.3)

Autocorrelation is the correlation coefficient between
neighbor sampling units with a lag (distance) of h.

Figure 1a. Autocorrelation of CPI with 1 million
instruction sampling unit

Figure 1b. Autocorrelation of CPI with 100 million
instruction sampling unit

The full simulations of the 7 benchmarks in Table 1 are
divided into sampling units. Figure 1 shows the
autocorrelation of CPI of the sampling units for the
benchmarks. The two sub-figures show the autocorrelation
of different scale. In Figure 1a, each sampling unit is 1

million instructions, whereas the sampling unit size is 100
million instructions in Figure 1b.

It is clear that the autocorrelation curve is different for
different benchmarks on different scales. Most benchmarks
show a decreasing autocorrelation with increasing
distances, but some exhibit periodicity in their CPI values.
In this study we focus on the sign of the autocorrelation.
Most benchmarks show high positive autocorrelation. A
few benchmarks exhibit some negative autocorrelation
values but the negative values have smaller magnitude (e.g.
gzip-graphic in Figure 1a, bzip2-source in Figure 1b). At
small lags all the benchmarks show high positive
autocorrelation, which means that the CPI of one sampling
unit is closely related to the units in its close neighborhood.
The sign of autocorrelation especially at small lags
determines the effectiveness of larger sampling units, as
shown next.

As we have pointed out earlier, the standard deviation of
the sample mean (

ys) is used to evaluate the accuracy of

the sample design. The smaller the standard deviation, the
more accurate the sample result is. We use)1(ys to denote

our baseline standard deviation: sampling unit size of m
instructions and sample size of n units. To evaluate the
benefit of larger sampling unit, we compare two
approaches of reducing the standard deviation. In the first
approach, we choose a sampling unit size that is j times
larger (j*m instructions) whiling keeping the sample size
constant at n. Let)(jsy

 denote the standard deviation in

this case. In the second approach, the sampling unit size is
not changed, but we take j times more units.)(jsy′ is used

to denote the new standard deviation. Please note that the
two approaches have the same number of measured
instructions (j*m*n). It can be shown [1] that

B
j

s
js y

y

)1(
)(= , where

h

j

h j

h
B ρ)1(21

1

1
∑−

=
−+= (eq 2.4)

and

j

s
js y

y

)1(
)(=′ (eq 2.5)

Equation 2.4 and 2.5 show that the benefit of increasing
sampling unit size is decided by the autocorrelation ρh. If
the neighbor sampling units are uncorrelated (ρh=0), then
the two approaches give the same accuracy ()(jsy

=)(jsy′).

If neighbor sampling units show positive correlation
(ρh>0), then increasing sample unit size is not efficient
()(jsy

>)(jsy′). On the other hand, if neighbor sampling

units are negatively correlated (ρh<0), then increasing
sample unit size gives more accurate result than increasing
sample size ()(jsy

<)(jsy′). Please also note that the

autocorrelation ρh with different lag h has different weight
on the final result. The smaller the lag h is, the larger
impact it has on the final result.

Autocorrelation

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100
million instructions

gcc-166 bzip2-source crafty eon-rushmeier
gzip-graphic vortex-1 vpr-route

Autocorrelation

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50
100 million instructions

gcc-166 bzip2-source crafty eon-rushmeier
gzip-graphic vortex-1 vpr-route

As shown in Figure 1, the autocorrelations are mostly
positive especially when the lag is small, resulting in

)(jsy
>)(jsy′ . Therefore, using larger sampling unit size is

does not give good improvement in accuracy. To validate
the conclusion, we calculate)(jsy

 and)(jsy′ from their

definition (not from Equation 2.4 and 2.5). The value
normalized to)1(ys is plotted in Figure 2. The base

sampling unit is 1 million instructions in Figure 2a
(m=106), and 100 million instructions in Figure 2b (m=108).
The x-axis is j, the normalized number of measured
instructions. Because different benchmarks show different
autocorrelation, the)(jsy

 curve is different for each

benchmark. But all benchmarks share the same)(jsy′

curve (with legend “small-unit” in the figure). Figures 1
and 2 clearly reflect the relationship between
autocorrelation and standard deviation of CPI as dictated by
Equation 2.4. In Figure 1a, gcc-166 has the highest
autocorrelation. As a result, it shows the largest standard
deviation as the sampling unit size increases in Figure 2a.
On the other hand, the autocorrelation of bzip2-source is
the lowest in Figure 1a. Thus it exhibits the lowest
standard deviation in Figure 2a for larger sampling unit. At
the granularity of 100 million instructions, bzip2-source
shows some negative autocorrelation in Figure 1b, so its
standard deviation is very low in Figure 2b, even overlap
the “small-unit” line for some points. This means that up to
600 millions, increasing the sampling unit size is as
effective as taking more sampling units. Part of Vortex’s
autocorrelation is also negative, but the negative values
come too late. The positive autocorrelation with the small
lag has larger weight, resulting in relative high standard
deviation for large sampling size in Figure 2b. As we can
see from Figure 2, except for a couple of points in bzip2-
source, larger sampling unit does not give as much error
reduction in any of the benchmarks. Take crafty from
Figure 2b as an example. Suppose we use a chunk of 100
million instructions as a sampling unit and the 95%
confidence interval is e when simulating crafty. If we
increase the chunk size to 1 billion instructions and keep
the number of chunks the same, then we can only expect to
limit the error to 0.89e, a marginal gain. However, if we
keep the chunk size as 100 million instructions, but
sampling 10 times more chunks, then our error limit is
reduced to 0.32e, even though the total number of
measured instructions stays the same as in the previous
case.

To understand this result, we can consider correlation as
similarity or predictability. To get good sampling
accuracy, we want CPIs of our sample to cover as much as
possible the CPI range of the population. However, if a
sampling unit shows high correlation to its neighbor, then
adding its neighbor to the simulation provides little
additional information or coverage because the neighbor
unit is very similar to the original sampling unit and its

behavior is highly predictable with what we have already
sampled. Therefore, simulating larger chunks of
instructions is not effective at improving sampling
accuracy.

One may expect the high autocorrelation to be the result
of phase behavior. If a program exhibits phase behavior, a
sampling unit will show very similar CPI to its neighbor
units in the same phase. However, our experiment shows
that high autocorrelation is more universal than phase
behavior. Figure 3 shows the CPI of every 100 million
instruction sampling unit for two benchmarks: vortex-1 and
crafty. Vortex-1 has been the subject of many phase
behavior researches, whereas the CPI graph of crafty is
close to noise to human’s eyes. However, both benchmarks
exhibit high autocorrelation as shown in Figure 1b.

We believe that the underlying reason for high
autocorrelation is temporal locality. Because of temporal
locality, a sampling unit executes similar code and accesses
similar data as its close neighbor, which results in very
similar CPI as its neighbor. Temporal locality has been
proven to be a basic behavior of all programs and it exists
on a wide range of scales (e.g. microprocessor cache
hierarchy). Therefore, it is no surprise to see this universal
non-negligible autocorrelation in the instruction stream
simulation.

(a) Base unit size is 1 million instructions

(b) Base unit size is 100 million instructions

Figure 2. Normalized standard deviation CPI for
different sampling unit sizes

Normalized Standard Deviation

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50
Normalized number of sampled instructions (j)

gcc-166

bzip2-source

crafty

eon-rushmeier

gzip-graphic

vortex-1

vpr-route

small-unit

0.32

0.89

Normalized Standard Deviation

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
Normalized number of sampled instructions (j)

gcc-166

bzip2-source

crafty

eon-rushmeier

gzip-graphic

vortex-1

vpr-route

small-unit

Figure 3a. CPI of every 100 million instruction
unit for vortex-1

Figure 3b. CPI of every 100 million instruction
unit for crafty

In summary, the instruction stream shows high positive
autocorrelation between close neighbor sampling units. We
have demonstrated mathematically that the high
autocorrelation favors small sampling unit. Our result
shows that simulating larger and larger continuous chunks
of instructions is not an effective way to improve accuracy.
Because of the ubiquity of temporal locality, this
conclusion is expected to hold true for almost all programs.

A word of caveat may be in order here. In the above
discussion, we assume that the overhead of warm-up is
constant. In reality, the warm-up overhead usually
increases if we reduce the sampling unit size and increase
the sample size. As such, the sampling unit size should be
a trade-off between accuracy and the simulation overhead
depending on the specific warm-up scheme.

3. SAMPLING ERRORS IN SPEEDUP AND
CPI

Previous research on sampled simulation of

microprosessor generally focuses on the accuracy of CPI or
IPC. However, the goal of a simulation is usually to
evaluate the benefit of some architectural enhancement, in
which case, the absolute value of CPI may not be overly
important. Instead, an accurate estimate of the speedup is
often a more desired metric. We define the speedup R as
the ratio of the CPI before the enhancement to CPI after the
enhancement when the same benchmark is run. There is
nothing wrong with pursuing accurate CPI value because
more accurate estimation of CPI will naturally result in
better accuracy of speedup. However, the accuracy for the
two metrics show different properties as we shall see later.

We employ the ratio estimator in sampling theory to
calculate the speedup and to quantify its error. For each
sampling unit, there are two characteristics, yi and xi (i=1,
2, ..., N). We randomly take a sample of size n and
measure yi and xi of each sampled unit (i=1, 2, ..., n). Our
goal is to estimate R, the ratio of the population mean of y

to the population mean of x (∑∑
==

==
N

i
i

N

i
i xyXYR

11

/).

Based on sampling theory, R is estimated as ∑∑
==

==
n

i
i

n

i
i xy

x

y
R

11

 (eq 3.1)

Its variance is estimated as

)ˆ2ˆ(
)1(

)ˆ(222
2 yxxy sRsRs

xn

f
Rv −+−= , (eq 3.2)

 where
1

))((
1

−

−−
=
∑

=

n

xxyy
s

n

i
ii

yx
 (eq 3.3)

If the sample is large enough so that the normal
approximation applies, the confidence interval for R can be
obtained as

()ˆ(ˆ
2/1 RvzR α−− ,)ˆ(ˆ

2/1 RvzR α−+). (eq 3.4)

Based on the above theory, we propose the following
steps to calculate the speedup and quantify its error.

1. Divide the full instruction stream into N chunks of m
continuous instructions. Take a systematic sample or
random sample of size n.

2. Measure the CPI of each sampled unit before the
architectural enhancement. Record all the CPIs (xi).

3. Measure the CPI of the same sampled units after the
enhancement. Record all the CPIs (yi).

4. Calculate the speedup, its standard deviation and
confidence interval with equations 3.1 through 3.4.

The key point is to make sure the same sampled units
are measured in the two simulation steps. Two problems
can potentially prevent us from achieving this. Firstly, the
instruction stream may be different in each run of the same
benchmark. For a user mode simulator like SimpleScalar,
this is caused by operating system calls (e.g gettimeofday)
returning different result in each run. For example, in two
runs of gcc-166, the difference in the number of dynamic
instructions was 332,372. Although this difference only
accounted for 0.00071% of the total instructions executed,
it would cause different units to be sampled in the two runs
because of the small sampling unit size (1,000 – 10,000
instructions). To solve this problem, one must make sure
that the dynamic instruction stream in each run is exactly
the same. In our experiment, we first capture the eio trace
with SimpleScalar sim-eio utility. Then all the benchmark
programs are run with the eio trace to guarantee the same
instruction sequence. Secondly, the architecture simulation
events are aligned with clock cycles, not instructions. This
can cause problem for simulating superscalar processors,
which are capable of committing multiple instructions in a
single clock cycle. Suppose that one sample unit is from

Crafty

0

0.5

1

1.5

2

2.5

0 500 1000 1500 2000
instructions (100 million)

C
P

I
vortex-1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 200 400 600 800 1000 1200
instructions (100 million)

C
P

I

instruction #100 to #199. In the first simulation,
instructions #98-#101 are committed in the same cycle. In
the second simulation with the microarchitectural
enhancement, instructions #99-#103 are committed in one
cycle. Obviously, the sampling units cannot be exactly the
same in the two runs if we count whole cycles. There are
two ways to solve the partial cycle problem. In the first
solution, if i instructions are committed in one cycle, we
(artificially) allocate 1/i cycle to every instruction in this
cycle. In the above example, instruction #100 and #101 in
the first run will be counted as 2/4=0.5 cycles. This
approach strictly meets the ratio estimation requirement but
requires some additional book keeping. The other simpler
approach, which we opted for in our experiment, uses
larger sample unit size. We start and stop measuring at the
boundary of clock cycles, but because of the large sample
unit (10,000 instructions) the misalignment of the sample
units in the two runs is negligible.

We conducted an experiment to show the validity of
applying ratio estimation theory to sampled simulation.
Eight benchmarks from SPECcpu 2000 are simulated in a
modified SimpleScalar 3.0 sim-outorder simulator, which
performs the above systematic sampling procedures. Each
sampling unit is 10,000 instructions and 3,000 units in
every benchmark are simulated. Caches and branch
predictors are continuously warmed up functionally as in
[10, 17]. 4,000 instructions before every sampling unit are
simulated with cycle accurate simulator to warm up other
microarchitecture structure. An 8-way and a 16-way out-
of-order superscalar processor are simulated to calculate
the speedup. The microarchitecture configurations are
given in Table 2 [17].

The results are shown in Table 3. Table 3a shows the
CPI result for the 8-way configuration. “Sampling result”
column shows the CPI computed by sampling whereas
“True value” is the CPI from the full simulation by sim-
outorder. The actual relative error is shown in the last
column. The estimated coefficient of variation (COV) is
shown in column 3. Table 3b shows the result for 16-way
configuration in the same format. The results for speedup
of 16-way machine vs 8-way machine are shown in Table
3c. The second column is the speedup calculated from
Equation 3.1 whereas the “True value” is calculated as the
ratio of the true CPIs of the two configurations. COV for
speedup is shown in column 3.

First, we examine the coefficient of variation, which
indicates the error solely due to sampling. In all
benchmarks the speedup invariably shows smaller COV
than the CPI. The resultant benefit is that to achieve a
specific limit of relative error, even fewer sampling units
need to be measured than in CPI. Suppose that we want the
relative error to be within 2% at the confidence level of
95%. The required sample size can be calculated from
Equation 2.2 for CPI and Equation 3.4 for speedup. The
result is shown in Figure 4. Though required sample size
varies greatly from benchmark to benchmark, the sample

size for the speedup is only a small fraction of that for CPI.
It will take fewer simulated instructions to achieve the
same accuracy for speedup than for absolute CPI value.

Table 2. Processor configurations

Parameter 8-way (baseline) 16-way
Machine Width 8 16
RUU/LSQ size 128/64 256/128

Memory System
32KB 2-way L1 I &
D, 2 ports,
Unified 1M 4-way L2

64KB 2-way L1 I & D,
4 ports,
Unified 2M 8-way L2

ITLB / DTLB

4-way 128 entries
4-way 256 entries
200 cycle miss
penalty

4-way 128 entries
4-way 256 entries
200 cycle miss penalty

L1/L2/Memory
Latency

1/12/100 cycles 1/16/100 cycles

Functional Units

4 I-ALU
2 I-MUL/DIV
2 FP-ALU
1 FP-MUL/DIV

16 I-ALU
8 I-MUL/DIV
16 FP-ALU
4 FP-MUL/DIV

Branch Predictor

Combined 2K tables
7 cycle misprediction
penalty
1 prediction/cycle

Combined 8K tables
10 cycle misprediction
penalty
2 predictions/cycle

Figure 4. Sample size required to achieve 2%
relative error at 95% confidence level

This conclusion may seem counter-intuitive at first. The
speedup is calculated as the ratio of two CPIs as in
Equation 3.1. Then how could the speedup be more
accurate than each CPI? The answer lies in the fact that
different parts of the benchmark program usually benefit
similarly from the microarchitectural enhancement even
though the absolute value of CPI may vary widely during
the execution. COV is an indicator of the degree of
variation in the population. The value of speedup is more
uniform among the sampling units than the value of CPI,
resulting in a smaller COV, and a tighter confidence
interval for the speedup.

Next, we look at the actual error, which consists of the
sampling error discussed above and the error due to
inaccuracy in the measurement of the CPI of each sample
unit. The latter is mostly caused by inadequate warm-up of
large microarchitecture structure. The most accurate warm-
up scheme [10, 17] in the literature is used in our
experiment. The caches and the branch predictor are

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

art equake lucas bzip2-
source

gcc-166 vpr-route gzip-
random

vortex-1

S
am

p
le

 S
iz

e

8-way cpi

16-way cpi

speedup

warmed up throughout the full simulation, but they are only
functionally simulated for most of the time. The
speculative behavior is not modeled except for during the
units that are simulated in detail. In some benchmarks, this
measurement error becomes dominant. For example, given
a sample size of 3000, the COV for vpr-route is so small
that at 99% confidence level, the relative error of the CPI
on the 16-way machine should be within 1.91%. However,
the actual error is about 4%, so it is almost certain that the
final error mainly consists of the measurement error. The
error due solely to sampling decreases quickly when we
increase the sample size. If we can accurately measure just
30 million instructions (0.02%-0.06% of total dynamic
instructions), the error in speedup will be below 1.5% for
all benchmarks except gcc. However, in reality the
measurement error due to imperfect warm-up quickly
becomes a limiting factor on the accuracy. Therefore,
future research on new simulation methodology needs to
focus on more efficient and accurate warm-up techniques.

Table 3a. CPI for 8-way configuration

Benchmark Sampling
result

COV
(%)

True
value

Relative
error (%)

art 1.0451 0.7112 1.0442 0.0869
equake 1.3438 0.7937 1.3448 0.0707
lucas 2.4237 1.2774 2.4931 2.7825
bzip2-source 0.6003 1.3915 0.5959 0.7322
gcc-166 0.5057 1.5814 0.5042 0.3037
vpr-route 1.5603 0.2233 1.5410 1.2502
gzip-random 0.4243 0.8194 0.4224 0.4608
vortex-1 1.0451 0.7112 1.0442 0.0869

Table 3b. CPI for 16-way configuration

Benchmark Sampling
result

COV
(%)

True
value

Relative
error (%)

art 0.5866 0.6810 0.5923 0.9586
equake 0.9309 0.6480 0.9318 0.1006
lucas 2.2679 1.4612 2.3525 3.5973
bzip2-source 0.4866 1.6046 0.4791 1.5581
gcc-166 0.2816 2.4210 0.2714 3.7609
vpr-route 1.3519 0.2430 1.3301 1.6409
gzip-random 0.3500 0.8923 0.3458 1.2279
vortex-1 0.3235 0.7408 0.3103 4.2485

Table 3c. Speedup (16-way vs 8-way)

Benchmark Sampling
result

COV
(%)

True
value

Relative
error (%)

art 1.7816 0.2770 1.7630 1.0556
equake 1.4437 0.3558 1.4432 0.0300
lucas 1.0687 0.2745 1.0598 0.8452
bzip2-source 1.2337 0.4950 1.2438 0.8132
gcc-166 1.7959 1.1212 1.8578 3.3318
vpr-route 1.1541 0.1300 1.1586 0.3844
gzip-random 1.2123 0.1488 1.2215 0.7577
vortex-1 1.5689 0.2807 1.5962 1.7093

4. Comparing reduced data sets

SPECcpu 2000 comes with three data sets: reference,

train, and test. Only the reference data set is supposed to be

used to evaluate computer performance. However, the
reference data set takes such a long time to run that it is
impractical to use it to evaluate multiple microarchitectural
alternatives by simulation. Besides sampling, reduced data
set is another approach to reduce simulation time. The
same program is executed and cycle accurate simulation is
done throughout the whole execution. But the input data
set to the benchmark program is reduced resulting in much
shorter simulation time. Reduced data sets for SPECint
2000 include train, test and MinneSPEC. Test is not
intended to perform any simulations, while MinneSPEC is
a small data set specifically designed for microprocessor
simulation. Previous research evaluate the reduced data
sets by comparing one program by one program the
absolute value of CPI and other microarchitecture metrics
between the reduced data set and the reference data set [5,
7].

In this section, we take a different approach to evaluate
the reduced data sets. Firstly, we recognize that the goal of
a simulation experiment is to assess some architectural
improvement. Therefore, the accuracy in speedup is often
more important than the accuracy in absolute CPI value.
We will compare both CPI value and speedup. Secondly,
we do not base our conclusion on one to one comparison of
benchmarks or on the “average” error. Instead, we view
SPECint 2000 as a sample from all the CPU intensive
integer programs in the world (the population). We assume
that SPECint 2000 is a simple random sample. (Unless
there is some randomness in the sampling, no statistical
theory can be developed for the approach and no statistical
conclusion can be made about the population). By
comparing the reduced data sets, we are trying to find out if
they represent the same “population” as the reference data
set does. As long as the populations are the same, the
reduced data sets are equivalent to the reference data set
when used to evaluate the performance improvement of
computer designs.

If the populations are the same, then the median of the
population should be the same. This question is best
answered by hypothesis testing. Because we do not know
the distribution of the CPI, we choose Wilcoxon signed
rank test, which does not assume normal distribution, to
test the equality of the population median. The test
requires that the sampling units be independent of each
other. However, in some data set, one benchmark program
is run with several input sets. For example, the bzip2
program has 3 input sets in the reference data set. Previous
research [5] has shown that the performance metrics for
these input sets to the same benchmark program may be
quite similar; thus their CPI and speedup are not
independent of each other. If a program takes multiple
input sets within one data set, we calculate the arithmetic
mean as the value for this program. As we cannot afford to
fully simulate the reference data set in sim-outorder, we use
the sampling method in the previous section to gather the
speedup and CPI for reference data set. The sampling

method will incur some small errors, but they are negligible
compared to most errors in the reduced data set. The
relative errors in CPI and speedup of the different reduced
data sets are plotted in Figure 51. Some benchmarks show
very large errors when reduced input sets are used. Again
we see the repeated pattern: the error in speedup is often
much smaller than the error in CPI. It is also interesting to
note that the average error of test, train and MinneSPEC
data set are close, with MinneSPEC showing an edge in the
speedup estimation. Then we use Wilcoxon signed rank
test to test if the median of the two populations are the
same. Each reduced data set (test, train and MinneSPEC) is
tested against the reference dataset in terms of CPI on 8-
way machine, CPI on 16-way machine, and the speedup.
The Wilcoxon test result is summarized in Table 4. We
choose a significance level of 0.05. Except for the test data
set on the 8-way machine, which barely passes the test at
this significance level, none of the reduced data sets has the
same median CPI as the reference data set. However, all
the p-values for the speedup are above the significance
level. Therefore, using the reduced data set to evaluate the
speedup in our experiment is not statistically different from
using the reference data set.

By comparing different data set, we are not only
interested in the population mean, but also we want to see
whether the populations follow the same distribution. If the
population distribution is the same, then the distribution of
the sample mean will also be the same. To visually show
the distribution of sample mean, we employ bootstrapping
[6], a modern computer-simulated, nonparametric
technique to statistical inference. In our experiment, we
draw 10,000 resamples. The histograms of the CPI and
speedup are shown in Figure 6. The x-axis is deliberately
drawn on the same scale for easy comparison. It is obvious
that the distribution of the sample mean CPI for reference
data set is far from normal. Furthermore, different data set
shows vastly different distributions. The multiple peaks in
sample mean CPI distribution of reference data set are the
result of several programs (notably, mcf) showing
distinctively higher CPI than others. This property is not
retained in test and MinneSPEC, where the CPIs of all the
benchmarks are closer to each other resulting in narrower
and single-peak distribution. However, for the more
important metrics, the speedup, the distributions of
different data set are more similar to each other. In
addition, the distribution of the sample mean of the speedup
also looks more like normal distribution. A quantile-
quantile plot of the reference speedup against normal
distribution (Figure 7) shows that the distribution of the
speedup of reference data set is fairly close to the normal
distribution (but with slightly shorter tails).

1 We were not able to run perlbmk or parser in the simulator, so we have

results for out of 12 SPECint benchmarks. For better statistical result,
more benchmarks are needed.

Table 4 Wilcoxon signed rank test of different
reduced data sets

Metrics Reduced data set p-value
Test 0.06445
Train 0.02734

CPI on 8-way
machine

MinneSPEC 0.04883
Test 0.03711
Train 0.01953

CPI on 16-way
machine

MinneSPEC 0.03711
Test 0.999
Train 0.375

Speedup (16-way
vs. 8-way)

MinneSPEC 0.6953

Figure 5. Relative errors of different reduced data
sets

In summary, none of the reduced data set (test, train,
MinneSPEC) represents the reference data set in terms of
CPI. However, one can use any of the reduced data set to
evaluate the speedup and draw the statistically same
conclusion about the performance of the processor. This
interesting observation is currently based only on our
experiment of two processor configurations. Although we
expect that the reduced data set and reference data set will

Relative error in speedup (16-way vs 8-way)

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

bz
ip2

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf
tw

olf

vo
rte

x

vp
r-r

ou
te

av
er

age

test

train

MinneSPEC

Relative error in CPI on 8-way machine

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

bz
ip2

cr
af

ty eo
n

ga
p

gc
c

gz
ip

m
cf

tw
olf

vo
rte

x

vp
r-r

ou
te

av
er

age

test

train

MinneSPEC

Relative error in CPI on 16-way machine

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

bz
ip2

cra
fty

eo

n
ga

p
gc

c
gz

ip
mcf

tw
olf

vo
rte

x

vp
r-r

ou
te

av
era

ge

test

train

MinneSPEC

show more similarity in speedup than in CPI, more
experiments are needed to test its general applicability.

5. Confidence interval of speedup

Computer designers run benchmarks to evaluate design
alternatives, but no user runs these benchmarks in their
everyday work. Therefore, the real question a computer
designer is trying to answer is: how well will the computer
design perform for all CPU intensive workload in the world
based on the result of the SPECcpu suite? To answer the
question, we view SPECint as a random sample from all
CPU-intensive integer programs and calculate the
confidence interval for the mean speedup. The previous
section has shown that the mean speedup approximately
follows the normal distribution. Therefore, Equation 2.2
can be used to calculate the confidence interval. Another
method is to use bias corrected bootstrapping [6], which
does not rely on the assumption of a particular underlying
distribution. The results are shown in Table 5. The last
column is the limit of relative error converted from the
confidence interval. We can see that bias corrected
bootstrapping often results in tighter interval.

The confidence interval can serve as guidance for target
accuracy when the computer architecture researcher
designs future simulation techniques. If the limit of relative
error is 8%, then the error in simulating each benchmark
programs should be much smaller than 8% (e.g 1%). On
the other hand, we should not shoot for unnecessary
accuracy such as an error of 0.1%, which will be wasteful
of simulation resources. The current sampling simulation
gives an error below 4% (Table 3). It is close to meet the
requirement but smaller errors are still desirable.
Furthermore, most of today’s microarchitectural
enhancement in literature does not offer a speedup as large
as the difference between a 16-way processor and an 8-way
processor. Therefore, the confidence interval for the whole
benchmark suite will be tighter and even smaller errors in
each benchmark program simulation are required.

6. Related work

Wunderlich et. al. [17] proposed using multiple small

sampling units to get accurate simulation CPI. They
employed sampling theory to calculate the confidence
interval and to select the sample size at a given accuracy
requirement. SimPoint is another recently proposed
sampling simulation scheme. It uses cluster analysis based
on basic block vector to select representative simulation
chunks. The latest version allows the user to quantify the
error in CPI with a confidence interval on the original
architecture for which the full simulation was done. Our
work focuses on measuring speedup instead of CPI, which
is more important to computer designers. More
sophisticated sampling theory is employed to calculate the

confidence interval of the speedup. We show that at the
same accuracy level, speedup requires smaller sample size
than CPI, so it is more efficient to estimate the confidence
interval directly with our method. Wunderlich et. al. also
showed that smaller sampling unit is more effective than
large sampling unit that had been commonly used in
previous research. The evolution of SimPoint also exhibits
the trend of smaller sampling units. The precursor of
SimPoint [15] simulated a large chunk (300 million) of
instructions. The original SimPoint [16] used several 100
million instruction chunks. In Variance Simpoint [14], the
latest version of SimPoint, on average about 100 chunks of
1 million instructions are simulated. We confirmed
Wunderlich et. al’s conclusion but we have further
explored the underlying reason by studying the
autocorrelation of the instruction stream. We show that this
phenomenon is caused by high autocorrelation inside the
instruction stream, which is an expected result of temporal
locality.

Table 5. The confidence interval of speedup on a

16-way processor vs 8-way processor

Confidence
level

Estimation
method

Confidence
interval

Equivalent
relative

error limit
Normal

distribution
(1.214, 1.441) 8.5%

95%
Bias

Corrected
(1.232, 1.449) 8.2%

Normal
distribution

(1.179, 1.476) 11%

99%
Bias

Corrected
(1.208, 1.485) 10%

Figure 7. Quantile-quantile plot of the speedup of
reference data set against normal distribution.
The line, which passes through the 1st and 3rd

quartiles, is for comparison.

Hsu et. al. [8] compared the IPC and path profile of test,
train, and reference data set. They studied how the

difference will affect the effectiveness of profile based
optimization. They found that the test data set is far from
the reference data set. Although the train data set is better
than the test data set, it still differs from the reference data
set significantly. Haskins et. al. [7] studied the difference
in IPC, L1 data cache miss rate, and branch misprediction
rate between train, MinneSPEC and reference data set.
They concluded that the reduced input simulation can
produce significant errors in important program
characteristics. Eeckhout et. al [5] did similar comparison
with principal component analysis and clustering analysis.
They concluded that for some benchmark programs the
reduced data set is representative of the reference data set
whereas for others the behavior of reduced data set is quite
different. Recognizing the importance of speedup, we
compare the reduced data sets with reference data set in
terms of both CPI and speedup. We employed statistical
theory to compare the population each data set represents

instead of comparing program by program. While our
study confirms that the CPI is quite different between the
reference and reduced data sets, we show that using
reduced data set to evaluate speedup will not result in
statistically different conclusion.

Viewing the small set of benchmark programs as only a
sample, and calculating the confidence interval to quantify
the result of performance have been demonstrated in
textbooks for computer architects [9, 13]. However, this
technique has seldom been used when researchers report
their results based on a benchmark suite. We show the
confidence interval using bootstrapping method without the
normal distribution assumption. The confidence interval
can guide researchers to set target accuracy when designing
new simulation techniques.

Figure 6. Bootstrapped distribution of sample mean of CPI

7. Conclusion

In this paper, we employ statistical theory to study

several topics in microprocessor simulation. We compute
the autocorrelation within the instruction stream to prove
that a small sampling unit (1,000 – 10,000 instructions) is
more effective than large sampling unit at improving
simulation accuracy, as long as the warming up overhead
has not become the limiting factor. We show
mathematically that the exhibited autocorrelation behavior
favors small sampling units.

We have applied ratio estimator and extended previous
sampling simulation method to calculate the speedup with
quantifiable accuracy. Our result shows that to achieve a
specified accuracy, it is not necessary to measure CPI at the
same accuracy. Speedup can be accurately measured with
fewer instructions sampled than CPI.

We have compared different reduced data set (test, train,
and MinneSPEC). We view the SPECint suite as a random
sample from the population of all CPU intensive integer
benchmarks it represents. We tested the population mean of
each reduced data set against the reference data set and
plotted the distribution of sample mean by bootstrapping.
We found that none of the reduced data sets can represent
the reference data set in terms of CPI because they show
different median values and widely different distributions.
However, in our experiment, reduced data sets are not
statistically different from the reference data set when used
to evaluate the speedup. In addition, the sample mean of
the speedup approximately follows the normal distribution.
Confidence interval is useful for the users to evaluate the
performance of computers, and for researchers to set target
accuracy when designing new simulation methods.

Ideally, only a tiny portion of the full dynamic
instruction stream is needed to get accurate speedup
estimation, and the sampling error can be easily reduced by
increasing the sample size. In reality, however, the warm-
up overhead is dominant in simulation time. The error in
the measurement of each sampling unit due to imperfect
warm-up quickly becomes the limiting factor on accuracy.
Future research in sampling simulation methodology needs
to focus on more efficient and accurate warm-up
mechanisms.

8. References

[1] Banks, J., Carson, J.S., and Nelson, B.L. Descrete-Event
System Simulation. 2nd ed. Prentice Hall, 1999.

[2] Burger, D. and Austin, T.M. The SimpleScalar tool set,
version 2.0. Technical Report 1342, Computer Sciences
Department, University of Wisconsin-Madson, June 1997.

[3] Cochran, W.G. Sampling Techniques, 3rd ed. John Wiley &
Sons, 1977.

[4] Conte, T. M., Hirsch, M. A. and Menezes, K. N. Reducing
state loss for effective trace sampling of superscalar

processors. In Proceedings of the 1996 International
Conference on Computer Design (ICCD) (October 1996),
468-477.

[5] Eeckhout, L., Vandierendonck, H. and Bosschere, K.D.
Quantifying the impact of input data sets on program
behavior and its applications. Journal of Instruction-Level
Parallelism, Volume 5, April 2003

[6] Efron, B. and Tibshirani, R.J. An Introduction to The
Bootstrap. Chapman & Hall. New York 1993.

[7] Haskins, J. W. Jr., KleinOsowski, A. J., Skadron, K. and
Lilja, D. J. Techniques for accurate, accelerated processor
simulation: analysis of reduced inputs and sampling." Tech
Report CS-2002-01, University of Virginia Dept. of
Computer Science, Jan. 2002.

[8] Hsu, W.C., Chen, H., and Yew, P.C. On the predictability of
program behavior using different input data sets, In
Proceedings of the 6th Workshop on Interaction between
Compilers and Computer Architectures, (February 2002), 45-
53.

[9] Jain, R.. The Art of Computer Systems Performance
Analysis. John Wiley & Sons, Inc. 1991.

[10] Jimeno-Ochoa, L.M., Ibez, P. and Vials, V. Warm time
sampling: fast and accurate simulation of cache memory. In
Proceedings of the 22nd. Euromicro International
Conference (September 1996), 39-44.

[11] KleinOsowski, A.J. and Lilja, D.J. MinneSPEC: A new
SPEC benchmark workload for simulation-based computer
architecture research, Computer Architecture Letters,
Volume 1, June, 2002.

[12] Lafage, T. and Seznec, A. Choosing representative slices of
program execution for microarchitecture simulations: A
preliminary application to the data stream. In Proceedings of
the Third IEEE Annual Workshop on Workload
Characterization (September 2000), 102-110.

[13] Lilja, D.J. Measuring Computer Performance: A
Practitioner's Guide. Cambridge University Press, New York,
NY, 2000

[14] Perelman, E., Hamerly, G. and Calder, B. Picking
statistically valid and early simulation points. In Proceedings
of the International Conference on Parallel Architectures and
Compilation Techniques (September 2003), 244-255.

[15] Sherwood, T., Perelman, E., and Calder, B. Basic block
distribution analysis to find periodic behavior and simulation
points in applications. In Proceedings of the International
Conference on Parallel Architectures and Compilation
Techniques (September 2001), 3-14.

[16] Sherwood T., Perelman E., Hamerly G., and Calder B.
Automatically characterizing large scale program behavior.
In Proceedings of the International Conference on
Architectural Support for Programming Languages and
Operating Systems (October 2002), 45-57.

[17] Wunderlich, R.E., Wenisch, T.F., Falsafi, B., and Hoe, J.C.
SMARTS: Accelerating microarchitecture simulation via
rigorous statistical sampling. In Proceedings of the 30th
Annual International Symposium on Computer Architecture
(June 2003), 84-95.

