
Copyright

by

Yue Luo

2005

The Dissertation Committee for Yue Luo Certifies that this is the approved version

of the following dissertation:

Improving Sampled Microprocessor Simulation

Committee:

Lizy K. John, Supervisor

Rema Hariharan

Stephen W. Keckler

Earl E. Swartzlander, Jr

Nur A. Touba

Improving Sampled Microprocessor Simulation

by

Yue Luo, B.E.; M.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August, 2005

Dedication

To my wife Junhui

 and

my parents.

v

Acknowledgements

First I would like to thank my advisor, Dr. Lizy John, for her support, advice,

guidance and good wishes. Her availability at all times including on weekends, and her

dedication to work has had a profound influence not only on my academic pursuit, but

also on my life. I still remember that when I was in China (before coming to UT Austin),

I sent an email to Lizy and was surprised by the quick reply: it was 4 o'clock in the

morning in Texas and she had already started working! I am also grateful for the

freedom and the flexibility she gave me throughout my Ph.D. study.

My gratitude goes to the committee members (in alphabetical order), Dr. Rema

Hariharan, Dr. Steve Keckler, Dr. Earl Swartzlander, and Dr. Nur Touba, for their

invaluable comments, productive suggestions, and the time to read the draft of my thesis.

I would like to thank Dr. Rema Hariharan for giving the opportunity to work at

Sun Microsystems. I gained valuable experience developing a new web server

benchmark.

I would like to thank the students (past and current) at the Laboratory for

Computer Architecture -- Tao, Madhavi, Juan, Ravi, Shiwen, Byeong, Aashish, Ajay,

Sean, Lloyd, Jason, Tyler, and Hari. They provided valuable feedback on the drafts of

my paper submissions and on my practical talks. I enjoyed working with Ajay and

Aashish in writing the research paper.

vi

Dr. Lieven Eeckhout from Ghent University, Belgium provided valuable insight

and comments, which helped me improve my research.

Thanks to Debi, Amy, Melanie and other administrative assistants who worked in

the Department in the past years.

I would like to thank my parents, my brother, my parents-in-law, and my friends,

who have had a tremendous influence on my life.

Last but not least, I am grateful to my wife, Junhui, for her consistent love,

support, and encouragement throughout my graduate years. This is not something I could

accomplish alone.

vii

Improving Sampled Microprocessor Simulation

Publication No._____________

Yue Luo, Ph.D.

The University of Texas at Austin, 2005

Supervisor: Lizy K. John

Microprocessor evaluation using detailed cycle-accurate simulation is

prohibitively time-consuming. Sampling is the most widely used simulation time

reduction technique. In this dissertation, new sampling designs that utilize the

characteristics of the workload, the microarchitecture being simulated, and the user’s

specific objective are proposed. They improve accuracy, and reduce simulation time and

storage cost.

Statistical sampling theory is employed to study the choice of sampling unit size

for simple random sampling with perfect warm-up. More importantly, the inherent

characteristic of the benchmarks that affects the choice of sampling unit size is discerned.

Previous research has been focusing on the accuracy of Cycle Per Instruction

(CPI). However, most simulations are used to measure the speedup due to some

microarchitectural enhancements. A new sampling scheme that employs ratio estimator

from statistical theory is proposed to measure speedup and to quantify its error. In the

experiment, 9X fewer instructions are simulated as compared to estimating CPI for the

same relative error limit.

viii

This dissertation extends sampling techniques to the simulation of commercial

workloads such as On-Line Transaction Processing (OLTP) used by banks, airlines, etc.

The applicability of simple random sampling and representative sampling for OLTP

workloads is investigated. A dynamic stopping rule is proposed for sampling OLTP

workloads, which requires only one simulation and thus eliminates the second simulation

in previous random sampling methods.

In order to achieve accurate sampling results, microarchitectural structures must

be adequately warmed up before each measurement. Previous warm-up techniques have

not considered the cache configuration being simulated, an important factor on the warm-

up length. This dissertation presents a new cache warm-up technique for sampled

microprocessor simulation, which allows the warm-up length to be adaptive to cache

configurations and benchmark variability characteristics. As a result, warm-up length has

been greatly reduced, especially for small caches, without losing accuracy.

For trace-driven simulation, the sampled traces have to be stored. Another

contribution of the dissertation is the Locality Based Trace Compression (LBTC)

technique, which employs both spatial locality and temporal locality in program memory

references. It efficiently compresses not only the address but also other attributes

associated with each memory reference.

ix

Table of Contents

List of Tables ... xi

List of Figures .. xiii

Chapter 1. Introduction ..1

1.1 Techniques for Reducing Simulation Time ..3

1.2 Sampling ...5

1.3 Factors Affecting Sampling Designs ..9

1.4 Problems in Sampled Processor Simulation ...10

1.5 Thesis Statement ...11

1.6 Contributions...12

1.7 Organization..13

Chapter 2. Previous Research ..15

2.1 Cache Simulation and Cache Warm-up..15

2.2 Sampling for Processor Simulation ..23

Chapter 3. On Sampling Unit Size...30

3.1 Introduction...30

3.2 Statistical Sampling Theory..32

3.3 Experiments and Results...34

3.4 Discussion ...41

3.5 Summary ...47

Chapter 4. Sampling Techniques for Fast Simulation of OLTP Workloads49

4.1 Introduction...49

4.2 Experimental Setup...53

4.3 Applying SimPoint to OLTP Benchmark ...55

4.4 Applying Simple Random Sampling to OLTP Workloads.....................60

4.4.1 Selecting Sampling Unit Size ...60

4.4.2 Dynamic Stopping Rule for Simulating OLTP Workloads61

4.5 Summary ...65

x

Chapter 5. Efficiently Evaluating Performance Improvement In Sampled Processor
Simulation...67

5.1 Introduction...67

5.2 Evaluating Performance Improvement with Ratio Estimator.................68

5.3 Experiments and Results...70

5.4 Summary ...77

Chapter 6. SMA: A Self-Monitored Adaptive Cache Warm-Up Scheme for
Microprocessor Simulation...79

6.1 Introduction...79

6.2 SMA: a Self-Monitored Adaptive Warm-Up Scheme............................81

6.3 Experiments and Results...84

6.3.1 Variability in Warm-Up Process...85

6.3.2 Comparison with Prior Techniques ..89

6.4.3 Adaptivity to Cache Configuration...92

6.4 Summary ...95

Chapter 7. Locality Based On-Line Trace Compression97

7.1 Introduction...97

7.2 Related Work ..99

7.3 Locality Based Trace Compression ..102

7.4 Results...110

7.4.1 Compression Ratio..110

7.4.2 Statistics Supporting Compression ...115

7.4.3 Access Time..116

7.4.4 Design Space Exploration...117

7.5 Summary ...118

Chapter 8. Conclusions and Future Research ..120

8.1 Conclusions...120

8.2 Directions for Future Research ...124

Bibliography ..126

Vita ...133

xi

List of Tables

Table 1.1: Number of instructions and simulation time of selected SPEC

INT2000 benchmarks with the reference data set...............................3

Table 3.1: Processor configuration. ...35

Table 4.1: System configurations...54

Table 4.2: Result of applying dynamic stopping rule.65

Table 5.1: Processor configurations. ..71

Table 5.2: Verification of the sample size computed from ratio estimator

theory. ...76

Table 6.1: Benchmarks, their data set and dynamic instruction count...............84

Table 6.2: Processor configuration. ...85

Table 6.3: Warm-up length for warming up all cache blocks in L1 data

cache (in 100,000 instructions). ..87

Table 6.4: Warm-up length for warming up 50% cache blocks in L2

cache (in 100,000 instructions). ..87

Table 6.5: Comparison of SMA with MRRL and BLRL...................................92

Table 6.6: Configuration for caches...93

Table 6.7: Average absolute error in the number of data cache misses

per 1 million instructions. ...95

Table 7.1: Example attributes recorded in a memory reference trace

record ..103

Table 7.2: LBTC trace record header bits for instruction.104

Table 7.3: Example of trace compression using LBTC.108

Table 7.4: Compression cache content after record #5108

xii

Table 7.5: Compression cache content after record #8109

Table 7.6: Compression cache content after record #12109

Table 7.7: Compression cache content after record #15109

Table 7.8: Statistics of the 256 most common instructions.114

Table 7.9: Compression cache hit rate. ..115

Table 7.10: Normalized access time. ...117

Table 7.11: Normalized file size of different compression cache

configuration (with gzip)...118

xiii

List of Figures

Figure 1.1: Illustration of a sampled instruction stream..8

Figure 1.2: Implementation of sampled simulations. ..8

Figure 2.1: The MRRL cache warm-up scheme. ..21

Figure 2.2: The BLRL cache warm-up scheme..22

Figure 3.1: Intracluster correlation coefficient for CPI with baseline

sampling unit size of 1 million instructions......................................36

Figure 3.2: Intracluster correlation coefficient for CPI with baseline

sampling unit size of 100 million instructions..................................36

Figure 3.3: Normalized standard deviation for CPI with baseline sampling

unit size of 1 million instructions..38

Figure 3.4: Normalized standard deviation for CPI with baseline sampling

unit size of 100 million instructions..38

Figure 3.5: Intracluster correlation coefficient for L1 data cache misses

with base sampling unit size of 100 million instructions..................39

Figure 3.6: Intracluster correlation coefficient for branch misprediction

with base sampling unit size of 100 million instructions..................40

Figure 3.7: Normalized standard deviation for L1 data cache misses with

base sampling unit size of 100 million instructions..........................40

Figure 3.8: Normalized standard deviation for branch misprediction with

base sampling unit size of 100 million instructions..........................41

Figure 3.9: CPI for every 100 million instruction unit for vortex-1.42

Figure 3.10: CPI for every 100 million instruction unit for crafty.42

xiv

Figure 3.11: Average distance of BBV for sampling unit size of 1 million

instructions for 6 benchmarks. ..45

Figure 3.12: Average distance of BBV for sampling unit size of 1 million

instructions for gzip-graphic...45

Figure 3.13: Average distance of BBV for sampling unit size of 100 million

instructions for 5 benchmarks. ..46

Figure 3.14: Average distance of BBV for sampling unit size of 100 million

instructions for eon-rushmeier. ...46

Figure 3.15: Average distance of BBV for sampling unit size of 100 million

instructions for bzip2-source...47

Figure 4.1: CPI for every million instructions on configuration 1.56

Figure 4.2: Error for SimPoint and simple random sampling on

configuration 1 with chunk size of 1 million instructions.57

Figure 4.3: Error for SimPoint and simple random sampling on

configuration 1 with chunk size of 10 million instructions.57

Figure 4.4: Error for SimPoint and simple random sampling on

configuration 1 with chunk size of 100 million instructions.58

Figure 4.5: Error for SimPoint and simple random sampling on

configuration 2 with chunk size of 1 million instructions.58

Figure 4.6: Error for SimPoint and simple random sampling on

configuration 2 with chunk size of 10 million instructions.59

Figure 4.7: Error for SimPoint and simple random sampling on

configuration 2 with chunk size of 100 million instructions.59

Figure 4.8: Intracluster correlation coefficient with the baseline sampling

unit size of 1000 instructions. ...61

xv

Figure 4.9: Relative error limit at 99% confidence level as the simulation

proceeds. ...64

Figure 5.1: Sample sizes required to achieve relative error limit of 2% at

the confidence level of 95% for sampling unit size of 10,000

instructions..73

Figure 5.2: Sample sizes required to achieve relative error limit of 2% at

the confidence level of 95% for sampling unit size of 1 million

instructions..74

Figure 5.3: Sample sizes required to achieve relative error limit of 2% at

the confidence level of 95% for sampling unit size of 10

million instructions. ..74

Figure 5.4: Normalized CPIs and speedup. Each data point is for one

million instructions. ..77

Figure 6.1: Number of cold-start cache accesses per 100,000 instructions

for level 1 data cache and level 2 cache..88

Figure 6.2: Average warm-up error of proposed SMA in comparison to

other previous warm-up schemes..91

Figure 6.3: Average warm-up length per sampling unit for proposed SMA

and other previous warm-up schemes...91

Figure 6.4: Average warm-up length per sampling unit for different cache

configurations ...94

Figure 7.1: Pseudo code illustrating the LBTC algorithm.107

Figure 7.2: Normalized trace file size for gzip and LBTC.111

Figure 7.3: Normalized trace file size for different trace compression

formats without gzip. ..113

xvi

Figure 7.4: Normalized trace file size for different trace compression

formats with gzip...113

1

Chapter 1. Introduction

A processor is a complex digital system with tens to hundreds of millions of

transistors. It is important to know the performance of a new processor during the

design phase. Before a processor is actually built, its performance can be obtained

through analytical modeling or simulation. Due to the complexity in modern processors,

analytical modeling may not give adequate accuracy. Therefore, simulation of standard

benchmarks has been the most important tool for computer architects to study design

tradeoffs. However, detailed cycle-accurate simulation is extremely time-consuming.

Thus design space exploration through simulation of complete benchmarks is prohibitive.

This difficulty arises from two causes.

Firstly, modern benchmarks are no longer small kernels or synthesized toy

programs. Instead, they are very close to real-world programs and often take a long time

to execute. For example, each program in the SPEC* CPU2000 benchmark suite [75]

runs for minutes on a real machine. This problem will only become worse in the future.

The SPEC CPU committee is gathering programs for the next release, SPEC CPU2005.

It is required that the execution time of each program be no less than 10 minutes on a

machine with a SPEC CPU2000 baseline metric of approximately 700 for integer codes

and approximately 900 for floating point code, which translates into hundreds of billions

of dynamic instructions. Database benchmarks usually take even longer to run. TPC-C

benchmark [77] is required to run at least 2 hours on a real machine. On today’s high-

performance machines, it will result in trillions of instructions.

*SPEC, SPECint, SPECfp, and SPECweb are registered trademarks of Standard Performance
Evaluation Corporation (http://www.spec.org/). TPC is a registered trademark of Transaction Processing
Performance Council (http://www.tpc.org/).

2

Secondly, modern superscalar microprocessors are becoming increasingly

complex. Following Moore’s law, more and more transistors are available on a chip. By

taking advantage of the additional transistors, processor architects have designed various

microarchitectural enhancements to improve performance or to reduce power

consumption. The complexity of processors is inevitably reflected in the simulators that

model the processors, and slows down the simulators. In addition, designers and

researchers want to simulate not only the processor and the memory subsystem but also

the whole computer system. These systems can be very complex, consisting of multiple

computers connected by a high-speed network. Each of the machines can have multiple

processors and disks. Each processor can be multi-threaded. Although the hardware

devices (e.g., multi-processors) usually work in parallel in real world, most modern

simulators simulate them sequentially in order to simplify the development of simulators

and to maintain the determinism of the simulation result. Thus the more components to

be simulated, the slower the simulation will be. The gap between the speed of execution

on real machine and the simulation is currently only increasing.

Therefore, despite the faster machines users now have to run the simulations on,

the problem of long simulation time is exasperating. As a result, design space

exploration by detailed simulation of full benchmarks becomes impractical. SimpleScalar

[6] is the most widely used simulator in academic research. Table 1.1 shows the time to

simulate selected SPECint2000 benchmarks on a 1GHz Pentium III machine with sim-

outorder, the detailed out-of-order superscalar simulator from the SimpleScalar 3.0 tool

set. It usually takes several days to simulate one program. Some benchmarks in the

suite, which could not be fully study in this research, require weeks of simulation time.

Assume that a processor designer needs to evaluate 10 candidate configurations.

Suppose that the benchmark suite has 26 programs and each program has 3 input sets. If

3

one program-input execution takes 1 week, the total simulation will be 10*26*3=780

weeks, which is about 15 years! If the user has enough processors to run the simulations,

then the simulation for each benchmark and each configuration can be run in parallel on

different machines. The simulation time will eventually be limited by the simulation of

one single benchmark. Therefore, it is very important to reduce the simulation time of

each single benchmark program. The problem of long simulation time is much worse in

the computer industry than in academic research. Academic simulators often use a

simplified model of processors. Simulators in industry for designing real computers, on

the other hand, are much more complex and hence much slower. Todi from HP reported

that it would take their Itanium simulator 676 days to simulate a benchmark from SPEC

CPU2000 that has 146 billion instructions [76].

Table 1.1: Number of instructions and simulation time of selected SPEC INT2000
benchmarks with the reference data set.

 The data set name is appended to the benchmark name.

Benchmark Number of
instructions

(million)
Simulation

time
(days)

gcc-166 46,917 2.2
bzip2-source 108,878 4.4

eon-rushmeier 57,870 2.7
gzip-graphic 103,706 7.2

vortex-1 118,976 4.6
vpr-route 84,068 4.1

crafty 191,882 9.3

1.1 TECHNIQUES FOR REDUCING SIMULATION TIME

Several types of techniques have been proposed to reduce the simulation time.

One method is to reduce the input data set to the benchmark. The same benchmark

program is executed but the problem size to the program is decreased. For instance,

suppose that the functionality of a benchmark is compressing files. Then to reduce the

4

execution time, a smaller input file can be used. MinneSPEC, proposed by KleinOsowski

and Lilja [35], comprises reduced data sets for SPEC CPU2000. The input sets to the

benchmarks are carefully reduced to maintain the function-level execution profile and the

instruction mix. Designing a reduced input data set is no easy task: There is no

automatic way to do it. It requires good understanding of the source code of the

benchmark program. One major disadvantage with this approach is that it is very hard to

maintain the characteristics of data accesses. Take matrix multiplication as an example.

Reducing the matrix size can easily reduce the instruction count while maintaining the

function-level execution profile and the instruction mix. However, the original matrix

may be larger than the data cache whereas the reduced matrix may fit in the data cache.

There can be much fewer data cache misses for the reduced input data set. Data cache

misses have huge impact on the performance of modern processors. Therefore, in this

example, the performance evaluation based on the reduced matrices may not give a valid

result.

Researchers have also proposed statistical simulation techniques to reduce

simulation time [58][56]. In this method, the instruction trace of the benchmark is

studied and the characteristics that impact the performance are extracted. These

characteristics are a combination of microarchitecture independent ones (e.g., instruction

mix and dependence distance between instructions) and microarchitecture dependent

ones (e.g., cache miss rate and branch misprediction rate). Then a new and much smaller

trace is synthesized based on these characteristics. The new trace is fed to the simulator.

Usually the simulation converges very quickly, in thousands of cycles. If

microarchitecture dependent characteristics are used, then these aspects of the

microarchitecture are not simulated. Instead, an artificial model is used. For example, in

HLS [58] caches are not simulated, but cache misses are injected by the simulator based

5

on the cache miss rate from the profiling done before the simulation. Such simplification

may affect the authenticity of the simulation result. It is also difficult to determine what

characteristics to capture for future microprocessor design. As an example, suppose that

the trace were synthesized before value prediction [41] was proposed, then using such a

trace to evaluate new processors with value predictors may give a biased result.

However, statistical simulations are very useful for early design space exploration

because such simulations are very fast and accuracy is not the top concern in early design

phases.

As computers are getting cheaper and multi-core processor getting more common,

the user can have multiple CPUs to run simulations. Girbal, et al. proposed the DiST

method, which distributes the simulation of a single benchmark onto multiple computers

[24]. Each computer simulates only part of the benchmark. Because the performance of

a part depends on the microarchitectural state generated by the previous part, the

simulation on different machines have to be overlapped, incurring overhead for DiST.

Adding up the simulations on all the machines, the entire benchmark is simulated plus the

overhead of overlapped parts. It is better to combine distributed simulations with other

simulation time reduction techniques, such as sampling [40].

Sampling is the focus of this dissertation. The next few sections are devoted to

detailed discussion of sampled processor simulation.

1.2 SAMPLING

Sampling, the most widely used simulation time reduction technique, is the focus

of this dissertation. Sampling has been used in social science and quality control for a

long time and it enjoys a solid foundation in statistics. Applying sampling to

microprocessor simulation can greatly reduce the simulation time while retaining good

accuracy. Sampling can be used for cache simulations and cycle-accurate performance

6

simulations. The focus of this dissertation is on cycle-accurate performance metrics such

Cycles Per Instruction (CPI). In sampled simulation1, the original full instruction stream

is divided into N non-overlapping chunks of m continuous instructions. Each chunk is a

basic simulation unit, or a sampling unit. The sampling unit size is the number of

instructions in each chunk. The population refers to all the chunks that constitute the

entire instruction stream. Population size is the total number of sampling units in the

entire instruction stream, usually denoted N in this dissertation. A sample consists of

selected chunks that are actually simulated and measured (In practice, more instructions

are simulated for warming up microarchitectural structures). The number of sampling

units in a sample is the sample size, expressed as n. The ratio of sample size to the

population size is the sampling fraction, denoted by the letter f (=n/N). The CPI of each

sampling unit depends not only on the instructions executed in the unit, but also on the

initial state of all microarchitectural structures at the beginning of this unit. The initial

state is, in turn, the result of the execution of all the instructions before the sampling unit.

Executing a limited number of instructions before a sampling unit to get (approximately)

correct initial state is known as warming up the microarchitecture. The number of

instructions used for warm-up before a sampling unit is its warm-up length.

Figure 1.1 gives the conceptual picture of the instruction stream in a sampled

simulation. Only a small portion in the entire instruction stream is measured. A number

of instructions before each measured sampling unit are used for warm-up. And the rest of

the instructions are “skipped”. Whether they can be really skipped depends on the

implementation. Figure 1.2 illustrates a simple taxonomy of the implementation of

sampled simulations. A sampled simulation can be either execution-driven or trace-

1 The terminology in literatures on sampled microprocessor simulation is not consistent. One notable
difference is that in some papers a “sample” actually means what is referred to as a “sampling unit” in other
papers. Throughout this dissertation, terminology from the traditional statistical sampling theory is used.

7

driven. In an execution-driven simulation, the system state for the next clock cycle or the

next instruction is completely computed from the current system state by the simulator.

In an execution-driven simulator, sampling can be done in two ways. In the first method,

the simulator starts from an initial state for the whole benchmark and computes every

future state from there. During the simulation the simulator alternates between different

modes. It does cycle-accurate simulation and measurement for the sampling units that

need to be measured. Only the microarchitectural structures requiring warm-up (e.g.,

caches, branch predictor) are simulated during warm-up. The remaining instructions are

only simulated in a fast mode to get the architectural state. In the second method, the

initial state for each sampling unit to be measured is stored in a file called the checkpoint

file. The processor can read a checkpoint file and compute the system state for the

sampling unit. If the checkpoint file contains the state of all microarchitectural

structures, then no warm-up is necessary. Otherwise, warm-up is still needed. In a trace-

driven simulation, the simulator relies on a previously recorded trace file to compute

future system state. Usually instruction words, instruction addresses, and data addresses,

etc. are stored in a trace file so that there is no need to compute this information from the

current system state. Therefore, a mode-switching execution-driven simulation requires

minimum disk space because only one initial state (or an executable binary file) for the

entire benchmark is stored. For trace-driven simulations, or execution-driven simulations

with a checkpoint for each sampling unit, the traces or checkpoints have to be stored,

often resulting in large storage cost.

8

Sampling unit
that is measured Warm-up

…
Skipped

Figure 1.1: Illustration of a sampled instruction stream.

Sampled Simulations

Execution-Driven Trace-Driven

Mode Switching Checkpointing

Figure 1.2: Implementation of sampled simulations.

Sampling works well because the execution of benchmarks is usually very

repetitive. For example, the size of the binary file of benchmark bzip2 from SPEC

CPU2000 statically compiled for Alpha ISA is only 320KB, but executing it with input

set source generates about 109 billion instructions. These dynamic instructions are

repetitions of the relatively small number of static instructions. In addition, the

microprocessor limits the variability in the execution of the benchmark. Suppose that the

user wants to measure IPC (Instruction Per Cycle) of the benchmark running on a

processor that commits a maximum of 4 instructions in a cycle. The variability in IPC in

every cycle is constrained between 0 and 4. As a result, with sampling, simulating only a

small number of instructions can give fairly accurate result. Wunderlich, et al. showed

that under the assumption of no measurement error, CPI can be estimated to within an

9

error of 3% with 99.7% confidence by measuring fewer than 50 million instructions per

benchmark [81].

Sampling has several advantages over other simulation time reduction techniques.

With most of the techniques the user do not know the error in the simulation result. The

only way to find out the error is to run the full simulation and compare with the reduced

simulation, which completely defeats the goal of reducing simulation time. Alternatively,

the user can rely on the previously published validation of the simulation time reduction

technique, but the benchmark and the microprocessor configuration to be simulated in the

user’s environment are usually different from the published experiment. With a sampling

scheme that employs statistical sampling theory, the user can get a confidence interval to

quantify the error without simulating the entire benchmark in detail. Furthermore, the

sample comes directly from the benchmark, so, unlike in the statistical simulation, the

user does not need to worry about not capturing some important characteristics in the

benchmark for performance evaluation.

1.3 FACTORS AFFECTING SAMPLING DESIGNS

Simulation experiments, especially full-system simulations, are complex. As in

any complex project, many factors affect the design of the experiment.

• Goal of simulation. In different experiments, users may have different goals. In

some experiments, users are happy with just cache miss rates. In others they may

want to find out the CPI, or the speedup due to a microarchitectural enhancement,

or EPI (Energy Per Cycle), or even the highest temperature the processor will

experience during the execution of the benchmark. Different sampling designs

may be appropriate for different target metrics.

• Characteristics of the benchmark. Different types of benchmarks exhibit

different behavior. For example, a commercial benchmark like TPC-C is vastly

10

different from a CPU-intensive benchmark such as SPEC CPU2000. The

differences between benchmark characteristics are not considered in many current

sampling methods.

• Simulation infrastructure. Simulators are pieces of complex software.

Validating a simulator is even more challenging [16]. Once a simulator has been

developed and validated, the modification should be kept to a minimum.

Therefore, applying a simulation time reduction technique to an existing simulator

requires careful consideration. A technique that best fits the simulator should be

selected. Different simulators can have different problems. For example, if the

user has a trace-driven simulator, then besides reducing the cost of simulation

time, the experiment designer also needs to reduce the cost of storing the traces.

The computing resource the user has also affects the selection of simulation time

reduction techniques. Multiple benchmarks and processor configurations are

commonly evaluated in one experiment. If the user has fewer machines than the

product of the number of benchmarks and the number of configurations, then

distributing the simulation of one single benchmark onto multiple machines may

not be important. If, one the other hand, the user has enough computers, then it is

desirable to parallelize the simulation as much as possible.

1.4 PROBLEMS IN SAMPLED PROCESSOR SIMULATION

The above discussion clearly shows that no single sampling method is the best for

every situation. Naturally, the goal of this dissertation is not to find the universally best

solution because it simply does not exist. Instead, the objective of this research is to

improve sampled microprocessor simulation for different factors, and to let users select

the technique according to their particular environment. Specifically, the following

problems are attacked.

11

• There is no consensus in previous research on how to choose a good sampling

unit size. Given a fixed simulation time budget, what sampling unit size should

the user choose? What inherent characteristic of the benchmarks, if any, should

affect the user’s choice of sampling unit size?

• Nearly all previous research on sampling focuses on CPI but in many experiments

users want to find out the performance impact of a microarchitectural

enhancement. They are more interested in the speedup than in the absolute value

of CPI. How does measuring speedup affect design of sampling experiment? Is

there a way to further reduce the simulation time but maintain the accuracy?

• The cache warm-up process is affected not only by the benchmark but also by the

cache configuration being simulated. However, previous cache warm-up methods

only consider the characteristics of the benchmark. How can a better cache

warm-up scheme be designed that adapts to the cache configuration?

• Most of the sampling methods are designed and validated for CPU intensive

benchmarks such as SPEC CPU2000. Commercial benchmarks such as On-Line

Transaction Processing (OLTP) workloads are significantly different. Are those

sampling methods applicable to commercial benchmarks? Can better sampling

methods be designed for commercial benchmarks?

• In trace-driven simulations, the sampled instruction traces have to be stored.

Trace files, especially those with extended information for each instruction, can

be huge. How can those trace files be better compressed?

1.5 THESIS STATEMENT

Detailed simulation of microprocessors is prohibitively time-consuming.

Sampling designs that utilize the characteristics of the workload, the microarchitecture

12

being simulated, and the user's goal for simulation can reduce the simulation time and

storage cost with very little loss of accuracy.

1.6 CONTRIBUTIONS

This research makes multiple contributions to sampled processor simulation.

Utilizing the intracluster correlation coefficient from statistical sampling theory,

this study finds that using large sampling units is not as effective as using small sampling

units at improving the accuracy given the same simulation budget. It also provides

insight into the inherent characteristic of the benchmarks that favors small sampling unit

sizes.

The applicability of two sampling techniques, representative sampling and simple

random sampling, is studied for OLTP workloads. The chunk size is found to be an

important parameter in representative sampling. To successfully apply representative

sampling, the user needs to carefully choose the chunk size. A dynamic stopping rule for

simple random sampling is proposed. It eliminates the second round of simulation often

required in the previous techniques, thus it improves usability and reduces simulation

time.

By employing the ratio estimator from statistical sampling theory, an efficient

sampling method is designed to measure speedup and to quantify its error. It is shown

that to achieve a given relative error limit for speedup, it is not necessary to estimate CPI

to the same accuracy. In the experiment, estimating speedup requires about 9X fewer

instructions to be simulated in detail in comparison to estimating CPI for the same

relative error limit. Therefore using the ratio estimator to evaluate speedup is very cost-

effective and offers great potential for reducing simulation time.

A new technique for warming up microprocessor caches is proposed. The

simulator monitors the warm-up process of the caches and decides when the caches are

13

warmed up based on simple heuristics. In the experiments the proposed Self-Monitored

Adaptive (SMA) warm-up technique on average exhibits only 0.2% warm-up error in

CPI. SMA achieves smaller average warm-up error with only 1/2~1/3 of the warm-up

length of previous methods. In addition, it is adaptive to the cache configuration

simulated. For simulating small caches, the SMA technique can reduce the warm-up

overhead by an order of magnitude compared to previous techniques. Finally, SMA gives

the user an indicator of warm-up error at the end of the cycle-accurate simulation that

helps the user to gauge the accuracy of the warm-up.

To reduce the storage cost for sampled trace driven simulation, a new trace

compression method, Locality Based Trace Compression (LBTC), is proposed. It

employs both spatial locality and temporal locality in program memory references. It

efficiently compresses not only the address but also other attributes associated with each

memory reference. It gives better compression ratio than previous methods. In addition,

LBTC is designed to be simple and on the fly.

1.7 ORGANIZATION

Chapter 2 surveys previously proposed microarchitectural sampling and warm-up

techniques for processor simulation.

Chapter 3 deals with the problem of selecting good sampling unit sizes.

Statistical sampling theory is employed to tackle this problem. More importantly, the

inherent characteristic of the benchmarks that affects choice of sampling unit size is

identified.

Chapter 4 studies the applicability of simple random sampling and representative

sampling to OLTP workloads. A new dynamic stopping rule for simple random sampling

is proposed and evaluated.

14

Chapter 5 presents a more efficient sampling method for measuring the speedup

for microarchitectural enhancements. The proposed method is experimentally evaluated

and the reason for its improved efficiency is investigated.

Chapter 6 discusses the problem of warm-up and reviews previous warm-up

techniques. Then a new self-monitored adaptive technique for cache warm-up, which

overcomes a major weakness of previous methods, is proposed and evaluated.

Chapter 7 proposes Locality-Based Trace Compression (LBTC) technique. It is

compared with previous techniques and is shown to be more effective at compressing

trace files with extended information.

Chapter 8 concludes the dissertation by summarizing the contributions and

suggesting future opportunities.

15

Chapter 2. Previous Research

This chapter briefly surveys previous research on sampling techniques for

processor simulation. Simulation can be used to measure different performance metrics,

such as CPI, EPI (Energy Per Instruction), and cache miss rates. Most early techniques

are designed for cache simulation to measure cache miss rate. More recent research

primarily deals with cycle-accurate simulation for CPI or EPI. This dissertation focuses

on cycle-accurate simulation and cache warm-up. Therefore, this chapter is divided into

to two sections on the two topics respectively. Caches are usually the most difficult-to-

warm-up microarchitectural structures in a processor, so most of the research on sampled

cache simulation is actually about warm-up methods and thus they are surveyed with

warm-up techniques in Section 2.1. Cycle-accurate simulations are reviewed in Section

2.2. However, many papers on sampling techniques encompass both topics on sampling

per se and on warm-up issues. They are described in one of the two sections depending

on which topic is the focus in that paper. A paper may also appear in both sections if

needed.

2.1 CACHE SIMULATION AND CACHE WARM-UP

The problem of cache warm-up is that the state of the cache is unknown at the

beginning of each sampling unit. In other words, since portions of the trace are

unexamined between observations, it is unknown whether the first reference to each

cache block will be a hit or a miss. Such references are referred to as cold-start

references. If all cold-start references are assumed to result in cache misses, it is called

the cold scheme, which is equivalent to assuming all cache lines to be initially invalid for

every sampling unit. Laha, et al. employed this method for small caches [37]. They

reasoned that small caches would be purged upon a context switch so they select the

16

sampling units starting at a context switch. Large caches, however, may not be

completely flushed at a context switch. Some information is always retained in caches

larger than 16KB across a context switch. Therefore, they proposed not counting these

cold-start references when calculating cache misses for large caches. This effectively

assumes that the miss rate for the cold-start references is equivalent to the miss rate for all

other references. In their experiment, sampling unit size of 5,000, 10,000, and 20,000

instructions were used. It was shown that cache miss per instruction (MPI) can be

accurately estimated with a sample size of 35.

Wood, et al., however, showed that Laha, et al.’s assumption about large caches

is usually not true [80]. The miss rate for the cold-start references is higher than the

overall miss rate. Employing a renewal theoretical model, they proposed a method called

INITMR to estimate the miss rate for the cold-start references by observing the average

live and dead time for each cache line. Kessler, et al. evaluated INITMR against other

warm-up methods [34]. INITMR can be used to calculate the cache miss rate from

sampled trace, but not directly applicable to microarchitectural simulation to get CPI.

Therefore, it is not further discussed here.

Fu and Patel also realized that the cold-start references show a miss rate higher

than the overall miss rate [23]. They divided each sampling unit into a priming interval

and a evaluation interval. Cache miss rate is only measured in the evaluation interval, not

in the priming interval. The priming interval is initially simulated to warm up the cache.

This method is called the prime scheme. The prime-xx% method refers to devoting xx%

instructions from the sampling unit to warm-up. The prime-50% scheme is also called

half in the literature [13]. During the priming interval, miss-distance is recorded, which

is the number of references between misses including the first miss. In the evaluation

interval, the following steps are used to predict whether each cold-start reference is a hit

17

or a miss based on the miss-distance history and the cache contents. First, in the priming

interval if a miss occurs, then the miss distance is calculated and stored in a small history

table, which is a list of the most recent miss distances. Next in the evaluation interval,

upon a cold-start reference, the miss distance d is calculated. Prediction is made

according to the following criteria:

• If the history table is empty (i.e. no misses have been recorded), then predict a hit.

• Else if d is within the range of distances recorded in the history table, then predict

a miss.

• Else if a prediction cannot be made based on the history, the contents of the cache

are searched. If the adjacent sets hold addresses of the adjacent memory blocks to

the memory block being loaded, a hit is predicted, else a miss is predicted.

• Else if none of the above conditions are met, predict a miss.

The initial cache state for a sampling unit can be also assumed to be the same as

the state at the end of the last sampling unit. Warm-up techniques employing this

assumption, such as those proposed by Agarwal, et al. [1], are called stitch. It is like

stitching all the sampling units together to create a large continuous chunk of instructions.

The accuracy of the stitch scheme depends on how much of the cache state has been

replaced between two sampling units and how much of the changed state is accessed

during the second sampling unit. If most of the cache blocks are flushed as after a

context switch, then the accuracy will be impaired. Crowley and Baer [13] compared

different sampling techniques for cache simulation in the context of 5 Windows NT

desktop applications (Adobe Acrobat Reader, Netscape Navigator browser, Adobe

Photoshop, Microsoft PowerPoint, and Microsoft Word). They compared cold, INITMR,

prime-20, half, stitch and some varieties of these techniques. They concluded that for the

determination of cache miss ratios, stitch and INITMR are the best at overcoming the

18

difficulties inherent with the problem of the cold-start references at the beginning of each

sampling unit. Using these sampling techniques resulted in the accurate determination of

cache miss ratios for caches of sizes up to 64KB.

For single-level, write-through, write-allocate, LRU replacement caches, there

exist cache simulation algorithms that can simulate multiple cache configurations in a

single run. Conte, et al. combine such algorithms with sampled simulation [11]. They

assume that the entire instruction stream is available although cache miss rates are only

measured during selected sampling units. By continuous recording some information

throughout the simulation of the entire instruction stream, the cache can be kept warm

between sampling units using an LRU stack. Thus, the warm-up error is minimum for

the cache simulation.

Of course, for sampled cycle-accurate simulation, the most accurate way to warm

up the caches is to do cache simulation throughout the benchmark execution. This is how

Jimeno-Ochoa, et al. did in their Warm Time Sampling scheme [31]. But this work was

largely unnoticed in the computer research community. On ISCA 2003, Wunderlich, et

al. proposed a similar approach, SMARTS (Sampling Microarchitecture Simulation)

[81]. The simulator switches between functional warm-up and cycle-accurate simulation.

During the functional warm-up, the simulator executes the program without simulating

the pipeline stages, but the caches and the branch predictors are simulated. During the

cycle-accurate simulation, the simulator models every microarchitectural structure cycle

by cycle. Therefore, the only error in warm-up is introduced by not simulating the effect

of out-of-order execution and wrong path execution on the caches during functional

warm-up. It has been shown that this error is small [81][8]. Although this warm-up

scheme is by far the most accurate, it is still not satisfactory. First, always simulating

caches can be a waste of resource. According to sampling theory, for a specific accuracy,

19

the sample size should be determined by the variability in the population. If the

benchmark does a lot of repetition, only a tiny fraction of the instruction stream is

needed. However, the scheme requires that caches be simulated for every instruction,

which is inefficient. Secondly, always warming up the cache makes distributed

simulation hard. For sampling methods such as SimPoint [69] and Variance SimPoint

[61], where a small number of relatively large sampling units are taken, each sampling

unit can be simulated in parallel on different machines to greatly improve the overall

simulation speed. However, constantly warming up caches makes it difficult to distribute

the simulation on multiple machines.

Nguyen, et al. proposed the following equation to calculate the warm-up length

[55].

rm
LCW *

/= ,

where C is the cache size in bytes, L is the cache line size in bytes, m is the cache miss

ratio and r is the number of memory references per instruction. They also proposed

distributing sampling units on multiple machines in parallel to speed up the simulation.

The problem with this approach is that the cache miss ratio to calculate the warm-up

length is unknown before simulation. Actually, it is exactly what the user is trying to

estimate through sampled simulation.

Haskins and Skadron proposed the Minimal Subset Evaluation (MSE) technique

[28], which uses formulas derived from combinatorics and probability theory to calculate,

for some user-chosen probability p, the number of memory references prior to each

sampling unit that must be modeled in order to achieve accurate cache state. This work is

applicable to only one level of cache but most modern processors employ a hierarchy of

caches.

20

The two most recently proposed state-of-the-art cache warm-up methods are

MRRL [29], also by Haskins and Skadron, and BLRL [18][19] by Eeckhout, et al. Both

methods rely on the same premise on a cache with LRU replacement: For a single level

LRU cache, if a memory address is referenced, one knows whether the next reference to

the same address results in a hit or a miss. Let R(a, n) denote the nth memory reference

to address a, and let I(a, n) denote the dynamic instruction that generates the memory

reference. Suppose that the we want to know whether R(a, n) incurs a cache miss or a

cache hit. Then we need to find out whether R(a, n-1) has been removed from the cache.

With LRU replacement, a cache line can only be replaced by a newer memory reference.

Thus by examining all the memory references between R(a, n-1) and R(a, n) we will

know the result for R(a, n) and there is no need to look further back. Therefore,

simulating from I(a, n-1) will tell us the result for R(a, n). This premise is no longer true

for the level 2 cache when the level 1 caches employ write-back policy, but experiments

show that MRRL and BLRL still work well for multilevel cache simulations.

Based on the above premise, Haskins and Skadron [29] employ the concept of

Memory Reference Reuse Latency (MRRL), which refers to the number of dynamic

instructions between I(a, n-1) and I(a, n). The pre-sample of a sampling unit refers to the

instructions before this sampling unit up to the end of the previous sampling unit.

Instructions in a sampling unit and its pre-sample are profiled to get the empirical

distribution of MRRL. Given a p-value (p%) the warm-up length is the p-percentile of

the distribution. Figure 2.1 gives an example of the empirical Cumulative Distribution

Function (CDF) for MRRL. Because MRRL is grouped into bins during profiling the

CDF is rugged and exhibits small steps. In the example, warm-up length for p-value of

90% is shown. The MRRL technique suffers from the fact that the distribution of MRRL

may change in the instruction stream. For example, the distribution at the beginning of

21

the pre-sample may be different from that of the sampling unit. The CDF from profiling

is only an averaged distribution and may not be optimal for the sampling unit.

Considering that most of the instructions used to calculate the distribution of MRRL

come from the pre-sample, it is hard to guarantee that the instructions in the sampling

unit follow the same distribution.

Sampling
unit

Warm-up

CDF of MRRL

0.9
1.0

0.0

Sampling
unit

Warm-up

CDF of MRRL

0.9
1.0

0.0

Figure 2.1: The MRRL cache warm-up scheme.

To avoid this problem, Eeckhout, et al. proposed the Boundary Line Reuse

Latency (BLRL) method [18][19], in which every memory reference in a sampling unit is

directly examined instead of relying on the aggregated distribution. Suppose I(a, n) is the

first instruction in the sampling unit that references memory address a. The instructions

in the pre-sample are scanned backward during profiling to search for I(a, n-1).

According to the above premise, warming up from I(a, n-1) can guarantee that we know

whether I(a, n) incurs a cache hit or a cache miss. Given a p-value like 80%, the warm-

up length for the sampling unit is chosen such that 80% of the unique references in the

sampling unit whose addresses are referenced in the pre-sample are covered by the warm-

up instructions. An example adapted from the BLRL paper [18] is given in Figure 2.2.

There are 5 unique memory references in the sampling unit whose addresses are also

found in the pre-sample, namely, a, b, c, d, and e. If we start warm-up from the 3rd b in

22

the pre-sample, we will cover 80% of the 5 memory references (i.e. a, b, c, and d). The

only memory references in the sampling unit whose result is unknown are e and g.

a b c b d c e a f a b c d c a c a d e a b c g

c
a

db

Warm-up Sampling unit

e

a b c b d c e a f a b c d c a c a d e a b c g

c
a

db

Warm-up Sampling unit

e

Figure 2.2: The BLRL cache warm-up scheme.

Set sampling is another type of sampling techniques for cache simulation. There

is no known method to apply set sampling to cache warm-up for cycle-accurate

simulation. But for completeness, set sampling is briefly mentioned here. All the

techniques discussed hitherto are often referred to as time sampling because the sampling

is done in the time dimension (i.e. the instruction stream is sampled). In set sampling,

however, the sets in the cache are sampled rather than the instruction stream. The sets

can be sampled randomly or based on the information about the parameters of the cache.

Liu and Peir proposed a two-step set sampling [43]. In the first step, a partial run of the

benchmark is simulated with the whole cache to obtain the information about the

behavior of each set in the cache. Based on this information, certain sets are selected for

inclusion in the sample. In the second phase, the whole benchmark is simulated but only

on the selected cache sets, from which the overall cache miss rate is estimated. Kessler,

et al. proposed a set sampling method called the constant-bits method, which can

simulate a hierarchy of multi-megabyte caches [34].

23

2.2 SAMPLING FOR PROCESSOR SIMULATION

Skadron, et al. identified a chunk of 50 million instructions from each SPEC

INT92 benchmarks to represent the benchmark [71]. To accurately choose the

simulation window, they measured the interval branch misprediction rate for each of the

benchmarks: i.e. the misprediction rate computed separately over each million-instruction

interval in the program. This exposed representative segments of the trace. They also

obtained interval traces for data- and instruction-cache miss rates and ensured that the

chosen simulation window was suitable with respect to these data as well. They observed

that many programs had an initial phase, which was very different from the rest of the

execution. The initial phase should be avoided when selecting the chunk of instructions

for reduced simulation.

When modeling the performance of the PowerPC 603 processor, Poursepanj

simulated 200 sampling units from each SPEC INT92 benchmarks [64]. Each sampling

unit consisted of 5,000 instructions. The geometric mean of the IPC for the sampled

traces of the SPEC INT92 benchmark suite was within 2% of the true value. However,

the error margin for an individual benchmark could go up to 13%.

Lauterbach employed an iterative sampling-verification-resampling method in his

study [40]. An initial sample of 100 units of 100,000 instructions each was used. The

sampling units were taken at random instruction intervals in the execution of the

benchmark. In the verification step, the instruction frequency, basic block density and

cache statistics of the sampled traces were checked against the full trace for the

benchmark. These metrics could be obtained faster than IPC. In cases where the sample

trace was not representative of the full trace, additional sampling units were collected

until the required criterion was reached. Final validation was done by simulating several

microarchitectures using the sampled trace and comparing the result to the simulation of

24

the full trace. They showed that the absolute performance of samples was within 2% of

the performance results of the complete trace.

Iyengar, et al. proposed a new metric, called the R-metric, to evaluate the

representativeness of the reduced traces when applied to a wide class of processor

designs [30]. A basic block annotated with the history of its preceding branch is referred

to as a qualified basic block. A basic block that is qualified by the branching history of

length k and by the preceding n-1 qualified basic blocks is called a fully-qualified basic

block with parameters n and k. The R-metric measures the deviation in the reduced trace

from the expected scaled count for each fully-qualified basic block. This deviation is

expressed as the ratio of instructions that have an incorrect environment in the reduced

trace. An ideally representative reduced trace will have a R-metric value of 0. They also

proposed a graph-based heuristic to generate reduced traces based on the notions

incorporated in the metric. They sampled from the original trace at the granularity of one

basic block to minimize R-metric and maximize the representativeness of the reduced

trace. Their method was designed for processor models with infinite cache. Therefore,

the method does not consider the impact of cache misses and thus will not give very

accurate results for simulating real processors with caches.

Sherwood, et al. proposed a methodology called Basic Block Distribution

Analysis to find a single simulation point in benchmarks [68]. A basic block is a

sequence of instructions in a program with a single entry point, single exit point, and no

internal branches. A Basic Block Vector (BBV) is a vector of length equal to the

number of static basic blocks in the code. Each interval (a chunk of 100 million dynamic

instructions in sequence) is characterized by a BBV with each element of the vector

showing the frequency of occurrence of a particular static basic block. A BBV is derived

for the whole program, called the target BBV, and each entry in the BBV is normalized to

25

total basic blocks, so that sum of all the entries in a BBV is one. Similarly, BBVs are

derived for each interval of 100 million instructions and then compared with the target

BBV. The comparison is directly made by subtracting one BBV from the other and

adding up the absolute values of the difference of each element. The number lies between

0 and 2. The difference of 0 indicates perfect match and 2 indicates a perfect miss-match.

A single simulation point is selected by finding the interval with the lowest difference.

Liu and Huang observed that computer programs rely heavily on repetition to

perform any significant operations, and that repeated execution of the same code could

yield very similar behavior [42]. Based on these observations, they proposed a 3-step

sampling scheme called EXPERT (Expedited simulation eXploiting Program bEhavior

RepeTition):

1. Partitioning: divide an application into static code sections,

2. Characterization: characterize the behavior repetition of these sections, and

3. Selective simulation: use the characterization to control the degree of sampling in

an architectural simulation.

They show that for a set of 22 SPEC CPU2000 applications, the simulation time can be

reduced to a few hours or even several minutes if checkpointing is used.

Much research work in sampled simulation follows an ad-hoc approach: the

newly proposed technique is evaluated solely experimentally in a few test cases to

demonstrate its accuracy. Conte, et al. were one of the first to apply statistical theory to

processor simulation [12]. The statistical sampling approach allows a confidence

interval to be calculated to quantify the accuracy of the simulation without simulating the

whole instruction stream. The authors also showed how to determine the sample size

based on the target accuracy.

26

The SMARTS method, whose warm-up technique has been discussed in the

previous section, also employs sampling theory to calculate the confidence interval and to

select the sample size at a given accuracy requirement. Systematic sampling is used in

SMARTS but it has been found to be equivalent to simple random sampling. The

sampling unit size is 1,000 instructions. The SMARTS method usually involves two

simulations. Before the simulation, the user sets a target accuracy expressed as a relative

error limit at a certain confidence level. In the first simulation, the user chooses a sample

size based on previous experience or an educated guess. After the simulation, the

confidence interval for CPI can be calculated. In the lucky but rare case in which the

confidence interval is equal to the target accuracy, the second simulation is not needed.

If the initial sample size is too large, then the confidence interval will be much narrower

than the target accuracy. The second simulation is not needed, either. But the performed

simulation is overkill and the user has already wasted time on simulating some

unnecessary sampling units. If the initial sample size is too small, then a second

simulation must be done. With the result from the first simulation, the sample size for the

second simulation can be fairly accurately calculated. The result of the second simulation

is expected to just meet the target accuracy. It was shown that CPI could be estimated to

within an error of 3% with 99.7% confidence by measuring fewer than 50 million

instructions per benchmark for SPEC CPU2000.

Recently, sampling techniques that take advantage of the phase behavior in the

programs have been proposed. I call this type of techniques phase based representative

sampling, or simply representative sampling. A phase can be defined as a portion of

dynamic execution of a program in which most of the performance metrics such as CPI,

show very little variance. In this definition, parts of a program that are disjoint in time

may belong to the same phase as long as they show similar values for performance

27

metrics. Since the performance metrics remain stable in a phase, simulating only one

chunk of instructions in the phase can give fairly accurate estimation of the performance

for the entire phase. If one chunk of instructions from every phase is selectively

simulated, the simulation time can be greatly reduced with little loss of simulation

information in the whole program.

SimPoint, proposed by Sherwood, et al., is the most acknowledged representative

sampling technique [69]. SimPoint also uses BBV for phase classification. BBV for

every 100-million-instruction chunk is collected. BBV is usually high dimensional

(thousands to hundreds of thousands), and hence random projection [14] is performed on

the data to reduce the dimensionality to 15 before using k-means clustering to form

interval clusters with similar BBVs. Each cluster corresponds to a phase in the program

execution. The clustering algorithm forms clusters for different number of clusters (k)

and picks the best solution, determined by BIC (Bayes Information Criterion) [33][60].

The simulation point that is closest to the centroid of a cluster is selected as the cluster

representative. The cluster representatives (intervals) together form the simulation points

of the programs. After selecting the simulation points, the CPI of the whole program can

be calculated as a weighted average of CPI values from each of the representative

intervals weighted by the cluster size.

Early SimPoint and Variance SimPoint, proposed by Perelman, et al., are two

extensions to SimPoint. The chunk sizes are reduced to 1 million and 10 million

instructions. Early SimPoint tries to find simulation points early in the program’s

execution without compromising the accuracy. It reduces the time required for fast-

forwarding where check-pointing is not possible. Variance SimPoint uses statistical

analysis to guide the choice of number of clusters for a user specified confidence interval

and probabilistic error bound for CPI. The confidence interval is valid only on the

28

microarchitecture for which the user does verification, not on the microarchitecture that

the user actually uses Variance SimPoint. Nonetheless, Variance improved accuracy

over the original SimPoint.

Todi proposed SPEClite, another representative sampling method for SPEC

CPU2000 benchmarks [76]. The approach consists of collecting performance metrics

using the performance monitoring counters for every interval of 1 million instructions

and then using clustering to find representative intervals for phases. The main drawback

of this technique is that since the measured phase classification features are for a

particular machine, the clusters may not be valid for other microarchitecture

configurations.

The representative sampling method proposed by Srinivasan, et al. employs χ2–

test instead of clustering algorithms to identify phases [73]. They defined a Chi-square-

based Similarity Measure (CSM) to measure the similarity between instruction chunks.

CSM compares the sampled IPC distribution to the original IPC distribution to efficiently

detect phase changes. Although CSM is microarchitecture-dependent, it was shown that

the result is generally accurate on similar microarchitectures.

The sampling method developed by Lafage and Seznec is for cache simulation,

not for cycle-accurate processor simulation [36]. But because it is also a representative

sampling technique, it is briefly discussed here. This method selects representative slices

of program execution based on a microarchitecture-independent feature, reuse distance

expressed in terms of instructions executed between two accesses to the same address.

They used hierarchical clustering to classify program slices of 1 million instructions.

Their results showed an average relative error of 1.52% in data cache miss-rate for the

SPEC CPU95 suite.

29

All of the above research focuses on SPEC CPU benchmark suite. Despite the

importance of commercial workloads in the real business world, their simulation

methodology has not been thoroughly studied. Patil, et al. applied SimPoint

methodology to commercial workloads running on Intel Itanium machines [59]. A

method similar to SimPoint was used. The code was instrumented with PIN, a tool for

dynamic, user-defined instrumentation of Itanium/Linux Programs [62]. The

instrumented program was run on a real Itanium machine to collect the BBV profile for

every 250-million-instruction chunk. Then clustering analysis from SimPoint is

performed to select representative simulation points. Their result showed that

representative sampling worked well for their benchmarks. However, most of their

benchmarks were run in single-threaded mode. They had one set of multi-threaded

programs, SPECOMP2001. They noted the difficulty in studying SPECOMP2001 in

their experiment due to the non-determinism and the non-repeatability of multi-threaded

programs on real machines. Their experiment on multi-threaded commercial workload

was inconclusive.

30

Chapter 3. On Sampling Unit Size

3.1 INTRODUCTION

In sampled simulation of microprocessors, one basic problem is to determine the

best sampling unit size. For example, suppose users have a budget of simulating 500

million instructions. To achieve a small error in CPI or IPC, should they simulate 1 chunk

of 500 million instructions each or 500 chunks of 1 million instructions each? And why?

Despite its importance, there is no consensus on the problem in previous research.

Researchers have proposed various sampling unit sizes ranging from 1,000 instructions to

hundreds of millions of instructions. In practice, only one large chunk of consecutive

instructions are often simulated. I call it one-chunk sampling, a special case of sampling

with sample size of one. The single sampling unit is becoming larger and larger.

Consider the papers in MICRO 2001 and 2003 that used one-chunk sampling to simulate

SPECcpu2000. In MICRO 2001, the sampling units used in the six papers were 200

million instructions (in 3 papers), 300 million instructions (in 2 papers), and 10-25

million instructions (in 1 paper). In MCIRO 2003, the sampling units became much

larger in 7 papers: 100 million instructions (in 2 papers), 500 million instructions (in 3

papers), 1 billion instructions (in 1 paper) and 5 billion instructions (in 1 paper).

Intuitively, simulating more instructions will give a more accurate result, but is this an

effective way to improve simulation accuracy?

The final error of sampling simulation comes from two sources. The first source

is the inaccuracy in measuring the CPI of each sampling unit, which comes mainly from

the warm-up error. Because only limited number instructions before each sampling unit

are simulated, the initial microarchitectural state at the beginning of a sampling unit is

only approximately correct. The final error in CPI caused by approximation in warm-up

31

is called warm-up error. The second type of error, which is the focus of this chapter,

comes from sampling itself. Because only part of the instruction stream is simulated, the

true CPI for the part that is not simulated is unknown and can only be estimated.

Therefore, the estimation of the CPI for the whole benchmark will always have

inaccuracy in it. This sampling error is inherent to all sample designs.

Warm-up error can be very small if caches and branch predictors are functionally

simulated throughout the benchmark execution [81][31]. In this chapter, the warm-up

error is assumed to be zero and the warm-up overhead is assumed to be constant. In

actual simulation the warm-up overhead depends on the specific warm-up method, so this

assumption allows the decoupling of the warm-up issue from the benchmark and the

microarchitecture configuration. The assumption of ideal warm-up enables this study to

focus on the inherent property of the benchmark instruction stream instead of being tied

down to a particular warm-up scheme.

One advantage of sampling over other simulation time reduction techniques is

that sampling enjoys a solid mathematical foundation. In this chapter, statistical

sampling theory is employed to study the problem of sampling unit size. This study tries

to determine how large the sampling unit should be in order to achieve certain simulation

accuracy while simulating as few instructions as possible. The intracluster correlation in

programs is used to evaluate the effectiveness of large sampling units. It is found that

most benchmarks show positive intracluster correlation, which favors a small sampling

unit. The inherent property of the benchmarks that causes the positive correlation is also

investigated.

This chapter is structured as follows. Section 3.2 presents the statistical theory

employed in the study. The experiment and the analysis of the results are shown in

Section 3.3. In Section 3.4, the underlying reason for the observation is discussed, which

32

shows that the observation is not a coincidence but caused by an inherent property of

many benchmarks. Section 3.5 summarizes the chapter.

3.2 STATISTICAL SAMPLING THEORY

Simple random sampling is assumed in this chapter. In practice, systematic

sampling is often used for convenience but it is shown to be equivalent to simple random

sampling in processor microarchitectural simulation [81]. In a sampled simulation, the

CPI of each sampled unit is measured (yi, i=1, .., n). The CPI of the full simulation

(population mean, Y) is estimated as2

∑
=

==
n

i
iynyY

1

1ˆ
 (3.1)

That is, the sample mean (y) is used as an estimator for the population mean, which is

intuitive.

A confidence interval can be used to quantify the error of the sampling result.

When the sample size is large, the sample mean approximately follows normal

distribution, the confidence interval for the population mean at confidence level (1-α) is

(2/1 α−− zy yS , 2/1 α−+ zy yS) (3.2)

where 2/1 α−z is the (1-α/2) quantile of a unit normal distribution, and yS is the standard

deviation or standard error of the sample mean. 2)(ySyV = is the variance of the sample

mean. Because the variance and standard deviation are directly related to the

confidence interval, they are used in sampling theory as the indicator of the sampling

error and are used to evaluate sample designs. Therefore, the variance or the standard

deviation of the sample mean is used to compare the accuracy for different sampling unit

sizes hereafter.

For simple random sampling, when the sampling fraction is small,

2 Capital letters refer to characteristics of the population and lowercase letters to those of the sample. The symbol ^ denotes an
estimate of a population characteristic made from a sample.

33

n
Sfn

S
N
nN

n
SyV

222
)1()()(=−=−⋅= & (3.3)

where 2S is the variance of the population:

∑
=

−−=
N

i
i YyNS

1

22)(1
1

 (3.4)

According to Equation 3.3, as more sampling units are measured (i.e. the sample size n is

increased), the variance decreases with 1/n.

There are two methods to improve the accuracy of the sampling result. In the first

method, larger sampling units are used. M consecutive sampling units are grouped

together to form a large sampling unit, which is called a cluster in the sampling theory.

Assume that there are N clusters in the population and n clusters are randomly taken from

it. Let yij be the observed value for the jth unit within the ith cluster. Y denotes the mean

per (small) sampling unit for the population. In the second method, the original sampling

unit size is kept, but the sample size is increased to M*n by taking more sampling units.

By applying the two methods to processor simulation, the user still measures the

same number of instructions in the cycle-accurate mode. The difference is that, in the

first case, n large chunks of instructions are simulated, whereas, in the second case, M*n

small chunks of instructions are simulated. So the question is: is using larger sampling

units more effective at improving the accuracy?

Calculate the ratio of the standard deviations of the two cases can answer the

question. It can be proved that

ρ)1(1arg −+= MS
S
small

el & (3.5)

where

2
1

)1)(1(

))((

SNMM

YyYy
N

i

M

kj
ikij

−−
−−

=
∑∑

= ≠ρ (3.6)

34

The numerator of Equation 3.6 shows that ρ is the average of the correlation

between any two sampling units within a cluster. Hence it is called the intracluster

correlation coefficient. The possible range for ρ is 11 ≤≤− ρM . When ρ=0, the

sampling units within a cluster are independent of each other and Slarge=Ssmall, which means

that using a larger sampling unit is as effective as taking more smaller sampling units.

When ρ >0, the sampling units within a cluster are positively correlated and Slarge>Ssmall, so

using a larger sampling unit is less accurate. Please note that in Equation 3.5 ρ is

multiplied by (M-1). Even a small positive correlation may cause noticeable difference

between S1 and S2. When ρ<0, using a larger sampling unit is more effective at

improving accuracy (Slarge<Ssmall). In the extreme case (
1

1
−−= Mρ), the large sampling

unit reduces the sampling error to zero.

3.3 EXPERIMENTS AND RESULTS

The theory in the above section shows that the effectiveness of a large sampling

unit depends on the intracluster correlation coefficient. Experiments are conducted to

measure this instracluster correlation. The processor configuration is shown in Table 3.1.

The same configuration has been used in study on warm-up [29] and in validation of

SimPoint [22].

Although possible sampling unit sizes range from hundreds to billions of

instructions, two ranges are studied in the experiments. 1 million to 100 million

instructions is the “promising range”. It is good candidate for designing new sampled

simulation techniques for the future. Good warm-up methods can be devised for

sampling unit sizes in this range [29][18][19][48]. The other range of sampling unit size

is from 100 million to several billion instructions. This is the unit size for one-chunk

sampling commonly used in practice. Baseline sampling unit sizes of 1 million

35

instructions and 100 million instructions are appropriate for studying the two ranges

respectively.

Table 3.1: Processor configuration.

Pipeline
Issue Width
Decode Width
Register Update Unit
Load-Store Queue
Commit Width

8 instructions/cycle
8 instructions/cycle

128 entries
32 entries

8 instructions/cycle
Cache Hierarchy

L1 Data

L1 Instruction

L2 Unified

Memory Access Latency

16KB; 4-way assoc., 32B lines
2-cycle hit

8KB; 2-way assoc., 32B lines
2-cycle hit

1MB; 4-way assoc., 64B lines
20-cycle hit
151 cycles

Combined Branch Predictor
Bimodal
Pag
Return Address Stack
Branch Target Buffer
Mispredict Latency

8192 entries
8192 entries

64 entries
2048 entries; 4-way assoc.

14 cycles

The seven benchmark-input pairs in Table 1.1 are simulated in sim-outorder. sim-

outorder is modified to print simulation result for every sampling unit throughout the

benchmark execution. Because cycle-accurate simulation is done throughout, there is no

warm-up error in the experiment. Two sampling unit sizes are used: a sampling unit size

of 1 million instructions for covering the range of 1 million to 100 million instructions,

and a unit size of 100 million instructions for covering the range of 100 million to 5

billion instructions.

Figures 3.1 and 3.2 show the intracluster correlation coefficient for CPI for the

two base sampling unit sizes. It is clear that different benchmarks show different

36

intracluster correlation. However, except where two data points of bzip2-source in

Figure 3.2 are very close to zero, all the intracluster correlation coefficients are positive.

Based on Equation 3.5, the positive correlation means that using larger sampling units is

not effective at improving accuracy.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
sampling unit size (million instructions)

in
tra

clu
ste

rc
or

re
lat

io
n

co
eff

ici
en

t

bzip2-source
crafty
eon-rushmeier
gcc-166
gzip-graphic
vortex-1
vpr-route

Figure 3.1: Intracluster correlation coefficient for CPI with baseline sampling unit size
of 1 million instructions.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50
sampling unit size (100 million instructions)

in
tra

clu
ste

rc
or

re
lat

io
n

co
eff

ici
en

t

bzip2-source
crafty
eon-rushmeier
gcc-166
gzip-graphic
vortex-1
vpr-route

Figure 3.2: Intracluster correlation coefficient for CPI with baseline sampling unit size
of 100 million instructions.

37

For verification, the standard deviation for different sampling unit sizes is

calculated. The standard deviation, normalized to that of the original sampling unit size,

is shown in Figures 3.3 and 3.4. The lowest smooth curve (with legend “org unit”) in the

figure demonstrates the decrease of the standard deviation as the user takes more

sampling units instead of using large sampling unit sizes. According to Equation 3.3, the

standard deviation decreases with M/1 , and the curve is the same for all benchmarks.

All the other curves show that the standard deviation generally drops as the sampling unit

sizes are increased. Except for the two data points in bzip2-source in Figure 3.4, the

curves do not drop as quickly as the “org unit” curve, which leads to the same conclusion

as Figures 3.1 and 3.2 that larger sampling unit size is not effective at improving the

accuracy of CPI. Consider crafty in Figure 3.4. Take a chunk of 100 million instructions

as an example sampling unit because simulating a chunk of several hundred million of

instructions is a popular practice. Suppose that the 95% confidence interval is e when

simulating crafty. If the chunk size is increased to 1 billion instructions, then error can

only be reduced to 0.89e, a marginal gain. On the other hand, the chunk size is kept at

100 million instructions, but 10 times more chunks are sampled, then the error limit is

reduced to 0.32e, even though the total number of measured instructions remains the

same.

38

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
sampling unit size (million instructions)

no
rm

ali
ze

d
sta

nd
ar

d
de

via
tio

n bzip2-source
crafty
eon-rushmeier
gcc-166
gzip-graphic
vortex-1
vpr-route
org unit

Figure 3.3: Normalized standard deviation for CPI with baseline sampling unit size of 1
million instructions.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50
sampling unit size (100 million instructions)

no
rm

ali
ze

d
sta

nd
ar

d
de

via
tio

n bzip2-source
crafty
eon-rushmeier
gcc-166
gzip-graphic
vortex-1
vpr-route
org unit

Figure 3.4: Normalized standard deviation for CPI with baseline sampling unit size of
100 million instructions.

Although sampling for CPI is the focus of this study, sampling is also useful for

other metrics. Similar experiments are performed for the level one data cache misses per

instruction and the branch misprediction per instruction with the two base sampling sizes.

In most cases, a small sampling unit size is still more accurate than a large sampling unit

39

size. Because these results are similar to those of CPI, they are not shown here. Only in

two cases does a large sampling unit size results in smaller error. They are shown in

Figure 3.5 (level one data cache misses per instruction for base sampling unit of 100

million instructions) and Figure 3.6 (branch misprediction per instruction for base

sampling unit of 100 million instructions). In both figures, bzip2-source shows negative

intracluster correlation coefficients. As verification, Figures 3.7 and 3.8 show the

normalized standard deviation for the cache misses and branch misprediction. As the

sampling unit size increases the standard deviation for bzip2-source drops quickly and

soon goes below the “org unit” curve. For this particular benchmark, simulating a large

chunk of 2 billion instructions gives better accuracy than using twenty chunks of 100

million instructions when measuring L1 data cache misses or branch misprediction.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

sampling unit size (100 million instructions)

in
tra

clu
ste

rc
or

re
lat

io
n

co
eff

ici
en

t

bzip2-source
crafty
eon-rushmeier
gcc-166
gzip-graphic
vortex-1
vpr-route

Figure 3.5: Intracluster correlation coefficient for L1 data cache misses with base
sampling unit size of 100 million instructions.

40

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

sampling unit size (100 million instructions)

in
tra

clu
ste

rc
or

re
lat

io
n

co
eff

ici
en

t

bzip2-source
crafty
eon-rushmeier
gcc-166
gzip-graphic
vortex-1
vpr-route

Figure 3.6: Intracluster correlation coefficient for branch misprediction with base
sampling unit size of 100 million instructions.

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50
sampling unit size (100 million instructions)

no
rm

ali
ze

d
sta

nd
ar

d
de

via
tio

n bzip2-source
crafty
eon-rushmeier
gcc-166
gzip-graphic
vortex-1
vpr-route
org unit

Figure 3.7: Normalized standard deviation for L1 data cache misses with base sampling
unit size of 100 million instructions.

41

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50
sampling unit size (100 million instructions)

no
rm

ali
ze

d
sta

nd
ar

d
de

via
tio

n bzip2-source
crafty
eon-rushmeier
gcc-166
gzip-graphic
vortex-1
vpr-route
org unit

Figure 3.8: Normalized standard deviation for branch misprediction with base sampling
unit size of 100 million instructions.

3.4 DISCUSSION

The results in the last section show that for most benchmarks and most metrics,

using larger and larger sampling units is not a good way to improve the accuracy of the

sampling result. A more effective way would be to keep the sampling unit size small but

take more sampling units. There are, however, some benchmarks that favor large

sampling units for some metrics. These experiments were done for only one processor

configuration, so a natural question would be “is the positive intracluster correlation

generally expected or is it a coincidence in the experiment?” Therefore, it is more

important to discern the underlying reason than to merely present the observation.

Finding out why benchmark bzip2-source produces peculiar results is also desirable.

Positive correlation inside a cluster means that the sampling units within one

cluster exhibit similar metrics. One possible cause may be the phase behavior of some

benchmarks. Within a phase, the program exhibits relatively constant behavior, so the

metrics of the sampling units are very similar. However, a closer look shows that the

42

positive intracluster correlation is more common than the phase behavior. For example,

Figures 3.9 and 3.10 show the graph of CPI of every 100 million instructions for two

benchmarks. Distinct phases can be observed in vortex-1 whereas crafty looks like white

noise to human eyes. But as shown in Figure 3.2, both benchmarks show highly positive

intracluster correlation so there is probably a more general program property causing the

positive correlation.

vortex-1

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

0 200 400 600 800 1000 1200instructions (100 million)

CP
I

Figure 3.9: CPI for every 100 million instruction unit for vortex-1.

Crafty

0

0.5

1

1.5

2

2.5

0 500 1000 1500 2000
instructions (100 million)

CP
I

Figure 3.10: CPI for every 100 million instruction unit for crafty.

The positive intracluster correlation means that the sampling units in one cluster

show similar metrics. However, the metrics are microarchitecture-dependent. To find

43

out the underlying reason, the similarity between the sampling units themselves needs to

be measured. One microarchitecture-independent metric to measure the similarity

between instruction traces is the Basic Block Vector (BBV) proposed by Sherwood, et al

[68]. A Basic Block Vector is a one-dimensional array with an element for each static

basic block in the program. Each array element is the count of how many times a given

basic block has been entered during a sampling unit or a cluster. The dissimilarity

between the instruction traces in the two sampling units is reflected in the distance

between the BBVs of two sampling units reflects. If the distance is small, then in the two

sampling units the same set of basic blocks are executed with similar execution

frequency. Thus the instruction traces in the two sampling units are similar. On the other

hand, if the distance is large, then different set of basic blocks are executed or the same

basic blocks are executed with very different frequency, so the two sampling units are

dissimilar.

Let ivv denote the BBV for the ith sampling unit. The following metric is

proposed to measure the average dissimilarity of two sampling units that are h sampling

units apart.

∑−
=

+−−=
hN

i
hii vvhNhd

1
||1)(vv
 (3.7)

Obviously d(0) is always 0. To simplify calculation, random linear projection is used to

reduce the dimensionality [14]. BBV distance is only comparable within a single

benchmark. It makes no sense to compare the distance between benchmarks, so the

distances are scaled in order to show them clearly in Figures 3.11 to 3.153. One

noticeable characteristic of the benchmarks is that the distance for most benchmarks

shows a trend of going up, which means that the closer the two sampling units are in

time, the more similar they are and vice versa. This is a type of general temporal locality

3 The trend of the curves is important whereas the absolute value of y-axis is not meaningful.

44

of code. If a part of the program is executed in a sampling unit, then the same part will

probably be executed in the near future (i.e. in the close neighbor sampling unit) in a

similar fashion (i.e. with similar execution frequency of the basic blocks). In addition,

Lau, et al. [39] has shown that if two sampling units are very similar in terms of BBV,

then they will usually exhibit similar metrics such as CPI, cache miss rates, and branch

misprediction rate. As a result, positive correlation among the nearby sampling units

within a cluster is usually observed.

Larger sampling units are created by combining small sampling units that are

close to each other into one sampling unit. These consecutive small sampling units are

usually very similar and exhibit similar metrics because of the general code locality, so

adding neighboring sampling units to the sample does not capture more information. The

sampling units that are far apart are generally dissimilar. Therefore, using small

sampling unit size and letting the units distributed throughout the whole instruction

stream will give more information and the best accuracy.

However, there are notable exceptions to the general code locality. Bzip2-source
with a sampling unit size of 100 million instructions shows an oscillating BBV distance

graph, which means that the sampling units close to each other may be as different as the

units that are far apart, so the only negative intracluster correlation occurs with bzip2-
source in Figures 3.5 and 3.6. Gzip-graphic with sampling unit of 1 million instructions

also shows a BBV distance graph that lacks general code locality but its intracluster

correlation is still positive for various metrics. After all, the metrics such as CPI are

microarchitecture-dependent. Even though the instruction streams in two sampling units

are different, they may still exhibit somewhat similar CPI because the overall effect of

the code on the microarchitecture may be similar.

45

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100
lag (million instructions)

av
er

ag
eB

BV
dis

tan
ce

bzip2-source
crafty
eon-rushmeier
gcc-166
vortex-1
vpr-route

Figure 3.11: Average distance of BBV for sampling unit size of 1 million instructions for
6 benchmarks.

0
0.2
0.4
0.6
0.8

1
1.2

0 20 40 60 80 100
lag (million instructions)

av
er

ag
eB

BV
dis

tan
ce

gzip-graphic

Figure 3.12: Average distance of BBV for sampling unit size of 1 million instructions for
gzip-graphic.

46

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50
lag (100 million instruction)

av
er

ag
eB

BV
dis

tan
ce

crafty
gcc-166
gzip-graphic
vortex-1
vpr-route

Figure 3.13: Average distance of BBV for sampling unit size of 100 million instructions
for 5 benchmarks.

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200
lag (100 million instruction)

av
er

ag
eB

BV
dis

tan
ce

eon-rushmeier

Figure 3.14: Average distance of BBV for sampling unit size of 100 million instructions
for eon-rushmeier.

47

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50
lag (100 million instruction)

av
er

ag
eB

BV
dis

tan
ce

bzip2-source

Figure 3.15: Average distance of BBV for sampling unit size of 100 million instructions
for bzip2-source.

3.5 SUMMARY

Sampling is an effective technique to reduce simulation time while retaining good

accuracy. Previously researchers have proposed different sampling techniques with

vastly different sampling unit sizes. In practice, people are also using the one chunk

sampling and simulating a larger and larger chunk, so it is unclear what a good sampling

unit size should be.

In this chapter, the sampling unit size problem is studied by calculating the

intracluster correlation coefficient. It is observed that most benchmarks exhibit positive

intracluster correlation for various metrics in a wide range of sampling unit sizes. The

positive intracluster correlation makes it less effective to use a large sampling unit size to

improve the accuracy of sampling result.

The inherent characteristic of benchmarks that causes positive intracluster

correlation and favors small sampling units is also investigated. Using the

microarchitecture-independent BBV distance, it is shown that most benchmarks exhibit a

type of generalized temporal locality. The instruction stream of a sampling unit is more

48

similar to that of another unit that is nearby than to a unit that is far apart. Therefore,

sampling units that are close by each other usually show similar metrics and thus are

positively correlated. Grouping small sampling units into a large one is less accurate than

distributing the small sampling units throughout the whole instruction stream.

Although uncommon, there are benchmarks that do not show the general code

locality. These benchmarks are candidates for large sampling units. This lack of general

code locality will not manifest as negative intracluster correlation in all cases, but some

of the benchmarks do favor large sampling units for some metrics. Overall, however,

using small sampling units is a safe bet unless there is clear evidence to show otherwise.

The conclusion that small sampling units are more effective at reducing sampling

error is consistent with recent development in research on sampled microprocessor

simulation. For example, in the precursor method to SimPoint, one large sampling unit

of 300 million instructions is used. In SimPoint, sampling unit size is reduced to 100

million instructions. In the latest Variance and Early SimPoint, sampling unit size is

further reduced to 1 million and 10 million instructions. The dramatic reduction of

sampling unit size and the increase of sample size has significantly improved the

accuracy of the SimPoint method. Although these sampling techniques are more

sophisticated than simple random sampling and the authors did not discuss in detail the

reason for the specific sampling unit sizes, the underlying reason for the diminishing

sampling units appears to be the same as that elaborated in this chapter.

The conclusion in this chapter also argues against the popular one-chunk

sampling, especially against the trend in which the chunk is becoming larger as better

computers are available to run the simulation. Larger chunks will improve accuracy

somewhat but are unlikely to be effective at it. A better way is to use smaller sampling

units and distribute them throughout the whole benchmark execution.

49

Chapter 4. Sampling Techniques for Fast Simulation of OLTP
Workloads

4.1 INTRODUCTION

Most of the research on sampling techniques for reducing simulation time has

been focusing on SPEC CPU [75] benchmark suite, which consists of CPU-intensive

programs with a single thread. Commercial workloads such as database systems are very

important in the business world. They are known to exhibit characteristics drastically

different from SPEC CPU programs [51][44][45], but the simulation methodology for

commercial workloads has not been studied as thoroughly due to the complexity in

setting up and tuning the workload. Online transaction processing (OLTP) is an

important type of database workloads. It is the major task of traditional database

systems. OLTP is critical for day-to-day business operations such as purchasing,

inventory, and banking. The majority of transactions are short, fast updates and queries

of a few records. ACID (Atomicity, Consistency, Isolation, and Durability) properties

are fully enforced. In addition, OLTP applications are used interactively so the database

must respond quickly.

OLTP workloads are very different from SPEC CPU benchmarks. SPEC CPU

benchmarks are single-threaded CPU-intensive programs with little operating system or

I/O activity. OLTP workloads, on the other hand, are multi-threaded and involve

significant operating system and I/O operations. SPEC CPU programs perform a defined

task. For example, the gcc benchmark analyzes the input source code and generates

optimized Motorola 88100 assembly code. The performance metric is based on the time

to complete the predefined task. In contrast, OLTP workloads do not have a predefined

task. In a real business environment, OLTP workloads are supposed to run 24x7. The

50

execution time of OLTP benchmarks is usually artificially limited so that the user can

measure the performance in a reasonable time. Unlike SPEC CPU benchmarks, OLTP

performance is measured using the throughput of transactions instead of the execution

time of the program. After an OLTP workload is started, its performance changes in the

beginning. Because an OLTP workload is considered non-terminating, the user cares

only about its long-term performance. Therefore, the initial ramp-up period is

deliberately ignored and only the throughput in steady state is measured. In comparison,

the execution time of the entire benchmark in SPEC CPU is included in the performance

metric.

The problem of long simulation time is even more serious for OLTP workloads.

Consider TPC-C [77], the most widely used OLTP benchmark. The benchmark is

required to run for at least 2 hours. In comparison, the execution of a SPEC CPU2000

benchmark on a modern computer usually takes minutes. Despite the seriousness of the

problem and the uniqueness of OLTP workloads, most simulation time reduction

techniques are proposed for and validated against the SPEC CPU benchmark suite.

Sampling is the most widely used simulation time reduction technique. Most of

the sampling techniques fall into two categories. In the first type of technique, the

sampling units are picked randomly or with equal gap (i.e. systematic sampling).

Because of the autocorrelation between the sampling units in the instruction, small

sampling unit size is preferred for efficiency (see Chapter 3). A large number of

sampling units are commonly measured to achieve good accuracy, usually expressed in

terms of a confidence interval. SMARTS is a recently proposed techniques that uses

systematic sampling [81]. It has chosen a sampling unit size of 1,000 instructions for

SPEC CPU2000 benchmarks. These sampling units are distributed evenly throughout the

entire instruction stream. The simulator switches between detailed mode (only for

51

selected sampling units) and functional warm-up mode (for all remainder of the

instruction stream). In the detailed mode, the complete microarchitecture is simulated to

get the CPI. In the functional warm-up mode only the caches and the branch predictor

are simulated to speedup the simulation while keeping the warm-up error at minimum.

Usually tens of thousands of sampling units are simulated in the cycle-accurate mode. It

has been shown that on average, CPI for a whole benchmark can be estimated to within

an error of 3% with 99.7% confidence by measuring fewer than 50 million instructions.

The other sampling technique, which I call representative sampling, differs

philosophically. Instead of randomly sampling, a few relatively large chunks of

instructions are carefully, yet automatically, selected to represent the whole instruction

stream. It utilizes the well-observed phase behavior of program execution. A phase can

be defined as a portion of dynamic execution of a program for which most of the

performance metrics such as CPI, show very little variance. Because the performance

metrics remain stable in a phase, simulating only one chunk of instructions from each

phase can greatly reduce simulation time with little loss of simulation information. The

SimPoint technique family is the best-known representative sampling techniques

[61][69]. In SimPoint, the entire instructions streams are divided into chunks of 100

million instructions [69] (In newly proposed versions, it has been reduced to 1 or 10

million instructions [61]). The Basic Block Vector (BBV) is recorded for each chunk.

Then cluster analysis is performed to group the chunks into clusters. The chunks in the

same cluster have similar BBVs and thus similar CPIs. The chunk with BBV closest to

the center of cluster is selected from each cluster to represent the entire instruction

stream. These chunks are called simulation points.

Both types of technique have been successfully applied to SPEC CPU2000.

There is no single sampling technique that is the best for all situations. Each has its own

52

advantages and weaknesses. The user should select the sampling technique based on the

simulation infrastructure, the characteristics of the workload, and the tradeoff he or she is

willing to make. SMARTS can give a confidence interval to quantify the error of the

result. For simulating OLTP workload, only one checkpoint at the beginning of the

steady state is needed. Therefore, the storage cost is minimal. However, it requires that

the simulator be able to switch modes during the simulation. Not every simulator has this

capability, and the user may not want to significantly modify a simulator after it has been

developed and validated. Furthermore, the efficiency of SMARTS depends on the

characteristics of the workload and the relative speed of the two modes. If the variation

in the program execution is very small and speed difference between functional warm-up

and detailed simulation is not large enough, then the functional warm-up will become a

significant bottleneck even though only a tiny fraction of the instruction stream needs to

be simulated in detailed mode.

Although a confidence interval is unavailable in SimPoint, it works very well in

most cases. SimPoint is also faster than SMARTS for SPEC CPU2000 benchmarks

especially when checkpoints are used. However, it does sometimes result in large errors

for some benchmarks on some microarchitecture configurations. For SPEC CPU2000,

simulator switching modes can also be used for SimPoint. The simulator enters detailed

simulation just before each simulation point, whose beginning point can be specified by

the number of instructions from the beginning of the benchmark execution. For OLTP

benchmarks, the changes in microarchitecture affect the execution path of the program

[3]. Therefore, the simulation points can no longer be marked in this way. A checkpoint

has to be used for each simulation point. In the simulator used in this study, even with

compressed incremental checkpointing, each checkpoint may require up to 300MB space.

As a result, the user has to trade storage cost for faster simulation.

53

Both of the techniques have only been evaluated for SPEC CPU-like benchmarks.

Their applicability to OLTP workloads has not been investigated despite the uniqueness

of OLTP workloads. In this chapter, both sampling techniques are evaluated for an

OLTP benchmark. More importantly, by taking advantage of the characteristics of OLTP

workloads, a dynamic stopping rule for simple random sampling is designed. The

dynamic stopping rule is very easy to use and more efficient than SMARTS.

The chapter is structured as follows. The experimental setup is described in

Section 4.2. The applicability of SimPoint is studied in Section 4.3. In Section 4.4, the

dynamic stopping rule for simple random sampling is proposed. Section 4.5 summarizes

the chapter.

4.2 EXPERIMENTAL SETUP

The DBT-2 benchmark developed by Open Source Development Labs is used

[57] for experiments in this chapter. DBT-2 is a derivative of the TPC-C benchmark. It

emulates the database system of a whole parts supplier company operating out of a

number warehouses. Each warehouse supplies 10 sales districts, each of which has 3,000

customers. Each warehouse tries to maintain stock for the 100,000 items in the

company’s catalog. 10% of the orders sent to a warehouse must be supplied by other

warehouses. There are a total of 5 types of transactions: New-Order, Payment, Order-

Status, Delivery, and Stock-Level.

DBT-2 was developed for the Linux operating system. For this research it was

ported to Solaris 9. The database system used is PostgreSQL. PostgreSQL creates one

process for each client connection so it cannot efficiently support a large number of

simultaneous connections. Therefore, DBT-2 is run in a 3-tier mode in the experiment.

The terminal drivers do not directly connect to the database server. Instead, they connect

to the client in the mid-tier, which acts as a connection collector. Five warehouses are

54

created. The total database data size is about 1GB including the index and other meta-

data. The client generates 5 threads and maintains 5 connections to the server. The

Remote Terminal Emulator (RTE) emulates 50 terminals, which simultaneously generate

transaction requests to the client. The think time and keying time are set to zero so that

the terminals send requests as quickly as possible to keep the server fully utilized. The

RTE and the client are running on the same simulated machine as the database server.

The setup is verified on a real SPARC machine. The total CPU utilizatioin of the RTEs

and the client is only about 1%. Therefore, the effect of running the RTEs and the client

on the same machine with the server can be ignored.

Simics [52], a commercial full system simulator, is used to simulate a SunFire

server running Solaris 9. The clock frequency of the processor is set to 2GHz. Two

configurations with different cache latencies are modeled as shown in Table 4.1. For

OLTP workloads, the user only cares about the steady state performance. Therefore, the

system has been warmed up with about 3,000 transactions before starting measurement.

Table 4.1: System configurations

Configuration 1 Configuration 2
Processor Clock frequency 2GHz

Fetches, executes, retires, and commits 4 instructions per cycle
Organization 32KB 8-way set associative, 64 bytes/lineL1 instruc-

tion cache Latency 1 cycle 2 cycle

Organization 32KB 8-way set associative, 64 bytes/lineL1 data
cache Latency 1 cycle 2 cycles

Organization 2MB 8-way set associative, 64 bytes/lineL2 cache
Latency 6 cycles 9 cycles

Memory 2 GB, 200 cycles latency 2 GB, 250 cycles latency

55

4.3 APPLYING SIMPOINT TO OLTP BENCHMARK

The SimPoint methodology is popularly used to reduce the simulation time for

SPEC CPU, but its applicability to OLTP workloads needs further investigation. Patil, et

al. applied SimPoint methodology to large commercial applications running on Intel

Itanium machines [59]. However, most of their programs were run in single-threaded

mode. They evaluated one multi-threaded benchmark suite, SPEC COMP2001, and

concluded that it was hard to apply SimPoint method in their experiments. They ran

instrumented programs on real machines to collect the BBV profile. But the execution of

multi-threaded program are non-repeatable on real machines so it was extremely difficult

to repeat the run to obtain the trace of simulation points after the cluster analysis of the

BBV profile. In this chapter, a full system simulator is used, which gives deterministic

and repeatable results; so this study does not have the same problem.

The efficacy of SimPoint depends on the existence of homogeneous phases in the

benchmark and the ability of the cluster analysis to find them. Figure 4.1 shows the CPI

for every 1 million instructions from the benchmark running on configuration 1. To

make the graph legible, a total of only 5 billion instructions are shown. However, the

complete experiment result, which is much longer, is not very different. Unlike many

SPEC CPU programs, there are no obvious large-scale phases. This is consistent with the

common understanding of the benchmarks. Most programs in SPEC CPU accomplish

one task and do it in several steps, resulting in large-scale phases, each of which usually

corresponds to one such step. For example, gzip alternates between compressing and

decompressing the input file, producing distinct compression and decompression phases.

Readers are referred to [69] for more examples of large-scale phases in SPEC CPU

programs. In contrast, The TPC-C benchmark consists of only 5 different types of

transactions. Most of the transactions in OLTP are relatively short, and there are a

56

number of transactions going on simultaneously, which are driven by a random number

generator. At any moment, these simultaneous transactions may be at different stage of

execution. The interleaving of the transactions depends on the operating system

scheduling. Therefore, it is less likely to see many long, contiguous phases.

Figure 4.1: CPI for every million instructions on configuration 1.

The lack of large-scale phases does not preclude the applicability of SimPoint

because a phase may consist of many small non-contiguous parts and eludes visual

inspection. To evaluate the effectiveness of SimPoint, it is compared with simple random

sampling. As an example, suppose 7 chunks are simulated in SimPoint. To gauge the

efficacy of SimPoint, 7 chunks are randomly picked, and their mean CPI and the error

with respect to the full detailed simulation are calculated. The random sampling is

repeated 1,000 times to get the average error. Then this average error of random

sampling is compared to the error in SimPoint. Three different chunk sizes are studied: 1

million instructions, 10 million instructions (both used in Variance SimPoint), and 100

million instructions (used in the original SimPoint). To mitigate the cost of storing

checkpoint files, number of clusters between 2 and 20 are considered. Figures 4.2 to 4.7

compare the error in SimPoint with the average error for random sampling. All results

assume perfect warm-up.

57

0%

5%

10%

15%

20%

25%

30%

35%

40%

0 5 10 15 20
number of clusters

(chunk size of 1M instr)

er
ro

r

simpoint
random sample

Figure 4.2: Error for SimPoint and simple random sampling on configuration 1 with
chunk size of 1 million instructions.

0.0%
1.0%
2.0%
3.0%
4.0%
5.0%
6.0%
7.0%
8.0%
9.0%

10.0%

0 5 10 15 20
number of clusters

(chunk size of 10M instr)

er
ro

r

simpoint
random sample

Figure 4.3: Error for SimPoint and simple random sampling on configuration 1 with
chunk size of 10 million instructions.

58

0.0%
1.0%
2.0%
3.0%
4.0%
5.0%
6.0%
7.0%
8.0%
9.0%

10.0%

0 5 10 15 20
number of clusters

(chunk size of 100M instr)

er
ro

r

simpoint
random sample

Figure 4.4: Error for SimPoint and simple random sampling on configuration 1 with
chunk size of 100 million instructions.

0%

5%

10%

15%

20%

25%

30%

35%

40%

0 5 10 15 20number of clusters
(chunk size of 1M instr)

er
ro

r

simpoint
random sample

Figure 4.5: Error for SimPoint and simple random sampling on configuration 2 with
chunk size of 1 million instructions.

59

0.0%
1.0%
2.0%
3.0%
4.0%
5.0%
6.0%
7.0%
8.0%
9.0%

10.0%

0 5 10 15 20
number of clusters

(chunk size of 10M instr)

er
ro

r

simpoint
random sample

Figure 4.6: Error for SimPoint and simple random sampling on configuration 2 with
chunk size of 10 million instructions.

0.0%
2.0%
4.0%
6.0%
8.0%

10.0%
12.0%
14.0%
16.0%
18.0%

0 5 10 15 20
number of clusters

(chunk size of 100M instr)

er
ro

r

simpoint
random sample

Figure 4.7: Error for SimPoint and simple random sampling on configuration 2 with
chunk size of 100 million instructions.

An important observation is that the efficacy of SimPoint is dependent on the

chunk size. For chunk size of 1 million instructions and 100 million instructions, on

average SimPoint is not as accurate as simple random sampling. But for chunk size of 10

60

million instructions, SimPoint gives much better accuracy on both configurations.

Therefore, SimPoint is applicable to the simulation of OLTP workloads, but to take

advantage of SimPoint the user has to carefully choose the chunk size. With a good

chunk size it can give much more accurate result in comparison to simple random

sampling.

4.4 APPLYING SIMPLE RANDOM SAMPLING TO OLTP WORKLOADS

4.4.1 Selecting Sampling Unit Size

Simple random sampling has been successfully used to reduce the simulation time

of SPEC CPU2000 programs [81][12]. It is the simplest form of sampling, and therefore

has the fewest limitations and the widest applicability. In addition, simple random

sampling has the solid foundation of statistical sampling theory, which can give the user a

confidence interval to quantify the sampling error without simulating the entire

benchmark in the detailed mode. To use simple random sampling, one has to decide on

the sampling unit size first. Chapter 3 has shown that for SPEC CPU benchmarks, small

sampling units usually give better accuracy than large sampling units when the same

number of instructions are simulated in the detailed mode. The same method, which

relies on the sign of the intracluster coefficient, is adopted here to evaluate different

sampling unit sizes for the OLTP benchmark.

As in SMARTS, the sampling unit size of 1,000 instructions is used as the

baseline. The intracluster correlation coefficients are calculated from the experiment

data. The result is shown in Figure 4.8. It is clear that all the correlation is positive.

Therefore, using sampling unit size of 1,000 instructions is better than any sampling unit

size between 1,000 instructions and 100,000 instructions. Evaluation of larger sampling

unit size up to 100 million instructions gives the same conclusion. Smaller sampling unit

61

sizes are not studied because with too small unit size, the overhead of detailed warm up

can increase quickly. In addition, the sampling unit is measured in the number of

instructions, but on a superscalar machine, multiple instructions can be committed in one

clock cycle. Therefore, at the beginning and the end of a sampling unit, partial cycles

have to be counted. For example, suppose that one sampling unit starts from instruction

#1000, but instructions #998 to #1001 are committed in one cycle. Then the fraction of

cycle for instructions #1000 and #1001 has to be counted if very small sampling unit

sizes are used. With sampling unit size of 1,000 instructions such fraction cycles can be

ignored.

Intracluster Correlation Coefficient

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0 20 40 60 80 100
1000 instructions

config 1
config 2

Figure 4.8: Intracluster correlation coefficient with the baseline sampling unit size of
1000 instructions.

4.4.2 Dynamic Stopping Rule for Simulating OLTP Workloads

In random sampling techniques for SPEC CPU such as SMARTS, before the

simulation the user specifies target accuracy expressed as the relative error limit at a

certain confidence level. Then the user gives an initial sample size based on previous

62

experience or guess, and runs the simulation with this sample size. After the simulation,

a confidence interval is calculated and compared to the target accuracy. If the confidence

interval does not meet the target accuracy, then a new sample size is calculated based on

the result from the first simulation. A second sampled simulation is run with the new

sample size. The result of the second simulation is expected to meet the user’s target

accuracy. Therefore, two simulations are usually needed to measure the CPI for one

benchmark.

It is desirable to eliminate the second simulation. This can be achieved by taking

advantage of the characteristics of OLTP workloads. As has been discussed before, a

major difference between SPEC CPU programs and OLTP benchmarks is that a SPEC

CPU program usually accomplishes one task and does it in multiple steps whereas an

OLTP benchmark processes multiple sequences of transaction requests from different

terminals simultaneously. The sequences of transaction requests are randomly generated.

Therefore, in the steady state the workload reaches a statistical state of equilibrium. Take

any two large enough chunks of instruction streams and inspect the execution

characteristics (e.g., CPI) within the chunk. The CPI graphs will look random and

different in the two chunks, but their statistical properties are the same. They will exhibit

the same mean, the same variance, and the same autocorrelation function. Because of

this special characteristic of OLTP workloads, the second simulation in SMARTS can be

eliminated. A dynamic stopping rule is proposed, in which the user monitors the current

confidence interval during the simulation and stops the simulation once the target

accuracy has been met. The following is the procedure.

1. Before the simulation, the user specifies the target accuracy.

2. The user chooses a sampling rate (i.e. sampling 1 unit out of n units).

63

3. Start the simulation. As in SMARTS, the simulator only simulates the units that

are sampled in detailed mode and measures its CPI (detailed simulation). Two

thousand instructions before the sampling unit are also simulated in detail, but the

CPI is not measured (detailed warm-up). Only the caches and the branch

predictor are simulated for all the instructions between the sampling units

(functional warm-up).

4. Once the simulation has passed the minimum simulation length of Lmin

instructions, start calculating the confidence interval after simulating each

sampling units. If the confidence interval meets the target accuracy, stop.

Otherwise, continue simulation.

The user should do some initial experiments to choose the sampling rate. Too

low a sampling rate will result in unnecessarily long simulation. Although the number of

instructions in detailed simulation remains largely unchanged, the total number of

instructions in functional warm-up will increase. The minimum simulation length

should be set so that the mean CPI of the consecutive Lmin instructions chosen from

anywhere in the steady state execution should remain relatively constant.

This dynamic stopping rule has several advantages. It requires only one

checkpoint. Thus the storage cost is minimum. More importantly, it needs only one-pass

simulation, which increases the usability and reduces the simulation time. In SMARTS if

the user’s initial choice of sample size is a little below optimal for a SPEC CPU program,

then the confidence interval will be slightly larger. Only a few more sampling units are

needed, but the user has to simulate the benchmark again to meet the target accuracy.

With the dynamic stopping rule for OLTP benchmarks, the user just continues

stimulating until the target accuracy is met, which is a much shorter additional simulation

than doing the whole benchmark again.

64

Experiments are conducted to evaluate the dynamic stopping rule for OLTP

workloads. The sampling unit size of 1,000 instructions and the sampling rate of 1/1,000

are used. Figure 4.9 shows the relative error limit at 99% confidence level as the

simulation progresses on the two configurations. At the beginning, the error limit is not

stable, moving up and down rampantly. This is because the sample size in the beginning

is too small to give an accurate estimation of the confidence interval. In addition, DBT-2

benchmark itself exhibits large variability at small granularity: Even if all the instructions

in a short interval were simulated in detail, the CPI could still be significantly different

from the long-run mean CPI. Therefore, the minimum simulation length should be at

least 500 million instructions. And a larger number should be used for better result.

0%

2%

4%

6%

8%

10%

12%

14%

0 500 1000 1500 2000 2500 3000 3500 4000
total simulation length (million instructions)

rel
ati

ve
err

or
lim

it

config 1
config 2

Figure 4.9: Relative error limit at 99% confidence level as the simulation proceeds.

Suppose the user want the error to be within 3% at 99% confidence level. Targt

accuracy of 3% is chosen as the example because TPC-C allows up to 2% variation in

reported throughput (Clause 5.5.1). Therefore, target accuracy below 2% would be

unnecessary. Table 4.2 shows the result of applying dynamic stopping rule on the two

configurations. A total of 2.28 and 1.50 billion instructions are simulated on the two

65

configurations, but the number of instructions simulated in detailed mode is three orders

of magnitude smaller. Also, the real error lies within the confidence interval.

Table 4.2: Result of applying dynamic stopping rule.

Configuration 1 Configuration 2

Sample size 2282 1502

Total simulation length (million instructions) 2282 1502

Instructions simulated in detail (million) 6.85 4.51

Real error 2.73% 1.62%

4.5 SUMMARY

OLTP workloads are important in the business world and they have very distinct

characteristics. However, most of the simulation time reduction techniques are designed

for SPEC CPU type of programs. The applicability of these techniques to OLTP

workloads needs validation. In addition, new simulation time reduction techniques can

be created for OLTP workloads by taking advantage of their characteristics. In this

study, two sampling techniques (SimPoint and SMARTS) are applied to the simulation of

OLTP workloads. It is found that OLTP workloads do not exhibit long consecutive

phases because it executes a randomly generated mixture of simultaneous database

transactions. Nevertheless, SimPoint is applicable to OLTP workloads. But its efficacy

depends on the chunk size. If a good chunk size is chosen, it is much more accurate than

simple random sampling with the same chunk size and the same simulation length.

Therefore, when using SimPoint, the user should carefully choose the chunk size.

Simple random sampling such as SMARTS is also good at reducing simulation

time for OLTP workloads. By utilizing the stationary characteristics of OLTP workloads,

a dynamic stopping rule is proposed for random sampling. The simulator calculates the

66

current confidence interval while it is doing the simulation. The simulator stops once the

confidence interval meets the user’s target accuracy. This method obviates the second

simulation in SMARTS for SPEC CPU programs. It improves the usability and reduces

the simulation time.

The contribution of this chapter is primarily in the observations and the

methodology. But the exact numbers should be taken very cautiously because the current

setup is too small compared to an authentic TPC-C setup that has been audited and

approved by TPC. For example, the optimal sampling unit size in the user’s setup may

be very different from ours (10 million instructions). Nevertheless, the observation of the

dependence of SimPoint’s efficacy on the chunk size as is still valid. Therefore, the user

should search for good chunk size when using SimPoint.

67

Chapter 5. Efficiently Evaluating Performance Improvement In
Sampled Processor Simulation

5.1 INTRODUCTION

There has been extensive study on sampled processor simulation, but all previous

research focuses on the accuracy of CPI or IPC [76][24][81][12][31][61][68][69]

[71][30][42]. However, the goal of a simulation is usually to evaluate the benefit of some

microarchitectural enhancement, in which case, the absolute value of CPI may not be

overly important. Instead, an accurate estimate of the relative performance improvement

is more desirable. The term “speedup” is used to evaluate the benefit of

microarchitecture enhancement. Speedup, denoted R, is defined as the ratio of the

execution times before and after the microarchitectural enhancement when the same

benchmark is run. Assuming that the clock frequency remains the same, it is also the

ratio of the CPI’s before and after the enhancement.

The user not only wants to estimate the value of the speedup but also wants to

determine the error in the estimation. The error can be quantified with a limit on relative

error4, which can be converted from the confidence interval. No previous research has

given a method to calculate the confidence interval for speedup. The SMARTS

simulation technique proposed by Wunderlich, et al. can provide a confidence interval for

CPI [81]. A straightforward method is to run SMARTS on the baseline and improved

configurations to get two confidence intervals for CPI and then calculate the confidence

interval for speedup using interval arithmetic. This method is hereafter called the interval

arithmetic method. Suppose that the 95% confidence intervals before and after the

4 Relative error for speedup is |Rsample-Rreal|/Rreal. When speedup is large the user may be willing to tolerate
larger absolute error in speedup, so the relative error is used instead of the absolute error in this chapter.

68

microarchitectural enhancement are 0.820±0.020 and 0.617±0.015, which corresponds to

a ±2.5% error. One may compute the confidence interval for speedup to be (0.800/0.632,

0.840/0.602), a relative error of ±5%. This example shows that constraining the relative

error in speedup to be within e would require the error in CPI to be within e/2. Because

at a given confidence level the confidence interval is inversely proportional to the square

root of the sample size, reducing the relative error limit in half would require simulating 4

times more instructions in detail.

However, as will be demonstrated later, this estimation of error limit is too

pessimistic and there is a better way to quantify the error in speedup. In the next section

the ratio estimator in the sampling theory is introduced and a new sampling method is

proposed to calculate the speedup and its error limit. The merit of the method is

experimentally verified in Section 5.3. Section 5.4 summarizes this chapter.

5.2 EVALUATING PERFORMANCE IMPROVEMENT WITH RATIO ESTIMATOR

The ratio estimator in the sampling theory calculates the ratio of two population

means from a sample [10]. For each sampling unit, there are two characteristics, yi and xi

(i=1, 2, ..., N). A random sample of size n is taken and yi and xi of each sampled unit

(i=1, 2, ..., n) are measured. The goal is to estimate R, the ratio of the population mean
of y to the population mean of x (∑∑

==
==

N

i
i

N

i
i xyXYR

11
/). Based on the sampling theory, R

is estimated as

∑∑
==

==
n

i
i

n

i
i xyx

yR
11

ˆ (5.1)

Its variance is estimated as

)ˆ2ˆ()1()ˆ(222
2 yxxy sRsRsxn
fRv −+−= , (5.2)

where
1

))((
1

−
−−

=
∑

=
n

xxyy
s

n

i
ii

yx (5.3)

69

and Sy and Sx are the sample standard deviation of y and x. If the sample is large enough

so that the normal approximation applies, the confidence interval for R at the confidence

level of 1-α can be obtained as

()ˆ(ˆ 2/1 RvzR α−− ,)ˆ(ˆ 2/1 RvzR α−+). (5.4)

where 2/1 α−z is the (1-α/2) quantile of a unit normal distribution. Similarly, given a

relative error limit of e at a confidence level of 1-α, the required sample size is

)ˆ2ˆ)(1(2222/1
yxxy sRsRsfye

zn −+−= −α (5.5)

If for each sampling unit, xi and yi are the CPI of the unit before and after the

microarchitectural enhancement, then R is the speedup. The estimation of speedup

(Equation 5.1) is quite intuitive and is the same as in the interval arithmetic method, but

the calculation of the confidence interval is completely different. Based on the above

theory, the following general procedure is proposed to calculate the speedup and to

quantify its error [49].

1. Before the measurement, the user sets a target accuracy expressed as a relative

error limit e at a certain confidence level 1-α.

2. Divide the full instruction stream into N chunks of m continuous instructions.

Take a systematic sample or random sample of size n.

3. Measure the CPI of each sampled unit before the microarchitectural enhancement.

Record all the CPIs (xi).

4. Measure the CPI of the same sampled units after the enhancement. Record all the

CPIs (yi).

5. Calculate the speedup and its relative error limit or confidence interval with

Equations 5.1 through 5.4. If the error limit meets the target accuracy, then stop.

Otherwise, calculate the new sample size from Equation 5.5 and repeat step 3 and

4.

70

The key point in the procedure is to make sure that the same sampled units are

measured in the two simulation steps (steps 3 and 4 above). But the instruction stream

may be different in each run of the same benchmark. For a user mode simulator like

SimpleScalar [6], this is caused by operating system calls (e.g gettimeofday) returning

different result in each run. For example, in two runs of gcc-166, the difference in the

number of dynamic instructions was 332,372. Although this difference only accounted

for 0.00071% of the total instructions executed, it would cause different units to be

sampled in the two runs if a small sampling unit size is used (e.g., 100-10,000

instructions as in SMARTS [81]). To solve this problem, the user must make sure that

the dynamic instruction stream in each run is exactly the same. In the experiment, the eio

trace is captured with SimpleScalar sim-eio utility. Then all the benchmark programs are

run with the eio trace to guarantee the same instruction sequence.

Simulating a superscalar microprocessor, which can commit more than one

instruction in a cycle, may raise a subtle problem. For example, the user may select

(committed) instructions #201 to #400 as one sampling unit. Suppose instructions #198 to

#202 are committed in one cycle. Then two instructions at the beginning of the sampling

unit (#201, #202) only constitute partial cycle. To accurately measure the CPI for this

sampling unit, one has to accurately count these partial cycles. To avoid dealing with the

partial cycles, sampling unit size above 10,000 instructions is used in the experiment so

that the partial cycles can be ignored.

5.3 EXPERIMENTS AND RESULTS

Experiments are conducted to study the application of ratio estimator in sampled

processor simulation. The procedure in the previous section does not specify how to

measure the CPI of each sampling unit. It can be done by simulating the complete

benchmark and switching between cycle accurate mode and functional simulation mode

71

[81][31]. Or it can be done by checkpointing the state before each sampling unit and

simulating each checkpoint directly. The first method is used in the experiment. Caches

and branch predictors are continuously warmed up functionally to approximate perfect

warm-up [81]. Four thousand instructions before every sampling unit are simulated with

cycle accurate simulator to warm up other microarchitectural structures. An 8-way and a

16-way out-of-order superscalar processor are simulated to calculate the speedup. The

microarchitecture configurations given in Table 5.1 are adapted from [81].

Table 5.1: Processor configurations.

Parameter 8-way (baseline) 16-way
Machine Width 8 16
RUU/LSQ size 128/64 256/128

Memory System 32KB 2-way L1 I & D, 2 ports,
Unified 1M 4-way L2

64KB 2-way L1 I & D, 4 ports,
Unified 2M 8-way L2

ITLB / DTLB
4-way 128 entries
4-way 256 entries
200 cycle miss penalty

4-way 128 entries
4-way 256 entries
200 cycle miss penalty

L1/L2/Memory Latency 1/12/100 cycles 1/16/100 cycles

Functional Units

4 I-ALU
2 I-MUL/DIV
2 FP-ALU
1 FP-MUL/DIV

16 I-ALU
8 I-MUL/DIV
8 FP-ALU
4 FP-MUL/DIV

Branch Predictor
Combined 2K tables
7 cycle misprediction penalty
1 prediction/cycle

Combined 8K tables
10 cycle misprediction penalty
2 predictions/cycle

Eight benchmarks from SPEC CPU 2000 are simulated in a modified

SimpleScalar 3.0 sim-outorder simulator. Three sampling unit sizes are used: 10,000

instructions, 1 million instructions, and 10 million instructions. Wunderlich, et al. [81]

reports that the optimal sampling unit size is in the range of 100 to 10,000 instructions in

their experiment setup. The size of 10,000 instructions from their study is chosen here.

Unless the user handles partial cycles accurately as discussed in the previous section,

72

using smaller sampling units may increase measurement error. Also as discussed later,

warm-up error becomes pronounced with small sampling units for some benchmarks.

Sampling unit sizes of 1 million and 10 million instructions are used in the latest

Variance and Early SimPoint method [61]. The initial sample size of 3,000 is used for

sampling unit size of 10,000 instructions, and initial sample size of 1,000 for sampling

unit size of 1 million and 10 million instructions.

As an example the relative error limit of 2% at 95% confidence level is set as the

target accuracy. After the initial sampling the sample size required to achieve the target

accuracy for speedup is calculated based on Equation 5.5. For comparison, the sample

size required to achieve the same target accuracy for CPI is also calculated (see [81] for

the equations). The result is drawn in Figures 5.1 to 5.3. It can be seen that for most

benchmarks the sample size for measuring speedup is only a small fraction of that for

measuring CPI. To more accurately quantify the phenomenon, the ratio of sample size

for speedup to the sample size for CPI is calculated for the 16-way issue processor. The

geometric mean of the ratio for the benchmarks is 0.127 (for Figure 5.1), 0.107 (for

Figure 5.2) and 0.115 (for Figure 5.3). Therefore, it is more cost effective to directly

measure the speedup than measure CPI. In other words, to achieve a relative error limit

of 2% on the speedup, users do not need to estimate CPI to the same relative error limit.

Instead, they can measure, on average, only 1/9 of the instructions that are required for

estimating CPI to the same relative error limit. Comparing with the interval arithmetic

method, the saving is even more. The interval arithmetic method yields the same value

of speedup but is far too pessimistic in quantifying its error and requires very

unnecessarily large sample size. As discussed in Section 5.1, the interval arithmetic

method would require that the relative error limit for the CPI be reduced to half of 2%,

which will in turn quadruple the sample size. In the experiment configuration, using ratio

73

estimator technique the geometric mean of the reduction in sample size will be about 36X

compared to the interval arithmetic method. Therefore, using the ratio estimator

equations can significantly reduce the sample size. In addition, using different target

accuracy will not change savings of the proposed method because varying the target

accuracy will equally affect the ratio estimator method and the arithmetic interval

method.

0
1000
2000
3000
4000
5000
6000
7000
8000

art equake lucas bzip2-
source

gcc-
166

mcf vortex-
1

vpr-
route

sa
mp

le
siz

e

8-way CPI
16-way CPI
Speedup

16,886

Figure 5.1: Sample sizes required to achieve relative error limit of 2% at the confidence
level of 95% for sampling unit size of 10,000 instructions.

74

0

1000

2000

3000
4000

5000

6000

7000

art equake lucas bzip2-
source

gcc-166 mcf vortex-1 vpr-
route

sa
mp

le
siz

e
8-way CPI
16-way CPI
Speedup

13,917

Figure 5.2: Sample sizes required to achieve relative error limit of 2% at the confidence
level of 95% for sampling unit size of 1 million instructions.

0

1000

2000

3000

4000

5000

6000

art equake lucas bzip2-
source

gcc-166 mcf vortex-1 vpr-route

sa
mp

le
siz

e

8-way CPI
16-way CPI
Speedup

8,452

Figure 5.3: Sample sizes required to achieve relative error limit of 2% at the confidence
level of 95% for sampling unit size of 10 million instructions.

75

There is no reason to doubt the ratio estimator theory, but it is still desirable to

experimentally verify that the computed sample size does meet the target accuracy. The

cycle accurate simulator sim-outorder is modified to dump the CPI for every sampling

unit in the benchmark execution so that the population and the real speedup value Rreal can

be obtained. Monte Carlo method is employed to validate the target accuracy. Suppose

the computed sample size is n. A random sample of size of n is taken from the

population and the speedup from this sample is computed according to Equation 5.1.

Then another random sample of size n is taken from the population and the speedup is

computed again. The process is repeated many times (10,000 times in the experiment).

If 95% of these speedup values lie within ±2% of the real value Rreal, then the computed

sample size n meets the target accuracy. If, on the other hand, a much lower percentage

of speedup values are within the relative error limit, then the computed sample size is too

small and a larger sample size is required.

Verification is not done for the sampling unit size of 10,000 instructions. Firstly,

the data set of population is large, thus difficult to process. Secondly, with sampling unit

size of 10,000 instructions the warm-up error is not negligible for some benchmarks. For

example, according to Equation 5.4, with 99% confidence he (relative) sampling error in

speedup for vortex-1 should be within 0.88% but the actual relative error is 1.72%. Thus

the majority of the error should be from warm-up. Therefore, verification is not done for

this sampling unit size. The verification results for sampling unit sizes of 1 million and

10 million instructions are shown in Table 5.2. Columns 2 and 4 show the sample size

calculated from Equation 5.5, which is the same as in Figures 5.2 and 5.3. Columns 3

and 5 give the percentage of the speedup values from the Monte Carlo experiment that lie

within the relative error limit of ±2%. Ideally, this percentage should exactly be 95%.

There is inevitably some error in Monte Carlo experiment, and the ratio estimator itself

76

has slight bias (see [10] for detail), so the percentage numbers in the table are not exactly

95%. However, none of the number is much lower than 95%. Therefore, it can be

concluded from the verification result that the sample size computed from the ratio

estimator theory does satisfy the target accuracy requirement.

Table 5.2: Verification of the sample size computed from ratio estimator theory.

Benchmark Sampling unit size of 1 million
instructions

Sampling unit size of 10 million
instructions

Sample size Percentage within
error limit

Sample size Percentage within
error limit

art 101 95.0% 24 95.4%
equake 254 94.7% 147 95.3%
lucas 87 94.7% 84 94.8%
bzip2-source 359 95.0% 254 95.2%
gcc-166 2902 96.0% 1769 98.8%
mcf 2694 95.7% 2587 99.0%
vortex-1 76 95.2% 60 95.2%
vpr-route 12 94.8% 8 95.3%

The above result may be surprising at the first glance. How could the speedup be

more accurate than the CPIs from which it is computed? This is because the two

configurations being evaluated are usually not fundamentally different. The CPI values

may vary widely during the benchmark execution, but if the CPI is high (or low) for one

part of the code on the first configuration, then the CPI for this part of code is probably

also high (or low) on the second configuration. Thus the CPIs are usually correlated and

the ratio of the two CPIs (i.e. the speedup) does not change as much as the CPIs

themselves. At a given accuracy, the sample size is largely determined by the variation

normalized to the mean (i.e. the coefficient of variation). The small variation in the

speedup leads to the small sample size. Figure 5.4 shows a graph of CPIs and the

speedup for a small portion in the execution of vortex-1. All the metrics (CPIs and

77

speedup) are normalized to their respective mean so that the normalized variation can be

compared. It is obvious that the CPIs on the two configurations follow each other and the

variation in the speedup is much smaller than in the CPIs5. The speedup has a smaller

normalized variation and thus requires smaller sample size.

vortex-1

0.6
0.8

1
1.2
1.4
1.6
1.8

40250 40260 40270 40280 40290 40300
Instructions executed (millions)

8-way CPI 16-way CPI Speedup

Figure 5.4: Normalized CPIs and speedup. Each data point is for one million
instructions.

5.4 SUMMARY

Simulation of processors is mostly used for evaluating the benefit of some

microarchitectural enhancement, in which the speedup is a more important metric than

the CPI. In this chapter the ratio estimator method from sampling theory is applied to

sampled processor simulation to quantify the error of speedup. To achieve a given error

limit for speedup, it is not necessary to estimate CPI to the same accuracy. For the same

relative error limit, measuring speedup requires fewer instructions to be simulated than

measuring CPI. In the experiments, using the ratio estimator to estimate speedup results

5 Please note that the absolute speedup is about 1.5. The impression that the CPIs for the two
configurations are almost the same is just an artifact of normalization.

78

in a sample size 9X smaller than estimating CPI, and 36X smaller than estimating

speedup using interval arithmetic.

This technique has great potential to reduce simulation time for computer

architects. Especially when checkpoint files or trace files are used and each sampling

unit is simulated directly with explicit warm up, the reduction in the sample size will

directly translate into savings in storage space and simulation time. A 9X smaller sample

size will result in 9X shorter simulation.

In real-world simulations, the microarchitectural changes are often smaller than

those in the experiment in the previous section, so the CPIs may be even more correlated

and the ratio estimator technique is probably highly effective. However, it is important in

future work to explore the limitation of the technique and to provide guidelines to assess

its effectiveness if drastically different configurations are being compared.

79

Chapter 6. SMA: A Self-Monitored Adaptive Cache Warm-Up Scheme
for Microprocessor Simulation

6.1 INTRODUCTION

In a sampled simulation the original full instruction stream is divided into non-

overlapping chunks of continuous instructions. Recently, Wunderlich, et al. applied

sampling theory to microarchitecture simulation [81]. They showed that CPI could be

estimated to within an error of 3% with 99.7% confidence by measuring fewer than 50

million instructions per benchmark. This accounts for only 0.029% of the average

dynamic instructions executed for a benchmark program. It appears that sampling has

effectively solved the problem of prohibitively long simulation times.

The aforementioned results are obtained under the assumption of ideal warm-up

or perfect initial state before each sampling unit. As expected, the CPI of each sampling

unit depends not only on the instructions executed in the unit, but also on the initial state

of all microarchitectural structures at the beginning of this unit. Executing a limited

number of instructions before a sampling unit to get the (approximately) correct initial

state is known as warming up the microarchitecture. The number of instructions used for

warm-up before a sampling unit is its warm-up length. For small structures like the ROB,

the reservation station, and the register file, thousands of instructions are enough to put

them into the correct state. However, some structures in the microprocessor like the

branch target buffer and the caches can hold thousands to millions of bytes. It is difficult

to ensure that they are in the correct initial state before every sampling unit in the

simulation. If the initial state is not correct, the error can be large. For example, Haskins,

et al. reported that ignoring warm-up in their experiment could result in an error as high

as 15% in simulated CPI [29]. Thus adequate warm-up is critical to the accuracy of

80

sampled simulation. Warm-up not only affects accuracy but also incurs overhead and

increases simulation time. When simulating a processor with large caches, a large number

of instructions may be needed for adequate warm-up, which prolongs the simulation.

Therefore, the warm-up issue is very important in sampled simulation. A good warm-up

scheme should achieve a desired level of accuracy while devoting as few instructions as

possible for warm-up.

Warm-up is still an important issue in sampled microprocessor simulation and

deserves further research. But there is an opinion that warm-up is largely solved and

little reduction in simulation time can be accomplished with better warm-up techniques.

For example, MRRL is claimed to have achieved 90% of the maximum possible

simulation speed [29]. However, careful analysis of the experiment reveals the functional

simulation as the bottleneck because every benchmark is simulated functionally from

beginning to end. In simulation environment in this study, the relative speed of

functional simulation (no microarchitecture simulation at all), functional warm-up (only

cache and branch predictor simulation), and cycle-accurate simulation, is 1:1/2.8:1/166.

Fifty 1 million-instruction sampling units are used in the MRRL paper [29]. Suppose that

a benchmark is 100 billion instructions long and on average each sampling unit needs 30

million instructions for warm-up7. Then the percentages of time spent in functional

simulation, functional warm-up and cycle-accurate simulation are 95.17%, 4.06%, and

0.77%. It is obvious that the functional simulation is the bottleneck, so even getting rid

of warm-up overhead altogether will provide little benefit. However, if users save the

checkpoints or the traces for each sampling unit, they no longer needs to run the

benchmark from beginning to end and is able to simulate for each sampling unit directly.

6 The relative speed numbers are highly dependent on the simulator and the configuration being simulated.
7 No warm-up length number is given in the MRRL paper [29]. This number is based on the experiment with MRRL in Section 3.4.2.

81

In this case, removing the warm-up overhead will give 6.25 times speedup in simulation!

Therefore, a better warm-up technique is still highly desired.

It would be desirable for a warm-up scheme to be adaptive to cache sizes and

benchmark variability characteristics. Intuitively, small caches do not need the same

warm-up lengths as large caches. Similarly, programs with different variability/phase

behavior would benefit from a scheme that adapts to the program. In this chapter, the

warm-up process of the processor caches is studied and a self-monitored adaptive warm-

up scheme for simulation is proposed. The simulator monitors the warm-up process of

the caches and determines whether the caches are warmed up based on simple heuristics.

Unlike previous research, this method is both adaptive to the characteristics of the

benchmark and the cache configuration being simulated. The details of the proposed

adaptive warm-up scheme are presented. The new method is compared with the best

warm-up schemes from prior research. Overall, the proposed scheme achieves very good

accuracy with lower warm-up overhead than previously proposed techniques.

This chapter is structured as follows. To overcome the weaknesses of previous

warm-up methods, the new self-monitored adaptive cache warm-up scheme is proposed

in Section 6.2. The proposed technique is evaluated experimentally in Section 6.3. This

chapter is summarized in Section 6.4.

6.2 SMA: A SELF-MONITORED ADAPTIVE WARM-UP SCHEME

MRRL and BLRL are the two most recently proposed cache warm-up techniques

(see Chapter 2). One major problem with MRRL and BLRL is that they do not take the

cache configuration into account. Ideally, the cache warm-up process depends on both

the workload and the cache organization. A small direct mapped cache is intuitively

easier to warm up than a large highly associative one, but both MRRL and BLRL

methods call for the same warm-up length given the same p-value. Therefore, using any

82

fixed p-value in the techniques may result in under-warm-up or over-warm-up for

different caches.

Careful examination of the previous techniques shows that they are not warm-up

methods per se. The caches are warmed up through simulating instructions before each

sampling units. All the methods just help the user to decide when the warm-up is

enough, so why not monitor the warm-up process in the simulator to decide whether the

warm-up is enough? This is exactly the rationale behind the proposed self-monitored

adaptive (SMA) warm-up technique [47][48].

In SMA warm-up, as in the previous techniques, the simulator does functional

warm-up before switching to detailed cycle-accurate simulation. During the functional

warm-up, the caches are accessed but no pipeline stages are simulated. The warm-up

process of the cache is monitored. The simulator switches to cycle-accurate simulation as

soon as the cache is deemed “warmed up”. Therefore, the warm-up length is not fixed

but adaptive. Unlike previous approaches, this technique implicitly considers both the

workload characteristics and the cache organization. Fewer instructions will be used for

warming up a small direct-mapped cache than for a large highly associative one.

To monitor the cache warm-up process, all the cache blocks are initialized to the

cold-start state before the functional warm-up. The address/tag in a cold-start block is

unknown because it depends on the previous instructions, which were not simulated.

When a cache access is initiated, the set index to the cache can be calculated. If the

memory address is not found in this set and one or more cache blocks in this set is in the

cold-start state, then the cache access is called a cold-start access. It is not known

whether a cold-start access will result in a cache miss or a hit. When data is brought to a

cold-start state cache block, the block changes to the valid state. Once a cache block

83

leaves the cold-start state, it never goes back to this state again. Any state other than the

cold-start state is called a known state.

Two aspects of the warm-up process are monitored. Firstly, the simulator keeps

track of the percentage of cache blocks in the cold-start state. This number

monotonically decreases during warm-up. If no cache block is in cold-start state, the

cache is completely warmed up. So the outcome of every future reference is guaranteed

to be known. Secondly, the simulator monitors the number of cold-start accesses during

an interval. When the cache is large, or the working set of the program is small, it may

take too long to completely warm up the cache. In this case, the cache is deemed warmed

up when the number of cold-start accesses is below a user-defined threshold. Unlike a

completely warmed up cache, there is no guarantee that all future references will access

blocks in known state. However, the possibility of cold-start accesses is low. The

detailed information on choice of parameters for the interval size and threshold is given

in the next section. Monitoring the warm-up process is a very low overhead operation, it

only increments or decrements a couple of counters at a cold-start cache access. There is

no time overhead for accessing cache blocks in known state. The number of cold-start

accesses usually decreases quickly.

Another problem with the previous methods is that users generally do not know

how accurate the warm-up was after the simulation. They have to rely on previously

published validated results. However, the user’s configuration may not be the same as in

the published paper. SMA can give users some indication of the accuracy of the warm-up

after the simulation. After switching to cycle-accurate simulation, the simulator

continues to count the number of cold-start accesses. In this way, after the simulation the

user knows how much of all the cache misses are due to cold-start accesses. In the

experiment a cold-start access is treated as a cache miss. So the number of cold-start

84

accesses is usually the upper bound of the overestimation of cache misses. For example,

if during cycle accurate simulation of 1 million instructions the user only sees 20 cold-

start cache references, then he or she knows that the overestimation of cache misses is

very unlikely to go above 20 and the CPI result should be fairly accurate.

6.3 EXPERIMENTS AND RESULTS

Ten benchmarks from SPEC INT2000, listed in Table 6.1, are used in the

experiment. The programs, downloaded from the SimpleScalar web site [70], are

compiled for the Alpha ISA. Table 6.2 shows the main processor configuration used in

the experiment. This configuration is adapted from the SMARTS paper [81].

Table 6.1: Benchmarks, their data set and dynamic instruction count.
The data set name is appended to the benchmark name.

Benchmark # of Instructions
(million)

gcc-166 46, 918
bzip2-source 108,878
crafty 191,883
eon-cook 80,614
gap 269,036
gzip-graphic 103,706
mcf 61,867
twolf 346,485
vortex-1 118,977
vpr-route 84,069

85

Table 6.2: Processor configuration.

Parameter 8-way (baseline)
Machine Width 8
RUU/LSQ size 128/64

Memory System 32KB 2-way L1 I & D, 2 ports,
Unified 1M 4-way L2

ITLB / DTLB
4-way 128 entries
4-way 256 entries
200 cycle miss penalty

L1/L2/Memory Latency 1/12/100 cycles

Functional Units
4 I-ALU
2 I-MUL/DIV
2 FP-ALU
1 FP-MUL/DIV

Branch Predictor
Combined 2K tables
7 cycle misprediction penalty
1 prediction/cycle

6.3.1 Variability in Warm-Up Process

Much research has been done on devising and comparing warm-up techniques,

but few of the projects shed light on the warm-up process itself. In this research,

experiments are conducted to study how the cache warm-up process proceeds. Only one

important issue in cache warm-up, the variability in the warm-up length, is presented

here. The effectiveness of the new warm-up technique depends on the variability. If a

constant warm-up length is good for all situations, then the PRIME method with fixed

warm-up length will be the best. However, if the required warm-up length changes

widely, then a good warm-up technique needs to adapt to all the factors that affect the

warm-up process.

In the experiment, each benchmark execution is divided into segments of 100

million instructions. To study the cache warm-up process of each segment the simulator

86

sets all cache blocks to the cold-start state at the beginning of each segment. The warm-

up process in each segment is tracked. For the L1 data cache, the warm-up length for

each segment needed to put every cache block into the known state is recorded. Table

6.3 lists the mean and the standard deviation of the warm-up length per sampling unit.

The L2 cache may not completely warm up at the end of 100 million instruction

segments, so the warm-up length needed to warm up 50% of the cache blocks is recorded

instead. The statistics for the L2 cache warm-up length is shown in Table 6.4. These

warm-up lengths are not the warm-up lengths required for sampled simulation.

Nevertheless, they reflect the large variability in the warm-up process. The results clear

show that the warm-up length is different for different benchmarks. It is also widely

different within one benchmark. In many cases the standard deviation of the warm-up

length of different segments is as large as the mean. Therefore, devoting a fixed number

of instructions to warm-up as in PRIME method is not a good idea.

Comparing Table 6.3 and Table 6.4, it is also observed that to warm-up a certain

percentage of the cache blocks, the large L2 cache needs much longer warm-up than the

small L1 cache. Figure 6.1 contrasts the different warm-up requirement of L1 and L2

caches from another angle. It shows the number of cold-start cache accesses per 100,000

instructions as the caches are being warmed up for all the benchmarks. Except for at the

beginning part of eon-rushmeier, the cold-start cache accesses for the L2 cache decreases

much slower than for the L1 cache for all benchmarks. It is clear from these graphs that a

processor with only the L1 cache requires much shorter warm-up than a processor with

both L1 and L2 caches. Therefore, it is important for a good warm-up method to also take

the cache configuration into consideration. MRRL and BLRL both adapt to the different

segment in a benchmark but they do not adapt to the cache configuration.

87

Table 6.3: Warm-up length for warming up all cache blocks in L1 data cache (in
100,000 instructions).

Benchmark Mean Standard
Deviation

Max Min

bzip2-source 17.80 16.82 184 1
gcc-166 9.98 15.92 145 1
crafty 110.61 51.59 439 21
eon-cook 27.87 14.36 106 7
gap 8.08 10.28 167 1
gzip-graphic 4.62 2.88 14 1
mcf 1.54 4.02 45 1
twolf 2.82 15.04 687 2
vortex-1 14.46 15.01 141 1
vpr-route 3.59 3.94 66 1

Table 6.4: Warm-up length for warming up 50% cache blocks in L2 cache (in 100,000
instructions).

Benchmark Mean Standard
Deviation

Max Min

bzip2-source 177.32 233.17 999 1
gcc-166 546.30 331.57 999 1
crafty 303.68 165.11 986 28
eon-cook 155.47 272.07 998 2
gap 136.75 62.20 788 3
gzip-graphic 837.82 245.56 999 5
mcf 15.41 73.19 810 1
twolf 34.76 22.38 920 8
vortex-1 208.94 84.66 874 5
vpr-route 52.69 35.47 232 2

88

bzip2-source

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25
instructions (million)

co
ld

-s
ta

rt
ac

ce
ss

es
L2

DL1

crafty

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25
instructions (million)

co
ld

-s
ta

rt
ac

ce
ss

es

L2

DL1

eon-cook

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3 3.5 4
instructions (million)

co
ld

-st
ar

ta
cc

es
se

s

L2
DL1

gap

0
20
40
60
80

100
120
140
160
180
200

0 5 10 15 20 25
instructions (million)

co
ld

-st
ar

ta
cc

es
se

s

L2

DL1

gzip-graphic

0
20
40
60
80

100
120
140
160
180
200

0 5 10 15
instructions (million)

co
ld

-s
ta

rt
ac

ce
ss

es

L2

DL1

gcc-166

0
50

100
150
200
250
300
350
400
450
500

0 1 2 3 4
instructions (million)

co
ld

-s
ta

rt
ac

ce
ss

es

L2
DL1

twolf

0
50

100
150
200
250
300
350
400
450
500

0 1 2 3 4 5 6
instructions (million)

co
ld

-s
ta

rt
ac

ce
ss

es

L2

DL1

mcf

0
20
40
60
80

100
120
140
160
180
200

0 1 2 3 4
instructions (million)

co
ld

-s
ta

rt
ac

ce
ss

es

L2DL1

vpr-route

0
50

100
150
200
250
300
350
400
450
500

0 1 2 3 4 5 6
instructions (million)

co
ld

-s
ta

rt
ac

ce
ss

es

L2

DL1

vortex-1

0
50

100
150
200
250
300
350
400
450
500

0 1 2 3 4 5 6
instructions (million)

co
ld

-s
ta

rt
ac

ce
ss

es

L2

DL1

Figure 6.1: Number of cold-start cache accesses per 100,000 instructions for level 1
data cache and level 2 cache.

89

6.3.2 Comparison with Prior Techniques

In this section, SMA is compared with the two most recently proposed warm-up

techniques, MRRL and BLRL. Both warm-up length and the accuracy in CPI are

compared. In the experiment, a sampling unit size of 1 million instructions is chosen.

This sampling unit size was used in the MRRL paper [29], and in Variance SimPoint

[61]. In this section, each benchmark execution is divided into segments of 200 million

instructions. A segment size of 200 million instructions is used instead of 100 million

instructions in the previous section to give a larger gap between sampling units for more

accurate profiling in MRRL and BLRL. One sampling unit is chosen from each segment.

In SMA the sampling units are not previously determined but rather depend on

the cache warm-up process. Once the cache is deemed warmed up enough, the simulator

executes 4,000 instructions in cycle accurate mode to warm up the pipeline as suggested

by Wunderlich, et al. [81] and then the CPI of the 1 million instruction sampling unit is

measured. As discussed in the previous section, the L2 cache may not be completely

warmed up with a reasonable number of instructions so complete warm-up cannot be

used as the only criterion for the caches. Therefore, the following simple heuristics are

employed to judge whether the cache is warmed up. At the end of each interval, the

average number of cold-start accesses for the last N intervals is calculated. If the average

number of cold-start references falls below a threshold T, it is assumed that the cache is

warmed up enough and the functional warm-up can be ended. Because this method

requires warm-up of at least N intervals, to take advantage of segments that reach

complete warm-up quickly, the number of cache blocks in the cold-start state in the cache

is also monitored. The functional warm-up also ends as soon as the cold-start state

blocks drop to zero. For the L1 data cache, N=20 and T=10 are used. For the L1

instruction cache, N=10 and T=1 are used. For the L2 cache, N=20 and T=15 are chosen.

90

For MRRL and BLRL, the sampling units are chosen to be the same as those in

SMA. 4,000 instructions are also simulated in the cycle-accurate mode before each

sampling units to warm up the pipeline. The profiler for MRRL was downloaded from

its authors’ website [27].

Although not implemented in the current simulator, I hope to further improve

simulation speed by distributed simulation. When sampling units are distributed to

different machines, the end state of one sampling unit cannot be used as the beginning

state of another sampling unit. Therefore, in the experiment caches are cleared before

warming up each sampling unit as proposed by Nguyen, et al [55].

The final error in CPI in sampled simulation comes from two sources: the

sampling error per se and the warm-up error. To fairly compare different warm-up

techniques, only the warm-up error should be measured, so an additional simulation with

full cache warm-up is run. In this simulation the caches are always simulated between

the sampling units as in SMARTS. The sampling units and the cycle-accurate warm-up

are the same in all of the simulations. Therefore, the difference between the CPI of a

warm-up technique and the CPI of full cache warm-up is the warm-up error.

The heuristics in SMA rely on the warm-up history to predict whether the cache is

warmed up enough in the next sampling unit, so SMA may mispredict and end functional

warm-up prematurely. Figure 6.2 shows the average warm-up error for the three warm up

schemes. The error for SMA is only about 0.2%, so it is very accurate and rarely

mispredicts.

For MRRL, p-value of 99.9%, the default value suggested by its inventors [29], is

used. For BLRL, the p-value of 90% is chosen. Both methods are accurate, exhibiting

an average error of 0.4% and 0.3%. However, SMA clearly shows the advantage as can

be seen from Figure 6.3. The SMA technique on average requires only 1/3 of the warm-

91

up length of MRRL or 1/2 of the warm-up length of BLRL yet it achieves an error that is

smaller than the other two techniques. Because SMA is better in both warm-up length

and accuracy, changing the p-value for all benchmarks will not affect the overall

conclusion.

0.00%
0.05%
0.10%
0.15%
0.20%
0.25%
0.30%
0.35%
0.40%
0.45%

SMA MRRL BLRL

wa
rm

-u
p

er
ro

r

Figure 6.2: Average warm-up error of proposed SMA in comparison to other previous
warm-up schemes.

0

5

10

15

20

25

30

35

SMA MRRL BLRL

wa
rm

-u
p

len
gt

h
(m

ill
io

n
in

str
)

Figure 6.3: Average warm-up length per sampling unit for proposed SMA and other
previous warm-up schemes.

92

Table 6.5 shows the detailed data for each benchmark. BLRL and MRRL do

perform better for some benchmarks. This indicates that using different p-values for

different benchmarks may improve the result of MRRL and BLRL, but asking the user to

fine-tune the p-value for each benchmark and different processor configuration is not

practical.

Table 6.5: Comparison of SMA with MRRL and BLRL.

Avg warm-up length per sampling
unit

(million instructions)

Error in CPIBenchmark # of
sampling

units
SMA MRRL BLRL SMA MRRL BLRL

bzip2-source 545 8.7 100.2 78.6 0.1% 0.01% 0.05%
gcc-166 235 8.9 7.1 12.4 0.2% 1% 0.5%
crafty 960 13.2 3.7 14.9 1% 2% 1%
eon-cook 403 5.3 6.7 3.2 0.04% 0.3% 0.3%
gap 1346 14.4 11.6 12.1 0.04% 1% 0.1%
gzip-graphic 519 9.3 7.9 5.2 0.5% 0.2% 0.09%
mcf 310 2.7 34.7 7.6 0.004% 0.02% 0.03%
twolf 1733 6.0 15.3 5.4 0.2% 0.02% 0.3%
vortex-1 595 23.2 39.1 34.9 0.1% 0.2% 1%
vpr-route 421 7.6 91.9 55.4 0.03% 0.01% 0.02%
Average 707 9.9 31.8 23.0 0.2% 0.4% 0.3%

6.4.3 Adaptivity to Cache Configuration

Unlike previous methods, SMA adapts to the cache configuration being

simulated. The previous section focuses on how SMA performs with a cache size

common to workstations. To evaluate its adaptivity, in this section a small cache

configuration typical in an embedded processor is also simulated. Table 6.6 shows the

cache configurations used in the experiment. The small cache configuration is modeled

after Intel XScale PXA255 embedded processor. Although SPEC INT is not the best

benchmark suite for embedded processors, it allows comparison with the warm-up length

for the large cache configuration, which is the same as used in the previous experiment.

93

Because MRRL or BLRL does not need to be profiled in this experiment, a segment size

of 100 million instructions is used to increase the sample size. Using the same warm-up

heuristic parameters as in the previous section, the average warm-up length per sampling

unit for different benchmarks is shown in Figure 6.4. The first bar and the second bar for

each benchmark show the warm-up length for the large cache configuration and the small

cache configuration respectively. It is clear that SMA adapts well to the cache

configuration. For the small caches the warm-up length is on average only 1/6 of that

required by the large caches.

Neither MRRL nor BLRL adapts to the cache configuration. Using the warm-up

length for MRRL or BLRL in the previous section for the small caches will result in

15~20X larger overhead than SMA. The only way to reduce warm-up length for the two

techniques is to reduce the p-value. However, to come up with a good p-value for each

configuration by experiment is highly impractical and defeats the goal of reducing

simulation time.

Table 6.6: Configuration for caches.

Cache Cache
Size

(bytes)

Block
Size

(bytes)

Associ-
ativity

of
Sets

Replacement
Policy

L1 Data 32K 32 32 32 LRU
L1 Instr 32K 32 32 32 LRU

Small
cache
config L2 None

L1 Data 32K 32 2 512 LRU
L1 Instr 32K 32 2 512 LRU

Large
cache
config L2 1M 64 4 4096 LRU

94

0

5

10

15

20

25

bzi
p2-

sou
rce

gcc
-16

6
cra

fty

eon-c
ook gap

gzi
p-g

rap
hic mcf twolf

vor
tex

-1

vpr
-rou

te

wa
rm

up
len

gt
h

(m
ill

io
n

in
str

uc
tio

ns
) large caches

small caches

Figure 6.4: Average warm-up length per sampling unit for different cache
configurations

SMA reduces warm-up overhead for small caches, but it should not compromise

the accuracy of warm-up. Inadequate warm-up will cause overestimation of cache misses

and eventually lead to error in CPI. The absolute error in the number of data cache

misses per 1 million instructions (i.e. one sampling unit) compared with full cache warm-

up is calculated. Table 6.7 shows the error averaged over all sampling units. For many

benchmarks there is no error in data cache misses. For others (ie. crafty, gap and twolf) a

small error occurs in only several sampling units. And when averaged over thousands of

sampling units, the error becomes extremely small. Therefore, SMA does not lose

accuracy when adapting to the small caches.

95

Table 6.7: Average absolute error in the number of data cache misses per 1 million
instructions.

Benchmark Error
bzip2-source 0
gcc-166 0
crafty 0.01307
eon-cook 0
gap 0.00670
gzip-graphic 0
mcf 0
twolf 0.05233
vortex-1 0
vpr-route 0

6.4 SUMMARY

In this chapter the warm-up process of microprocessor caches is studied in the

context of sampled simulation. While sampling can greatly reduce simulation time,

effective sampling requires efficient and accurate warm-up of microarchitectural

structures. It is found that the warm-up process varies widely for different benchmarks,

for different portions in the same benchmark execution, and for different cache

configurations. Based on this observation, a self-monitored adaptive (SMA) cache

warm-up scheme is proposed. The simulator monitors the cache warm-up process and

decides when the warm-up is sufficient based on simple heuristics. The experiments

show that SMA is accurate, exhibiting an average warm-up error of about 0.2%. SMA

not only offers superior overall accuracy but also reduces the warm-up length to 1/2 ~ 1/3

of two recently proposed methods. Unlike previous methods, SMA is adaptive to the

cache configuration so it can reduce warm-up overhead by an order of magnitude when

simulating small caches. Because SMA continues to monitor the cache accesses during

96

cycle accurate simulation, the user can get the number of cold-start cache accesses in

each sampling unit as an indicator of the accuracy of the warm-up.

SMA also looks promising for warming up other microarchitectural structures

such as the branch predictor and the value predictor. Both of them share the same

property with caches that once an element is warmed up, it never goes back to cold-start

state again, so they are also candidate for SMA. Unlike caches, one access to a branch

table element is not sufficient to put it into a known state, so designing accurate warm-up

method by tracking reuse latency as in MRRL or BLRL is not easy, but monitoring the

warm-up process with Vengroff, et al.’s deterministic finite automaton [78] can be much

simpler.

97

Chapter 7. Locality Based On-Line Trace Compression

7.1 INTRODUCTION

Simulation is one of the most important techniques that computer architecture

researchers use to understand the behavior of complex systems and to evaluate new

microarchitectural enhancements. Currently, most research in this area uses either

execution-driven simulation or trace-driven simulation. Trace-driven simulation remains

an important technique, especially for studying complex commercial applications,

because it is usually a heroic task to set up and tune execution-driven simulators to

simulate runs of commercial server benchmarks (e.g., TPC-W) while making sure that

the execution delivers the best performance and meets the run rules at the same time.

Traces, on the other hand, can be collected once by server performance experts, and then

shared with system designers relatively easily. Moreover, if only part of the system (e.g.,

memory hierarchy) is to be studied, execution-driven full-system simulation is often not

necessary and tends to be slower than trace-driven simulation.

One of the major problems of tracing is the high cost of storing the traces.

Modern benchmarks from both scientific and commercial workloads largely resemble

real applications. They often run for minutes on even GHz machines, resulting in huge

trace files even after sampling.

Trace compression reduces the size of the trace file by filtering out the

redundancy in the trace while retaining all the information in the original trace.

Researchers have long recognized that there is abundant redundancy in program address

streams [25]. The first order Markov Entropy is about 1-2 bits per address [5]. Yet the

encoding based purely on coding theory is too complex and computationally expensive to

implement [5]. General-purpose compression algorithms like LZW [79] (used in Unix

98

compress), or LZ77 [82] (used in gzip) can certainly be applied to reduce the trace file

size and achieve good compression ratio. Trace compression techniques, on the other

hand, usually offer better compression by taking advantage of the redundancy specific to

the traces. Most of the trace compression techniques work together with general-purpose

compression algorithms.

Different applications require different types of traces. As a result, different

compression techniques have been proposed to compress these traces. HAFT [9]

effectively compresses the trace of heap allocation events (e.g., malloc, free, etc.) for

studying dynamic memory allocation performance. Hamou-Lhadi and Lethbridge [16]

developed a comprehension-driven compression framework that compresses the traces of

procedure calls. This chapter focuses on compressing program execution traces for

processor simulation. Some of these techniques rely heavily on analysis of the program’s

control flow information [15][21][38][63]. Although they often give the best

compression ratio, they usually need to either parse the trace multiple times requiring

large intermediate storage, or they need to instrument the source code or binary code of

the benchmark program, a complex process often limited by the availability of tools.

Instrumenting the program for tracing a full system with multiple processes and operating

system activity is extremely hard. This chapter focuses on on-line (one-pass without

intermediate storage) trace compression techniques without code instrumentation.

Similar techniques, such as Mache, PDATS/PDI, SBC, and VPC, are discussed in the

next section.

This chapter presents a trace compression scheme, the Locality Based Trace

Compression (LBTC), which is suited for on-line compression of full system traces.

Previous methods usually handle address only traces (Mache, PDATS) and possibly

instruction words (PDI). The LBTC scheme accommodates other attributes and events in

99

addition to address streams and the instructions themselves. Therefore, it is good for

memory hierarchy simulators as well as detailed trace driven microarchitecture

simulators. The compression method is based on the same spatial and temporal locality

principle that has been successfully exploited by microprocessor hardware caches for

decades. The resultant compression ratio is about 2X better than the PDI format.

7.2 RELATED WORK

Previous trace compression schemes such as Mache [66] and PDATS/PDI [32]

make use of the small offsets between addresses of successive memory references. The

Mache scheme records addresses of three types of memory references: instruction fetch,

data read, and data write. A 2-bit label is used to differentiate the type of reference.

Three variables, initialized to zero, contain the last address in the trace for each label.

Upon a new memory reference (i.e., a label, address pair) the offset is computed between

this address and the last address for this label. If the offset is smaller than a given

threshold, it is emitted to the trace file with the label; otherwise the full address is

emitted. Because of spatial locality, the offset usually requires fewer bits than the 32-bit

address. An example scheme [66] packs the data into a 16-bit word with 2 bits reserved

for the label and 14 bits for the signed address offset, implying a threshold of 2^13=8192.

Finally, the processed trace is passed to a general-purpose one-pass compression scheme

such as the Unix compress utility. This seemingly simple compression scheme is very

effective: Mache (with compress) almost always creates a file at least ten times smaller

than the original trace file and over three times smaller than that produced by compress

alone.

The PDATS scheme [32] records the memory reference address and an optional

timestamp indicating when the reference occurred. A trace record in PDATS format

consists of a header byte, a repetition count byte (0-1 byte), an address offset (0-4 bytes)

100

and an optional timestamp offset. Like Mache, PDATS also takes advantage of spatial

locality by encoding the offset of the addresses and timestamps, but it extends the Mache

scheme in several ways. Firstly, PDATS allows variable length address offsets (1, 2 or 4

bytes). The offset is no longer limited to 14 bits. If its absolute value is less than 128,

the offset will occupy only 1 byte. Secondly, PDATS takes advantage of “sequentiality.”

Sequentiality is an extreme form of spatial locality in which references in a stream

progress monotonically through contiguous memory locations. For example, the

addresses in a sequential stream of instructions from a processor with 32-bit wide

instructions show a constant stride of 4. It is observed that over 90% of instruction

fetches are from sequential locations. Therefore, this special offset of 4 can be encoded

in the trace record header with much fewer bits instead of occupying a whole offset byte.

Finally, nearly half of all the references examined are from the same stream and have the

same offset as the immediately preceding reference. When repetition of the offset occurs,

a repeat flag is set. The byte following the header byte specifies the number of times that

this offset is repeated contiguously in the original trace. As a result, PDATS improves

compression by 2X over Mache before compress is applied and shows 25% improvement

after compress is applied.

The Mache and PDATS traces contain only the address information; they are

suited for memory hierarchy simulation. When users need to evaluate processor designs,

the trace must contain several attributes (e.g., instruction word) in addition to memory

addresses. The PDI format [32] augments PDATS by including the instruction words. In

PDI, addresses are compressed using a subset of the PDATS techniques, while the

instruction words are compressed using a dictionary-based approach. It is observed that

the 256 most frequent instruction words account for 56% to 99.9% of the instructions

executed with a median of 86%. To compress the instruction words, a dictionary of the

101

256 most frequent instruction words, which requires only a 1-byte index to access, is

stored at the beginning of the trace file. Each occurrence of these instruction words in the

trace is encoded as a 1-byte index to the dictionary. On a MIPS R3000 machine, the

compressed SPEC CPU92 traces in PDI format with instruction words are only 33%

larger than traces in PDATS format (without instruction words).

Most recently, two new on-line trace compression techniques have been proposed.

Like PDI, the Stream Based Compression (SBC) [54] also handles instruction words. It

compresses the instruction sequence and data address sequence separately. The data

address sequence is compressed with offset encoding similar to PDATS. The instructions

are divided into “streams.” A stream is a sequential run of instructions from the target of

a taken branch to the first taken branch in sequence. Because the program often

repeatedly executes the same stream, each stream is identified and stored in a stream

table. Indexes to the stream table, instead of the streams themselves, are stored in the

compressed trace file, resulting in 2 to 5 orders of magnitude reduction in Dinero+

traces[17]. Because the whole stream table is loaded into memory during decompression,

its memory usage is not bounded. The memory required by SBC decompression will be

approximately proportional to the instruction footprint of the program being traced.

Another trace compression technique is the value prediction based compression

scheme (VPC) proposed by Burtscher and Jeeradit [7]. Many value prediction schemes

have been proposed in processor architecture research for improving the performance of

the microprocessor whereas Burtscher and Jeeradit used value prediction to compress

traces. A hybrid value predictor consisting of several sub-predictors is created in the

compression program. The predicted value is compared with the true value in the

original trace. If the two values are equal, then only a bit is stored in the compressed

trace indicating a correct prediction. Otherwise, the true value is stored in the

102

compressed trace. The same predictor is also used in the decompression program, which

replaces the “correct prediction” flag bit with the predicted value to get the original trace.

VPC can compress load value traces by a factor of about 34 on average. The memory

usage is bounded by the size of the value predictor. Because of the complexity of the

value predictor, the decompression is slow compared to other methods.

7.3 LOCALITY BASED TRACE COMPRESSION

This section presents the proposed Locality Based Trace Compression (LBTC)

method that is suitable for on-line compression of full-system traces [50]. It compresses

the trace on-the-fly without complicated analysis. It is intended to handle both CISC

(variable instruction length) and RISC instruction sets efficiently. Trace files typically

consist of trace records, each of which corresponds to a memory reference (data read,

data write, or instruction fetch), an exception, or other event (e.g., cache flush). A trace

record in LBTC captures not only the address of the memory reference but also other

system information that is important for accurate memory hierarchy simulation (e.g.,

whether the memory location is cacheable) and accurate processor microarchitecture

simulation (e.g., the instruction word). The different types of information recorded in a

trace record are called attributes. Structurally, a trace record consists of a header and

some attribute fields following it. The header tells the type of the trace record and

specifies the attribute fields (e.g., whether a field exists, how long it is). Table 7.1 gives a

list of these attributes. Different applications require different attributes to be recorded in

the trace. After exploring the locality in the trace, each user can devise the optimal

format for his or her application. Exceptions and other events are also captured in the

trace file but they occur so rarely compared to memory references that their coding is of

no importance to the size of the trace. Their trace records are not discussed hereafter.

103

Table 7.1: Example attributes recorded in a memory reference trace record

The proposed LBTC scheme employs two techniques. One technique, offset

encoding, is inherited from Mache and PDATS formats, which takes advantage of the

spatial locality in memory references. The spatial locality is the property that the next

address accessed will probably be very close to the last address accessed. As a result,

recording the small offset between the addresses of successive references requires fewer

bits than recording the full addresses in the trace file. The encoding of the instruction

physical address is presented here as an example. First, the offset between the addresses

of the current instruction and the last instruction is computed. A 2-bit field (pa_code)

is allocated in the trace record header to indicate the length of the offset (see Table 7.2).

Then the offset is stored after the header in 0, 1, 2 or 4 bytes. Please note that when the

address of the current instruction is contiguous to the last instruction (pa_code=00), the

current address can be calculated by adding the length of the last instruction word to the

last address. Thus no extra offset byte is needed. A difference between PDATS/PDI

and LBTC is the way sequentiality is exploited. PDATS/PDI format encodes an offset of

4 as 00. It works well for MIPS instructions, which have a fixed length of 4 bytes. But

for x86, the instruction length ranges from 1 to 15 bytes. The pa_code=00 allows

LBTC to encode variable length as well as fixed length instructions efficiently because

contiguous instructions are often executed unless interrupted by a taken branch. Virtual

addresses are treated in a similar way. In most cases, the current reference is in the same

Memory reference
type

Example attributes recorded in trace record

Instruction fetch Physical address, virtual address, instruction word, mode (user/kernel),
memory type (write back, uncacheable, etc.) CR3 register.

Data access
Physical address, virtual address, read/write, mode (user/kernel), size, memory
type (write back, uncacheable, etc.), access type (prefetching, page table, etc.),
initiating device, CR3 register.

104

page as the last reference. Only one bit is needed to flag this situation where no extra

byte for the offset is needed. In other cases, the offset of the page number is stored (1 to

3 bytes). A 4-byte offset is needed only in extreme cases.

Table 7.2: LBTC trace record header bits for instruction.

pa_code offset length
(bytes)

description

00 0 The instruction is contiguous to last instruction (i.e. its address is
the address of the last instruction plus the length of last instruction)

01 1 The offset is between –128 and 127
10 2 The offset is between –32768 and 32767
11 4 The offset can only be expressed in 4 bytes

The other technique in LBTC is based on the “static” property of most of the

attributes, and the well-known temporal locality of memory references. Because the trace

contains instruction words and other attributes in addition to physical addresses, the

attribute information takes more than half of the space. Encoding the most frequent 256

instruction words in 1 byte as in the PDI format is not effective enough, as shown in

Section 7.4.2. Fortunately, most of the attributes are “static”. They do not change

frequently from one dynamic access to another, if the references are to the same memory

addresses or initiated by the same instruction. For example, after a non-self-modifying

benchmark program is loaded, the (static) instruction at a specific address will remain the

same until the program terminates (or is swapped out onto disk) and a new module is

loaded at the same memory area. Therefore, the next (dynamic) instruction fetched from

the same address will probably have the same instruction word. This holds true for many

other attributes such as virtual addresses, memory type, etc. For all the “static” attributes,

the temporal locality can be effectively employed for compression. Memory references

from programs are known to show abundant temporal locality: if a memory address is

105

accessed, it will probably be accessed again in the very near future. Therefore, a small

direct mapped cache structure, called a compression cache, is emulated in software, to

keep the recently seen memory references. If the next memory reference hits in the

cache, all the “static” attributes can be retrieved from it without being stored in the trace

file. The compression cache is indexed with the physical address of instruction fetches.

In LBTC, no separate data cache is created for data references. Instead, the data

reference attributes are attached to the instruction before it. A data reference that appears

after an instruction is probably initiated by that instruction, but there is also a slight

possibility that the data reference has been caused by DMA operations or by TLB misses.

If the data reference attached to a dynamic instruction is the same as the data reference to

the last execution of the same static instruction, and the instruction is found in the cache,

then it is called a data reference hit. The data reference record is then retrieved from the

compression cache with the instruction physical address as the index. In this way, on a

data record hit, even the data address can be omitted in the trace. Only one bit in the

header is needed to indicate that the data can be retrieved from the cache during

decompression. It works because many instructions will access the same memory

address as its last execution. Another approach is to create a separate data cache indexed

by the physical address of data references. The trade-off is briefly discussed in Section

7.4.1. The compression cache in the implementation contains only 32K entries, thus it

does not tax the virtual memory system. It is also very fast because one access involves

only one bit-wise and operation and one indexing operation. Set associative or fully

associative data structures may improve the compression ratio, but require much more

time to access. The working of the compression cache is analogous to that of a hardware

cache.

106

The C-like pseudo code in Figure 7.1 illustrates the steps in LBTC compression.

The direct mapped compression cache structure is not part of a trace file, but is created

on-the-fly and used in the program. Only the cache parameter (i.e., number of entries)

needs to be passed to the compression and the decompression program. The tracer is a

utility such as the trace module in Simics [52], from which the original uncompressed

trace records are obtained. A cache_entry_t structure contains the trace record of an

instruction fetch and the data memory reference records following it. The emit

statement in the figure writes the trace information to the compressed trace file.

Table 7.3 gives an example to illustrate the steps used to produce a compressed

trace. Column 1 assigns a number to each trace record. Column 2 gives an ID to each

static instruction. Column 3 numbers the dynamic data references. Column 4 shows the

physical addresses of the memory references. The next 4 columns are the contents in the

compressed trace. Column 5 is a bit showing the type of the trace record (I for

instruction, D for data). The algorithm converts the physical addresses to address offsets,

which are stored in the trace file in two’s complement using the minimum number of

bytes required to hold the offset. As in Mache and PDATS/PDI format, the address

offsets are only calculated between successive references of the same type (data access or

instruction fetch) but data accesses are not further split into sub-types. The first address

of each type is simply reproduced in the compressed file. The offsets stored in the trace

file are in column 6. Column 7 is the 1-bit field in every trace record header indicating

whether the reference can be retrieved from the compression cache (M for cache miss, H

for cache hit). In this example, a direct-mapped cache with 4 entries is assumed. The

physical address of the instruction is used to calculate the index to the cache, whose

operations are shown in the last column. Before each instruction is put into the cache, the

cache is probed to see if the instruction is already there. If the instruction is already in

107

the cache (a cache hit), only the address offset is stored in the trace file with a flag

indicating a cache hit. On a cache miss, all the attributes are stored. Each data reference

is associated with the instruction before it, thus in the same cache entry as the instruction.

01 uncompressed_trace_record_t tc;
02 cache_entry_t *current_entry=NULL;
03 cache_entry_t *entry_in_cache=NULL;
04
05 create and initialize compression cache structure;
06 while(tracer has more trace records){
07 get a record from tracer and store it in tc;
08 emit tc.type;
09 if(tc.type==INSTRUCTION){ // trace record for instruction fetch
10 emit offset of tc.physical_address;
11 search cache using tc.physical_address as index and
12 assign the cache entry to entry_in_cache;
13 if(entry_in_cache!=NULL
14 && entry_in_cache->instruction_record==tc){
15 // found in cache
16 emit hit flag;
17 }else{ // not found in cache
18 emit all attributes;
19 }
20 allocate and initialize current_entry;
21 add tc to *current_entry;
22 put current_entry into compression cache;
23 }else{ // trace record for data reference
24 if(entry_in_cache!=NULL &&
25 (the corresponding entry_in_cache is the same as tc)){
26 // data reference found in cache
27 emit hit flag;
28 }else{ // this data reference not found in cache
29 emit offset of tc.physical_address;
30 emit all attributes;
31 }
32 add tc to *current_entry; // put tc into the cache
33 }
34 }

Figure 7.1: Pseudo code illustrating the LBTC algorithm.

108

Table 7.3: Example of trace compression using LBTC.

Contents of compressed trace Trace
record

Static
instruc
-tion

numbe
r

Data refer-
ence

number
Physical
address
(HEX)

Type Offset
(HEX)

Hit/Miss
flag

Other
attributes

Cache operation

#1 I1 ae05 I ae05 M Instr word,
etc

Miss, put in I1

#2 I2 ae07 I 2 M Instr word,
etc

Miss, put in I2

#3 D1 cfb8 D cfb8 M Virtual addr,
memory
type, etc

put in D1

#4 I3 ae00 I -7 M Instr word,
etc

Miss, put in I3

#5 D2 cfe8 D 30 M Virtual addr,
memory
type, etc

put in D2
(Table b)

#6 I1 ae05 I 5 H -- Hit
#7 I2 ae07 I 2 H -- Hit
#8 D3 cfb8 D -30 H -- Hit (Table c)
#9 I4 ae08 I 1 M Instr word,

etc
Miss, put in I4,

replace I3
#10 D4 cfa0 D -18 M Virtual addr,

memory
type, etc

put in D4

#11 D5 cff0 D 50 M Virtual addr,
memory
type, etc

put in D5

#12 I5 ae06 I -2 M Instr word,
etc

Miss, put in I5
(Table d)

#13 I4 ae08 I 2 H -- Hit
#14 D6 cfa0 D -50 H -- Hit
#15 D7 cff4 D 54 M Virtual addr,

memory
type, etc

Miss, put in
D7, replace D5

(Table e)

Table 7.4: Compression cache content after record #5

Index Content
0 I3, D2
1 I1
2
3 I2, D1

109

Table 7.5: Compression cache content after record #8

Index Content
0 I3, D2
1 I1
2
3 I2, D3

Table 7.6: Compression cache content after record #12

Index Content
0 I4, D4, D5
1 I1
2 I5
3 I2, D3

Table 7.7: Compression cache content after record #15

Index Content
0 I4, D6, D7
1 I1
2 I7
3 I2, D1

At the time of compression, if the physical address of an instruction is found in

the cache, all attributes of the instruction (or data) trace record will be compared with

those in the cache (lines 14 and 25 in Figure 7.1). To ensure correctness, only when

every attribute matches will it be considered a cache hit. Finding the same physical

address in the cache does not guarantee that the same instruction is found because the

operating system may have loaded a new program at the same memory area, or the

program might be self-modifying. Tables 7.4 to 7.7 show the contents of the compression

cache at the selected points during compression. After trace record #5, instructions I1, I2,

I3 and the data references are put into the cache (Table 7.4). Trace records #6, #7 and #8

110

are found in the cache; the full attributes are not stored in the trace file (Table 7.5).

Records #9 to #12 incur cache misses (Table 7.6) and are stored in the trace with full

attributes. Please note that I4 replaced I3 just as in a regular hardware cache operation.

Trace record #13 and one following data reference (D6) hit in the cache (Table 7.7), but

the next data reference (D7) is a cache miss and all its attributes must be stored. After the

encoding, a general-purpose compression utility such as gzip is applied to further reduce

the file size.

7.4 RESULTS

Traces are gathered using Simics/x86 [52], an x86 full system simulator. In the

experiments, Simics simulates a Pentium II machine running Red Hat Linux 7.3.

SPECint2000 is chosen to represent CPU intensive benchmarks and SPECweb99 [74] to

represent commercial servers. For SPECweb, Apache 2.0 is used as the web server and

mod_perl [4] is deployed to speed up some dynamic web operations. Unless otherwise

noted, about one hundred million instructions are gathered for each benchmark.

Approximately two billion instructions are skipped for every SPECint2000 benchmark

before tracing.

7.4.1 Compression Ratio

Many general-purpose compression algorithms can be used to reduce trace file

sizes. LBTC is evaluated against gzip, one of the most popular general-purpose

compression utilities. Gzip implements the LZ77 algorithm [82], which strives to find

the repetitive patterns within a sliding window. In the experiment the Simics trace file in

its uncompressed raw binary format is gathered. To make the raw trace file size

manageable, 10 million instructions, instead of 100 million instructions, are collected in

this gzip comparison experiment. Figure 7.2 shows the size of compressed trace

111

normalized to the size of the raw trace file. The columns for SPECint show average

values of all programs. The error bars show the maximum and the minimum values. The

Simics raw trace format uses union structure to accommodate the max size of different

types of trace records. Therefore, each trace record in the trace file may contain unused

bits. These unused bits may take on arbitrary values making an otherwise repetitive

record look different and rendering gzip less effective. To ensure a fair comparison, these

unused bits are forced to be zero. The Simics trace module is also modified to set its data

value field to zero because data value of memory loads/stores are not used in LBTC.

Figure 7.2 shows that gzip reduces the size of the trace file by an order of magnitude but

LBTC alone yields better a compression ratio. LBTC wins by taking advantage of the

knowledge of the structure of the trace record whereas gzip blindly searches for

repetition. The most notable property of LBTC in Figure 7.2, which is also true for

PDATS/PDI and Mache, is that it is complementary to general-purpose compression

techniques. As shown in the third column for each benchmark, gzip can further compress

LBTC format by a ratio of 4-6. On average, a trace record takes 0.357 bytes in gzipped

LBTC files.

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14

specint_avg specweb

gzip
LBTC
LBTC.gzip

Figure 7.2: Normalized trace file size for gzip and LBTC.

112

Figures 7.3 and 7.4 compare different trace compression techniques. File sizes

are normalized to the baseline compression. The baseline compression, denoted as

“offset encoding” in the figure, compresses only memory reference addresses (physical

and virtual) by offset encoding. It is essentially the Mache format with all the additional

attributes uncompressed. Offset encoding of physical and virtual addresses is also used

in PDI and LBTC in the experiment. The PDI format does further compression by

encoding the most frequent 256 instruction words in 1 byte. When the top 256

instructions are obtained from the trace itself, it is denoted as “specific”. This approach

cannot be used on-line because it requires two passes. The first pass scans the trace to

identify the 256 most common instruction words. The second pass does the encoding.

An alternative approach uses a “generic” dictionary that is selected for x86 after

examination of a collection of traces. In the experiment, the generic dictionary is

obtained by calculating the top 256 instructions for all benchmark programs. This will

usually yield less compression but permits on-line compression. Figure 7.4 shows the

same results after files are further compressed by gzip. As shown in Figure 7.3, the

generic dictionary offers little compression for SPECweb. Even within SPECint groups,

some benchmarks are so different that the generic dictionary is of little use. LBTC offers

2.5X better compression over PDI (generic) and is about 2X better after gzip compression

is applied.

113

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

specint_avg specweb

offset encoding
PDI(specific)
PDI (generic)
LBTC

Figure 7.3: Normalized trace file size for different trace compression formats without
gzip.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

specint_avg specweb

offset encoding
PDI(specific)
PDI(generic)
LBTC

Figure 7.4: Normalized trace file size for different trace compression formats with gzip.

It can be seen that the PDI format is not very effective in the experiment. The

PDI format is most effective if the following three conditions are met:

1. The instruction word constitutes the major part in a trace record besides the

address information.

2. The 256 most frequent instruction words account for most dynamic instruction

words in the trace.

3. The 256 most frequent instruction words are long so that replacing them with 1-

byte indices provides good saving.

114

As for condition 1, the virtual address, the memory type, and other information

are also traced besides the instruction word and the physical address. PDI compresses

only the instruction word and thus is not effective for other information. On a cache hit,

LBTC retrieves all information from the cache. Therefore, storing extra information is

not a problem as long as this information does not change frequently from one execution

of the same instruction to the other.

Condition 2 is met for most SPECint programs. As shown in Table 7.8, the top

256 instructions account for an average of 90% of all dynamic instructions. Yet

instructions used in commercial servers like SPECweb are more diversified. The top 256

instructions only cover 56% of the total instructions. Unlike MIPS, for which PDI was

first designed, x86’s instruction coding is fairly compact. The average length of the

instructions is about 2.9 bytes whereas for the most common 256 instructions, the

average length is even smaller. Therefore, as for condition 3, replacing the instruction

words with 1 byte does not provide as much compression as on MIPS, whose instruction

length is 4 bytes.

Table 7.8: Statistics of the 256 most common instructions.

Benchmark
Coverage of

top 256
instrs

Avg
length of
top 256
instrs

Avg length of
all dynamic

instrs

Average 0.880 2.845 2.994
Median 0.908 2.776 2.887

Max 0.998 3.490 3.683
SPECint

Min 0.569 2.034 2.165
SPECweb 0.558 2.239 3.011

115

7.4.2 Statistics Supporting Compression

Offset encoding takes advantage of spatial locality by encoding the offset in fewer

bytes. LBTC is similar to Mache and PDATS in this aspect and readers can obtain more

details and statistics about the offset from the original reference [32]. LBTC also employs

temporal locality by caching a small number of previously seen trace records. It is used

to compress information other than the instruction physical address, including the

instruction word, virtual address, etc., that are mostly “static” (not changing in each

dynamic reference to the same memory location). The subsequent trace records can

probably be retrieved from the cache, if it has been seen not long ago. Table 7.9 shows

the hit ratio of the compression cache.

Table 7.9: Compression cache hit rate.

Benchmark Instruction hit rate Data hit rate
Average 99.0% 51.7%
Median 99.8% 61.5%

Max 100.0% 79.9%
SPECint

Min 96.1% 11.0%
SPECweb 94.5% 52.8%

Even though it is a small direct mapped 32k entry cache, more than 94.5% of the

instruction records can be retrieved from the cache, and about half of the data records are

found in the cache. The relatively low data hit rate is due to indexing the cache with the

instruction physical address. The other possible locality based approach is to use a

separate data cache indexed with the address of the data reference, which would improve

the cache hit ratio for data references to about 90%. This would reduce the attributes

stored in the trace file, but every data reference record would require an address as the

index. In the current implementation, if a data record hits in the cache, even the data

116

address is not necessary in the trace file. Only one bit in the trace record header

indicating a data hit needs to be present. Since the physical address is a significant part in

the data trace record, the current implementation gives a better overall compression ratio

than a separate data cache indexed by the address of the data reference. However, in

other environments if the data hit ratio indexed by instruction address is low, and the data

trace record contains much more than the physical address, then a separate data cache

will be justified.

7.4.3 Access Time

Trace access (decompression) time is also an important metric to evaluate a trace

compression method. The access time of different compression formats as well as the

execution-driven tracing time is compared. Trace access time is heavily affected by disk

access time. In the experiment a fast disk configuration is used. The access times were

measured by reading each trace file from a SCSI RAID (level 0, two disks) attached to an

8-processor DELL PowerEdge 8450 server running Red Hat Linux 7.3. The real

(elapsed) time spent in reading and converting each trace was measured using the Unix

time utility.

Again, the access times to compressed trace file (not gzipped) are normalized to

the “offset encoding” format and shown in Table 7.6. All formats perform similarly in

terms of access time. This indicates that the compression cache adds very little time

overhead. It is as fast as the PDI format. If the disk is slow, LBTC is expected to show

relatively faster results because it has a better compression ratio and thus less time is

spent reading from the disk compared to other compression methods. The access time to

trace files that were further compressed by gzip was also measured. The files were

gunzipped and piped into the trace decompressors. On multi-processor machine used in

117

the experiment, the gunzip and trace decompressor run in parallel and the access time

stays almost the same as in Table 7.10.

The last column shows the normalized time for generating the trace information in

Simics. It is the overhead in execution-driven simulation. The original trace module

shipped with Simics is used and the raw format tracing is turned on, which just dumps the

trace records without any processing. The trace dump is redirected to /dev/null, so

there are no disk writes. It is interesting to note that decompressing traces are faster

than executing the benchmark in Simics. This is because executing a benchmark in a full

system simulator is a costly process itself. Moreover, because Simics is a commercial

product, to keep the source code secret, the trace module is “hooked” to the simulator

core through the call back API, which causes additional large overhead.

Table 7.10: Normalized access time.

Benchmark
Offset

encoding
PDI

(specific)
PDI

(generic)
LBTC Exec

Average 1.000 1.052 1.049 0.993 4.390
Median 1.000 1.051 1.047 1.007 4.425

Max 1.000 1.062 1.059 1.111 4.761
SPECint

Min 1.000 1.046 1.043 0.875 4.175
SPECweb 1.000 1.055 1.052 1.078 4.585

7.4.4 Design Space Exploration

Since the algorithm is based on the same principle of locality as hardware caches,

any approach that enhances the cache hit ratio should also improve the compression ratio.

For comparison, a 2M-entry direct mapped cache and an infinite fully associative cache

are emulated. The compressed file sizes, after gzip is applied, are shown in the Table

7.11. File sizes are normalized to the 32k cache case. Table 7.11 shows that the 32K

118

entry direct mapped cache works fairly well. The average reduction in file size of

SPECint is only about 10.8% when a 2M direct mapped cache is used. Yet there are

some applications, notably the SPECweb and eon from SPECint2000, which can benefit

from larger caches. Fortunately, a larger direct mapped cache is as fast as a small cache.

Thus when memory is abundant, a larger cache could be used. Moving further to an

infinite fully associative cache gives less than 1% improvement. Therefore, fully

associative cache, which requires a slow associative search, is not needed.

Table 7.11: Normalized file size of different compression cache configuration (with
gzip).

Benchmark
32k direct-

mapped
2M direct-

mapped
Infinite fully
associative

Average 1.000 0.892 0.891
Median 1.000 0.927 0.927

Max 1.000 0.997 0.997
SPECint

Min 1.000 0.656 0.656
SPECweb 1.000 0.717 0.711

LBTC could also be combined with PDI compression. But the experiment shows

that it will achieve little further compression. In addition, using PDI on-line requires

creating a generic instruction word dictionary, which is a difficult task. Therefore,

adding PDI to LBTC is unnecessary.

7.5 SUMMARY

Processor memory references exhibit spatial and temporal locality. Previous

research has employed spatial locality to compress address traces by encoding the offset

of the consecutive reference addresses. It works well for traces that only contain

addresses. In this chapter, a new technique, LBTC, is proposed to take advantage of the

temporal locality by using a small data structure emulating a cache. LBTC can

119

efficiently compress traces with more information than addresses. It is shown to improve

the compression ratio by about 2X over the PDI format, which uses a dictionary to

compress instruction words. The algorithm is simple, fast and can be used on-line in

conjunction with general-purpose compression algorithms.

120

Chapter 8. Conclusions and Future Research

8.1 CONCLUSIONS

Before a new computer has been built and its real performance can be measured,

simulation is the most important tool for computer architects to evaluate design tradeoffs.

However, simulation time has been increasing. Software applications are becoming

bigger and bigger as users demand more functionality or try to solve more difficult

problems. Computer systems are becoming more and more complex as designers

continue to add more transistors to achieve better performance. Therefore, simulating big

benchmarks on complex computer models takes a prohibitive amount of time. On the

other hand, the accuracy requirement for the simulation result has never been higher. The

competition in computer industry and academic research is fierce. Computer architects

often have to decide whether to incorporate an enhancement that gives a few percentage

of performance improvement. Simulation experiments must be able to discern such small

performance difference. As a result, reducing simulation time while maintaining high

fidelity in simulation is a challenging and imperative problem.

Sampling can achieve significant simulation time reduction with good accuracy.

There are many sampling techniques. No single solution is the best for all situations, just

as no single processor is the best for all applications. This research has studied different

sampling techniques and proposed improved techniques optimized for different user

objectives and workloads. The following are the major findings and contributions to key

areas in sampled processor simulation.

• Choice of sampling unit size

How to choose a good sampling unit size is a basic question in sampled

simulation but there has been no consensus. A large range of sampling unit sizes

121

has been proposed and used. This research studies the question using statistical

sampling theory. Under the assumption of simple random sampling and perfect

warm-up, the effectiveness of a sampling unit size depends on the sign of the

intracluster correlation coefficient. It is observed that in nearly all cases using

small sampling units produces more accurate result given the same simulation

budget. A more important contribution is that the study discerns the inherent

temporal locality in the benchmark that underlies the observation. It is found

that, although still popularly used, simulating one very large chunk of instructions

is not an efficient way to improve accuracy [46].

• Simulating commercial workloads

Commercial workloads such as database servers are very important in the

business world. Simulations of those benchmarks are harder to set up and take

longer to run than SPEC CPU. However, simulation time reduction techniques

for commercial workloads have not been adequately studied. This research

studies two such techniques, simple random sampling (with small unit size) and

representative sampling, for the application of OLTP workloads. Although OLTP

workloads do not exhibit long, continuous phases, representative sampling is still

applicable. But its effectiveness highly depends on the chunk size. Users should

carefully choose the chunk size to get accurate results. Random sampling with

small unit size like SMARTS is also good at reducing simulation time for OLTP

workloads. However, OLTP workloads are different from SPEC CPU programs.

OLTP workloads are composed of randomly generated sequence of relatively

short database transactions, so at a large interval, execution of an OLTP workload

is stationary. Based on this property, a dynamic stopping rule is proposed. The

simulator monitors the current confidence interval as the simulation proceeds. It

122

stops after the confidence interval has met the user’s target accuracy requirement.

The dynamic stopping rule eliminates the second round of simulation that is

usually required in a popular prior technique to meet the user’s target accuracy. It

improves the usability and reduces the total simulation time.

• Measuring relative performance improvement

The objective of most simulations is to find out the performance benefit of some

microarchitecture enhancement. In these simulations, users care more about the

accuracy of the speedup than the accuracy of CPI. Nonetheless, previous research

has been focusing solely on CPI. By employing the ratio estimator from

statistical sampling theory, this research presents an efficient sampling technique

to measure speedup and to quantify its error. Because the executions of the same

benchmark on two similar configurations are highly correlated, to achieve a given

relative error limit for speedup, it is not necessary to estimate CPI to the same

accuracy. In the experiment, estimating speedup requires only about 1/9 of the

instructions needed for estimating CPI for the same relative error limit. Therefore

using the ratio estimator to evaluate speedup is much more cost-effective and

offers great potential for reducing simulation time [49].

• Adaptive warm-up

In order to achieve accurate sampling results, microarchitectural structures must

be adequately warmed up before each measurement. Warm-up is an important

issue in sampled processor simulation because it is critical to the accuracy of the

result and it also incurs simulation overhead. Previous cache warm-up methods

do not take into account the cache configuration being simulated, an important

factor in the warm-up process. In this dissertation, a new technique for warming

up microprocessor caches is proposed. The simulator monitors the warm-up

123

process of the caches and decides when the caches are warmed up based on

simple heuristics. The Self-Monitored Adaptive (SMA) warm-up technique on

average exhibits only 0.2% warm-up error in CPI. SMA achieves smaller warm-

up error with only 1/2~1/3 of the warm-up length of previous methods. In

addition, it is adaptive to the cache configuration simulated. For simulating small

caches, the SMA technique can reduce the warm-up overhead by an order of

magnitude compared to previous techniques. Finally, SMA gives the user some

indicator of warm-up error at the end of the cycle-accurate simulation that helps

the user to gauge the accuracy of the warm-up [47][48].

• Trace compression

In trace-driven simulation, sampled traces have to be stored. This dissertation

also investigated trace compression to reduce the cost of storage. Although

generic compression method like gzip can be used, compression techniques

designed specifically for traces give higher compression ratio. Previous trace

compression schemes such as Mache and PDATS/PDI take advantage of spatial

locality to compress memory reference addresses. This research presents the

Locality Based Trace Compression (LBTC) method, which employs both spatial

locality and temporal locality in program memory references. It efficiently

compresses not only the address but also other attributes associated with each

memory reference. In addition, LBTC is designed to be simple and on-the-fly. If

traces with addresses and other attributes are compressed by LBTC, the

compression ratio is better by a factor of 2 over compression by PDI [50].

124

8.2 DIRECTIONS FOR FUTURE RESEARCH

• Simulation for multiprocessor systems

As Moore’s law dictates, more and more transistors are available now, but it has

been increasingly difficult to use the extra transistors to improve the performance

of a uniprocessor. So chip makers resort to multi-core designs. Multiprocessors

have traditionally been limited to high-end systems. Since Intel and AMD have

released dual-core processors for desktop, we are about to see proliferation of

multiprocessor computers. Simulating multiprocessors is more difficult than

uniprocessors. Although in a real system, multiple processors work in parallel to

improve performance, most of the simulators simulate the processors sequentially,

resulting in longer simulation time. Research on simulation time reduction

techniques for multiprocessors has been limited, but study by Ekman and

Stenstrom indicates that simulation of multiprocessors may have greater potential

for time reduction [20]. Designing better sampling techniques for simulating

multiprocessor systems is a promising research area.

• Simulating emerging workloads

Different types of workloads exhibit different characteristics. Although the basic

ideal of sampling still applies, taking advantage of the workload-specific

characteristics often enables better sampling designs as shown in Chapter 4 for

OLTP workloads. There are still important workloads such as Java servers, for

which simulation time reduction techniques have not been fully studied.

Emerging workloads like life science workloads are often huge and demand better

time reduction techniques.

125

• Measuring power, reliability, etc

This dissertation has been focusing on performance simulation. However,

performance is not the only objective in computer design. Power has increasingly

become a limiting factor. In the performance simulation, the user wants to find

out the average performance. But in power simulation, the user may want to

know the maximum power or the highest temperature during the execution of the

benchmark. Traditional sampling is ill suited for estimating max or min values in

population. Therefore, simulating for maximum power poses a challenging

problem. As the wires continue to shrink, noise in chips rises and thus soft errors

become a big issue in processor design. Therefore, simulation for gauging

reliability will be more important in the future. More statistics are needed to

handle the simulation of low probability events such as soft errors. In addition,

simulations in this study may not be valid for functional validation. I/O

performance was not considered in this research due to the lack of good models

for I/O devices. I/O activity may not affect processor performance but it is an

important factor in the system performance for many commercial workloads.

How I/O simulation affects sampling design also needs further study.

126

Bibliography

[1] A. Agarwal, J. Hennessy and M. Horowitz, “Cache Performance Of Operating System
and Multiprogramming Workloads,” ACM Transactions on Computer Systems, vol. 6,
pp. 393-431, 1988.

[2] A. Agarwal and M. Huffman, “Blocking: Exploiting Spatial Locality for Trace
Compaction,” Proceedings of the 1990 ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, pp. 48- 57, 1990.

[3] A. R. Alameldeen and D. A. Wood, “Variability in Architectural Simulations of
Multi-threaded Workloads,” Proceedings of the 9th International Symposium on High-
Performance Computer Architecture, pp. 8-12, 2003.

[4] Apache Software Foundation, mod_perl Home Page, http://perl.apache.org/ (accessed
Dec 2003).

[5] J. C. Becker, A. Park and M. Farrens, “An Analysis of the Information Content of
Address Reference Streams,” Proceedings of the 24th Annual International
Symposium on Microarchitecture, pp. 19-24, 1991.

[6] D. Burger and T. M. Austin, “The SimpleScalar Tool Set, Version 2.0,” Technical
Report 1342, Computer Sciences Department, University of Wisconsin-Madson, June
1997.

[7] M. Burtscher and M. Jeeradit, “Compressing Extended Program Traces Using Value
Predictors,” Proceedings of the 12th International Conference on Parallel
Architectures and Compilation Techniques (PACT), pp. 159-169, September 2003.

[8] H. W. Cain, K. M. Lepak, B. A. Schwartz and M. H. Lipasti, “Precise and Accurate
Processor Simulation,” Proceedings of the 5th Workshop On Computer Architecture
Evaluation Using Commercial Workloads (CAECW), pp. 13-22, February 2002.

[9] T. Chilimbi, R. Jones and B. Zorn, “Designing a Trace Format for Heap Allocation
Events,” ACM SIGPLAN Notices, vol. 36, pp. 35-49, 2001.

[10] W. G. Cochran, Sampling Techniques, 3rd ed., New York: John Wiley & Sons, 1977.

[11] T. M. Conte, M. A. Hirsch and W. W. Hwu, “Combining Trace Sampling with Single
Pass Methods for Efficient Cache Simulation,” IEEE Transactions on Computers, vol.
47, pp. 714–720, 1998.

127

[12] T. M. Conte, M. A. Hirsch and K. N. Menezes, “Reducing State Loss For Effective
Trace Sampling of Superscalar Processors,” Proceedings of the 1996 International
Conference on Computer Design (ICCD), pp. 468-477, 1996.

[13] P. Crowley and J. L. Baer, “On the Use of Trace Sampling for Architectural Studies of
Desktop Applications,” Proceedings of the 1999 SIGMETRICS Conference, pp. 208-
209, May 1999.

[14] S. Dasgupta, “Experiments with Random Projection,” Proceedings of the Sixteenth
Conference on Uncertainty in Artificial Intelligence (UAI-2000), pp. 143–151, 2000.

[15] L. DeRose, K. Ekanadham, J. K. Hollingsworth and S. Sbaraglia, “SIGMA: a
Simulator Infrastructure to Guide Memory Analysis,” Proceedings of the 2002
ACM/IEEE conference on Supercomputing, pp. 1-13, 2002.

[16] R. Desikan, D.C. Burger and S.W. Keckler, “Measuring Experimental Error in
Microprocessor Simulation,” Proceedings of the 28th International Symposium on
Computer Architecture (ISCA), pp. 266-277, July 2001.

[17] J. Edler and M. D. Hill, “Dinero IV Trace-Driven Uniprocessor Cache Simulator,”
http://www.cs.wisc.edu/~markhill/DineroIV/ (accessed Dec 2003).

[18] L. Eeckhout, S. Eyerman, B. Callens and K. De Bosschere, “Accurately Warmed-Up
Trace Samples for the Evaluation of Cache Memories,” Proceedings of the 2003 High
Performance Computing Symposium, pp. 267-274, 2003.

[19] L. Eeckhout, Y. Luo, K. Bosschere and Lizy K. John, “BLRL: Accurate and Efficient
Warmup for Sampled Processor Simulation,” The Computer Journal, vol. 48, pp. 451-
459, 2005.

[20] M. Ekman and P. Stenstrom, “Enhancing Multiprocessor Architecture Simulation
Speed Using Matched-Pair Comparison,” Proceedings of the 2005 IEEE International
Symposium on Performance Analysis of Systems and Software, pp. 89-99, March
2005.

[21] E. N. Elnozahy, “Address Trace compression Through Loop Detection and
Reduction,” Proceedings of the 1999 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, pp. 214-215, 1999.

[22] Example Error Rates for SimPoint, http://www.cs.ucsd.edu/~calder/simpoint/error-
rates.htm (accessed June 2005).

[23] J. W. C. Fu and J. H. Patel, “Trace Driven Simulation Using Sampled Traces,”
Proceedings of the 27th Hawaii International Conference on System Sciences (Vol. I:
Architecture), pp. 211–220, January 1994.

128

[24] S. Girbal, G. Mouchard, A. Cohen and O. Temam, “DiST: a Simple, Reliable and
Scalable Method to Significantly Reduce Processor Architecture Simulation Time,”
ACM SIGMETRICS Performance Evaluation Review, vol. 31, pp. 1-12, 2003.

[25] D. W. Hammerstrom and E. S. Davidson, “Information Content of CPU Memory
Referencing Behavior,” Proceedings of the 4th Annual Symposium on Computer
Architecture, pp. 184-192, 1977.

[26] A. Hamou-Lhadj and T. C. Lethbridge, “Compression Techniques to Simplify the
Analysis of Large Execution Traces,” Proceedings of 10th International Workshop on
Program Comprehension (IWPC'02), pp. 159-168, June 2002.

[27] J. W. Haskins, “Memory Reference Reuse Latency: Rapid Warm Up for Sampled
Microarchitecture Simulation,” http://www.cs.virginia.edu/~jwh6q/mrrl-web/

[28] J. W. Haskins, Jr. and K. Skadron, “Minimal Subset Evaluation: Rapid Warm-Up For
Simulated Hardware State,” Proceedings of the 2001 International Conference on
Computer Design, pp. 32-39, September 2001.

[29] J. W. Haskins, Jr. and K. Skadron, “Memory Reference Reuse Latency: Accelerated
Sampled Microarchitecture Simulation,” Proceedings of the 2003 IEEE International
Symposium on Performance Analysis of Systems and Software, pp. 195-203, March
2003.

[30] V. S. Iyengar, L. H. Trevillyan and P. Bose, “Representative Traces for Processor
Models with Infinite Cache,” Proceedings of the 2nd International Symposium on
High-Performance Computer Architecture, pp. 62-72, 1996.

[31] L. M. Jimeno-Ochoa, P. Ibez and V. Vials, “Warm Time Sampling: Fast and Accurate
Simulation of Cache Memory,” Proceedings of the 22nd Euromicro International
Conference, pp. 39-44, 1996.

[32] E. Johnson, J. Ha and M. B. Zaidi, “Lossless Trace Compression,” IEEE Transactions
on Computers, vol. 50, pp. 158-173, 2001.

[33] R.E. Kass and L. Wasserman, “A Reference Bayesian Test For Nested Hypotheses
And its Relationship to Schwarz Criterion,” Journal of the American Statistical
Association, vol. 90, pp. 928-934, 1995.

[34] R. E. Kessler, M. D. Hill and D. A. Wood, “A Comparison of Trace-Sampling
Techniques for Multi-Megabyte Caches,” Technical Report 1048, Univ. of Wisconsin-
Madison Computer Sciences Dept., September 1991.

[35] A. KleinOsowski and D. J. Lilja, “MinneSPEC: A New SPEC Benchmark Workload
for Simulation-Based Computer Architecture Research,” Computer Architecture
Letters, vol. 1, pp. 10-13, 2002.

129

[36] T. Lafage and A. Seznec, “Choosing Representative Slices of Program Execution for
Microarchitecture Simulations: A Preliminary Application to the Data Stream,”
Proceedings of the 3rd IEEE Annual Workshop on Workload Characterization, pp.
102-110, 2000.

[37] S. Laha, J. H. Patel and R. K. Iyer, “Accurate Low-Cost Methods For Performance
Evaluation Of Cache Memory Systems,” IEEE Transactions on Computers, vol. 37,
pp. 1325– 1335, 1988.

[38] J. R. Larus, “Efficient Program Tracing,” Computer, vol. 26, no. 5, pp. 52-61, May
1993.

[39] J. Lau, S. Schoenmackers and B. Calder, “Structures for Phase Classification,”
Proceedings of the 2004 IEEE International Symposium on Performance Analysis of
Systems and Software, pp. 57-67, March 2004.

[40] G. Lauterbach, “Accelerating Architectural Simulation by Parallel Execution of Trace
Samples,” Proceedings of the 27th Hawaii International Conference on System
Sciences, Volume 1: Architecture, pp. 205-210, January 1994.

[41] M. H. Lipasti and J. P. Shen, “Exceeding the Dataflow Limit via Value Prediction,”
Proceedings of the 29th Annual ACM/IEEE International Symposium on
Microarchitecture, pp. 226-237, 1996.

[42] W. Liu and M. Huang, “EXPERT: Expedited Simulation Exploiting Program
Behavior Repetition,” Proceedings of the 2004 International Conference on
Supercomputing (ICS’04), pp. 126-135, June 2004.

[43] L. Liu and J. Peir, “Cache Sampling by Sets,” IEEE Transactions on VLSI Systems,
vol. 1, pp. 98-105, 1993.

[44] Y. Luo and L. John, “Workload Characterization of Multithreaded Java Servers,”
Proceedings of 2001 IEEE International Symposium on Performance Analysis of
Systems and Software, pages 128-136, 2001.

[45] Y. Luo and L. John, “Simulating Java Commercial Throughput Workload: a Case
Study,” 2005 IEEE International Conference of Computer Design (ICCD), to appear.

[46] Y. Luo and L. K. John, “On Sampling Unit Size in Sampled Microprocessor
Simulation,” Proceedings of the 24th IEEE International Performance Computing and
Communications Conference, pp. 81-90, April 2005.

[47] Y. Luo, L. K. John and L. Eeckhout, “Self-Monitored Adaptive Warm Up,”
International Journal of Parallel Programming, To appear.

130

[48] Y. Luo, L. K. John and L. Eeckhout, “Self-Monitored Adaptive Warm-Up,”
Proceedings of 16th Symposium on Computer Architecture and High Performance
Computing, pp. 10-17, October 2004.

[49] Y. Luo and L. K. John, “Efficiently Evaluating Speedup Using Sampled Processor
Simulation,” Computer Architecture Letters, vol. 4, pp. 22-25, 2005.

[50] Y. Luo and L. K. John, “Locality Based On-Line Trace Compression,” IEEE
Transactions on Computers, vol. 53, pp. 723-731, 2004.

[51] Y. Luo, J. Rubio, L. John, P. Seshadri and A. Mericas, “Benchmarking Internet
Servers on Superscalar Machines,” IEEE Computer, vol. 36, no. 2, pp. 34-40,
February 2003.

[52] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg,
F. Larsson, A. Moestedt and B. Werner, “Simics: A Full System Simulation
Platform,” Computer, vol. 35, n o. 2, pp. 50–58, February 2002.

[53] A. M. G. Maynard, C. M. Donnelly and B. R. Olszewski, “Contrasting Characteristics
and Cache Performance of Technical and Multi-User Commercial Workloads,”
Proceedings of the 6th International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 145-156, 1994.

[54] A. Milenkovic and M. Milenkovic, “Stream-Based Trace Compression,” Computer
Architecture Letters, vol. 2, pp. 14-17, 2003.

[55] A. T. Nguyen, P. Bose, K. Ekanadham, A. Nanda and M. Michael, “Accuracy and
Speed-Up Of Parallel Trace-Driven Architectural Simulation,” Proceedings of the
11th International Parallel Processing Symposium (IPPS’97), pp. 39-44. April 1997.

[56] S. Nussbaum and J. E. Smith, “Modeling Superscalar Processors via Statistical
Simulation,” Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques, pp. 15-24, September 2001.

[57] Open Source Development Labs. Database Test 2.
http://www.osdl.org/lab_activities/kernel_testing/osdl_database_test_suite/osdl_dbt-2/
(accessed June 2005).

[58] M. Oskin, F. T. Chong and M. Farrens, “HLS: Combining Statistical and Symbolic
Simulation to Guide Microprocessor Designs,” Proceedings of the 27th Annual
International Symposium on Computer Architecture, pp. 71-82, 2000.

[59] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun and A. Karunanidhi, “Pinpointing
Representative Portions of Large Intel Itanium Programs with Dynamic
Instrumentation,” Proceedings of the 37th International Symposium on
Microarchitecture, pp. 81-92, 2004.

131

[60] D. Pelleg and A. Moore, “X-Means: Extending K-means with Efficient Estimation of
the Number of Clusters,” Proceedings of the 17th International Conference on
Machine Learning, pp. 727-734, 2000.

[61] E. Perelman, G. Hamerly and B. Calder, “Picking Statistically Valid and Early
Simulation Points,” Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques, pp. 244-255, 2003.

[62] PIN homepage, http://rogue.colorado.edu/Pin/ (accessed July 2005).

[63] A. R. Pleszkun, “Techniques for Compressing Program Address Traces,” Proceedings
of the 27th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 32-
40, 1994.

[64] A. Poursepanj, “The PowerPC Performance Modeling Methodology,”
Communications of the ACM, vol. 37, no. 6, pp. 47-55, June 1994.

[65] T. R. Puzak, “Analysis of Cache Replacement Algorithms,” Ph.D. dissertation,
University of Massachusetts, 1985.

[66] A. D. Samples, “Mache: No-Loss Trace Compaction,” Proceedings of the 1989 ACM
SIGMETRICS International Conference on Measurement and Modeling of Computer
Systems, pp. 89-97, 1989.

[67] C. D. Schieber and E. E. Johnson, “RATCHET: Real-Time Address Trace
Compression Hardware for Extended Traces,” ACM SIGMETRICS Performance
Evaluation Review, vol. 21, pp. 22-32, 1994.

[68] T. Sherwood, E. Perelman and B. Calder, “Basic Block Distribution Analysis to Find
Periodic Behavior and Simulation Points in Applications,” Proceedings of the
International Conference on Parallel Architectures and Compilation Techniques, pp.
3-14, 2000.

[69] T. Sherwood, E. Perelman, G. Hamerly and B. Calder, “Automatically Characterizing
Large Scale Program Behavior,” Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating Systems, pp. 45-57,
2002.

[70] SimpleScalar LLC. http://www.simplescalar.com/ (accessed July 2005).

[71] K. Skadron, P. S. Ahuja, M. Martonosi and D. W. Clark, “Branch Prediction,
Instruction-Window Size, and Cache Size: Performance Tradeoffs and Simulation
Techniques,” IEEE Transactions on Computers, vol. 48, pp. 1260–1281, 1999.

[72] A. J. Smith, “Two Methods for the Efficient Analysis of Memory Address Trace
Data,” IEEE Transactions on Software Engineering, vol. 3, pp. 94-101, 1977.

132

[73] R. Srinivasan, J. Cook and S. Cooper, “Fast, Accurate Microarchitecture Simulation
Using Statistical Phase Detection,” Proceedings of the 2005 IEEE International
Symposium on Performance Analysis of Systems and Software, pp. 147-156, March
2005.

[74] Standard Performance Evaluation Corporation, SPECweb99 Benchmark,
http://www.spec.org/web99/ (accessed July 2005).

[75] Standard Performance Evaluation Corporation, SPEC CPU2000 Benchmark Suite,
http://www.spec.org/cpu2000/ (accessed July 2005).

[76] R. Todi, “SPEClite: Using Representative Samples to Reduce SPEC CPU2000
Workload,” Proceedings of IEEE 4th Annual Workshop on Workload
Characterization, pp. 15-23, 2001.

[77] Transaction Processing Performance Council, TPC Benchmark C,
http://www.tpc.org/tpcc/ (accessed July 2005).

[78] D. Vengroff and G. Gao, “Partial Sampling with Reverse State Reconstruction: A New
Technique for Branch Predictor Performance Estimation,” Proceedings of the 4th
International Symposium On High-Performance Computer Architecture (HPCA), pp.
342-351, 1998.

[79] T. A. Welch, “A Technique for High-Performance Data Compression,” Computer,
vol. 17, no. 6, pp. 8-19, June 1984.

[80] D. A. Wood, M. D. Hill and R. E. Kessler, “A Model for Estimating Trace Sample
Miss Ratios,” Proceedings of ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pp. 79-89, June 1991.

[81] R. E. Wunderlich, T. F. Wenisch, B. Falsafi and J. C. Hoe, “SMARTS: Accelerating
Microarchitecture Simulation via Rigorous Statistical Sampling,” Proceedings of the
30th Annual International Symposium on Computer Architecture, pp. 84-95, 2003.

[82] J. Ziv, A. Lempel, “A Universal Algorithm for Sequential Data Compression,” IEEE
Transactions on Information Theory, vol. 23, pp. 337-343, 1987.

133

 Vita

Yue Luo was born in Xiangfan, China, on December 11, 1972, as the son of

Huanzhao Luo and Litong Yue. After completing his high school education at No. 1

Zhengzhou Railway Middle School, Zhengzhou, China, he entered the Department of

Electronic Engineering in Tsinghua University, Beijing, China, in September 1990. He

received the degree of Bachelor of Engineering from Tsinghua University in July 1995.

He joined the graduate program for Electronics at Peking University, Beijing, China in

September 1995 and obtained the degree of Master of Science in July 1998. He worked

as a software engineer at ISD Co., Shenzhen, China until he entered the Ph.D. program in

Computer Engineering at The University of Texas at Austin in September 2000. During

the summer and fall of 2003, he interned at Sun Microsystems, Inc, working on a new

web server benchmark. He is a student member of IEEE.

Permanent address: Henan Province, Zhengzhou City, Jingguang Zhong Lu

 Tiedao Jiayuan 2 Haolou 49 Hao

 China, 450052

This dissertation was typed by the author.

