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Microprocessor evaluation using detailed cycle-accurate simulation is 

prohibitively time-consuming.  Sampling is the most widely used simulation time 

reduction technique.  In this dissertation, new sampling designs that utilize the 

characteristics of the workload, the microarchitecture being simulated, and the user’s 

specific objective are proposed.  They improve accuracy, and reduce simulation time and 

storage cost.

Statistical sampling theory is employed to study the choice of sampling unit size 

for simple random sampling with perfect warm-up.  More importantly, the inherent 

characteristic of the benchmarks that affects the choice of sampling unit size is discerned.

Previous research has been focusing on the accuracy of Cycle Per Instruction 

(CPI).  However, most simulations are used to measure the speedup due to some 

microarchitectural enhancements.  A new sampling scheme that employs ratio estimator 

from statistical theory is proposed to measure speedup and to quantify its error.  In the 

experiment, 9X fewer instructions are simulated as compared to estimating CPI for the 

same relative error limit.  
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This dissertation extends sampling techniques to the simulation of commercial 

workloads such as On-Line Transaction Processing (OLTP) used by banks, airlines, etc.  

The applicability of simple random sampling and representative sampling for OLTP 

workloads is investigated.  A dynamic stopping rule is proposed for sampling OLTP 

workloads, which requires only one simulation and thus eliminates the second simulation 

in previous random sampling methods.

In order to achieve accurate sampling results, microarchitectural structures must 

be adequately warmed up before each measurement.  Previous warm-up techniques have 

not considered the cache configuration being simulated, an important factor on the warm-

up length.  This dissertation presents a new cache warm-up technique for sampled 

microprocessor simulation, which allows the warm-up length to be adaptive to cache 

configurations and benchmark variability characteristics.  As a result, warm-up length has 

been greatly reduced, especially for small caches, without losing accuracy.

For trace-driven simulation, the sampled traces have to be stored.  Another 

contribution of the dissertation is the Locality Based Trace Compression (LBTC) 

technique, which employs both spatial locality and temporal locality in program memory 

references.  It efficiently compresses not only the address but also other attributes 

associated with each memory reference.  
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Chapter 1. Introduction

A processor is a complex digital system with tens to hundreds of millions of 

transistors.   It is important to know the performance of a new processor during the 

design phase.  Before a processor is actually built, its performance can be obtained 

through analytical modeling or simulation.  Due to the complexity in modern processors, 

analytical modeling may not give adequate accuracy.  Therefore, simulation of standard 

benchmarks has been the most important tool for computer architects to study design 

tradeoffs.  However, detailed cycle-accurate simulation is extremely time-consuming.  

Thus design space exploration through simulation of complete benchmarks is prohibitive.  

This difficulty arises from two causes.  

Firstly, modern benchmarks are no longer small kernels or synthesized toy 

programs.   Instead, they are very close to real-world programs and often take a long time 

to execute.  For example, each program in the SPEC* CPU2000 benchmark suite [75]

runs for minutes on a real machine.  This problem will only become worse in the future.  

The SPEC CPU committee is gathering programs for the next release, SPEC CPU2005.  

It is required that the execution time of each program be no less than 10 minutes on a 

machine with a SPEC CPU2000 baseline metric of approximately 700 for integer codes 

and approximately 900 for floating point code, which translates into hundreds of billions 

of dynamic instructions.  Database benchmarks usually take even longer to run.   TPC-C 

benchmark [77] is required to run at least 2 hours on a real machine. On today’s high-

performance machines, it will result in trillions of instructions. 

*SPEC, SPECint, SPECfp, and SPECweb are registered trademarks of Standard Performance 
Evaluation Corporation (http://www.spec.org/).  TPC is a registered trademark of Transaction Processing 
Performance Council (http://www.tpc.org/).
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Secondly, modern superscalar microprocessors are becoming increasingly 

complex.  Following Moore’s law, more and more transistors are available on a chip.  By 

taking advantage of the additional transistors, processor architects have designed various 

microarchitectural enhancements to improve performance or to reduce power 

consumption.  The complexity of processors is inevitably reflected in the simulators that 

model the processors, and slows down the simulators. In addition, designers and 

researchers want to simulate not only the processor and the memory subsystem but also 

the whole computer system.  These systems can be very complex, consisting of multiple 

computers connected by a high-speed network.  Each of the machines can have multiple 

processors and disks.  Each processor can be multi-threaded.  Although the hardware 

devices (e.g., multi-processors) usually work in parallel in real world, most modern 

simulators simulate them sequentially in order to simplify the development of simulators 

and to maintain the determinism of the simulation result.  Thus the more components to 

be simulated, the slower the simulation will be.  The gap between the speed of execution 

on real machine and the simulation is currently only increasing.  

Therefore, despite the faster machines users now have to run the simulations on, 

the problem of long simulation time is exasperating.  As a result, design space 

exploration by detailed simulation of full benchmarks becomes impractical. SimpleScalar 

[6] is the most widely used simulator in academic research.  Table 1.1 shows the time to 

simulate selected SPECint2000 benchmarks on a 1GHz Pentium III machine with sim-

outorder, the detailed out-of-order superscalar simulator from the SimpleScalar 3.0 tool 

set.  It usually takes several days to simulate one program.   Some benchmarks in the 

suite, which could not be fully study in this research, require weeks of simulation time.  

Assume that a processor designer needs to evaluate 10 candidate configurations.  

Suppose that the benchmark suite has 26 programs and each program has 3 input sets.  If 
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one program-input execution takes 1 week, the total simulation will be 10*26*3=780 

weeks, which is about 15 years!  If the user has enough processors to run the simulations, 

then the simulation for each benchmark and each configuration can be run in parallel on 

different machines.  The simulation time will eventually be limited by the simulation of 

one single benchmark.  Therefore, it is very important to reduce the simulation time of 

each single benchmark program.  The problem of long simulation time is much worse in 

the computer industry than in academic research.  Academic simulators often use a 

simplified model of processors.  Simulators in industry for designing real computers, on 

the other hand, are much more complex and hence much slower.  Todi from HP reported 

that it would take their Itanium simulator 676 days to simulate a benchmark from SPEC 

CPU2000 that has 146 billion instructions [76].

Table 1.1: Number of instructions and simulation time of selected SPEC INT2000 
benchmarks with the reference data set.  

             The data set name is appended to the benchmark name.

Benchmark Number of 
instructions 

(million) 
Simulation 

time 
(days) 

gcc-166 46,917 2.2
bzip2-source 108,878 4.4

eon-rushmeier 57,870 2.7
gzip-graphic 103,706 7.2

vortex-1 118,976 4.6
vpr-route 84,068 4.1

crafty 191,882 9.3

1.1 TECHNIQUES FOR REDUCING SIMULATION TIME

Several types of techniques have been proposed to reduce the simulation time.  

One method is to reduce the input data set to the benchmark.  The same benchmark 

program is executed but the problem size to the program is decreased.  For instance, 

suppose that the functionality of a benchmark is compressing files.  Then to reduce the 
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execution time, a smaller input file can be used.  MinneSPEC, proposed by KleinOsowski 

and Lilja [35], comprises reduced data sets for SPEC CPU2000.  The input sets to the 

benchmarks are carefully reduced to maintain the function-level execution profile and the 

instruction mix.  Designing a reduced input data set is no easy task:  There is no 

automatic way to do it.  It requires good understanding of the source code of the 

benchmark program.  One major disadvantage with this approach is that it is very hard to 

maintain the characteristics of data accesses.  Take matrix multiplication as an example.  

Reducing the matrix size can easily reduce the instruction count while maintaining the 

function-level execution profile and the instruction mix.  However, the original matrix 

may be larger than the data cache whereas the reduced matrix may fit in the data cache.  

There can be much fewer data cache misses for the reduced input data set.  Data cache 

misses have huge impact on the performance of modern processors.  Therefore, in this 

example, the performance evaluation based on the reduced matrices may not give a valid 

result.

Researchers have also proposed statistical simulation techniques to reduce 

simulation time [58][56].  In this method, the instruction trace of the benchmark is 

studied and the characteristics that impact the performance are extracted. These 

characteristics are a combination of microarchitecture independent ones (e.g., instruction 

mix and dependence distance between instructions) and microarchitecture dependent 

ones (e.g., cache miss rate and branch misprediction rate). Then a new and much smaller 

trace is synthesized based on these characteristics.  The new trace is fed to the simulator.  

Usually the simulation converges very quickly, in thousands of cycles.  If 

microarchitecture dependent characteristics are used, then these aspects of the 

microarchitecture are not simulated.  Instead, an artificial model is used.  For example, in 

HLS [58] caches are not simulated, but cache misses are injected by the simulator based 
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on the cache miss rate from the profiling done before the simulation.  Such simplification 

may affect the authenticity of the simulation result.  It is also difficult to determine what 

characteristics to capture for future microprocessor design.  As an example, suppose that 

the trace were synthesized before value prediction [41] was proposed, then using such a 

trace to evaluate new processors with value predictors may give a biased result.  

However, statistical simulations are very useful for early design space exploration 

because such simulations are very fast and accuracy is not the top concern in early design 

phases.

As computers are getting cheaper and multi-core processor getting more common, 

the user can have multiple CPUs to run simulations.  Girbal, et al. proposed the DiST 

method, which distributes the simulation of a single benchmark onto multiple computers 

[24].  Each computer simulates only part of the benchmark.  Because the performance of 

a part depends on the microarchitectural state generated by the previous part, the 

simulation on different machines have to be overlapped, incurring overhead for DiST.  

Adding up the simulations on all the machines, the entire benchmark is simulated plus the 

overhead of overlapped parts.  It is better to combine distributed simulations with other 

simulation time reduction techniques, such as sampling [40].

Sampling is the focus of this dissertation.  The next few sections are devoted to 

detailed discussion of sampled processor simulation.

1.2 SAMPLING

Sampling, the most widely used simulation time reduction technique,  is the focus 

of this dissertation.  Sampling has been used in social science and quality control for a 

long time and it enjoys a solid foundation in statistics.  Applying sampling to 

microprocessor simulation can greatly reduce the simulation time while retaining good 

accuracy.  Sampling can be used for cache simulations and cycle-accurate performance 
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simulations.  The focus of this dissertation is on cycle-accurate performance metrics such 

Cycles Per Instruction (CPI).  In sampled simulation1, the original full instruction stream 

is divided into N non-overlapping chunks of m continuous instructions.  Each chunk is a 

basic simulation unit, or a sampling unit. The sampling unit size is the number of 

instructions in each chunk. The population refers to all the chunks that constitute the 

entire instruction stream.  Population size is the total number of sampling units in the 

entire instruction stream, usually denoted N in this dissertation.  A sample consists of 

selected chunks that are actually simulated and measured (In practice, more instructions 

are simulated for warming up microarchitectural structures).  The number of sampling 

units in a sample is the sample size, expressed as n.   The ratio of sample size to the 

population size is the sampling fraction, denoted by the letter f  (=n/N).  The CPI of each 

sampling unit depends not only on the instructions executed in the unit, but also on the 

initial state of all microarchitectural structures at the beginning of this unit.  The initial 

state is, in turn, the result of the execution of all the instructions before the sampling unit. 

Executing a limited number of instructions before a sampling unit to get (approximately) 

correct initial state is known as warming up the microarchitecture.  The number of 

instructions used for warm-up before a sampling unit is its warm-up length.

Figure 1.1 gives the conceptual picture of the instruction stream in a sampled 

simulation.  Only a small portion in the entire instruction stream is measured.  A number 

of instructions before each measured sampling unit are used for warm-up.  And the rest of 

the instructions are “skipped”.  Whether they can be really skipped depends on the 

implementation.   Figure 1.2 illustrates a simple taxonomy of the implementation of 

sampled simulations.  A sampled simulation can be either execution-driven or trace-

1 The terminology in literatures on sampled microprocessor simulation is not consistent.  One notable 
difference is that in some papers a “sample” actually means what is referred to as a “sampling unit” in other 
papers. Throughout this dissertation, terminology from the traditional statistical sampling theory is used.  
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driven.  In an execution-driven simulation, the system state for the next clock cycle or the 

next instruction is completely computed from the current system state by the simulator.  

In an execution-driven simulator, sampling can be done in two ways.  In the first method, 

the simulator starts from an initial state for the whole benchmark and computes every 

future state from there.  During the simulation the simulator alternates between different 

modes.  It does cycle-accurate simulation and measurement for the sampling units that 

need to be measured.  Only the microarchitectural structures requiring warm-up (e.g., 

caches, branch predictor) are simulated during warm-up.  The remaining instructions are 

only simulated in a fast mode to get the architectural state.  In the second method, the 

initial state for each sampling unit to be measured is stored in a file called the checkpoint

file.  The processor can read a checkpoint file and compute the system state for the 

sampling unit.  If the checkpoint file contains the state of all microarchitectural 

structures, then no warm-up is necessary.  Otherwise, warm-up is still needed.  In a trace-

driven simulation, the simulator relies on a previously recorded trace file to compute 

future system state.  Usually instruction words, instruction addresses, and data addresses, 

etc. are stored in a trace file so that there is no need to compute this information from the 

current system state.  Therefore, a mode-switching execution-driven simulation requires 

minimum disk space because only one initial state (or an executable binary file) for the 

entire benchmark is stored.  For trace-driven simulations, or execution-driven simulations 

with a checkpoint for each sampling unit, the traces or checkpoints have to be stored, 

often resulting in large storage cost.   
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Sampling unit 
that is measured Warm-up

…
Skipped

 

Figure 1.1: Illustration of a sampled instruction stream.

Sampled Simulations

Execution-Driven Trace-Driven

Mode Switching Checkpointing

Figure 1.2: Implementation of sampled simulations.

Sampling works well because the execution of benchmarks is usually very 

repetitive.  For example, the size of the binary file of benchmark bzip2 from SPEC 

CPU2000 statically compiled for Alpha ISA is only 320KB, but executing it with input 

set source generates about 109 billion instructions.  These dynamic instructions are 

repetitions of the relatively small number of static instructions.  In addition, the 

microprocessor limits the variability in the execution of the benchmark.  Suppose that the 

user wants to measure IPC (Instruction Per Cycle) of the benchmark running on a 

processor that commits a maximum of 4 instructions in a cycle.  The variability in IPC in 

every cycle is constrained between 0 and 4.  As a result, with sampling, simulating only a 

small number of instructions can give fairly accurate result.  Wunderlich, et al. showed 

that under the assumption of no measurement error, CPI can be estimated to within an 
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error of 3% with 99.7% confidence by measuring fewer than 50 million instructions per 

benchmark [81].

Sampling has several advantages over other simulation time reduction techniques.  

With most of the techniques the user do not know the error in the simulation result.  The 

only way to find out the error is to run the full simulation and compare with the reduced 

simulation, which completely defeats the goal of reducing simulation time.  Alternatively, 

the user can rely on the previously published validation of the simulation time reduction 

technique, but the benchmark and the microprocessor configuration to be simulated in the 

user’s environment are usually different from the published experiment.  With a sampling 

scheme that employs statistical sampling theory, the user can get a confidence interval to 

quantify the error without simulating the entire benchmark in detail.  Furthermore, the 

sample comes directly from the benchmark, so, unlike in the statistical simulation, the 

user does not need to worry about not capturing some important characteristics in the 

benchmark for performance evaluation.

1.3 FACTORS AFFECTING SAMPLING DESIGNS

Simulation experiments, especially full-system simulations, are complex.  As in 

any complex project, many factors affect the design of the experiment.

• Goal of simulation.  In different experiments, users may have different goals.  In 

some experiments, users are happy with just cache miss rates.  In others they may 

want to find out the CPI, or the speedup due to a microarchitectural enhancement, 

or EPI (Energy Per Cycle), or even the highest temperature the processor will 

experience during the execution of the benchmark.  Different sampling designs 

may be appropriate for different target metrics.

• Characteristics of the benchmark.  Different types of benchmarks exhibit 

different behavior.  For example, a commercial benchmark like TPC-C is vastly 
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different from a CPU-intensive benchmark such as SPEC CPU2000.  The 

differences between benchmark characteristics are not considered in many current 

sampling methods.

• Simulation infrastructure. Simulators are pieces of complex software.  

Validating a simulator is even more challenging [16].  Once a simulator has been 

developed and validated, the modification should be kept to a minimum.  

Therefore, applying a simulation time reduction technique to an existing simulator 

requires careful consideration.  A technique that best fits the simulator should be 

selected.  Different simulators can have different problems.  For example, if the 

user has a trace-driven simulator, then besides reducing the cost of simulation 

time, the experiment designer also needs to reduce the cost of storing the traces.   

The computing resource the user has also affects the selection of simulation time 

reduction techniques.  Multiple benchmarks and processor configurations are 

commonly evaluated in one experiment.  If the user has fewer machines than the 

product of the number of benchmarks and the number of configurations, then 

distributing the simulation of one single benchmark onto multiple machines may 

not be important.  If, one the other hand, the user has enough computers, then it is 

desirable to parallelize the simulation as much as possible.

1.4 PROBLEMS IN SAMPLED PROCESSOR SIMULATION

The above discussion clearly shows that no single sampling method is the best for 

every situation. Naturally, the goal of this dissertation is not to find the universally best 

solution because it simply does not exist. Instead, the objective of this research is to 

improve sampled microprocessor simulation for different factors, and to let users select 

the technique according to their particular environment.  Specifically, the following 

problems are attacked.



11

• There is no consensus in previous research on how to choose a good sampling 

unit size.  Given a fixed simulation time budget, what sampling unit size should 

the user choose?  What inherent characteristic of the benchmarks, if any, should 

affect the user’s choice of sampling unit size?  

• Nearly all previous research on sampling focuses on CPI but in many experiments 

users want to find out the performance impact of a microarchitectural 

enhancement.  They are more interested in the speedup than in the absolute value 

of CPI.  How does measuring speedup affect design of sampling experiment?  Is 

there a way to further reduce the simulation time but maintain the accuracy?

• The cache warm-up process is affected not only by the benchmark but also by the 

cache configuration being simulated.  However, previous cache warm-up methods 

only consider the characteristics of the benchmark.  How can a better cache 

warm-up scheme be designed that adapts to the cache configuration?

• Most of the sampling methods are designed and validated for CPU intensive 

benchmarks such as SPEC CPU2000.  Commercial benchmarks such as On-Line 

Transaction Processing (OLTP) workloads are significantly different.  Are those 

sampling methods applicable to commercial benchmarks?  Can better sampling 

methods be designed for commercial benchmarks?

• In trace-driven simulations, the sampled instruction traces have to be stored.  

Trace files, especially those with extended information for each instruction, can 

be huge.  How can those trace files be better compressed?

1.5 THESIS STATEMENT

Detailed simulation of microprocessors is prohibitively time-consuming.  

Sampling designs that utilize the characteristics of the workload, the microarchitecture 



12

being simulated, and the user's goal for simulation can reduce the simulation time and 

storage cost with very little loss of accuracy.

1.6 CONTRIBUTIONS

This research makes multiple contributions to sampled processor simulation.

Utilizing the intracluster correlation coefficient from statistical sampling theory, 

this study finds that using large sampling units is not as effective as using small sampling 

units at improving the accuracy given the same simulation budget.  It also provides 

insight into the inherent characteristic of the benchmarks that favors small sampling unit 

sizes.

The applicability of two sampling techniques, representative sampling and simple 

random sampling, is studied for OLTP workloads.  The chunk size is found to be an 

important parameter in representative sampling.  To successfully apply representative 

sampling, the user needs to carefully choose the chunk size.  A dynamic stopping rule for 

simple random sampling is proposed.  It eliminates the second round of simulation often 

required in the previous techniques, thus it improves usability and reduces simulation 

time.

By employing the ratio estimator from statistical sampling theory, an efficient 

sampling method is designed to measure speedup and to quantify its error.  It is shown 

that to achieve a given relative error limit for speedup, it is not necessary to estimate CPI 

to the same accuracy.  In the experiment, estimating speedup requires about 9X fewer 

instructions to be simulated in detail in comparison to estimating CPI for the same 

relative error limit.  Therefore using the ratio estimator to evaluate speedup is very cost-

effective and offers great potential for reducing simulation time.

A new technique for warming up microprocessor caches is proposed. The 

simulator monitors the warm-up process of the caches and decides when the caches are 
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warmed up based on simple heuristics. In the experiments the proposed Self-Monitored 

Adaptive (SMA) warm-up technique on average exhibits only 0.2% warm-up error in 

CPI.  SMA achieves smaller average warm-up error with only 1/2~1/3 of the warm-up 

length of previous methods. In addition, it is adaptive to the cache configuration 

simulated. For simulating small caches, the SMA technique can reduce the warm-up 

overhead by an order of magnitude compared to previous techniques. Finally, SMA gives 

the user an indicator of warm-up error at the end of the cycle-accurate simulation that 

helps the user to gauge the accuracy of the warm-up.

To reduce the storage cost for sampled trace driven simulation, a new trace 

compression method, Locality Based Trace Compression (LBTC), is proposed.  It 

employs both spatial locality and temporal locality in program memory references.  It 

efficiently compresses not only the address but also other attributes associated with each 

memory reference.  It gives better compression ratio than previous methods.  In addition, 

LBTC is designed to be simple and on the fly.

1.7 ORGANIZATION

Chapter 2 surveys previously proposed microarchitectural sampling and warm-up 

techniques for processor simulation.

Chapter 3 deals with the problem of selecting good sampling unit sizes.  

Statistical sampling theory is employed to tackle this problem.  More importantly, the 

inherent characteristic of the benchmarks that affects choice of sampling unit size is 

identified.

Chapter 4 studies the applicability of simple random sampling and representative 

sampling to OLTP workloads.  A new dynamic stopping rule for simple random sampling 

is proposed and evaluated.
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Chapter 5 presents a more efficient sampling method for measuring the speedup 

for microarchitectural enhancements.  The proposed method is experimentally evaluated 

and the reason for its improved efficiency is investigated.

Chapter 6 discusses the problem of warm-up and reviews previous warm-up 

techniques.  Then a new self-monitored adaptive technique for cache warm-up, which 

overcomes a major weakness of previous methods, is proposed and evaluated.

Chapter 7 proposes Locality-Based Trace Compression (LBTC) technique.  It is 

compared with previous techniques and is shown to be more effective at compressing 

trace files with extended information.

Chapter 8 concludes the dissertation by summarizing the contributions and 

suggesting future opportunities. 



15

Chapter 2. Previous Research

This chapter briefly surveys previous research on sampling techniques for 

processor simulation.  Simulation can be used to measure different performance metrics, 

such as CPI, EPI (Energy Per Instruction), and cache miss rates.  Most early techniques 

are designed for cache simulation to measure cache miss rate.  More recent research 

primarily deals with cycle-accurate simulation for CPI or EPI.  This dissertation focuses 

on cycle-accurate simulation and cache warm-up.  Therefore, this chapter is divided into 

to two sections on the two topics respectively.  Caches are usually the most difficult-to-

warm-up microarchitectural structures in a processor, so most of the research on sampled 

cache simulation is actually about warm-up methods and thus they are surveyed with 

warm-up techniques in Section 2.1.  Cycle-accurate simulations are reviewed in Section 

2.2.  However, many papers on sampling techniques encompass both topics on sampling 

per se and on warm-up issues.  They are described in one of the two sections depending 

on which topic is the focus in that paper.  A paper may also appear in both sections if 

needed.

2.1 CACHE SIMULATION AND CACHE WARM-UP

The problem of cache warm-up is that the state of the cache is unknown at the 

beginning of each sampling unit. In other words, since portions of the trace are 

unexamined between observations, it is unknown whether the first reference to each 

cache block will be a hit or a miss. Such references are referred to as cold-start 

references.  If all cold-start references are assumed to result in cache misses, it is called 

the cold scheme, which is equivalent to assuming all cache lines to be initially invalid for 

every sampling unit.  Laha, et al. employed this method for small caches [37].  They 

reasoned that small caches would be purged upon a context switch so they select the 
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sampling units starting at a context switch. Large caches, however, may not be 

completely flushed at a context switch.  Some information is always retained in caches 

larger than 16KB across a context switch.  Therefore, they proposed not counting these 

cold-start references when calculating cache misses for large caches.  This effectively 

assumes that the miss rate for the cold-start references is equivalent to the miss rate for all 

other references.  In their experiment, sampling unit size of 5,000, 10,000, and 20,000 

instructions were used.  It was shown that cache miss per instruction (MPI) can be 

accurately estimated with a sample size of 35.

Wood, et al., however, showed that Laha, et al.’s assumption about large caches 

is usually not true [80].  The miss rate for the cold-start references is higher than the 

overall miss rate. Employing a renewal theoretical model, they proposed a method called 

INITMR to estimate the miss rate for the cold-start references by observing the average 

live and dead time for each cache line.  Kessler, et al. evaluated INITMR against other 

warm-up methods [34].  INITMR can be used to calculate the cache miss rate from 

sampled trace, but not directly applicable to microarchitectural simulation to get CPI.  

Therefore, it is not further discussed here.

Fu and Patel also realized that the cold-start references show a miss rate higher 

than the overall miss rate [23].  They divided each sampling unit into a priming interval 

and a evaluation interval.  Cache miss rate is only measured in the evaluation interval, not 

in the priming interval.  The priming interval is initially simulated to warm up the cache.   

This method is called the prime scheme. The prime-xx% method refers to devoting xx% 

instructions from the sampling unit to warm-up.  The prime-50% scheme is also called 

half in the literature [13].  During the priming interval, miss-distance is recorded, which 

is the number of references between misses including the first miss.  In the evaluation 

interval, the following steps are used to predict whether each cold-start reference is a hit 
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or a miss based on the miss-distance history and the cache contents.  First, in the priming 

interval if a miss occurs, then the miss distance is calculated and stored in a small history 

table, which is a list of the most recent miss distances.  Next in the evaluation interval, 

upon a cold-start reference, the miss distance d is calculated.   Prediction is made 

according to the following criteria: 

• If the history table is empty (i.e. no misses have been recorded), then predict a hit.  

• Else if d is within the range of distances recorded in the history table, then predict 

a miss.  

• Else if a prediction cannot be made based on the history, the contents of the cache 

are searched.  If the adjacent sets hold addresses of the adjacent memory blocks to 

the memory block being loaded, a hit is predicted, else a miss is predicted.

• Else if none of the above conditions are met, predict a miss.

The initial cache state for a sampling unit can be also assumed to be the same as 

the state at the end of the last sampling unit.  Warm-up techniques employing this 

assumption, such as those proposed by Agarwal, et al. [1], are called stitch.  It is like 

stitching all the sampling units together to create a large continuous chunk of instructions.  

The accuracy of the stitch scheme depends on how much of the cache state has been 

replaced between two sampling units and how much of the changed state is accessed 

during the second sampling unit.  If most of the cache blocks are flushed as after a 

context switch, then the accuracy will be impaired.  Crowley and Baer [13] compared 

different sampling techniques for cache simulation in the context of 5 Windows NT 

desktop applications (Adobe Acrobat Reader, Netscape Navigator browser, Adobe 

Photoshop, Microsoft PowerPoint, and Microsoft Word).  They compared cold, INITMR, 

prime-20, half, stitch and some varieties of these techniques.  They concluded that for the 

determination of cache miss ratios, stitch and INITMR are the best at overcoming the 
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difficulties inherent with the problem of the cold-start references at the beginning of each 

sampling unit.  Using these sampling techniques resulted in the accurate determination of 

cache miss ratios for caches of sizes up to 64KB.

For single-level, write-through, write-allocate, LRU replacement caches, there 

exist cache simulation algorithms that can simulate multiple cache configurations in a 

single run.  Conte, et al. combine such algorithms with sampled simulation [11].  They 

assume that the entire instruction stream is available although cache miss rates are only 

measured during selected sampling units.  By continuous recording some information 

throughout the simulation of the entire instruction stream, the cache can be kept warm 

between sampling units using an LRU stack.  Thus, the warm-up error is minimum for 

the cache simulation.

Of course, for sampled cycle-accurate simulation, the most accurate way to warm 

up the caches is to do cache simulation throughout the benchmark execution.  This is how 

Jimeno-Ochoa, et al. did in their Warm Time Sampling scheme [31].  But this work was 

largely unnoticed in the computer research community.  On ISCA 2003, Wunderlich, et 

al. proposed a similar approach, SMARTS (Sampling Microarchitecture Simulation) 

[81].  The simulator switches between functional warm-up and cycle-accurate simulation.  

During the functional warm-up, the simulator executes the program without simulating 

the pipeline stages, but the caches and the branch predictors are simulated.  During the 

cycle-accurate simulation, the simulator models every microarchitectural structure cycle 

by cycle.  Therefore, the only error in warm-up is introduced by not simulating the effect 

of out-of-order execution and wrong path execution on the caches during functional 

warm-up.  It has been shown that this error is small [81][8]. Although this warm-up 

scheme is by far the most accurate, it is still not satisfactory.  First, always simulating 

caches can be a waste of resource.  According to sampling theory, for a specific accuracy, 
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the sample size should be determined by the variability in the population.  If the 

benchmark does a lot of repetition, only a tiny fraction of the instruction stream is 

needed.  However, the scheme requires that caches be simulated for every instruction, 

which is inefficient.  Secondly, always warming up the cache makes distributed 

simulation hard.  For sampling methods such as SimPoint [69] and Variance SimPoint 

[61], where a small number of relatively large sampling units are taken, each sampling 

unit can be simulated in parallel on different machines to greatly improve the overall 

simulation speed.  However, constantly warming up caches makes it difficult to distribute 

the simulation on multiple machines.

Nguyen, et al. proposed the following equation to calculate the warm-up length 

[55].

rm
LCW *

/= ,

where C is the cache size in bytes, L is the cache line size in bytes, m is the cache miss 

ratio and r is the number of memory references per instruction.  They also proposed 

distributing sampling units on multiple machines in parallel to speed up the simulation.  

The problem with this approach is that the cache miss ratio to calculate the warm-up 

length is unknown before simulation.  Actually, it is exactly what the user is trying to 

estimate through sampled simulation. 

Haskins and Skadron proposed the Minimal Subset Evaluation (MSE) technique 

[28], which uses formulas derived from combinatorics and probability theory to calculate, 

for some user-chosen probability p, the number of memory references prior to each 

sampling unit that must be modeled in order to achieve accurate cache state.  This work is 

applicable to only one level of cache but most modern processors employ a hierarchy of 

caches.
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The two most recently proposed state-of-the-art cache warm-up methods are 

MRRL [29], also by Haskins and Skadron, and BLRL [18][19] by Eeckhout, et al.  Both 

methods rely on the same premise on a cache with LRU replacement: For a single level 

LRU cache, if a memory address is referenced, one knows whether the next reference to 

the same address results in a hit or a miss.  Let R(a, n) denote the nth memory reference 

to address a, and let I(a, n) denote the dynamic instruction that generates the memory 

reference.  Suppose that the we want to know whether R(a, n) incurs a cache miss or a 

cache hit.  Then we need to find out whether R(a, n-1) has been removed from the cache.  

With LRU replacement, a cache line can only be replaced by a newer memory reference. 

Thus by examining all the memory references between R(a, n-1) and R(a, n) we will 

know the result for R(a, n) and there is no need to look further back.  Therefore, 

simulating from I(a, n-1) will tell us the result for R(a, n).  This premise is no longer true 

for the level 2 cache when the level 1 caches employ write-back policy, but experiments 

show that MRRL and BLRL still work well for multilevel cache simulations.

Based on the above premise, Haskins and Skadron [29] employ the concept of 

Memory Reference Reuse Latency (MRRL), which refers to the number of dynamic 

instructions between I(a, n-1) and I(a, n).  The pre-sample of a sampling unit refers to the 

instructions before this sampling unit up to the end of the previous sampling unit.  

Instructions in a sampling unit and its pre-sample are profiled to get the empirical 

distribution of MRRL.  Given a p-value (p%) the warm-up length is the p-percentile of 

the distribution.  Figure 2.1 gives an example of the empirical Cumulative Distribution 

Function (CDF) for MRRL.  Because MRRL is grouped into bins during profiling the 

CDF is rugged and exhibits small steps. In the example, warm-up length for p-value of 

90% is shown.  The MRRL technique suffers from the fact that the distribution of MRRL 

may change in the instruction stream. For example, the distribution at the beginning of 
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the pre-sample may be different from that of the sampling unit.  The CDF from profiling 

is only an averaged distribution and may not be optimal for the sampling unit.  

Considering that most of the instructions used to calculate the distribution of MRRL 

come from the pre-sample, it is hard to guarantee that the instructions in the sampling 

unit follow the same distribution.

Sampling 
unit

Warm-up

CDF of MRRL

0.9
1.0

0.0

Sampling 
unit

Warm-up

CDF of MRRL

0.9
1.0
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Figure 2.1: The MRRL cache warm-up scheme.

To avoid this problem, Eeckhout, et al. proposed the Boundary Line Reuse 

Latency (BLRL) method [18][19], in which every memory reference in a sampling unit is 

directly examined instead of relying on the aggregated distribution.  Suppose I(a, n) is the 

first instruction in the sampling unit that references memory address a.  The instructions 

in the pre-sample are scanned backward during profiling to search for I(a, n-1). 

According to the above premise, warming up from I(a, n-1) can guarantee that we know 

whether I(a, n) incurs a cache hit or a cache miss.  Given a p-value like 80%, the warm-

up length for the sampling unit is chosen such that 80% of the unique references in the 

sampling unit whose addresses are referenced in the pre-sample are covered by the warm-

up instructions.  An example adapted from the BLRL paper [18] is given in Figure 2.2.  

There are 5 unique memory references in the sampling unit whose addresses are also 

found in the pre-sample, namely, a, b, c, d, and e.  If we start warm-up from the 3rd b in 
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the pre-sample, we will cover 80% of the 5 memory references (i.e. a, b, c, and d).  The 

only memory references in the sampling unit whose result is unknown are e and g. 

a b c b d c e a f a b c d c a c a d e a b c g

c
a

db

Warm-up Sampling unit

e

a b c b d c e a f a b c d c a c a d e a b c g

c
a

db

Warm-up Sampling unit

e

Figure 2.2:  The BLRL cache warm-up scheme.

Set sampling is another type of sampling techniques for cache simulation.  There 

is no known method to apply set sampling to cache warm-up for cycle-accurate 

simulation.  But for completeness, set sampling is briefly mentioned here.  All the 

techniques discussed hitherto are often referred to as time sampling because the sampling 

is done in the time dimension (i.e. the instruction stream is sampled).  In set sampling, 

however, the sets in the cache are sampled rather than the instruction stream.  The sets 

can be sampled randomly or based on the information about the parameters of the cache.  

Liu and Peir proposed a two-step set sampling [43].  In the first step, a partial run of the 

benchmark is simulated with the whole cache to obtain the information about the 

behavior of each set in the cache.  Based on this information, certain sets are selected for 

inclusion in the sample.  In the second phase, the whole benchmark is simulated but only 

on the selected cache sets, from which the overall cache miss rate is estimated.  Kessler, 

et al. proposed a set sampling method called the constant-bits method, which can 

simulate a hierarchy of multi-megabyte caches [34].  
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2.2 SAMPLING FOR PROCESSOR SIMULATION

Skadron, et al. identified a chunk of 50 million instructions from each SPEC 

INT92 benchmarks to represent the benchmark [71].   To accurately choose the 

simulation window, they measured the interval branch misprediction rate for each of the 

benchmarks: i.e. the misprediction rate computed separately over each million-instruction 

interval in the program.  This exposed representative segments of the trace.  They also 

obtained interval traces for data- and instruction-cache miss rates and ensured that the 

chosen simulation window was suitable with respect to these data as well.  They observed 

that many programs had an initial phase, which was very different from the rest of the 

execution.  The initial phase should be avoided when selecting the chunk of instructions 

for reduced simulation.

When modeling the performance of the PowerPC 603 processor, Poursepanj 

simulated 200 sampling units from each SPEC INT92 benchmarks [64].  Each sampling 

unit consisted of 5,000 instructions.  The geometric mean of the IPC for the sampled 

traces of the SPEC INT92 benchmark suite was within 2% of the true value.  However, 

the error margin for an individual benchmark could go up to 13%.

Lauterbach employed an iterative sampling-verification-resampling method in his 

study [40].  An initial sample of 100 units of 100,000 instructions each was used.  The 

sampling units were taken at random instruction intervals in the execution of the 

benchmark.  In the verification step, the instruction frequency, basic block density and 

cache statistics of the sampled traces were checked against the full trace for the 

benchmark.  These metrics could be obtained faster than IPC.  In cases where the sample 

trace was not representative of the full trace, additional sampling units were collected 

until the required criterion was reached. Final validation was done by simulating several 

microarchitectures using the sampled trace and comparing the result to the simulation of 
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the full trace. They showed that the absolute performance of samples was within 2% of 

the performance results of the complete trace.

Iyengar, et al. proposed a new metric, called the R-metric, to evaluate the 

representativeness of the reduced traces when applied to a wide class of processor 

designs [30].  A basic block annotated with the history of its preceding branch is referred 

to as a qualified basic block.  A basic block that is qualified by the branching history of 

length k and by the preceding n-1 qualified basic blocks is called a fully-qualified basic 

block with parameters n and k.  The R-metric measures the deviation in the reduced trace 

from the expected scaled count for each fully-qualified basic block.  This deviation is 

expressed as the ratio of instructions that have an incorrect environment in the reduced 

trace.  An ideally representative reduced trace will have a R-metric value of 0.  They also 

proposed a graph-based heuristic to generate reduced traces based on the notions 

incorporated in the metric.  They sampled from the original trace at the granularity of one 

basic block to minimize R-metric and maximize the representativeness of the reduced 

trace.  Their method was designed for processor models with infinite cache.  Therefore, 

the method does not consider the impact of cache misses and thus will not give very 

accurate results for simulating real processors with caches.

Sherwood, et al. proposed a methodology called Basic Block Distribution 

Analysis to find a single simulation point in benchmarks [68]. A basic block is a 

sequence of instructions in a program with a single entry point, single exit point, and no 

internal branches.   A Basic Block Vector (BBV) is a vector of length equal to the 

number of static basic blocks in the code. Each interval (a chunk of 100 million dynamic 

instructions in sequence) is characterized by a BBV with each element of the vector 

showing the frequency of occurrence of a particular static basic block. A BBV is derived 

for the whole program, called the target BBV, and each entry in the BBV is normalized to 
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total basic blocks, so that sum of all the entries in a BBV is one. Similarly, BBVs are 

derived for each interval of 100 million instructions and then compared with the target 

BBV. The comparison is directly made by subtracting one BBV from the other and 

adding up the absolute values of the difference of each element. The number lies between 

0 and 2. The difference of 0 indicates perfect match and 2 indicates a perfect miss-match. 

A single simulation point is selected by finding the interval with the lowest difference.

Liu and Huang observed that computer programs rely heavily on repetition to 

perform any significant operations, and that repeated execution of the same code could 

yield very similar behavior [42].  Based on these observations, they proposed a 3-step 

sampling scheme called EXPERT (Expedited simulation eXploiting Program bEhavior 

RepeTition):

1. Partitioning: divide an application into static code sections,

2. Characterization: characterize the behavior repetition of these sections, and

3. Selective simulation: use the characterization to control the degree of sampling in 

an architectural simulation.

They show that for a set of 22 SPEC CPU2000 applications, the simulation time can be 

reduced to a few hours or even several minutes if checkpointing is used.

Much research work in sampled simulation follows an ad-hoc approach: the 

newly proposed technique is evaluated solely experimentally in a few test cases to 

demonstrate its accuracy. Conte, et al. were one of the first to apply statistical theory to 

processor simulation [12].   The statistical sampling approach allows a confidence 

interval to be calculated to quantify the accuracy of the simulation without simulating the 

whole instruction stream.  The authors also showed how to determine the sample size 

based on the target accuracy. 
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The SMARTS method, whose warm-up technique has been discussed in the 

previous section, also employs sampling theory to calculate the confidence interval and to 

select the sample size at a given accuracy requirement.  Systematic sampling is used in 

SMARTS but it has been found to be equivalent to simple random sampling.  The 

sampling unit size is 1,000 instructions.  The SMARTS method usually involves two 

simulations.  Before the simulation, the user sets a target accuracy expressed as a relative 

error limit at a certain confidence level.  In the first simulation, the user chooses a sample 

size based on previous experience or an educated guess.  After the simulation, the 

confidence interval for CPI can be calculated.  In the lucky but rare case in which the 

confidence interval is equal to the target accuracy, the second simulation is not needed.  

If the initial sample size is too large, then the confidence interval will be much narrower 

than the target accuracy.  The second simulation is not needed, either.  But the performed 

simulation is overkill and the user has already wasted time on simulating some 

unnecessary sampling units.  If the initial sample size is too small, then a second 

simulation must be done.  With the result from the first simulation, the sample size for the 

second simulation can be fairly accurately calculated.  The result of the second simulation 

is expected to just meet the target accuracy.  It was shown that CPI could be estimated to 

within an error of 3% with 99.7% confidence by measuring fewer than 50 million 

instructions per benchmark for SPEC CPU2000.

Recently, sampling techniques that take advantage of the phase behavior in the 

programs have been proposed.  I call this type of techniques phase based representative 

sampling, or simply representative sampling.  A phase can be defined as a portion of 

dynamic execution of a program in which most of the performance metrics such as CPI, 

show very little variance.  In this definition, parts of a program that are disjoint in time 

may belong to the same phase as long as they show similar values for performance 
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metrics. Since the performance metrics remain stable in a phase, simulating only one 

chunk of instructions in the phase can give fairly accurate estimation of the performance 

for the entire phase.  If one chunk of instructions from every phase is selectively 

simulated, the simulation time can be greatly reduced with little loss of simulation 

information in the whole program.  

SimPoint, proposed by Sherwood, et al., is the most acknowledged representative 

sampling technique [69].  SimPoint also uses BBV for phase classification. BBV for 

every 100-million-instruction chunk is collected. BBV is usually high dimensional 

(thousands to hundreds of thousands), and hence random projection [14] is performed on 

the data to reduce the dimensionality to 15 before using k-means clustering to form 

interval clusters with similar BBVs. Each cluster corresponds to a phase in the program 

execution.  The clustering algorithm forms clusters for different number of clusters (k) 

and picks the best solution, determined by BIC (Bayes Information Criterion) [33][60]. 

The simulation point that is closest to the centroid of a cluster is selected as the cluster 

representative.  The cluster representatives (intervals) together form the simulation points 

of the programs. After selecting the simulation points, the CPI of the whole program can 

be calculated as a weighted average of CPI values from each of the representative 

intervals weighted by the cluster size.

Early SimPoint and Variance SimPoint, proposed by Perelman, et al., are two 

extensions to SimPoint.  The chunk sizes are reduced to 1 million and 10 million 

instructions.  Early SimPoint tries to find simulation points early in the program’s 

execution without compromising the accuracy.  It reduces the time required for fast-

forwarding where check-pointing is not possible.  Variance SimPoint uses statistical 

analysis to guide the choice of number of clusters for a user specified confidence interval 

and probabilistic error bound for CPI.   The confidence interval is valid only on the 
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microarchitecture for which the user does verification, not on the microarchitecture that 

the user actually uses Variance SimPoint.  Nonetheless, Variance improved accuracy 

over the original SimPoint.

Todi proposed SPEClite, another representative sampling method for SPEC 

CPU2000 benchmarks [76]. The approach consists of collecting performance metrics 

using the performance monitoring counters for every interval of 1 million instructions 

and then using clustering to find representative intervals for phases. The main drawback 

of this technique is that since the measured phase classification features are for a 

particular machine, the clusters may not be valid for other microarchitecture 

configurations.

The representative sampling method proposed by Srinivasan, et al. employs χ2–

test instead of clustering algorithms to identify phases [73].  They defined a Chi-square-

based Similarity Measure (CSM) to measure the similarity between instruction chunks.  

CSM compares the sampled IPC distribution to the original IPC distribution to efficiently 

detect phase changes.  Although CSM is microarchitecture-dependent, it was shown that 

the result is generally accurate on similar microarchitectures.

The sampling method developed by Lafage and Seznec is for cache simulation, 

not for cycle-accurate processor simulation [36].  But because it is also a representative 

sampling technique, it is briefly discussed here.  This method selects representative slices 

of program execution based on a microarchitecture-independent feature, reuse distance 

expressed in terms of instructions executed between two accesses to the same address. 

They used hierarchical clustering to classify program slices of 1 million instructions. 

Their results showed an average relative error of 1.52% in data cache miss-rate for the 

SPEC CPU95 suite.



29

All of the above research focuses on SPEC CPU benchmark suite.  Despite the 

importance of commercial workloads in the real business world, their simulation 

methodology has not been thoroughly studied.  Patil, et al. applied SimPoint 

methodology to commercial workloads running on Intel Itanium machines [59].  A 

method similar to SimPoint was used.  The code was instrumented with PIN, a tool for 

dynamic, user-defined instrumentation of Itanium/Linux Programs [62].  The 

instrumented program was run on a real Itanium machine to collect the BBV profile for 

every 250-million-instruction chunk.  Then clustering analysis from SimPoint is 

performed to select representative simulation points.  Their result showed that 

representative sampling worked well for their benchmarks.  However, most of their 

benchmarks were run in single-threaded mode. They had one set of multi-threaded 

programs, SPECOMP2001.  They noted the difficulty in studying SPECOMP2001 in 

their experiment due to the non-determinism and the non-repeatability of multi-threaded 

programs on real machines.  Their experiment on multi-threaded commercial workload 

was inconclusive.
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Chapter 3. On Sampling Unit Size

3.1 INTRODUCTION

In sampled simulation of microprocessors, one basic problem is to determine the 

best sampling unit size.  For example, suppose users have a budget of simulating 500 

million instructions. To achieve a small error in CPI or IPC, should they simulate 1 chunk 

of 500 million instructions each or 500 chunks of 1 million instructions each? And why?  

Despite its importance, there is no consensus on the problem in previous research.   

Researchers have proposed various sampling unit sizes ranging from 1,000 instructions to 

hundreds of millions of instructions.  In practice, only one large chunk of consecutive 

instructions are often simulated.  I call it one-chunk sampling, a special case of sampling 

with sample size of one. The single sampling unit is becoming larger and larger.  

Consider the papers in MICRO 2001 and 2003 that used one-chunk sampling to simulate 

SPECcpu2000.  In MICRO 2001, the sampling units used in the six papers were 200 

million instructions (in 3 papers), 300 million instructions (in 2 papers), and 10-25 

million instructions (in 1 paper).  In MCIRO 2003, the sampling units became much 

larger in 7 papers: 100 million instructions (in 2 papers), 500 million instructions (in 3 

papers), 1 billion instructions (in 1 paper) and 5 billion instructions (in 1 paper).  

Intuitively, simulating more instructions will give a more accurate result, but is this an 

effective way to improve simulation accuracy?

The final error of sampling simulation comes from two sources.  The first source 

is the inaccuracy in measuring the CPI of each sampling unit, which comes mainly from 

the warm-up error. Because only limited number instructions before each sampling unit 

are simulated, the initial microarchitectural state at the beginning of a sampling unit is 

only approximately correct.  The final error in CPI caused by approximation in warm-up 
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is called warm-up error.  The second type of error, which is the focus of this chapter, 

comes from sampling itself.  Because only part of the instruction stream is simulated, the 

true CPI for the part that is not simulated is unknown and can only be estimated.  

Therefore, the estimation of the CPI for the whole benchmark will always have 

inaccuracy in it.  This sampling error is inherent to all sample designs.

Warm-up error can be very small if caches and branch predictors are functionally 

simulated throughout the benchmark execution [81][31].  In this chapter, the warm-up 

error is assumed to be zero and the warm-up overhead is assumed to be constant.  In 

actual simulation the warm-up overhead depends on the specific warm-up method, so this 

assumption allows the decoupling of the warm-up issue from the benchmark and the 

microarchitecture configuration.  The assumption of ideal warm-up enables this study to 

focus on the inherent property of the benchmark instruction stream instead of being tied 

down to a particular warm-up scheme.  

One advantage of sampling over other simulation time reduction techniques is 

that sampling enjoys a solid mathematical foundation.  In this chapter, statistical 

sampling theory is employed to study the problem of sampling unit size. This study tries 

to determine how large the sampling unit should be in order to achieve certain simulation 

accuracy while simulating as few instructions as possible. The intracluster correlation in 

programs is used to evaluate the effectiveness of large sampling units. It is found that 

most benchmarks show positive intracluster correlation, which favors a small sampling 

unit.  The inherent property of the benchmarks that causes the positive correlation is also 

investigated.

This chapter is structured as follows.  Section 3.2 presents the statistical theory 

employed in the study.  The experiment and the analysis of the results are shown in 

Section 3.3.  In Section 3.4, the underlying reason for the observation is discussed, which 
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shows that the observation is not a coincidence but caused by an inherent property of 

many benchmarks.  Section 3.5 summarizes the chapter.

3.2 STATISTICAL SAMPLING THEORY

Simple random sampling is assumed in this chapter.  In practice, systematic 

sampling is often used for convenience but it is shown to be equivalent to simple random 

sampling in processor microarchitectural simulation [81].  In a sampled simulation, the 

CPI of each sampled unit is measured (yi, i=1, .., n).  The CPI of the full simulation 

(population mean, Y ) is estimated as2

∑
=

==
n

i
iynyY

1

1ˆ
                                (3.1)

That is, the sample mean ( y ) is used as an estimator for the population mean, which is 

intuitive. 

A confidence interval can be used to quantify the error of the sampling result.  

When the sample size is large, the sample mean approximately follows normal 

distribution, the confidence interval for the population mean at confidence level (1-α) is 

( 2/1 α−− zy yS , 2/1 α−+ zy yS )                                                 (3.2)

where 2/1 α−z is the (1-α/2) quantile of a unit normal distribution, and yS  is the standard 

deviation or standard error of the sample mean.  2)( ySyV = is the variance of the sample 

mean.    Because the variance and standard deviation are directly related to the 

confidence interval, they are used in sampling theory as the indicator of the sampling 

error and are used to evaluate sample designs.  Therefore, the variance or the standard 

deviation of the sample mean is used to compare the accuracy for different sampling unit 

sizes hereafter.

For simple random sampling, when the sampling fraction is small,

2 Capital letters refer to characteristics of the population and lowercase letters to those of the sample.  The symbol ^ denotes an
estimate of a population characteristic made from a sample.
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where 2S  is the variance of the population:
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According to Equation 3.3, as more sampling units are measured (i.e. the sample size n is 

increased), the variance decreases with 1/n.

There are two methods to improve the accuracy of the sampling result.  In the first 

method, larger sampling units are used.  M consecutive sampling units are grouped 

together to form a large sampling unit, which is called a cluster in the sampling theory.  

Assume that there are N clusters in the population and n clusters are randomly taken from 

it.  Let yij be the observed value for the jth unit within the ith cluster.  Y  denotes the mean 

per (small) sampling unit for the population.  In the second method, the original sampling 

unit size is kept, but the sample size is increased to M*n by taking more sampling units.

By applying the two methods to processor simulation, the user still measures the 

same number of instructions in the cycle-accurate mode.  The difference is that, in the 

first case, n large chunks of instructions are simulated, whereas, in the second case, M*n

small chunks of instructions are simulated.  So the question is: is using larger sampling 

units more effective at improving the accuracy?

Calculate the ratio of the standard deviations of the two cases can answer the 

question.  It can be proved that 

ρ)1(1arg −+= MS
S
small

el &  (3.5)
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The numerator of Equation 3.6 shows that ρ is the average of the correlation 

between any two sampling units within a cluster.  Hence it is called the intracluster 

correlation coefficient.  The possible range for ρ is 11 ≤≤− ρM .  When ρ=0, the 

sampling units within a cluster are independent of each other and Slarge=Ssmall, which means 

that using a larger sampling unit is as effective as taking more smaller sampling units.  

When ρ >0, the sampling units within a cluster are positively correlated and Slarge>Ssmall, so 

using a larger sampling unit is less accurate.  Please note that in Equation 3.5 ρ is 

multiplied by (M-1).  Even a small positive correlation may cause noticeable difference 

between S1 and S2.  When ρ<0, using a larger sampling unit is more effective at 

improving accuracy (Slarge<Ssmall).  In the extreme case (
1

1
−−= Mρ ), the large sampling 

unit reduces the sampling error to zero.

3.3 EXPERIMENTS AND RESULTS

The theory in the above section shows that the effectiveness of a large sampling 

unit depends on the intracluster correlation coefficient.  Experiments are conducted to 

measure this instracluster correlation.  The processor configuration is shown in Table 3.1.  

The same configuration has been used in study on warm-up [29] and in validation of 

SimPoint [22].

Although possible sampling unit sizes range from hundreds to billions of 

instructions, two ranges are studied in the experiments.  1 million to 100 million 

instructions is the “promising range”.  It is good candidate for designing new sampled 

simulation techniques for the future.  Good warm-up methods can be devised for 

sampling unit sizes in this range [29][18][19][48].  The other range of sampling unit size 

is from 100 million to several billion instructions.  This is the unit size for one-chunk 

sampling commonly used in practice.   Baseline sampling unit sizes of 1 million 
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instructions and 100 million instructions are appropriate for studying the two ranges 

respectively.

Table 3.1: Processor configuration.

Pipeline
Issue Width
Decode Width
Register Update Unit
Load-Store Queue
Commit Width

8 instructions/cycle
8 instructions/cycle

128 entries
32 entries

8 instructions/cycle
Cache Hierarchy

L1 Data

L1 Instruction

L2 Unified

Memory Access Latency

16KB; 4-way assoc., 32B lines 
2-cycle hit

8KB; 2-way assoc., 32B lines 
2-cycle hit

1MB; 4-way assoc., 64B lines 
20-cycle hit
151 cycles

Combined Branch Predictor
Bimodal
Pag
Return Address Stack
Branch Target Buffer
Mispredict Latency

8192 entries
8192 entries

64 entries
2048 entries; 4-way assoc.

14 cycles

The seven benchmark-input pairs in Table 1.1 are simulated in sim-outorder.  sim-

outorder is modified to print simulation result for every sampling unit throughout the 

benchmark execution.  Because cycle-accurate simulation is done throughout, there is no 

warm-up error in the experiment.  Two sampling unit sizes are used: a sampling unit size 

of 1 million instructions for covering the range of 1 million to 100 million instructions, 

and a unit size of 100 million instructions for covering the range of 100 million to 5 

billion instructions.

Figures 3.1 and 3.2 show the intracluster correlation coefficient for CPI for the 

two base sampling unit sizes.  It is clear that different benchmarks show different 



36

intracluster correlation.  However, except where two data points of bzip2-source in 

Figure 3.2 are very close to zero, all the intracluster correlation coefficients are positive.  

Based on Equation 3.5, the positive correlation means that using larger sampling units is

not effective at improving accuracy.
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Figure 3.1: Intracluster correlation coefficient for CPI with baseline sampling unit size 
of 1 million instructions.
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Figure 3.2: Intracluster correlation coefficient for CPI with baseline sampling unit size 
of 100 million instructions.
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For verification, the standard deviation for different sampling unit sizes is 

calculated. The standard deviation, normalized to that of the original sampling unit size, 

is shown in Figures 3.3 and 3.4.   The lowest smooth curve (with legend “org unit”) in the 

figure demonstrates the decrease of the standard deviation as the user takes more 

sampling units instead of using large sampling unit sizes.  According to Equation 3.3, the 

standard deviation decreases with M/1 , and the curve is the same for all benchmarks.  

All the other curves show that the standard deviation generally drops as the sampling unit 

sizes are increased.  Except for the two data points in bzip2-source in Figure 3.4, the 

curves do not drop as quickly as the “org unit” curve, which leads to the same conclusion 

as Figures 3.1 and 3.2 that larger sampling unit size is not effective at improving the 

accuracy of CPI.  Consider crafty in Figure 3.4. Take a chunk of 100 million instructions 

as an example sampling unit because simulating a chunk of several hundred million of 

instructions is a popular practice.  Suppose that the 95% confidence interval is e when 

simulating crafty.  If the chunk size is increased to 1 billion instructions, then error can 

only be reduced to 0.89e, a marginal gain.  On the other hand, the chunk size is kept at 

100 million instructions, but 10 times more chunks are sampled, then the error limit is 

reduced to 0.32e, even though the total number of measured instructions remains the 

same.
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Figure 3.3: Normalized standard deviation for CPI with baseline sampling unit size of 1 
million instructions.
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Figure 3.4: Normalized standard deviation for CPI with baseline sampling unit size of 
100 million instructions.

Although sampling for CPI is the focus of this study, sampling is also useful for 

other metrics.  Similar experiments are performed for the level one data cache misses per 

instruction and the branch misprediction per instruction with the two base sampling sizes.  

In most cases, a small sampling unit size is still more accurate than a large sampling unit 
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size.  Because these results are similar to those of CPI, they are not shown here.  Only in 

two cases does a large sampling unit size results in smaller error.  They are shown in 

Figure 3.5 (level one data cache misses per instruction for base sampling unit of 100 

million instructions) and Figure 3.6 (branch misprediction per instruction for base 

sampling unit of 100 million instructions).  In both figures, bzip2-source shows negative 

intracluster correlation coefficients.  As verification, Figures 3.7 and 3.8 show the 

normalized standard deviation for the cache misses and branch misprediction.  As the 

sampling unit size increases the standard deviation for bzip2-source drops quickly and 

soon goes below the “org unit” curve.  For this particular benchmark, simulating a large 

chunk of 2 billion instructions gives better accuracy than using twenty chunks of 100 

million instructions when measuring L1 data cache misses or branch misprediction.
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Figure 3.5: Intracluster correlation coefficient for L1 data cache misses with base 
sampling unit size of 100 million instructions.
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Figure 3.6: Intracluster correlation coefficient for branch misprediction with base 
sampling unit size of 100 million instructions.
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Figure 3.7: Normalized standard deviation for L1 data cache misses with base sampling 
unit size of 100 million instructions.
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Figure 3.8: Normalized standard deviation for branch misprediction with base sampling 
unit size of 100 million instructions.

3.4 DISCUSSION

The results in the last section show that for most benchmarks and most metrics, 

using larger and larger sampling units is not a good way to improve the accuracy of the 

sampling result.  A more effective way would be to keep the sampling unit size small but 

take more sampling units.  There are, however, some benchmarks that favor large 

sampling units for some metrics.  These experiments were done for only one processor 

configuration, so a natural question would be “is the positive intracluster correlation 

generally expected or is it a coincidence in the experiment?”  Therefore, it is more 

important to discern the underlying reason than to merely present the observation.  

Finding out why benchmark bzip2-source produces peculiar results is also desirable.

Positive correlation inside a cluster means that the sampling units within one 

cluster exhibit similar metrics.  One possible cause may be the phase behavior of some 

benchmarks.  Within a phase, the program exhibits relatively constant behavior, so the 

metrics of the sampling units are very similar.  However, a closer look shows that the 
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positive intracluster correlation is more common than the phase behavior.  For example, 

Figures 3.9 and 3.10 show the graph of CPI of every 100 million instructions for two 

benchmarks.  Distinct phases can be observed in vortex-1 whereas crafty looks like white 

noise to human eyes.  But as shown in Figure 3.2, both benchmarks show highly positive 

intracluster correlation so there is probably a more general program property causing the 

positive correlation.
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Figure 3.9: CPI for every 100 million instruction unit for vortex-1.
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Figure 3.10: CPI for every 100 million instruction unit for crafty.

The positive intracluster correlation means that the sampling units in one cluster 

show similar metrics.  However, the metrics are microarchitecture-dependent.  To find 
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out the underlying reason, the similarity between the sampling units themselves needs to 

be measured.  One microarchitecture-independent metric to measure the similarity 

between instruction traces is the Basic Block Vector (BBV) proposed by Sherwood, et al

[68].   A Basic Block Vector is a one-dimensional array with an element for each static 

basic block in the program.  Each array element is the count of how many times a given 

basic block has been entered during a sampling unit or a cluster.  The dissimilarity 

between the instruction traces in the two sampling units is reflected in the distance 

between the BBVs of two sampling units reflects.  If the distance is small, then in the two 

sampling units the same set of basic blocks are executed with similar execution 

frequency.  Thus the instruction traces in the two sampling units are similar.  On the other 

hand, if the distance is large, then different set of basic blocks are executed or the same 

basic blocks are executed with very different frequency, so the two sampling units are 

dissimilar.

Let ivv  denote the BBV for the ith sampling unit.  The following metric is 

proposed to measure the average dissimilarity of two sampling units that are h sampling 

units apart. 

∑−
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                                            (3.7)

Obviously d(0) is always 0.  To simplify calculation, random linear projection is used to 

reduce the dimensionality [14].  BBV distance is only comparable within a single 

benchmark.  It makes no sense to compare the distance between benchmarks, so the 

distances are scaled in order to show them clearly in Figures 3.11 to 3.153.  One 

noticeable characteristic of the benchmarks is that the distance for most benchmarks 

shows a trend of going up, which means that the closer the two sampling units are in 

time, the more similar they are and vice versa.  This is a type of general temporal locality 

3 The trend of the curves is important whereas the absolute value of y-axis is not meaningful.
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of code.  If a part of the program is executed in a sampling unit, then the same part will 

probably be executed in the near future (i.e. in the close neighbor sampling unit) in a 

similar fashion (i.e. with similar execution frequency of the basic blocks).  In addition, 

Lau, et al. [39] has shown that if two sampling units are very similar in terms of BBV, 

then they will usually exhibit similar metrics such as CPI, cache miss rates, and branch 

misprediction rate.  As a result, positive correlation among the nearby sampling units 

within a cluster is usually observed.

Larger sampling units are created by combining small sampling units that are 

close to each other into one sampling unit.  These consecutive small sampling units are 

usually very similar and exhibit similar metrics because of the general code locality, so 

adding neighboring sampling units to the sample does not capture more information.  The 

sampling units that are far apart are generally dissimilar.  Therefore, using small 

sampling unit size and letting the units distributed throughout the whole instruction 

stream will give more information and the best accuracy.

However, there are notable exceptions to the general code locality.  Bzip2-source 
with a sampling unit size of 100 million instructions shows an oscillating BBV distance 

graph, which means that the sampling units close to each other may be as different as the 

units that are far apart, so the only negative intracluster correlation occurs with bzip2-
source in Figures 3.5 and 3.6.  Gzip-graphic with sampling unit of 1 million instructions 

also shows a BBV distance graph that lacks general code locality but its intracluster 

correlation is still positive for various metrics.  After all, the metrics such as CPI are 

microarchitecture-dependent.  Even though the instruction streams in two sampling units 

are different, they may still exhibit somewhat similar CPI because the overall effect of 

the code on the microarchitecture may be similar.
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Figure 3.11: Average distance of BBV for sampling unit size of 1 million instructions for 
6 benchmarks.
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Figure 3.12: Average distance of BBV for sampling unit size of 1 million instructions for 
gzip-graphic.
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Figure 3.13: Average distance of BBV for sampling unit size of 100 million instructions 
for 5 benchmarks.
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Figure 3.14: Average distance of BBV for sampling unit size of 100 million instructions 
for eon-rushmeier.
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Figure 3.15: Average distance of BBV for sampling unit size of 100 million instructions 
for bzip2-source.

3.5 SUMMARY

Sampling is an effective technique to reduce simulation time while retaining good 

accuracy.  Previously researchers have proposed different sampling techniques with 

vastly different sampling unit sizes.  In practice, people are also using the one chunk 

sampling and simulating a larger and larger chunk, so it is unclear what a good sampling 

unit size should be.

In this chapter, the sampling unit size problem is studied by calculating the 

intracluster correlation coefficient.  It is observed that most benchmarks exhibit positive 

intracluster correlation for various metrics in a wide range of sampling unit sizes.  The 

positive intracluster correlation makes it less effective to use a large sampling unit size to 

improve the accuracy of sampling result.

The inherent characteristic of benchmarks that causes positive intracluster 

correlation and favors small sampling units is also investigated.  Using the 

microarchitecture-independent BBV distance, it is shown that most benchmarks exhibit a 

type of generalized temporal locality.  The instruction stream of a sampling unit is more 



48

similar to that of another unit that is nearby than to a unit that is far apart.  Therefore, 

sampling units that are close by each other usually show similar metrics and thus are 

positively correlated.  Grouping small sampling units into a large one is less accurate than 

distributing the small sampling units throughout the whole instruction stream.

Although uncommon, there are benchmarks that do not show the general code 

locality.  These benchmarks are candidates for large sampling units.  This lack of general 

code locality will not manifest as negative intracluster correlation in all cases, but some 

of the benchmarks do favor large sampling units for some metrics.  Overall, however, 

using small sampling units is a safe bet unless there is clear evidence to show otherwise.

The conclusion that small sampling units are more effective at reducing sampling 

error is consistent with recent development in research on sampled microprocessor 

simulation.  For example, in the precursor method to SimPoint, one large sampling unit 

of 300 million instructions is used.  In SimPoint, sampling unit size is reduced to 100 

million instructions. In the latest Variance and Early SimPoint, sampling unit size is 

further reduced to 1 million and 10 million instructions.  The dramatic reduction of 

sampling unit size and the increase of sample size has significantly improved the 

accuracy of the SimPoint method.   Although these sampling techniques are more 

sophisticated than simple random sampling and the authors did not discuss in detail the 

reason for the specific sampling unit sizes, the underlying reason for the diminishing 

sampling units appears to be the same as that elaborated in this chapter.

The conclusion in this chapter also argues against the popular one-chunk 

sampling, especially against the trend in which the chunk is becoming larger as better 

computers are available to run the simulation.  Larger chunks will improve accuracy 

somewhat but are unlikely to be effective at it.  A better way is to use smaller sampling 

units and distribute them throughout the whole benchmark execution.
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Chapter 4. Sampling Techniques for Fast Simulation of OLTP 
Workloads

4.1 INTRODUCTION

Most of the research on sampling techniques for reducing simulation time has 

been focusing on SPEC CPU [75] benchmark suite, which consists of CPU-intensive 

programs with a single thread.  Commercial workloads such as database systems are very 

important in the business world.  They are known to exhibit characteristics drastically 

different from SPEC CPU programs [51][44][45], but the simulation methodology for 

commercial workloads has not been studied as thoroughly due to the complexity in 

setting up and tuning the workload.  Online transaction processing (OLTP) is an 

important type of database workloads.  It is the major task of traditional database 

systems.  OLTP is critical for day-to-day business operations such as purchasing, 

inventory, and banking.  The majority of transactions are short, fast updates and queries 

of a few records.  ACID (Atomicity, Consistency, Isolation, and Durability) properties 

are fully enforced.  In addition, OLTP applications are used interactively so the database 

must respond quickly.  

OLTP workloads are very different from SPEC CPU benchmarks.  SPEC CPU 

benchmarks are single-threaded CPU-intensive programs with little operating system or 

I/O activity.  OLTP workloads, on the other hand, are multi-threaded and involve 

significant operating system and I/O operations.  SPEC CPU programs perform a defined 

task.  For example, the gcc benchmark analyzes the input source code and generates 

optimized Motorola 88100 assembly code. The performance metric is based on the time 

to complete the predefined task.  In contrast, OLTP workloads do not have a predefined 

task.  In a real business environment, OLTP workloads are supposed to run 24x7.  The 
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execution time of OLTP benchmarks is usually artificially limited so that the user can 

measure the performance in a reasonable time.  Unlike SPEC CPU benchmarks, OLTP 

performance is measured using the throughput of transactions instead of the execution 

time of the program.  After an OLTP workload is started, its performance changes in the 

beginning.  Because an OLTP workload is considered non-terminating, the user cares 

only about its long-term performance.  Therefore, the initial ramp-up period is 

deliberately ignored and only the throughput in steady state is measured.  In comparison, 

the execution time of the entire benchmark in SPEC CPU is included in the performance 

metric.

The problem of long simulation time is even more serious for OLTP workloads.  

Consider TPC-C [77], the most widely used OLTP benchmark.  The benchmark is 

required to run for at least 2 hours.  In comparison, the execution of a SPEC CPU2000 

benchmark on a modern computer usually takes minutes.  Despite the seriousness of the 

problem and the uniqueness of OLTP workloads, most simulation time reduction 

techniques are proposed for and validated against the SPEC CPU benchmark suite.

Sampling is the most widely used simulation time reduction technique.  Most of 

the sampling techniques fall into two categories.  In the first type of technique, the 

sampling units are picked randomly or with equal gap (i.e. systematic sampling).  

Because of the autocorrelation between the sampling units in the instruction, small 

sampling unit size is preferred for efficiency (see Chapter 3).  A large number of 

sampling units are commonly measured to achieve good accuracy, usually expressed in 

terms of a confidence interval. SMARTS is a recently proposed techniques that uses 

systematic sampling [81].  It has chosen a sampling unit size of 1,000 instructions for 

SPEC CPU2000 benchmarks.  These sampling units are distributed evenly throughout the 

entire instruction stream.  The simulator switches between detailed mode (only for 
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selected sampling units) and functional warm-up mode (for all remainder of the 

instruction stream).  In the detailed mode, the complete microarchitecture is simulated to 

get the CPI.  In the functional warm-up mode only the caches and the branch predictor 

are simulated to speedup the simulation while keeping the warm-up error at minimum.  

Usually tens of thousands of sampling units are simulated in the cycle-accurate mode.  It 

has been shown that on average, CPI for a whole benchmark can be estimated to within 

an error of 3% with 99.7% confidence by measuring fewer than 50 million instructions. 

The other sampling technique, which I call representative sampling, differs 

philosophically.  Instead of randomly sampling, a few relatively large chunks of 

instructions are carefully, yet automatically, selected to represent the whole instruction 

stream. It utilizes the well-observed phase behavior of program execution.  A phase can 

be defined as a portion of dynamic execution of a program for which most of the 

performance metrics such as CPI, show very little variance.  Because the performance 

metrics remain stable in a phase, simulating only one chunk of instructions from each 

phase can greatly reduce simulation time with little loss of simulation information.  The 

SimPoint technique family is the best-known representative sampling techniques 

[61][69].  In SimPoint, the entire instructions streams are divided into chunks of 100 

million instructions [69] (In newly proposed versions, it has been reduced to 1 or 10 

million instructions [61]).  The Basic Block Vector (BBV) is recorded for each chunk.  

Then cluster analysis is performed to group the chunks into clusters.  The chunks in the 

same cluster have similar BBVs and thus similar CPIs.  The chunk with BBV closest to 

the center of cluster is selected from each cluster to represent the entire instruction 

stream. These chunks are called simulation points.

Both types of technique have been successfully applied to SPEC CPU2000.  

There is no single sampling technique that is the best for all situations.  Each has its own 
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advantages and weaknesses. The user should select the sampling technique based on the 

simulation infrastructure, the characteristics of the workload, and the tradeoff he or she is 

willing to make.  SMARTS can give a confidence interval to quantify the error of the 

result.  For simulating OLTP workload, only one checkpoint at the beginning of the 

steady state is needed.  Therefore, the storage cost is minimal.  However, it requires that 

the simulator be able to switch modes during the simulation.  Not every simulator has this 

capability, and the user may not want to significantly modify a simulator after it has been 

developed and validated.  Furthermore, the efficiency of SMARTS depends on the 

characteristics of the workload and the relative speed of the two modes.  If the variation 

in the program execution is very small and speed difference between functional warm-up 

and detailed simulation is not large enough, then the functional warm-up will become a 

significant bottleneck even though only a tiny fraction of the instruction stream needs to 

be simulated in detailed mode.

Although a confidence interval is unavailable in SimPoint, it works very well in 

most cases.  SimPoint is also faster than SMARTS for SPEC CPU2000 benchmarks 

especially when checkpoints are used.  However, it does sometimes result in large errors 

for some benchmarks on some microarchitecture configurations. For SPEC CPU2000, 

simulator switching modes can also be used for SimPoint.  The simulator enters detailed 

simulation just before each simulation point, whose beginning point can be specified by 

the number of instructions from the beginning of the benchmark execution.  For OLTP 

benchmarks, the changes in microarchitecture affect the execution path of the program 

[3].  Therefore, the simulation points can no longer be marked in this way.  A checkpoint 

has to be used for each simulation point.  In the simulator used in this study, even with 

compressed incremental checkpointing, each checkpoint may require up to 300MB space.  

As a result, the user has to trade storage cost for faster simulation.
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Both of the techniques have only been evaluated for SPEC CPU-like benchmarks. 

Their applicability to OLTP workloads has not been investigated despite the uniqueness 

of OLTP workloads.  In this chapter, both sampling techniques are evaluated for an 

OLTP benchmark.  More importantly, by taking advantage of the characteristics of OLTP 

workloads, a dynamic stopping rule for simple random sampling is designed.  The 

dynamic stopping rule is very easy to use and more efficient than SMARTS.

The chapter is structured as follows.  The experimental setup is described in 

Section 4.2.  The applicability of SimPoint is studied in Section 4.3.  In Section 4.4, the 

dynamic stopping rule for simple random sampling is proposed.  Section 4.5 summarizes 

the chapter. 

4.2 EXPERIMENTAL SETUP

The DBT-2 benchmark developed by Open Source Development Labs is used 

[57] for experiments in this chapter.  DBT-2 is a derivative of the TPC-C benchmark.  It 

emulates the database system of a whole parts supplier company operating out of a 

number warehouses.  Each warehouse supplies 10 sales districts, each of which has 3,000 

customers.  Each warehouse tries to maintain stock for the 100,000 items in the 

company’s catalog.  10% of the orders sent to a warehouse must be supplied by other 

warehouses.  There are a total of 5 types of transactions: New-Order, Payment, Order-

Status, Delivery, and Stock-Level. 

DBT-2 was developed for the Linux operating system.  For this research it was 

ported to Solaris 9.  The database system used is PostgreSQL.  PostgreSQL creates one 

process for each client connection so it cannot efficiently support a large number of 

simultaneous connections.  Therefore, DBT-2 is run in a 3-tier mode in the experiment.  

The terminal drivers do not directly connect to the database server.  Instead, they connect 

to the client in the mid-tier, which acts as a connection collector.  Five warehouses are 
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created.  The total database data size is about 1GB including the index and other meta-

data.  The client generates 5 threads and maintains 5 connections to the server.  The 

Remote Terminal Emulator (RTE) emulates 50 terminals, which simultaneously generate 

transaction requests to the client.   The think time and keying time are set to zero so that 

the terminals send requests as quickly as possible to keep the server fully utilized.  The 

RTE and the client are running on the same simulated machine as the database server.  

The setup is verified on a real SPARC machine.  The total CPU utilizatioin of the RTEs 

and the client is only about 1%.  Therefore, the effect of running the RTEs and the client 

on the same machine with the server can be ignored.

Simics [52], a commercial full system simulator, is used to simulate a SunFire 

server running Solaris 9.  The clock frequency of the processor is set to 2GHz.  Two 

configurations with different cache latencies are modeled as shown in Table 4.1.  For 

OLTP workloads, the user only cares about the steady state performance.  Therefore, the 

system has been warmed up with about 3,000 transactions before starting measurement.

Table 4.1: System configurations

Configuration 1 Configuration 2
Processor Clock frequency 2GHz

Fetches, executes, retires, and commits 4 instructions per cycle
Organization 32KB 8-way set associative, 64 bytes/lineL1 instruc-

tion cache Latency 1 cycle 2 cycle

Organization 32KB 8-way set associative, 64 bytes/lineL1 data 
cache Latency 1 cycle 2 cycles

Organization 2MB 8-way set associative, 64 bytes/lineL2 cache
Latency 6 cycles 9 cycles

Memory 2 GB, 200 cycles latency 2 GB, 250 cycles latency
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4.3 APPLYING SIMPOINT TO OLTP BENCHMARK

The SimPoint methodology is popularly used to reduce the simulation time for 

SPEC CPU, but its applicability to OLTP workloads needs further investigation.  Patil, et 

al. applied SimPoint methodology to large commercial applications running on Intel 

Itanium machines [59].  However, most of their programs were run in single-threaded 

mode.  They evaluated one multi-threaded benchmark suite, SPEC COMP2001, and 

concluded that it was hard to apply SimPoint method in their experiments.  They ran 

instrumented programs on real machines to collect the BBV profile.  But the execution of 

multi-threaded program are non-repeatable on real machines so it was extremely difficult 

to repeat the run to obtain the trace of simulation points after the cluster analysis of the 

BBV profile.   In this chapter, a full system simulator is used, which gives deterministic 

and repeatable results; so this study does not have the same problem. 

The efficacy of SimPoint depends on the existence of homogeneous phases in the 

benchmark and the ability of the cluster analysis to find them.  Figure 4.1 shows the CPI 

for every 1 million instructions from the benchmark running on configuration 1.   To 

make the graph legible, a total of only 5 billion instructions are shown.  However, the 

complete experiment result, which is much longer, is not very different.  Unlike many 

SPEC CPU programs, there are no obvious large-scale phases.  This is consistent with the 

common understanding of the benchmarks.  Most programs in SPEC CPU accomplish 

one task and do it in several steps, resulting in large-scale phases, each of which usually 

corresponds to one such step.  For example, gzip alternates between compressing and 

decompressing the input file, producing distinct compression and decompression phases.  

Readers are referred to [69] for more examples of large-scale phases in SPEC CPU 

programs.  In contrast, The TPC-C benchmark consists of only 5 different types of 

transactions.  Most of the transactions in OLTP are relatively short, and there are a 
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number of transactions going on simultaneously, which are driven by a random number 

generator.  At any moment, these simultaneous transactions may be at different stage of 

execution. The interleaving of the transactions depends on the operating system 

scheduling.  Therefore, it is less likely to see many long, contiguous phases.

Figure 4.1: CPI for every million instructions on configuration 1.

The lack of large-scale phases does not preclude the applicability of SimPoint 

because a phase may consist of many small non-contiguous parts and eludes visual 

inspection.  To evaluate the effectiveness of SimPoint, it is compared with simple random 

sampling.  As an example, suppose 7 chunks are simulated in SimPoint.  To gauge the 

efficacy of SimPoint, 7 chunks are randomly picked, and their mean CPI and the error 

with respect to the full detailed simulation are calculated.  The random sampling is 

repeated 1,000 times to get the average error.  Then this average error of random 

sampling is compared to the error in SimPoint.  Three different chunk sizes are studied: 1 

million instructions, 10 million instructions (both used in Variance SimPoint), and 100 

million instructions (used in the original SimPoint).  To mitigate the cost of storing 

checkpoint files, number of clusters between 2 and 20 are considered.  Figures 4.2 to 4.7 

compare the error in SimPoint with the average error for random sampling.   All results 

assume perfect warm-up.
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Figure 4.2: Error for SimPoint and simple random sampling on configuration 1 with 
chunk size of 1 million instructions.
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Figure 4.3: Error for SimPoint and simple random sampling on configuration 1 with 
chunk size of 10 million instructions.
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Figure 4.4: Error for SimPoint and simple random sampling on configuration 1 with 
chunk size of 100 million instructions.
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Figure 4.5: Error for SimPoint and simple random sampling on configuration 2 with 
chunk size of 1 million instructions.
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Figure 4.6: Error for SimPoint and simple random sampling on configuration 2 with 
chunk size of 10 million instructions.
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Figure 4.7: Error for SimPoint and simple random sampling on configuration 2 with 
chunk size of 100 million instructions.

An important observation is that the efficacy of SimPoint is dependent on the 

chunk size.  For chunk size of 1 million instructions and 100 million instructions, on 

average SimPoint is not as accurate as simple random sampling.  But for chunk size of 10 
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million instructions, SimPoint gives much better accuracy on both configurations.  

Therefore, SimPoint is applicable to the simulation of OLTP workloads, but to take 

advantage of SimPoint the user has to carefully choose the chunk size.   With a good 

chunk size it can give much more accurate result in comparison to simple random 

sampling.

4.4 APPLYING SIMPLE RANDOM SAMPLING TO OLTP WORKLOADS

4.4.1 Selecting Sampling Unit Size

Simple random sampling has been successfully used to reduce the simulation time 

of SPEC CPU2000 programs [81][12].  It is the simplest form of sampling, and therefore 

has the fewest limitations and the widest applicability.  In addition, simple random 

sampling has the solid foundation of statistical sampling theory, which can give the user a 

confidence interval to quantify the sampling error without simulating the entire 

benchmark in the detailed mode.  To use simple random sampling, one has to decide on 

the sampling unit size first.  Chapter 3 has shown that for SPEC CPU benchmarks, small 

sampling units usually give better accuracy than large sampling units when the same 

number of instructions are simulated in the detailed mode.  The same method, which 

relies on the sign of the intracluster coefficient, is adopted here to evaluate different 

sampling unit sizes for the OLTP benchmark.

As in SMARTS, the sampling unit size of 1,000 instructions is used as the 

baseline.  The intracluster correlation coefficients are calculated from the experiment 

data.  The result is shown in Figure 4.8.  It is clear that all the correlation is positive.  

Therefore, using sampling unit size of 1,000 instructions is better than any sampling unit 

size between 1,000 instructions and 100,000 instructions.  Evaluation of larger sampling 

unit size up to 100 million instructions gives the same conclusion.  Smaller sampling unit 
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sizes are not studied because with too small unit size, the overhead of detailed warm up 

can increase quickly. In addition, the sampling unit is measured in the number of 

instructions, but on a superscalar machine, multiple instructions can be committed in one 

clock cycle.  Therefore, at the beginning and the end of a sampling unit, partial cycles 

have to be counted.  For example, suppose that one sampling unit starts from instruction 

#1000, but instructions #998 to #1001 are committed in one cycle.  Then the fraction of 

cycle for instructions #1000 and #1001 has to be counted if very small sampling unit 

sizes are used.  With sampling unit size of 1,000 instructions such fraction cycles can be 

ignored.  

Intracluster Correlation Coefficient
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Figure 4.8: Intracluster correlation coefficient with the baseline sampling unit size of 
1000 instructions.

4.4.2 Dynamic Stopping Rule for Simulating OLTP Workloads

In random sampling techniques for SPEC CPU such as SMARTS, before the 

simulation the user specifies target accuracy expressed as the relative error limit at a 

certain confidence level.  Then the user gives an initial sample size based on previous 
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experience or guess, and runs the simulation with this sample size.  After the simulation, 

a confidence interval is calculated and compared to the target accuracy.  If the confidence 

interval does not meet the target accuracy, then a new sample size is calculated based on 

the result from the first simulation.  A second sampled simulation is run with the new 

sample size.  The result of the second simulation is expected to meet the user’s target 

accuracy.  Therefore, two simulations are usually needed to measure the CPI for one 

benchmark.

It is desirable to eliminate the second simulation.  This can be achieved by taking 

advantage of the characteristics of OLTP workloads.  As has been discussed before, a 

major difference between SPEC CPU programs and OLTP benchmarks is that a SPEC 

CPU program usually accomplishes one task and does it in multiple steps whereas an 

OLTP benchmark processes multiple sequences of transaction requests from different 

terminals simultaneously.  The sequences of transaction requests are randomly generated.  

Therefore, in the steady state the workload reaches a statistical state of equilibrium.  Take 

any two large enough chunks of instruction streams and inspect the execution 

characteristics (e.g., CPI) within the chunk. The CPI graphs will look random and 

different in the two chunks, but their statistical properties are the same.  They will exhibit 

the same mean, the same variance, and the same autocorrelation function.  Because of 

this special characteristic of OLTP workloads, the second simulation in SMARTS can be 

eliminated.  A dynamic stopping rule is proposed, in which the user monitors the current 

confidence interval during the simulation and stops the simulation once the target 

accuracy has been met.  The following is the procedure.

1. Before the simulation, the user specifies the target accuracy.

2. The user chooses a sampling rate (i.e. sampling 1 unit out of n units).
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3. Start the simulation.  As in SMARTS, the simulator only simulates the units that 

are sampled in detailed mode and measures its CPI (detailed simulation).  Two 

thousand instructions before the sampling unit are also simulated in detail, but the 

CPI is not measured (detailed warm-up).  Only the caches and the branch 

predictor are simulated for all the instructions between the sampling units 

(functional warm-up). 

4. Once the simulation has passed the minimum simulation length of Lmin

instructions, start calculating the confidence interval after simulating each 

sampling units.  If the confidence interval meets the target accuracy, stop.  

Otherwise, continue simulation.

The user should do some initial experiments to choose the sampling rate.  Too 

low a sampling rate will result in unnecessarily long simulation.  Although the number of 

instructions in detailed simulation remains largely unchanged, the total number of 

instructions in functional warm-up will increase.   The minimum simulation length 

should be set so that the mean CPI of the consecutive Lmin instructions chosen from 

anywhere in the steady state execution should remain relatively constant.

This dynamic stopping rule has several advantages.  It requires only one 

checkpoint.  Thus the storage cost is minimum.  More importantly, it needs only one-pass 

simulation, which increases the usability and reduces the simulation time.  In SMARTS if 

the user’s initial choice of sample size is a little below optimal for a SPEC CPU program, 

then the confidence interval will be slightly larger.  Only a few more sampling units are 

needed, but the user has to simulate the benchmark again to meet the target accuracy.  

With the dynamic stopping rule for OLTP benchmarks, the user just continues 

stimulating until the target accuracy is met, which is a much shorter additional simulation 

than doing the whole benchmark again.
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Experiments are conducted to evaluate the dynamic stopping rule for OLTP 

workloads.  The sampling unit size of 1,000 instructions and the sampling rate of 1/1,000 

are used.   Figure 4.9 shows the relative error limit at 99% confidence level as the 

simulation progresses on the two configurations.  At the beginning, the error limit is not 

stable, moving up and down rampantly.  This is because the sample size in the beginning 

is too small to give an accurate estimation of the confidence interval.  In addition, DBT-2 

benchmark itself exhibits large variability at small granularity: Even if all the instructions 

in a short interval were simulated in detail, the CPI could still be significantly different 

from the long-run mean CPI.  Therefore, the minimum simulation length should be at 

least 500 million instructions.  And a larger number should be used for better result.
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Figure 4.9: Relative error limit at 99% confidence level as the simulation proceeds.

Suppose the user want the error to be within 3% at 99% confidence level.  Targt 

accuracy of 3% is chosen as the example because TPC-C allows up to 2% variation in 

reported throughput (Clause 5.5.1).   Therefore, target accuracy below 2% would be 

unnecessary.  Table 4.2 shows the result of applying dynamic stopping rule on the two 

configurations.  A total of 2.28 and 1.50 billion instructions are simulated on the two 
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configurations, but the number of instructions simulated in detailed mode is three orders

of magnitude smaller.  Also, the real error lies within the confidence interval.

Table 4.2: Result of applying dynamic stopping rule.

Configuration 1 Configuration 2

Sample size 2282 1502

Total simulation length (million instructions) 2282 1502

Instructions simulated in detail (million) 6.85 4.51

Real error 2.73% 1.62%

4.5 SUMMARY

OLTP workloads are important in the business world and they have very distinct 

characteristics.  However, most of the simulation time reduction techniques are designed 

for SPEC CPU type of programs.  The applicability of these techniques to OLTP 

workloads needs validation.  In addition, new simulation time reduction techniques can 

be created for OLTP workloads by taking advantage of their characteristics.  In this 

study, two sampling techniques (SimPoint and SMARTS) are applied to the simulation of 

OLTP workloads.   It is found that OLTP workloads do not exhibit long consecutive 

phases because it executes a randomly generated mixture of simultaneous database 

transactions.  Nevertheless, SimPoint is applicable to OLTP workloads.  But its efficacy 

depends on the chunk size.  If a good chunk size is chosen, it is much more accurate than 

simple random sampling with the same chunk size and the same simulation length.  

Therefore, when using SimPoint, the user should carefully choose the chunk size.

Simple random sampling such as SMARTS is also good at reducing simulation 

time for OLTP workloads.  By utilizing the stationary characteristics of OLTP workloads, 

a dynamic stopping rule is proposed for random sampling.  The simulator calculates the 
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current confidence interval while it is doing the simulation.  The simulator stops once the 

confidence interval meets the user’s target accuracy.  This method obviates the second 

simulation in SMARTS for SPEC CPU programs. It improves the usability and reduces 

the simulation time.

The contribution of this chapter is primarily in the observations and the 

methodology.  But the exact numbers should be taken very cautiously because the current 

setup is too small compared to an authentic TPC-C setup that has been audited and 

approved by TPC.  For example, the optimal sampling unit size in the user’s setup may 

be very different from ours (10 million instructions). Nevertheless, the observation of the 

dependence of SimPoint’s efficacy on the chunk size as is still valid.  Therefore, the user 

should search for good chunk size when using SimPoint.



67

Chapter 5. Efficiently Evaluating Performance Improvement In 
Sampled Processor Simulation

5.1 INTRODUCTION

There has been extensive study on sampled processor simulation, but all previous 

research focuses on the accuracy of CPI or IPC [76][24][81][12][31][61][68][69]

[71][30][42].  However, the goal of a simulation is usually to evaluate the benefit of some 

microarchitectural enhancement, in which case, the absolute value of CPI may not be 

overly important.  Instead, an accurate estimate of the relative performance improvement 

is more desirable.   The term “speedup” is used to evaluate the benefit of 

microarchitecture enhancement.   Speedup, denoted R, is defined as the ratio of the 

execution times before and after the microarchitectural enhancement when the same 

benchmark is run.  Assuming that the clock frequency remains the same, it is also the 

ratio of the CPI’s before and after the enhancement.

The user not only wants to estimate the value of the speedup but also wants to 

determine the error in the estimation.  The error can be quantified with a limit on relative 

error4, which can be converted from the confidence interval.  No previous research has 

given a method to calculate the confidence interval for speedup.  The SMARTS 

simulation technique proposed by Wunderlich, et al. can provide a confidence interval for 

CPI [81]. A straightforward method is to run SMARTS on the baseline and improved 

configurations to get two confidence intervals for CPI and then calculate the confidence 

interval for speedup using interval arithmetic.  This method is hereafter called the interval 

arithmetic method.  Suppose that the 95% confidence intervals before and after the 

4 Relative error for speedup is |Rsample-Rreal|/Rreal.  When speedup is large the user may be willing to tolerate 
larger absolute error in speedup, so the relative error is used instead of the absolute error in this chapter.
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microarchitectural enhancement are 0.820±0.020 and 0.617±0.015, which corresponds to 

a ±2.5% error.  One may compute the confidence interval for speedup to be (0.800/0.632, 

0.840/0.602), a relative error of ±5%.  This example shows that constraining the relative 

error in speedup to be within e would require the error in CPI to be within e/2.  Because 

at a given confidence level the confidence interval is inversely proportional to the square 

root of the sample size, reducing the relative error limit in half would require simulating 4 

times more instructions in detail.

However, as will be demonstrated later, this estimation of error limit is too 

pessimistic and there is a better way to quantify the error in speedup.  In the next section 

the ratio estimator in the sampling theory is introduced and a new sampling method is 

proposed to calculate the speedup and its error limit.  The merit of the method is 

experimentally verified in Section 5.3.  Section 5.4 summarizes this chapter.

5.2 EVALUATING PERFORMANCE IMPROVEMENT WITH RATIO ESTIMATOR

The ratio estimator in the sampling theory calculates the ratio of two population 

means from a sample [10].  For each sampling unit, there are two characteristics, yi and xi

(i=1, 2, ..., N).  A random sample of size n is taken and yi and xi of each sampled unit 

(i=1, 2, ..., n) are measured.   The goal is to estimate R, the ratio of the population mean 
of y to the population mean of x ( ∑∑
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and  Sy and Sx are the sample standard deviation of y and x.  If the sample is large enough 

so that the normal approximation applies, the confidence interval for R at the confidence 

level of 1-α can be obtained as

( )ˆ(ˆ 2/1 RvzR α−− , )ˆ(ˆ 2/1 RvzR α−+ ).                                          (5.4)

where 2/1 α−z  is the (1-α/2) quantile of a unit normal distribution.  Similarly, given a 

relative error limit of e at a confidence level of 1-α, the required sample size is

)ˆ2ˆ)(1( 2222/1
yxxy sRsRsfye

zn −+−= −α                                        (5.5)

If for each sampling unit, xi and yi are the CPI of the unit before and after the 

microarchitectural enhancement, then R is the speedup.  The estimation of speedup 

(Equation 5.1) is quite intuitive and is the same as in the interval arithmetic method, but 

the calculation of the confidence interval is completely different. Based on the above 

theory, the following general procedure is proposed to calculate the speedup and to 

quantify its error [49].

1. Before the measurement, the user sets a target accuracy expressed as a relative 

error limit e at a certain confidence level 1-α.  

2. Divide the full instruction stream into N chunks of m continuous instructions.  

Take a systematic sample or random sample of size n.

3. Measure the CPI of each sampled unit before the microarchitectural enhancement.  

Record all the CPIs (xi).

4. Measure the CPI of the same sampled units after the enhancement.  Record all the 

CPIs (yi).

5. Calculate the speedup and its relative error limit or confidence interval with 

Equations 5.1 through 5.4.  If the error limit meets the target accuracy, then stop.  

Otherwise, calculate the new sample size from Equation 5.5 and repeat step 3 and 

4.
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The key point in the procedure is to make sure that the same sampled units are 

measured in the two simulation steps (steps 3 and 4 above).  But the instruction stream 

may be different in each run of the same benchmark.  For a user mode simulator like 

SimpleScalar [6], this is caused by operating system calls (e.g gettimeofday) returning 

different result in each run.  For example, in two runs of gcc-166, the difference in the 

number of dynamic instructions was 332,372. Although this difference only accounted 

for 0.00071% of the total instructions executed, it would cause different units to be 

sampled in the two runs if a small sampling unit size is used (e.g., 100-10,000 

instructions as in SMARTS [81]).  To solve this problem, the user must make sure that 

the dynamic instruction stream in each run is exactly the same.  In the experiment, the eio

trace is captured with SimpleScalar sim-eio utility. Then all the benchmark programs are 

run with the eio trace to guarantee the same instruction sequence.  

Simulating a superscalar microprocessor, which can commit more than one 

instruction in a cycle, may raise a subtle problem.  For example, the user may select 

(committed) instructions #201 to #400 as one sampling unit. Suppose instructions #198 to 

#202 are committed in one cycle. Then two instructions at the beginning of the sampling 

unit (#201, #202) only constitute partial cycle. To accurately measure the CPI for this 

sampling unit, one has to accurately count these partial cycles.  To avoid dealing with the 

partial cycles, sampling unit size above 10,000 instructions is used in the experiment so 

that the partial cycles can be ignored.

5.3 EXPERIMENTS AND RESULTS

Experiments are conducted to study the application of ratio estimator in sampled 

processor simulation.  The procedure in the previous section does not specify how to 

measure the CPI of each sampling unit.  It can be done by simulating the complete 

benchmark and switching between cycle accurate mode and functional simulation mode 
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[81][31].  Or it can be done by checkpointing the state before each sampling unit and 

simulating each checkpoint directly.  The first method is used in the experiment.  Caches 

and branch predictors are continuously warmed up functionally to approximate perfect 

warm-up [81].  Four thousand instructions before every sampling unit are simulated with 

cycle accurate simulator to warm up other microarchitectural structures.  An 8-way and a 

16-way out-of-order superscalar processor are simulated to calculate the speedup.  The 

microarchitecture configurations given in Table 5.1 are adapted from [81].  

Table 5.1: Processor configurations.

Parameter 8-way (baseline) 16-way 
Machine Width 8 16 
RUU/LSQ size 128/64 256/128 

Memory System 32KB 2-way L1 I & D, 2 ports,
Unified 1M 4-way L2 

64KB 2-way L1 I & D, 4 ports, 
Unified 2M 8-way L2 

ITLB / DTLB 
4-way 128 entries 
4-way 256 entries 
200 cycle miss penalty 

4-way 128 entries
4-way 256 entries
200 cycle miss penalty

L1/L2/Memory Latency 1/12/100 cycles 1/16/100 cycles 

Functional Units 

4 I-ALU 
2 I-MUL/DIV 
2 FP-ALU 
1 FP-MUL/DIV 

16 I-ALU 
8 I-MUL/DIV 
8 FP-ALU 
4 FP-MUL/DIV 

Branch Predictor 
Combined 2K tables 
7 cycle misprediction penalty 
1 prediction/cycle 

Combined 8K tables 
10 cycle misprediction penalty 
2 predictions/cycle 

Eight benchmarks from SPEC CPU 2000 are simulated in a modified 

SimpleScalar 3.0 sim-outorder simulator.  Three sampling unit sizes are used: 10,000 

instructions, 1 million instructions, and 10 million instructions.  Wunderlich, et al. [81]

reports that the optimal sampling unit size is in the range of 100 to 10,000 instructions in 

their experiment setup.  The size of 10,000 instructions from their study is chosen here.  

Unless the user handles partial cycles accurately as discussed in the previous section, 
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using smaller sampling units may increase measurement error.  Also as discussed later, 

warm-up error becomes pronounced with small sampling units for some benchmarks.  

Sampling unit sizes of 1 million and 10 million instructions are used in the latest 

Variance and Early SimPoint method [61].   The initial sample size of 3,000 is used for 

sampling unit size of 10,000 instructions, and initial sample size of 1,000 for sampling 

unit size of 1 million and 10 million instructions.

As an example the relative error limit of 2% at 95% confidence level is set as the 

target accuracy. After the initial sampling the sample size required to achieve the target 

accuracy for speedup is calculated based on Equation 5.5.  For comparison, the sample 

size required to achieve the same target accuracy for CPI is also calculated (see [81] for 

the equations).  The result is drawn in Figures 5.1 to 5.3.  It can be seen that for most 

benchmarks the sample size for measuring speedup is only a small fraction of that for 

measuring CPI.  To more accurately quantify the phenomenon, the ratio of sample size 

for speedup to the sample size for CPI is calculated for the 16-way issue processor.  The 

geometric mean of the ratio for the benchmarks is 0.127 (for Figure 5.1), 0.107 (for 

Figure 5.2) and 0.115 (for Figure 5.3).  Therefore, it is more cost effective to directly 

measure the speedup than measure CPI.  In other words, to achieve a relative error limit 

of 2% on the speedup, users do not need to estimate CPI to the same relative error limit.  

Instead, they can measure, on average, only 1/9 of the instructions that are required for 

estimating CPI to the same relative error limit.  Comparing with the interval arithmetic 

method, the saving is even more.  The interval arithmetic method yields the same value 

of speedup but is far too pessimistic in quantifying its error and requires very 

unnecessarily large sample size.  As discussed in Section 5.1, the interval arithmetic 

method would require that the relative error limit for the CPI be reduced to half of 2%, 

which will in turn quadruple the sample size.  In the experiment configuration, using ratio 
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estimator technique the geometric mean of the reduction in sample size will be about 36X 

compared to the interval arithmetic method.  Therefore, using the ratio estimator 

equations can significantly reduce the sample size.  In addition, using different target 

accuracy will not change savings of the proposed method because varying the target 

accuracy will equally affect the ratio estimator method and the arithmetic interval 

method.
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Figure 5.1: Sample sizes required to achieve relative error limit of 2% at the confidence 
level of 95% for sampling unit size of 10,000 instructions.
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Figure 5.2: Sample sizes required to achieve relative error limit of 2% at the confidence 
level of 95% for sampling unit size of 1 million instructions.
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Figure 5.3: Sample sizes required to achieve relative error limit of 2% at the confidence 
level of 95% for sampling unit size of 10 million instructions.
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There is no reason to doubt the ratio estimator theory, but it is still desirable to 

experimentally verify that the computed sample size does meet the target accuracy.  The 

cycle accurate simulator sim-outorder is modified to dump the CPI for every sampling 

unit in the benchmark execution so that the population and the real speedup value Rreal can 

be obtained. Monte Carlo method is employed to validate the target accuracy.  Suppose 

the computed sample size is n.  A random sample of size of n is taken from the 

population and the speedup from this sample is computed according to Equation 5.1.  

Then another random sample of size n is taken from the population and the speedup is 

computed again.  The process is repeated many times (10,000 times in the experiment).  

If 95% of these speedup values lie within ±2% of the real value Rreal, then the computed 

sample size n meets the target accuracy.  If, on the other hand, a much lower percentage 

of speedup values are within the relative error limit, then the computed sample size is too 

small and a larger sample size is required.

Verification is not done for the sampling unit size of 10,000 instructions.  Firstly, 

the data set of population is large, thus difficult to process.  Secondly, with sampling unit 

size of 10,000 instructions the warm-up error is not negligible for some benchmarks.  For 

example, according to Equation 5.4, with 99% confidence he (relative) sampling error in 

speedup for vortex-1 should be within 0.88% but the actual relative error is 1.72%.  Thus 

the majority of the error should be from warm-up.  Therefore, verification is not done for 

this sampling unit size.  The verification results for sampling unit sizes of 1 million and 

10 million instructions are shown in Table 5.2.  Columns 2 and 4 show the sample size 

calculated from Equation 5.5, which is the same as in Figures 5.2 and 5.3.  Columns 3 

and 5 give the percentage of the speedup values from the Monte Carlo experiment that lie 

within the relative error limit of ±2%.  Ideally, this percentage should exactly be 95%.   

There is inevitably some error in Monte Carlo experiment, and the ratio estimator itself 
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has slight bias (see [10] for detail), so the percentage numbers in the table are not exactly 

95%.  However, none of the number is much lower than 95%.  Therefore, it can be 

concluded from the verification result that the sample size computed from the ratio 

estimator theory does satisfy the target accuracy requirement.  

Table 5.2: Verification of the sample size computed from ratio estimator theory.

Benchmark Sampling unit size of 1 million 
instructions

Sampling unit size of 10 million
instructions

Sample size Percentage within 
error limit

Sample size Percentage within 
error limit

art 101 95.0% 24 95.4%
equake 254 94.7% 147 95.3%
lucas 87 94.7% 84 94.8%
bzip2-source 359 95.0% 254 95.2%
gcc-166 2902 96.0% 1769 98.8%
mcf 2694 95.7% 2587 99.0%
vortex-1 76 95.2% 60 95.2%
vpr-route 12 94.8% 8 95.3%

The above result may be surprising at the first glance.  How could the speedup be 

more accurate than the CPIs from which it is computed? This is because the two 

configurations being evaluated are usually not fundamentally different.  The CPI values 

may vary widely during the benchmark execution, but if the CPI is high (or low) for one 

part of the code on the first configuration, then the CPI for this part of code is probably 

also high (or low) on the second configuration. Thus the CPIs are usually correlated and 

the ratio of the two CPIs (i.e. the speedup) does not change as much as the CPIs 

themselves. At a given accuracy, the sample size is largely determined by the variation 

normalized to the mean (i.e. the coefficient of variation).  The small variation in the 

speedup leads to the small sample size.  Figure 5.4 shows a graph of CPIs and the 

speedup for a small portion in the execution of vortex-1.  All the metrics (CPIs and 
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speedup) are normalized to their respective mean so that the normalized variation can be 

compared.  It is obvious that the CPIs on the two configurations follow each other and the 

variation in the speedup is much smaller than in the CPIs5.  The speedup has a smaller 

normalized variation and thus requires smaller sample size.
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Figure 5.4: Normalized CPIs and speedup.  Each data point is for one million 
instructions.

5.4 SUMMARY

Simulation of processors is mostly used for evaluating the benefit of some 

microarchitectural enhancement, in which the speedup is a more important metric than 

the CPI.  In this chapter the ratio estimator method from sampling theory is applied to 

sampled processor simulation to quantify the error of speedup.  To achieve a given error 

limit for speedup, it is not necessary to estimate CPI to the same accuracy.  For the same 

relative error limit, measuring speedup requires fewer instructions to be simulated than 

measuring CPI.  In the experiments, using the ratio estimator to estimate speedup results 

5 Please note that the absolute speedup is about 1.5.  The impression that the CPIs for the two 
configurations are almost the same is just an artifact of normalization.
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in a sample size 9X smaller than estimating CPI, and 36X smaller than estimating 

speedup using interval arithmetic.

This technique has great potential to reduce simulation time for computer 

architects.  Especially when checkpoint files or trace files are used and each sampling 

unit is simulated directly with explicit warm up, the reduction in the sample size will 

directly translate into savings in storage space and simulation time.  A 9X smaller sample 

size will result in 9X shorter simulation.

In real-world simulations, the microarchitectural changes are often smaller than 

those in the experiment in the previous section, so the CPIs may be even more correlated 

and the ratio estimator technique is probably highly effective. However, it is important in 

future work to explore the limitation of the technique and to provide guidelines to assess 

its effectiveness if drastically different configurations are being compared.
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Chapter 6. SMA: A Self-Monitored Adaptive Cache Warm-Up Scheme 
for Microprocessor Simulation

6.1 INTRODUCTION

In a sampled simulation the original full instruction stream is divided into non-

overlapping chunks of continuous instructions.  Recently, Wunderlich, et al. applied 

sampling theory to microarchitecture simulation [81].  They showed that CPI could be 

estimated to within an error of 3% with 99.7% confidence by measuring fewer than 50 

million instructions per benchmark. This accounts for only 0.029% of the average 

dynamic instructions executed for a benchmark program.  It appears that sampling has 

effectively solved the problem of prohibitively long simulation times.  

The aforementioned results are obtained under the assumption of ideal warm-up 

or perfect initial state before each sampling unit. As expected, the CPI of each sampling 

unit depends not only on the instructions executed in the unit, but also on the initial state 

of all microarchitectural structures at the beginning of this unit.  Executing a limited 

number of instructions before a sampling unit to get the (approximately) correct initial 

state is known as warming up the microarchitecture.  The number of instructions used for 

warm-up before a sampling unit is its warm-up length. For small structures like the ROB, 

the reservation station, and the register file, thousands of instructions are enough to put 

them into the correct state.  However, some structures in the microprocessor like the 

branch target buffer and the caches can hold thousands to millions of bytes. It is difficult 

to ensure that they are in the correct initial state before every sampling unit in the 

simulation.  If the initial state is not correct, the error can be large.  For example, Haskins, 

et al. reported that ignoring warm-up in their experiment could result in an error as high 

as 15% in simulated CPI [29].   Thus adequate warm-up is critical to the accuracy of 
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sampled simulation.  Warm-up not only affects accuracy but also incurs overhead and 

increases simulation time. When simulating a processor with large caches, a large number 

of instructions may be needed for adequate warm-up, which prolongs the simulation.  

Therefore, the warm-up issue is very important in sampled simulation.  A good warm-up 

scheme should achieve a desired level of accuracy while devoting as few instructions as 

possible for warm-up.

Warm-up is still an important issue in sampled microprocessor simulation and 

deserves further research.  But there is an opinion that warm-up is largely solved and 

little reduction in simulation time can be accomplished with better warm-up techniques.  

For example, MRRL is claimed to have achieved 90% of the maximum possible 

simulation speed [29].  However, careful analysis of the experiment reveals the functional 

simulation as the bottleneck because every benchmark is simulated functionally from 

beginning to end.  In simulation environment in this study, the relative speed of 

functional simulation (no microarchitecture simulation at all), functional warm-up (only 

cache and branch predictor simulation), and cycle-accurate simulation, is 1:1/2.8:1/166.  

Fifty 1 million-instruction sampling units are used in the MRRL paper [29].  Suppose that 

a benchmark is 100 billion instructions long and on average each sampling unit needs 30 

million instructions for warm-up7.  Then the percentages of time spent in functional 

simulation, functional warm-up and cycle-accurate simulation are 95.17%, 4.06%, and 

0.77%.  It is obvious that the functional simulation is the bottleneck, so even getting rid 

of warm-up overhead altogether will provide little benefit.  However, if users save the 

checkpoints or the traces for each sampling unit, they no longer needs to run the 

benchmark from beginning to end and is able to simulate for each sampling unit directly.  

6 The relative speed numbers are highly dependent on the simulator and the configuration being simulated.
7 No warm-up length number is given in the MRRL paper [29].  This number is based on the experiment with MRRL in Section 3.4.2.
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In this case, removing the warm-up overhead will give 6.25 times speedup in simulation!  

Therefore, a better warm-up technique is still highly desired.

It would be desirable for a warm-up scheme to be adaptive to cache sizes and 

benchmark variability characteristics. Intuitively, small caches do not need the same 

warm-up lengths as large caches. Similarly, programs with different variability/phase 

behavior would benefit from a scheme that adapts to the program. In this chapter, the 

warm-up process of the processor caches is studied and a self-monitored adaptive warm-

up scheme for simulation is proposed.  The simulator monitors the warm-up process of 

the caches and determines whether the caches are warmed up based on simple heuristics.  

Unlike previous research, this method is both adaptive to the characteristics of the 

benchmark and the cache configuration being simulated. The details of the proposed 

adaptive warm-up scheme are presented.  The new method is compared with the best 

warm-up schemes from prior research. Overall, the proposed scheme achieves very good 

accuracy with lower warm-up overhead than previously proposed techniques.

This chapter is structured as follows.  To overcome the weaknesses of previous 

warm-up methods, the new self-monitored adaptive cache warm-up scheme is proposed 

in Section 6.2.  The proposed technique is evaluated experimentally in Section 6.3.  This 

chapter is summarized in Section 6.4.

6.2 SMA: A SELF-MONITORED ADAPTIVE WARM-UP SCHEME

MRRL and BLRL are the two most recently proposed cache warm-up techniques 

(see Chapter 2).  One major problem with MRRL and BLRL is that they do not take the 

cache configuration into account.  Ideally, the cache warm-up process depends on both 

the workload and the cache organization.  A small direct mapped cache is intuitively 

easier to warm up than a large highly associative one, but both MRRL and BLRL 

methods call for the same warm-up length given the same p-value. Therefore, using any 
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fixed p-value in the techniques may result in under-warm-up or over-warm-up for 

different caches.

Careful examination of the previous techniques shows that they are not warm-up 

methods per se.  The caches are warmed up through simulating instructions before each 

sampling units.   All the methods just help the user to decide when the warm-up is 

enough, so why not monitor the warm-up process in the simulator to decide whether the 

warm-up is enough?  This is exactly the rationale behind the proposed self-monitored 

adaptive (SMA) warm-up technique [47][48].

In SMA warm-up, as in the previous techniques, the simulator does functional 

warm-up before switching to detailed cycle-accurate simulation.  During the functional 

warm-up, the caches are accessed but no pipeline stages are simulated. The warm-up 

process of the cache is monitored.  The simulator switches to cycle-accurate simulation as 

soon as the cache is deemed “warmed up”.  Therefore, the warm-up length is not fixed 

but adaptive.  Unlike previous approaches, this technique implicitly considers both the 

workload characteristics and the cache organization.  Fewer instructions will be used for 

warming up a small direct-mapped cache than for a large highly associative one.

To monitor the cache warm-up process, all the cache blocks are initialized to the 

cold-start state before the functional warm-up.  The address/tag in a cold-start block is 

unknown because it depends on the previous instructions, which were not simulated.  

When a cache access is initiated, the set index to the cache can be calculated.  If the 

memory address is not found in this set and one or more cache blocks in this set is in the 

cold-start state, then the cache access is called a cold-start access.   It is not known 

whether a cold-start access will result in a cache miss or a hit. When data is brought to a 

cold-start state cache block, the block changes to the valid state.  Once a cache block 
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leaves the cold-start state, it never goes back to this state again.  Any state other than the 

cold-start state is called a known state.

Two aspects of the warm-up process are monitored.  Firstly, the simulator keeps 

track of the percentage of cache blocks in the cold-start state.  This number 

monotonically decreases during warm-up.  If no cache block is in cold-start state, the 

cache is completely warmed up.  So the outcome of every future reference is guaranteed 

to be known.  Secondly, the simulator monitors the number of cold-start accesses during 

an interval.  When the cache is large, or the working set of the program is small, it may 

take too long to completely warm up the cache.  In this case, the cache is deemed warmed 

up when the number of cold-start accesses is below a user-defined threshold. Unlike a 

completely warmed up cache, there is no guarantee that all future references will access 

blocks in known state. However, the possibility of cold-start accesses is low.   The 

detailed information on choice of parameters for the interval size and threshold is given 

in the next section.  Monitoring the warm-up process is a very low overhead operation, it 

only increments or decrements a couple of counters at a cold-start cache access.  There is 

no time overhead for accessing cache blocks in known state.  The number of cold-start 

accesses usually decreases quickly. 

Another problem with the previous methods is that users generally do not know 

how accurate the warm-up was after the simulation.  They have to rely on previously 

published validated results.  However, the user’s configuration may not be the same as in 

the published paper. SMA can give users some indication of the accuracy of the warm-up 

after the simulation.  After switching to cycle-accurate simulation, the simulator 

continues to count the number of cold-start accesses. In this way, after the simulation the 

user knows how much of all the cache misses are due to cold-start accesses.  In the 

experiment a cold-start access is treated as a cache miss.  So the number of cold-start 
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accesses is usually the upper bound of the overestimation of cache misses.  For example, 

if during cycle accurate simulation of 1 million instructions the user only sees 20 cold-

start cache references, then he or she knows that the overestimation of cache misses is 

very unlikely to go above 20 and the CPI result should be fairly accurate.

6.3 EXPERIMENTS AND RESULTS

Ten benchmarks from SPEC INT2000, listed in Table 6.1, are used in the 

experiment.  The programs, downloaded from the SimpleScalar web site [70], are 

compiled for the Alpha ISA.  Table 6.2 shows the main processor configuration used in 

the experiment.  This configuration is adapted from the SMARTS paper [81].

Table 6.1: Benchmarks, their data set and dynamic instruction count.
The data set name is appended to the benchmark name.

Benchmark # of Instructions 
(million)

gcc-166 46, 918
bzip2-source 108,878
crafty 191,883
eon-cook 80,614
gap 269,036
gzip-graphic 103,706
mcf 61,867
twolf 346,485
vortex-1 118,977
vpr-route 84,069



85

Table 6.2: Processor configuration.

Parameter 8-way (baseline) 
Machine Width 8 
RUU/LSQ size 128/64 

Memory System 32KB 2-way L1 I & D, 2 ports, 
Unified 1M 4-way L2 

ITLB / DTLB 
4-way 128 entries 
4-way 256 entries 
200 cycle miss penalty 

L1/L2/Memory Latency 1/12/100 cycles 

Functional Units 
4 I-ALU 
2 I-MUL/DIV 
2 FP-ALU 
1 FP-MUL/DIV 

Branch Predictor 
Combined 2K tables 
7 cycle misprediction penalty 
1 prediction/cycle 

6.3.1 Variability in Warm-Up Process

Much research has been done on devising and comparing warm-up techniques, 

but few of the projects shed light on the warm-up process itself.  In this research, 

experiments are conducted to study how the cache warm-up process proceeds.  Only one 

important issue in cache warm-up, the variability in the warm-up length, is presented 

here.  The effectiveness of the new warm-up technique depends on the variability.  If a 

constant warm-up length is good for all situations, then the PRIME method with fixed 

warm-up length will be the best.  However, if the required warm-up length changes 

widely, then a good warm-up technique needs to adapt to all the factors that affect the 

warm-up process.

In the experiment, each benchmark execution is divided into segments of 100 

million instructions.  To study the cache warm-up process of each segment the simulator 
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sets all cache blocks to the cold-start state at the beginning of each segment.  The warm-

up process in each segment is tracked.  For the L1 data cache, the warm-up length for 

each segment needed to put every cache block into the known state is recorded.  Table 

6.3 lists the mean and the standard deviation of the warm-up length per sampling unit.  

The L2 cache may not completely warm up at the end of 100 million instruction 

segments, so the warm-up length needed to warm up 50% of the cache blocks is recorded 

instead.  The statistics for the L2 cache warm-up length is shown in Table 6.4.  These 

warm-up lengths are not the warm-up lengths required for sampled simulation.  

Nevertheless, they reflect the large variability in the warm-up process.  The results clear 

show that the warm-up length is different for different benchmarks.  It is also widely 

different within one benchmark.  In many cases the standard deviation of the warm-up 

length of different segments is as large as the mean.  Therefore, devoting a fixed number 

of instructions to warm-up as in PRIME method is not a good idea.

Comparing Table 6.3 and Table 6.4, it is also observed that to warm-up a certain 

percentage of the cache blocks, the large L2 cache needs much longer warm-up than the 

small L1 cache. Figure 6.1 contrasts the different warm-up requirement of L1 and L2 

caches from another angle.  It shows the number of cold-start cache accesses per 100,000 

instructions as the caches are being warmed up for all the benchmarks.  Except for at the 

beginning part of eon-rushmeier, the cold-start cache accesses for the L2 cache decreases 

much slower than for the L1 cache for all benchmarks.  It is clear from these graphs that a 

processor with only the L1 cache requires much shorter warm-up than a processor with 

both L1 and L2 caches. Therefore, it is important for a good warm-up method to also take 

the cache configuration into consideration.  MRRL and BLRL both adapt to the different 

segment in a benchmark but they do not adapt to the cache configuration.
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Table 6.3: Warm-up length for warming up all cache blocks in L1 data cache (in 
100,000 instructions).

Benchmark Mean Standard 
Deviation

Max Min

bzip2-source 17.80 16.82 184 1
gcc-166 9.98 15.92 145 1
crafty 110.61 51.59 439 21
eon-cook 27.87 14.36 106 7
gap 8.08 10.28 167 1
gzip-graphic 4.62 2.88 14 1
mcf 1.54 4.02 45 1
twolf 2.82 15.04 687 2
vortex-1 14.46 15.01 141 1
vpr-route 3.59 3.94 66 1

Table 6.4: Warm-up length for warming up 50% cache blocks in L2 cache (in 100,000 
instructions).

Benchmark Mean Standard 
Deviation

Max Min

bzip2-source 177.32 233.17 999 1
gcc-166 546.30 331.57 999 1
crafty 303.68 165.11 986 28
eon-cook 155.47 272.07 998 2
gap 136.75 62.20 788 3
gzip-graphic 837.82 245.56 999 5
mcf 15.41 73.19 810 1
twolf 34.76 22.38 920 8
vortex-1 208.94 84.66 874 5
vpr-route 52.69 35.47 232 2



88

bzip2-source

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25
instructions (million)

co
ld

-s
ta

rt
ac

ce
ss

es
L2

DL1

crafty

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25
instructions (million)

co
ld

-s
ta

rt
ac

ce
ss

es

L2

DL1

 
eon-cook

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3 3.5 4
instructions (million)

co
ld

-st
ar

ta
cc

es
se

s

L2
DL1

gap

0
20
40
60
80

100
120
140
160
180
200

0 5 10 15 20 25
instructions (million)

co
ld

-st
ar

ta
cc

es
se

s

L2

DL1

 
gzip-graphic

0
20
40
60
80

100
120
140
160
180
200

0 5 10 15
instructions (million)

co
ld

-s
ta

rt
ac

ce
ss

es

L2

DL1

gcc-166

0
50

100
150
200
250
300
350
400
450
500

0 1 2 3 4
instructions (million)

co
ld

-s
ta

rt
ac

ce
ss

es

L2
DL1

 
twolf

0
50

100
150
200
250
300
350
400
450
500

0 1 2 3 4 5 6
instructions (million)

co
ld

-s
ta

rt
ac

ce
ss

es

L2

DL1

mcf

0
20
40
60
80

100
120
140
160
180
200

0 1 2 3 4
instructions (million)

co
ld

-s
ta

rt
ac

ce
ss

es

L2DL1

 
vpr-route

0
50

100
150
200
250
300
350
400
450
500

0 1 2 3 4 5 6
instructions (million)

co
ld

-s
ta

rt
ac

ce
ss

es

L2

DL1

vortex-1

0
50

100
150
200
250
300
350
400
450
500

0 1 2 3 4 5 6
instructions (million)

co
ld

-s
ta

rt
ac

ce
ss

es

L2

DL1

 

Figure 6.1: Number of cold-start cache accesses per 100,000 instructions for level 1 
data cache and level 2 cache.
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6.3.2 Comparison with Prior Techniques

In this section, SMA is compared with the two most recently proposed warm-up 

techniques, MRRL and BLRL.  Both warm-up length and the accuracy in CPI are 

compared.  In the experiment, a sampling unit size of 1 million instructions is chosen.  

This sampling unit size was used in the MRRL paper [29], and in Variance SimPoint

[61].  In this section, each benchmark execution is divided into segments of 200 million 

instructions.  A segment size of 200 million instructions is used instead of 100 million 

instructions in the previous section to give a larger gap between sampling units for more 

accurate profiling in MRRL and BLRL.  One sampling unit is chosen from each segment.  

In SMA the sampling units are not previously determined but rather depend on 

the cache warm-up process.  Once the cache is deemed warmed up enough, the simulator 

executes 4,000 instructions in cycle accurate mode to warm up the pipeline as suggested 

by Wunderlich, et al. [81] and then the CPI of the 1 million instruction sampling unit is 

measured.  As discussed in the previous section, the L2 cache may not be completely 

warmed up with a reasonable number of instructions so complete warm-up cannot be 

used as the only criterion for the caches.  Therefore, the following simple heuristics are 

employed to judge whether the cache is warmed up.  At the end of each interval, the 

average number of cold-start accesses for the last N intervals is calculated.  If the average 

number of cold-start references falls below a threshold T, it is assumed that the cache is 

warmed up enough and the functional warm-up can be ended.  Because this method 

requires warm-up of at least N intervals, to take advantage of segments that reach 

complete warm-up quickly, the number of cache blocks in the cold-start state in the cache 

is also monitored.  The functional warm-up also ends as soon as the cold-start state 

blocks drop to zero.  For the L1 data cache, N=20 and T=10 are used.  For the L1 

instruction cache, N=10 and T=1 are used.  For the L2 cache, N=20 and T=15 are chosen.  
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For MRRL and BLRL, the sampling units are chosen to be the same as those in 

SMA.  4,000 instructions are also simulated in the cycle-accurate mode before each 

sampling units to warm up the pipeline.   The profiler for MRRL was downloaded from 

its authors’ website [27].

Although not implemented in the current simulator, I hope to further improve 

simulation speed by distributed simulation.  When sampling units are distributed to 

different machines, the end state of one sampling unit cannot be used as the beginning 

state of another sampling unit.  Therefore, in the experiment caches are cleared before 

warming up each sampling unit as proposed by Nguyen, et al [55].

The final error in CPI in sampled simulation comes from two sources: the 

sampling error per se and the warm-up error.  To fairly compare different warm-up 

techniques, only the warm-up error should be measured, so an additional simulation with 

full cache warm-up is run.  In this simulation the caches are always simulated between 

the sampling units as in SMARTS. The sampling units and the cycle-accurate warm-up 

are the same in all of the simulations.  Therefore, the difference between the CPI of a 

warm-up technique and the CPI of full cache warm-up is the warm-up error. 

The heuristics in SMA rely on the warm-up history to predict whether the cache is 

warmed up enough in the next sampling unit, so SMA may mispredict and end functional 

warm-up prematurely. Figure 6.2 shows the average warm-up error for the three warm up 

schemes.  The error for SMA is only about 0.2%, so it is very accurate and rarely 

mispredicts. 

For MRRL, p-value of 99.9%, the default value suggested by its inventors [29], is 

used.   For BLRL, the p-value of 90% is chosen.  Both methods are accurate, exhibiting 

an average error of 0.4% and 0.3%.  However, SMA clearly shows the advantage as can 

be seen from Figure 6.3. The SMA technique on average requires only 1/3 of the warm-
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up length of MRRL or 1/2 of the warm-up length of BLRL yet it achieves an error that is 

smaller than the other two techniques. Because SMA is better in both warm-up length 

and accuracy, changing the p-value for all benchmarks will not affect the overall 

conclusion.
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Figure 6.2: Average warm-up error of proposed SMA in comparison to other previous 
warm-up schemes.
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Figure 6.3: Average warm-up length per sampling unit for proposed SMA and other 
previous warm-up schemes.
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Table 6.5 shows the detailed data for each benchmark.  BLRL and MRRL do 

perform better for some benchmarks.  This indicates that using different p-values for 

different benchmarks may improve the result of MRRL and BLRL, but asking the user to 

fine-tune the p-value for each benchmark and different processor configuration is not 

practical. 

Table 6.5: Comparison of SMA with MRRL and BLRL.

Avg warm-up length per sampling 
unit

(million instructions)

Error in CPIBenchmark # of 
sampling 

units
SMA MRRL BLRL SMA MRRL BLRL

bzip2-source 545  8.7  100.2 78.6 0.1% 0.01% 0.05%
gcc-166 235  8.9  7.1 12.4 0.2% 1% 0.5%
crafty 960 13.2  3.7 14.9 1% 2% 1%
eon-cook 403  5.3  6.7 3.2 0.04% 0.3% 0.3%
gap 1346  14.4  11.6 12.1 0.04% 1% 0.1%
gzip-graphic 519  9.3  7.9 5.2 0.5% 0.2% 0.09%
mcf 310  2.7  34.7 7.6 0.004% 0.02% 0.03%
twolf 1733  6.0  15.3 5.4 0.2% 0.02% 0.3%
vortex-1 595  23.2  39.1 34.9 0.1% 0.2% 1% 
vpr-route 421  7.6  91.9 55.4 0.03% 0.01% 0.02%
Average 707 9.9 31.8 23.0 0.2% 0.4% 0.3%

6.4.3 Adaptivity to Cache Configuration

Unlike previous methods, SMA adapts to the cache configuration being 

simulated.  The previous section focuses on how SMA performs with a cache size 

common to workstations. To evaluate its adaptivity, in this section a small cache 

configuration typical in an embedded processor is also simulated.  Table 6.6 shows the 

cache configurations used in the experiment.  The small cache configuration is modeled 

after Intel XScale PXA255 embedded processor. Although SPEC INT is not the best 

benchmark suite for embedded processors, it allows comparison with the warm-up length 

for the large cache configuration, which is the same as used in the previous experiment.  
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Because MRRL or BLRL does not need to be profiled in this experiment, a segment size 

of 100 million instructions is used to increase the sample size.  Using the same warm-up 

heuristic parameters as in the previous section, the average warm-up length per sampling 

unit for different benchmarks is shown in Figure 6.4.  The first bar and the second bar for 

each benchmark show the warm-up length for the large cache configuration and the small 

cache configuration respectively.  It is clear that SMA adapts well to the cache 

configuration.  For the small caches the warm-up length is on average only 1/6 of that 

required by the large caches.

Neither MRRL nor BLRL adapts to the cache configuration.  Using the warm-up 

length for MRRL or BLRL in the previous section for the small caches will result in 

15~20X larger overhead than SMA.  The only way to reduce warm-up length for the two 

techniques is to reduce the p-value.  However, to come up with a good p-value for each 

configuration by experiment is highly impractical and defeats the goal of reducing 

simulation time.

Table 6.6: Configuration for caches.

Cache Cache 
Size 

(bytes)

Block 
Size 

(bytes)

Associ-
ativity

# of 
Sets

Replacement 
Policy

L1 Data 32K 32 32 32 LRU
L1 Instr 32K 32 32 32 LRU

Small 
cache 
config L2 None

L1 Data 32K 32 2 512 LRU
L1 Instr 32K 32 2 512 LRU

Large 
cache 
config L2 1M 64 4 4096 LRU
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Figure 6.4:  Average warm-up length per sampling unit for different cache 
configurations

SMA reduces warm-up overhead for small caches, but it should not compromise 

the accuracy of warm-up.  Inadequate warm-up will cause overestimation of cache misses 

and eventually lead to error in CPI.  The absolute error in the number of data cache 

misses per 1 million instructions (i.e. one sampling unit) compared with full cache warm-

up is calculated.  Table 6.7 shows the error averaged over all sampling units.  For many 

benchmarks there is no error in data cache misses.  For others (ie. crafty, gap and twolf) a 

small error occurs in only several sampling units. And when averaged over thousands of 

sampling units, the error becomes extremely small. Therefore, SMA does not lose 

accuracy when adapting to the small caches. 
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Table 6.7: Average absolute error in the number of data cache misses per 1 million 
instructions.

Benchmark Error
bzip2-source 0
gcc-166 0
crafty 0.01307
eon-cook 0
gap 0.00670
gzip-graphic 0
mcf 0
twolf 0.05233
vortex-1 0
vpr-route 0

6.4 SUMMARY

In this chapter the warm-up process of microprocessor caches is studied in the 

context of sampled simulation.  While sampling can greatly reduce simulation time, 

effective sampling requires efficient and accurate warm-up of microarchitectural 

structures.  It is found that the warm-up process varies widely for different benchmarks, 

for different portions in the same benchmark execution, and for different cache 

configurations.  Based on this observation, a self-monitored adaptive (SMA) cache 

warm-up scheme is proposed.  The simulator monitors the cache warm-up process and 

decides when the warm-up is sufficient based on simple heuristics.  The experiments 

show that SMA is accurate, exhibiting an average warm-up error of about 0.2%.  SMA 

not only offers superior overall accuracy but also reduces the warm-up length to 1/2 ~ 1/3 

of two recently proposed methods.  Unlike previous methods, SMA is adaptive to the 

cache configuration so it can reduce warm-up overhead by an order of magnitude when 

simulating small caches.  Because SMA continues to monitor the cache accesses during 
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cycle accurate simulation, the user can get the number of cold-start cache accesses in 

each sampling unit as an indicator of the accuracy of the warm-up.

SMA also looks promising for warming up other microarchitectural structures 

such as the branch predictor and the value predictor.  Both of them share the same 

property with caches that once an element is warmed up, it never goes back to cold-start 

state again, so they are also candidate for SMA.  Unlike caches, one access to a branch 

table element is not sufficient to put it into a known state, so designing accurate warm-up 

method by tracking reuse latency as in MRRL or BLRL is not easy, but monitoring the 

warm-up process with Vengroff, et al.’s deterministic finite automaton [78] can be much 

simpler.  
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Chapter 7. Locality Based On-Line Trace Compression

7.1 INTRODUCTION

Simulation is one of the most important techniques that computer architecture 

researchers use to understand the behavior of complex systems and to evaluate new 

microarchitectural enhancements.  Currently, most research in this area uses either 

execution-driven simulation or trace-driven simulation.  Trace-driven simulation remains 

an important technique, especially for studying complex commercial applications, 

because it is usually a heroic task to set up and tune execution-driven simulators to 

simulate runs of commercial server benchmarks (e.g., TPC-W) while making sure that 

the execution delivers the best performance and meets the run rules at the same time.  

Traces, on the other hand, can be collected once by server performance experts, and then 

shared with system designers relatively easily.  Moreover, if only part of the system (e.g., 

memory hierarchy) is to be studied, execution-driven full-system simulation is often not 

necessary and tends to be slower than trace-driven simulation.

One of the major problems of tracing is the high cost of storing the traces.  

Modern benchmarks from both scientific and commercial workloads largely resemble 

real applications.  They often run for minutes on even GHz machines, resulting in huge 

trace files even after sampling.

Trace compression reduces the size of the trace file by filtering out the 

redundancy in the trace while retaining all the information in the original trace.  

Researchers have long recognized that there is abundant redundancy in program address 

streams [25].  The first order Markov Entropy is about 1-2 bits per address [5].  Yet the 

encoding based purely on coding theory is too complex and computationally expensive to 

implement [5].  General-purpose compression algorithms like LZW [79] (used in Unix 
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compress), or LZ77 [82] (used in gzip) can certainly be applied to reduce the trace file 

size and achieve good compression ratio.  Trace compression techniques, on the other 

hand, usually offer better compression by taking advantage of the redundancy specific to 

the traces.  Most of the trace compression techniques work together with general-purpose 

compression algorithms.

Different applications require different types of traces.  As a result, different 

compression techniques have been proposed to compress these traces.  HAFT [9]

effectively compresses the trace of heap allocation events (e.g., malloc, free, etc.) for 

studying dynamic memory allocation performance.  Hamou-Lhadi and Lethbridge [16]

developed a comprehension-driven compression framework that compresses the traces of 

procedure calls.  This chapter focuses on compressing program execution traces for 

processor simulation. Some of these techniques rely heavily on analysis of the program’s 

control flow information [15][21][38][63].  Although they often give the best 

compression ratio, they usually need to either parse the trace multiple times requiring 

large intermediate storage, or they need to instrument the source code or binary code of 

the benchmark program, a complex process often limited by the availability of tools.  

Instrumenting the program for tracing a full system with multiple processes and operating 

system activity is extremely hard.  This chapter focuses on on-line (one-pass without 

intermediate storage) trace compression techniques without code instrumentation.  

Similar techniques, such as Mache, PDATS/PDI, SBC, and VPC, are discussed in the

next section. 

This chapter presents a trace compression scheme, the Locality Based Trace 

Compression (LBTC), which is suited for on-line compression of full system traces.  

Previous methods usually handle address only traces (Mache, PDATS) and possibly 

instruction words (PDI). The LBTC scheme accommodates other attributes and events in 
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addition to address streams and the instructions themselves.  Therefore, it is good for 

memory hierarchy simulators as well as detailed trace driven microarchitecture 

simulators.  The compression method is based on the same spatial and temporal locality 

principle that has been successfully exploited by microprocessor hardware caches for 

decades.  The resultant compression ratio is about 2X better than the PDI format.

7.2 RELATED WORK

Previous trace compression schemes such as Mache [66] and PDATS/PDI [32]

make use of the small offsets between addresses of successive memory references. The 

Mache scheme  records addresses of three types of memory references: instruction fetch, 

data read, and data write.  A 2-bit label is used to differentiate the type of reference.  

Three variables, initialized to zero, contain the last address in the trace for each label.  

Upon a new memory reference (i.e., a label, address pair) the offset is computed between 

this address and the last address for this label.  If the offset is smaller than a given 

threshold, it is emitted to the trace file with the label; otherwise the full address is 

emitted.  Because of spatial locality, the offset usually requires fewer bits than the 32-bit 

address.  An example scheme [66] packs the data into a 16-bit word with 2 bits reserved 

for the label and 14 bits for the signed address offset, implying a threshold of 2^13=8192.  

Finally, the processed trace is passed to a general-purpose one-pass compression scheme 

such as the Unix compress utility.  This seemingly simple compression scheme is very 

effective: Mache (with compress) almost always creates a file at least ten times smaller 

than the original trace file and over three times smaller than that produced by compress

alone.

The PDATS scheme [32] records the memory reference address and an optional 

timestamp indicating when the reference occurred.  A trace record in PDATS format 

consists of a header byte, a repetition count byte (0-1 byte), an address offset (0-4 bytes) 
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and an optional timestamp offset.  Like Mache, PDATS also takes advantage of spatial 

locality by encoding the offset of the addresses and timestamps, but it extends the Mache 

scheme in several ways.  Firstly, PDATS allows variable length address offsets (1, 2 or 4 

bytes).  The offset is no longer limited to 14 bits.  If its absolute value is less than 128, 

the offset will occupy only 1 byte. Secondly, PDATS takes advantage of “sequentiality.”  

Sequentiality is an extreme form of spatial locality in which references in a stream 

progress monotonically through contiguous memory locations.  For example, the 

addresses in a sequential stream of instructions from a processor with 32-bit wide 

instructions show a constant stride of 4.  It is observed that over 90% of instruction 

fetches are from sequential locations.  Therefore, this special offset of 4 can be encoded 

in the trace record header with much fewer bits instead of occupying a whole offset byte.  

Finally, nearly half of all the references examined are from the same stream and have the 

same offset as the immediately preceding reference.  When repetition of the offset occurs, 

a repeat flag is set.  The byte following the header byte specifies the number of times that 

this offset is repeated contiguously in the original trace. As a result, PDATS improves 

compression by 2X over Mache before compress is applied and shows 25% improvement 

after compress is applied. 

The Mache and PDATS traces contain only the address information; they are 

suited for memory hierarchy simulation.  When users need to evaluate processor designs, 

the trace must contain several attributes (e.g., instruction word) in addition to memory 

addresses.  The PDI format [32] augments PDATS by including the instruction words.  In 

PDI, addresses are compressed using a subset of the PDATS techniques, while the 

instruction words are compressed using a dictionary-based approach.  It is observed that 

the 256 most frequent instruction words account for 56% to 99.9% of the instructions 

executed with a median of 86%.  To compress the instruction words, a dictionary of the 
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256 most frequent instruction words, which requires only a 1-byte index to access, is 

stored at the beginning of the trace file.  Each occurrence of these instruction words in the 

trace is encoded as a 1-byte index to the dictionary.   On a MIPS R3000 machine, the 

compressed SPEC CPU92 traces in PDI format with instruction words are only 33% 

larger than traces in PDATS format (without instruction words).

Most recently, two new on-line trace compression techniques have been proposed.  

Like PDI, the Stream Based Compression (SBC) [54] also handles instruction words.  It 

compresses the instruction sequence and data address sequence separately.  The data 

address sequence is compressed with offset encoding similar to PDATS.  The instructions 

are divided into “streams.”  A stream is a sequential run of instructions from the target of 

a taken branch to the first taken branch in sequence.  Because the program often 

repeatedly executes the same stream, each stream is identified and stored in a stream 

table.  Indexes to the stream table, instead of the streams themselves, are stored in the 

compressed trace file, resulting in 2 to 5 orders of magnitude reduction in Dinero+ 

traces[17].  Because the whole stream table is loaded into memory during decompression, 

its memory usage is not bounded.  The memory required by SBC decompression will be 

approximately proportional to the instruction footprint of the program being traced. 

Another trace compression technique is the value prediction based compression 

scheme (VPC) proposed by Burtscher and Jeeradit [7].  Many value prediction schemes 

have been proposed in processor architecture research for improving the performance of 

the microprocessor whereas Burtscher and Jeeradit used value prediction to compress 

traces.  A hybrid value predictor consisting of several sub-predictors is created in the 

compression program.  The predicted value is compared with the true value in the 

original trace.  If the two values are equal, then only a bit is stored in the compressed 

trace indicating a correct prediction.  Otherwise, the true value is stored in the 
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compressed trace.   The same predictor is also used in the decompression program, which 

replaces the “correct prediction” flag bit with the predicted value to get the original trace.  

VPC can compress load value traces by a factor of about 34 on average.  The memory 

usage is bounded by the size of the value predictor.  Because of the complexity of the 

value predictor, the decompression is slow compared to other methods.

7.3 LOCALITY BASED TRACE COMPRESSION

This section presents the proposed Locality Based Trace Compression (LBTC) 

method that is suitable for on-line compression of full-system traces [50].  It compresses 

the trace on-the-fly without complicated analysis.  It is intended to handle both CISC 

(variable instruction length) and RISC instruction sets efficiently.  Trace files typically 

consist of trace records, each of which corresponds to a memory reference (data read, 

data write, or instruction fetch), an exception, or other event (e.g., cache flush).  A trace 

record in LBTC captures not only the address of the memory reference but also other 

system information that is important for accurate memory hierarchy simulation (e.g., 

whether the memory location is cacheable) and accurate processor microarchitecture 

simulation (e.g., the instruction word).  The different types of information recorded in a 

trace record are called attributes.  Structurally, a trace record consists of a header and 

some attribute fields following it.  The header tells the type of the trace record and 

specifies the attribute fields (e.g., whether a field exists, how long it is).  Table 7.1 gives a 

list of these attributes.  Different applications require different attributes to be recorded in 

the trace.  After exploring the locality in the trace, each user can devise the optimal 

format for his or her application.   Exceptions and other events are also captured in the 

trace file but they occur so rarely compared to memory references that their coding is of 

no importance to the size of the trace.  Their trace records are not discussed hereafter.
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Table 7.1: Example attributes recorded in a memory reference trace record

The proposed LBTC scheme employs two techniques.  One technique, offset 

encoding, is inherited from Mache and PDATS formats, which takes advantage of the 

spatial locality in memory references.  The spatial locality is the property that the next 

address accessed will probably be very close to the last address accessed.   As a result, 

recording the small offset between the addresses of successive references requires fewer 

bits than recording the full addresses in the trace file.  The encoding of the instruction 

physical address is presented here as an example.  First, the offset between the addresses 

of the current instruction and the last instruction is computed.  A 2-bit field (pa_code) 

is allocated in the trace record header to indicate the length of the offset (see Table 7.2).  

Then the offset is stored after the header in 0, 1, 2 or 4 bytes.  Please note that when the 

address of the current instruction is contiguous to the last instruction (pa_code=00), the 

current address can be calculated by adding the length of the last instruction word to the 

last address.  Thus no extra offset byte is needed.    A difference between PDATS/PDI 

and LBTC is the way sequentiality is exploited.  PDATS/PDI format encodes an offset of 

4 as 00.  It works well for MIPS instructions, which have a fixed length of 4 bytes.  But 

for x86, the instruction length ranges from 1 to 15 bytes.  The pa_code=00 allows 

LBTC to encode variable length as well as fixed length instructions efficiently because 

contiguous instructions are often executed unless interrupted by a taken branch.  Virtual 

addresses are treated in a similar way.  In most cases, the current reference is in the same 

Memory reference 
type

Example attributes recorded in trace record

Instruction fetch Physical address, virtual address, instruction word, mode (user/kernel), 
memory type (write back, uncacheable, etc.) CR3 register.

Data access
Physical address, virtual address, read/write, mode (user/kernel), size, memory 
type (write back, uncacheable, etc.), access type (prefetching, page table, etc.), 
initiating device, CR3 register. 
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page as the last reference.  Only one bit is needed to flag this situation where no extra 

byte for the offset is needed.  In other cases, the offset of the page number is stored (1 to 

3 bytes).  A 4-byte offset is needed only in extreme cases.

Table 7.2: LBTC trace record header bits for instruction.

pa_code offset length 
(bytes)

description

00 0 The instruction is contiguous to last instruction (i.e. its address is 
the address of the last instruction plus the length of last instruction)

01 1 The offset is between –128 and 127
10 2 The offset is between –32768 and 32767
11 4 The offset can only be expressed in 4 bytes

The other technique in LBTC is based on the “static” property of most of the 

attributes, and the well-known temporal locality of memory references.  Because the trace 

contains instruction words and other attributes in addition to physical addresses, the 

attribute information takes more than half of the space.  Encoding the most frequent 256 

instruction words in 1 byte as in the PDI format is not effective enough, as shown in 

Section 7.4.2.  Fortunately, most of the attributes are “static”.  They do not change 

frequently from one dynamic access to another, if the references are to the same memory 

addresses or initiated by the same instruction.  For example, after a non-self-modifying 

benchmark program is loaded, the (static) instruction at a specific address will remain the 

same until the program terminates (or is swapped out onto disk) and a new module is 

loaded at the same memory area.  Therefore, the next (dynamic) instruction fetched from 

the same address will probably have the same instruction word.  This holds true for many 

other attributes such as virtual addresses, memory type, etc.  For all the “static” attributes, 

the temporal locality can be effectively employed for compression.  Memory references 

from programs are known to show abundant temporal locality: if a memory address is 
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accessed, it will probably be accessed again in the very near future.  Therefore, a small 

direct mapped cache structure, called a compression cache, is emulated in software, to 

keep the recently seen memory references.  If the next memory reference hits in the 

cache, all the “static” attributes can be retrieved from it without being stored in the trace 

file.  The compression cache is indexed with the physical address of instruction fetches.

In LBTC, no separate data cache is created for data references.  Instead, the data 

reference attributes are attached to the instruction before it.  A data reference that appears 

after an instruction is probably initiated by that instruction, but there is also a slight 

possibility that the data reference has been caused by DMA operations or by TLB misses.  

If the data reference attached to a dynamic instruction is the same as the data reference to 

the last execution of the same static instruction, and the instruction is found in the cache, 

then it is called a data reference hit. The data reference record is then retrieved from the 

compression cache with the instruction physical address as the index.  In this way, on a 

data record hit, even the data address can be omitted in the trace.  Only one bit in the 

header is needed to indicate that the data can be retrieved from the cache during 

decompression.  It works because many instructions will access the same memory 

address as its last execution.  Another approach is to create a separate data cache indexed 

by the physical address of data references.  The trade-off is briefly discussed in Section 

7.4.1. The compression cache in the implementation contains only 32K entries, thus it 

does not tax the virtual memory system.  It is also very fast because one access involves 

only one bit-wise and operation and one indexing operation.  Set associative or fully 

associative data structures may improve the compression ratio, but require much more 

time to access.  The working of the compression cache is analogous to that of a hardware 

cache. 
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The C-like pseudo code in Figure 7.1 illustrates the steps in LBTC compression.  

The direct mapped compression cache structure is not part of a trace file, but is created 

on-the-fly and used in the program.  Only the cache parameter (i.e., number of entries) 

needs to be passed to the compression and the decompression program.  The tracer is a 

utility such as the trace module in Simics [52], from which the original uncompressed 

trace records are obtained.  A cache_entry_t structure contains the trace record of an 

instruction fetch and the data memory reference records following it.  The emit 

statement in the figure writes the trace information to the compressed trace file. 

Table 7.3 gives an example to illustrate the steps used to produce a compressed 

trace.  Column 1 assigns a number to each trace record.  Column 2 gives an ID to each 

static instruction.  Column 3 numbers the dynamic data references.  Column 4 shows the 

physical addresses of the memory references.  The next 4 columns are the contents in the 

compressed trace.  Column 5 is a bit showing the type of the trace record (I for 

instruction, D for data).  The algorithm converts the physical addresses to address offsets, 

which are stored in the trace file in two’s complement using the minimum number of 

bytes required to hold the offset.  As in Mache and PDATS/PDI format, the address 

offsets are only calculated between successive references of the same type (data access or 

instruction fetch) but data accesses are not further split into sub-types.  The first address 

of each type is simply reproduced in the compressed file.  The offsets stored in the trace 

file are in column 6.  Column 7 is the 1-bit field in every trace record header indicating 

whether the reference can be retrieved from the compression cache (M for cache miss, H 

for cache hit).  In this example, a direct-mapped cache with 4 entries is assumed.  The 

physical address of the instruction is used to calculate the index to the cache, whose 

operations are shown in the last column.  Before each instruction is put into the cache, the 

cache is probed to see if the instruction is already there.  If the instruction is already in 
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the cache (a cache hit), only the address offset is stored in the trace file with a flag 

indicating a cache hit.  On a cache miss, all the attributes are stored.  Each data reference 

is associated with the instruction before it, thus in the same cache entry as the instruction.

01 uncompressed_trace_record_t tc; 
02 cache_entry_t *current_entry=NULL; 
03 cache_entry_t *entry_in_cache=NULL; 
04  
05 create and initialize compression cache structure; 
06 while(tracer has more trace records){ 
07   get a record from tracer and store it in tc; 
08   emit tc.type; 
09   if(tc.type==INSTRUCTION){ // trace record for instruction fetch 
10     emit offset of tc.physical_address; 
11     search cache using tc.physical_address as index and 
12       assign the cache entry to entry_in_cache; 
13     if(entry_in_cache!=NULL 
14        && entry_in_cache->instruction_record==tc){ 
15       // found in cache 
16       emit hit flag; 
17     }else{ // not found in cache 
18       emit all attributes; 
19     } 
20     allocate and initialize current_entry; 
21     add tc to *current_entry; 
22     put current_entry into compression cache; 
23   }else{ // trace record for data reference 
24     if(entry_in_cache!=NULL && 
25        (the corresponding entry_in_cache is the same as tc)){ 
26  // data reference found in cache 
27       emit hit flag; 
28     }else{ // this data reference not found in cache 
29       emit offset of tc.physical_address; 
30       emit all attributes; 
31     } 
32     add tc to *current_entry; // put tc into the cache 
33   } 
34 } 

Figure 7.1: Pseudo code illustrating the LBTC algorithm.
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Table 7.3: Example of trace compression using LBTC.

Contents of compressed trace Trace 
record 

Static 
instruc
-tion 

numbe
r

Data refer-
ence 

number 
Physical 
address 
(HEX) 

Type Offset 
(HEX) 

Hit/Miss 
flag 

Other 
attributes 

Cache operation 

#1 I1  ae05 I ae05 M Instr word, 
etc 

Miss, put in I1 

#2 I2  ae07 I 2 M Instr word, 
etc 

Miss, put in I2 

#3  D1 cfb8 D cfb8 M Virtual addr, 
memory 
type, etc 

put in D1 

#4 I3  ae00 I -7 M Instr word, 
etc 

Miss, put in I3 

#5  D2 cfe8 D 30 M Virtual addr, 
memory 
type, etc 

put in D2 
(Table b) 

#6 I1  ae05 I 5 H -- Hit 
#7 I2  ae07 I 2 H -- Hit 
#8  D3 cfb8 D -30 H -- Hit (Table c) 
#9 I4  ae08 I 1 M Instr word, 

etc 
Miss, put in I4, 

replace I3 
#10  D4 cfa0 D -18 M Virtual addr, 

memory 
type, etc 

put in D4 

#11  D5 cff0 D 50 M Virtual addr, 
memory 
type, etc 

put in D5 

#12 I5  ae06 I -2 M Instr word, 
etc 

Miss, put in I5 
(Table d) 

#13 I4  ae08 I 2 H -- Hit 
#14  D6 cfa0 D -50 H -- Hit 
#15  D7 cff4 D 54 M Virtual addr, 

memory 
type, etc 

Miss, put in 
D7, replace D5 

(Table e) 

Table 7.4: Compression cache content after record #5

Index Content
0 I3, D2
1 I1
2
3 I2, D1
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Table 7.5: Compression cache content after record #8

Index Content
0 I3, D2
1 I1
2
3 I2, D3

Table 7.6: Compression cache content after record #12

Index Content
0 I4, D4, D5
1 I1
2 I5
3 I2, D3

Table 7.7: Compression cache content after record #15

Index Content
0 I4, D6, D7
1 I1
2 I7
3 I2, D1

At the time of compression, if the physical address of an instruction is found in 

the cache, all attributes of the instruction (or data) trace record will be compared with 

those in the cache (lines 14 and 25 in Figure 7.1).  To ensure correctness, only when 

every attribute matches will it be considered a cache hit.  Finding the same physical 

address in the cache does not guarantee that the same instruction is found because the 

operating system may have loaded a new program at the same memory area, or the 

program might be self-modifying. Tables 7.4 to 7.7 show the contents of the compression 

cache at the selected points during compression.  After trace record #5, instructions I1, I2, 

I3 and the data references are put into the cache (Table 7.4).  Trace records #6, #7 and #8 
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are found in the cache; the full attributes are not stored in the trace file (Table 7.5).  

Records #9 to #12 incur cache misses (Table 7.6) and are stored in the trace with full 

attributes.  Please note that I4 replaced I3 just as in a regular hardware cache operation.  

Trace record #13 and one following data reference (D6) hit in the cache (Table 7.7), but 

the next data reference (D7) is a cache miss and all its attributes must be stored.  After the 

encoding, a general-purpose compression utility such as gzip is applied to further reduce 

the file size.  

7.4 RESULTS

Traces are gathered using Simics/x86 [52], an x86 full system simulator.  In the 

experiments, Simics simulates a Pentium II machine running Red Hat Linux 7.3.   

SPECint2000 is chosen to represent CPU intensive benchmarks and SPECweb99 [74] to 

represent commercial servers.  For SPECweb, Apache 2.0 is used as the web server and 

mod_perl [4] is deployed to speed up some dynamic web operations.  Unless otherwise 

noted, about one hundred million instructions are gathered for each benchmark.  

Approximately two billion instructions are skipped for every SPECint2000 benchmark 

before tracing.

7.4.1 Compression Ratio

Many general-purpose compression algorithms can be used to reduce trace file 

sizes.  LBTC is evaluated against gzip, one of the most popular general-purpose 

compression utilities.  Gzip implements the LZ77 algorithm [82], which strives to find 

the repetitive patterns within a sliding window.  In the experiment the Simics trace file in 

its uncompressed raw binary format is gathered.  To make the raw trace file size 

manageable, 10 million instructions, instead of 100 million instructions, are collected in 

this gzip comparison experiment.  Figure 7.2 shows the size of compressed trace 
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normalized to the size of the raw trace file.  The columns for SPECint show average 

values of all programs.  The error bars show the maximum and the minimum values.  The 

Simics raw trace format uses union structure to accommodate the max size of different 

types of trace records.  Therefore, each trace record in the trace file may contain unused 

bits.  These unused bits may take on arbitrary values making an otherwise repetitive 

record look different and rendering gzip less effective.  To ensure a fair comparison, these 

unused bits are forced to be zero.  The Simics trace module is also modified to set its data 

value field to zero because data value of memory loads/stores are not used in LBTC.  

Figure 7.2 shows that gzip reduces the size of the trace file by an order of magnitude but 

LBTC alone yields better a compression ratio.  LBTC wins by taking advantage of the 

knowledge of the structure of the trace record whereas gzip blindly searches for 

repetition.  The most notable property of LBTC in Figure 7.2, which is also true for 

PDATS/PDI and Mache, is that it is complementary to general-purpose compression 

techniques.  As shown in the third column for each benchmark, gzip can further compress 

LBTC format by a ratio of 4-6.  On average, a trace record takes 0.357 bytes in gzipped

LBTC files.

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14

specint_avg specweb

gzip
LBTC
LBTC.gzip

 

Figure 7.2: Normalized trace file size for gzip and LBTC.
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Figures 7.3 and 7.4 compare different trace compression techniques.  File sizes 

are normalized to the baseline compression.  The baseline compression, denoted as 

“offset encoding” in the figure, compresses only memory reference addresses (physical 

and virtual) by offset encoding. It is essentially the Mache format with all the additional 

attributes uncompressed.  Offset encoding of physical and virtual addresses is also used 

in PDI and LBTC in the experiment.  The PDI format does further compression by 

encoding the most frequent 256 instruction words in 1 byte.  When the top 256 

instructions are obtained from the trace itself, it is denoted as “specific”.  This approach 

cannot be used on-line because it requires two passes.  The first pass scans the trace to 

identify the 256 most common instruction words.  The second pass does the encoding.  

An alternative approach uses a “generic” dictionary that is selected for x86 after 

examination of a collection of traces.  In the experiment, the generic dictionary is 

obtained by calculating the top 256 instructions for all benchmark programs.  This will 

usually yield less compression but permits on-line compression.  Figure 7.4 shows the 

same results after files are further compressed by gzip.  As shown in Figure 7.3, the 

generic dictionary offers little compression for SPECweb.  Even within SPECint groups, 

some benchmarks are so different that the generic dictionary is of little use.  LBTC offers 

2.5X better compression over PDI (generic) and is about 2X better after gzip compression 

is applied.
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Figure 7.3: Normalized trace file size for different trace compression formats without 
gzip.
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Figure 7.4: Normalized trace file size for different trace compression formats with gzip.

It can be seen that the PDI format is not very effective in the experiment.  The 

PDI format is most effective if the following three conditions are met:

1. The instruction word constitutes the major part in a trace record besides the 

address information.  

2. The 256 most frequent instruction words account for most dynamic instruction 

words in the trace.

3. The 256 most frequent instruction words are long so that replacing them with 1-

byte indices provides good saving.
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As for condition 1, the virtual address, the memory type, and other information 

are also traced besides the instruction word and the physical address.  PDI compresses 

only the instruction word and thus is not effective for other information.  On a cache hit, 

LBTC retrieves all information from the cache.  Therefore, storing extra information is 

not a problem as long as this information does not change frequently from one execution 

of the same instruction to the other.

Condition 2 is met for most SPECint programs. As shown in Table 7.8, the top 

256 instructions account for an average of 90% of all dynamic instructions.  Yet 

instructions used in commercial servers like SPECweb are more diversified.  The top 256 

instructions only cover 56% of the total instructions.  Unlike MIPS, for which PDI was 

first designed, x86’s instruction coding is fairly compact.  The average length of the 

instructions is about 2.9 bytes whereas for the most common 256 instructions, the 

average length is even smaller.  Therefore, as for condition 3, replacing the instruction 

words with 1 byte does not provide as much compression as on MIPS, whose instruction 

length is 4 bytes.

Table 7.8: Statistics of the 256 most common instructions.

Benchmark
Coverage of 

top 256 
instrs

Avg 
length of 
top 256 
instrs

Avg length of 
all dynamic 

instrs

Average 0.880 2.845 2.994
Median 0.908 2.776 2.887

Max 0.998 3.490 3.683
SPECint

Min 0.569 2.034 2.165
SPECweb 0.558 2.239 3.011
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7.4.2 Statistics Supporting Compression

Offset encoding takes advantage of spatial locality by encoding the offset in fewer 

bytes.  LBTC is similar to Mache and PDATS in this aspect and readers can obtain more 

details and statistics about the offset from the original reference [32]. LBTC also employs 

temporal locality by caching a small number of previously seen trace records.  It is used 

to compress information other than the instruction physical address, including the 

instruction word, virtual address, etc., that are mostly “static” (not changing in each 

dynamic reference to the same memory location).  The subsequent trace records can 

probably be retrieved from the cache, if it has been seen not long ago.  Table 7.9 shows 

the hit ratio of the compression cache.

Table 7.9: Compression cache hit rate.

Benchmark Instruction hit rate Data hit rate
Average 99.0% 51.7%
Median 99.8% 61.5%

Max 100.0% 79.9%
SPECint

Min 96.1% 11.0%
SPECweb 94.5% 52.8%

Even though it is a small direct mapped 32k entry cache, more than 94.5% of the 

instruction records can be retrieved from the cache, and about half of the data records are 

found in the cache.  The relatively low data hit rate is due to indexing the cache with the 

instruction physical address.  The other possible locality based approach is to use a 

separate data cache indexed with the address of the data reference, which would improve 

the cache hit ratio for data references to about 90%.  This would reduce the attributes 

stored in the trace file, but every data reference record would require an address as the 

index.  In the current implementation, if a data record hits in the cache, even the data 
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address is not necessary in the trace file.  Only one bit in the trace record header 

indicating a data hit needs to be present.  Since the physical address is a significant part in 

the data trace record, the current implementation gives a better overall compression ratio 

than a separate data cache indexed by the address of the data reference.  However, in 

other environments if the data hit ratio indexed by instruction address is low, and the data 

trace record contains much more than the physical address, then a separate data cache 

will be justified.

7.4.3 Access Time

Trace access (decompression) time is also an important metric to evaluate a trace 

compression method.  The access time of different compression formats as well as the 

execution-driven tracing time is compared.  Trace access time is heavily affected by disk 

access time.  In the experiment a fast disk configuration is used.  The access times were 

measured by reading each trace file from a SCSI RAID (level 0, two disks) attached to an 

8-processor DELL PowerEdge 8450 server running Red Hat Linux 7.3.  The real 

(elapsed) time spent in reading and converting each trace was measured using the Unix 

time utility.   

Again, the access times to compressed trace file (not gzipped) are normalized to 

the “offset encoding” format and shown in Table 7.6.  All formats perform similarly in 

terms of access time.  This indicates that the compression cache adds very little time 

overhead.  It is as fast as the PDI format.  If the disk is slow, LBTC is expected to show 

relatively faster results because it has a better compression ratio and thus less time is 

spent reading from the disk compared to other compression methods.  The access time to 

trace files that were further compressed by gzip was also measured.  The files were 

gunzipped and piped into the trace decompressors.  On multi-processor machine used in 
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the experiment, the gunzip and trace decompressor run in parallel and the access time 

stays almost the same as in Table 7.10.

The last column shows the normalized time for generating the trace information in 

Simics.  It is the overhead in execution-driven simulation.  The original trace module 

shipped with Simics is used and the raw format tracing is turned on, which just dumps the 

trace records without any processing.  The trace dump is redirected to /dev/null, so 

there are no disk writes.     It is interesting to note that decompressing traces are faster 

than executing the benchmark in Simics.  This is because executing a benchmark in a full 

system simulator is a costly process itself.  Moreover, because Simics is a commercial 

product, to keep the source code secret, the trace module is “hooked” to the simulator 

core through the call back API, which causes additional large overhead.

Table 7.10: Normalized access time.

Benchmark
Offset 

encoding
PDI 

(specific)
PDI 

(generic)
LBTC Exec

Average 1.000 1.052 1.049 0.993 4.390
Median 1.000 1.051 1.047 1.007 4.425

Max 1.000 1.062 1.059 1.111 4.761
SPECint

Min 1.000 1.046 1.043 0.875 4.175
SPECweb 1.000 1.055 1.052 1.078 4.585

7.4.4 Design Space Exploration

Since the algorithm is based on the same principle of locality as hardware caches, 

any approach that enhances the cache hit ratio should also improve the compression ratio.  

For comparison, a 2M-entry direct mapped cache and an infinite fully associative cache 

are emulated.  The compressed file sizes, after gzip is applied, are shown in the Table 

7.11.  File sizes are normalized to the 32k cache case.  Table 7.11 shows that the 32K 
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entry direct mapped cache works fairly well.  The average reduction in file size of 

SPECint is only about 10.8% when a 2M direct mapped cache is used.  Yet there are 

some applications, notably the SPECweb and eon from SPECint2000, which can benefit 

from larger caches.  Fortunately, a larger direct mapped cache is as fast as a small cache.  

Thus when memory is abundant, a larger cache could be used.  Moving further to an 

infinite fully associative cache gives less than 1% improvement.  Therefore, fully 

associative cache, which requires a slow associative search, is not needed.

Table 7.11: Normalized file size of different compression cache configuration (with 
gzip).

Benchmark
32k direct-

mapped
2M direct-

mapped
Infinite fully 
associative

Average 1.000 0.892 0.891
Median 1.000 0.927 0.927

Max 1.000 0.997 0.997
SPECint

Min 1.000 0.656 0.656
SPECweb 1.000 0.717 0.711

LBTC could also be combined with PDI compression.  But the experiment shows 

that it will achieve little further compression.  In addition, using PDI on-line requires 

creating a generic instruction word dictionary, which is a difficult task.  Therefore, 

adding PDI to LBTC is unnecessary.

7.5 SUMMARY

Processor memory references exhibit spatial and temporal locality.  Previous 

research has employed spatial locality to compress address traces by encoding the offset 

of the consecutive reference addresses.  It works well for traces that only contain 

addresses.  In this chapter, a new technique, LBTC, is proposed to take advantage of the 

temporal locality by using a small data structure emulating a cache.  LBTC can 
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efficiently compress traces with more information than addresses.  It is shown to improve 

the compression ratio by about 2X over the PDI format, which uses a dictionary to 

compress instruction words.  The algorithm is simple, fast and can be used on-line in 

conjunction with general-purpose compression algorithms. 
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Chapter 8. Conclusions and Future Research

8.1 CONCLUSIONS

Before a new computer has been built and its real performance can be measured, 

simulation is the most important tool for computer architects to evaluate design tradeoffs.  

However, simulation time has been increasing.  Software applications are becoming 

bigger and bigger as users demand more functionality or try to solve more difficult 

problems.  Computer systems are becoming more and more complex as designers 

continue to add more transistors to achieve better performance.  Therefore, simulating big 

benchmarks on complex computer models takes a prohibitive amount of time.  On the 

other hand, the accuracy requirement for the simulation result has never been higher.  The 

competition in computer industry and academic research is fierce.  Computer architects 

often have to decide whether to incorporate an enhancement that gives a few percentage 

of performance improvement.  Simulation experiments must be able to discern such small 

performance difference.  As a result, reducing simulation time while maintaining high 

fidelity in simulation is a challenging and imperative problem.

Sampling can achieve significant simulation time reduction with good accuracy.  

There are many sampling techniques.  No single solution is the best for all situations, just 

as no single processor is the best for all applications.  This research has studied different 

sampling techniques and proposed improved techniques optimized for different user 

objectives and workloads.  The following are the major findings and contributions to key 

areas in sampled processor simulation.

• Choice of sampling unit size

How to choose a good sampling unit size is a basic question in sampled 

simulation but there has been no consensus.  A large range of sampling unit sizes 
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has been proposed and used.  This research studies the question using statistical 

sampling theory.  Under the assumption of simple random sampling and perfect 

warm-up, the effectiveness of a sampling unit size depends on the sign of the 

intracluster correlation coefficient.  It is observed that in nearly all cases using 

small sampling units produces more accurate result given the same simulation 

budget.  A more important contribution is that the study discerns the inherent 

temporal locality in the benchmark that underlies the observation.   It is found 

that, although still popularly used, simulating one very large chunk of instructions 

is not an efficient way to improve accuracy [46].  

• Simulating commercial workloads

Commercial workloads such as database servers are very important in the 

business world.  Simulations of those benchmarks are harder to set up and take 

longer to run than SPEC CPU.  However, simulation time reduction techniques 

for commercial workloads have not been adequately studied.  This research 

studies two such techniques, simple random sampling (with small unit size) and 

representative sampling, for the application of OLTP workloads.  Although OLTP 

workloads do not exhibit long, continuous phases, representative sampling is still 

applicable.  But its effectiveness highly depends on the chunk size. Users should 

carefully choose the chunk size to get accurate results.  Random sampling with 

small unit size like SMARTS is also good at reducing simulation time for OLTP 

workloads.   However, OLTP workloads are different from SPEC CPU programs.  

OLTP workloads are composed of randomly generated sequence of relatively 

short database transactions, so at a large interval, execution of an OLTP workload 

is stationary.  Based on this property, a dynamic stopping rule is proposed.  The 

simulator monitors the current confidence interval as the simulation proceeds.  It 
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stops after the confidence interval has met the user’s target accuracy requirement.   

The dynamic stopping rule eliminates the second round of simulation that is

usually required in a popular prior technique to meet the user’s target accuracy.  It 

improves the usability and reduces the total simulation time.

• Measuring relative performance improvement

The objective of most simulations is to find out the performance benefit of some 

microarchitecture enhancement.  In these simulations, users care more about the 

accuracy of the speedup than the accuracy of CPI.  Nonetheless, previous research 

has been focusing solely on CPI.  By employing the ratio estimator from 

statistical sampling theory, this research presents an efficient sampling technique 

to measure speedup and to quantify its error.  Because the executions of the same 

benchmark on two similar configurations are highly correlated, to achieve a given 

relative error limit for speedup, it is not necessary to estimate CPI to the same 

accuracy.  In the experiment, estimating speedup requires only about 1/9 of the 

instructions needed for estimating CPI for the same relative error limit.  Therefore 

using the ratio estimator to evaluate speedup is much more cost-effective and 

offers great potential for reducing simulation time [49].

• Adaptive warm-up

In order to achieve accurate sampling results, microarchitectural structures must 

be adequately warmed up before each measurement.  Warm-up is an important 

issue in sampled processor simulation because it is critical to the accuracy of the 

result and it also incurs simulation overhead.  Previous cache warm-up methods 

do not take into account the cache configuration being simulated, an important 

factor in the warm-up process.  In this dissertation, a new technique for warming 

up microprocessor caches is proposed. The simulator monitors the warm-up 
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process of the caches and decides when the caches are warmed up based on 

simple heuristics. The Self-Monitored Adaptive (SMA) warm-up technique on 

average exhibits only 0.2% warm-up error in CPI.  SMA achieves smaller warm-

up error with only 1/2~1/3 of the warm-up length of previous methods. In 

addition, it is adaptive to the cache configuration simulated. For simulating small 

caches, the SMA technique can reduce the warm-up overhead by an order of 

magnitude compared to previous techniques. Finally, SMA gives the user some 

indicator of warm-up error at the end of the cycle-accurate simulation that helps 

the user to gauge the accuracy of the warm-up [47][48].

• Trace compression

In trace-driven simulation, sampled traces have to be stored.  This dissertation

also investigated trace compression to reduce the cost of storage.  Although 

generic compression method like gzip can be used, compression techniques 

designed specifically for traces give higher compression ratio.  Previous trace 

compression schemes such as Mache and PDATS/PDI take advantage of spatial 

locality to compress memory reference addresses.  This research presents the 

Locality Based Trace Compression (LBTC) method, which employs both spatial 

locality and temporal locality in program memory references.  It efficiently 

compresses not only the address but also other attributes associated with each 

memory reference.  In addition, LBTC is designed to be simple and on-the-fly. If 

traces with addresses and other attributes are compressed by LBTC, the 

compression ratio is better by a factor of 2 over compression by PDI [50].
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8.2 DIRECTIONS FOR FUTURE RESEARCH

• Simulation for multiprocessor systems

As Moore’s law dictates, more and more transistors are available now, but it has

been increasingly difficult to use the extra transistors to improve the performance 

of a uniprocessor.  So chip makers resort to multi-core designs.  Multiprocessors 

have traditionally been limited to high-end systems.   Since Intel and AMD have 

released dual-core processors for desktop, we are about to see proliferation of 

multiprocessor computers.   Simulating multiprocessors is more difficult than 

uniprocessors.  Although in a real system, multiple processors work in parallel to 

improve performance, most of the simulators simulate the processors sequentially, 

resulting in longer simulation time.  Research on simulation time reduction 

techniques for multiprocessors has been limited, but study by Ekman and 

Stenstrom indicates that simulation of multiprocessors may have greater potential 

for time reduction [20].  Designing better sampling techniques for simulating 

multiprocessor systems is a promising research area.

• Simulating emerging workloads

Different types of workloads exhibit different characteristics.  Although the basic 

ideal of sampling still applies, taking advantage of the workload-specific 

characteristics often enables better sampling designs as shown in Chapter 4 for 

OLTP workloads.  There are still important workloads such as Java servers, for 

which simulation time reduction techniques have not been fully studied.  

Emerging workloads like life science workloads are often huge and demand better 

time reduction techniques.
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• Measuring power, reliability, etc

This dissertation has been focusing on performance simulation.  However, 

performance is not the only objective in computer design.  Power has increasingly 

become a limiting factor.  In the performance simulation, the user wants to find 

out the average performance.  But in power simulation, the user may want to 

know the maximum power or the highest temperature during the execution of the 

benchmark.  Traditional sampling is ill suited for estimating max or min values in 

population.  Therefore, simulating for maximum power poses a challenging 

problem.  As the wires continue to shrink, noise in chips rises and thus soft errors 

become a big issue in processor design.  Therefore, simulation for gauging 

reliability will be more important in the future.  More statistics are needed to 

handle the simulation of low probability events such as soft errors. In addition, 

simulations in this study may not be valid for functional validation.  I/O 

performance was not considered in this research due to the lack of good models 

for I/O devices.  I/O activity may not affect processor performance but it is an 

important factor in the system performance for many commercial workloads.  

How I/O simulation affects sampling design also needs further study.  
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