
TSS: Applying Two-Stage Sampling in
Micro-architecture Simulations

Zhibin Yu, Hai Jin
Service Computing Technology and System Lab

Cluster and Grid Computing Lab
Huazhong University of Science and Technology

Wuhan, 430074, China
{yuzhibin, hjin}@hust.edu.cn

Jian Chen, Lizy K. John
Department of Electrical and Computer Engineering

University of Texas at Austin
Austin, TX 78712 USA

{jchen2, ljohn}@ece.utexas.edu

Abstract—Accelerating micro-architecture simulation is
becoming increasingly urgent as the complexity of workload and
simulated processor increases. This paper presents a novel two-
stage sampling (TSS) scheme to accelerate the sampling-based
simulation. It firstly selects some large samples from a dynamic
instruction stream as candidates of detail simulation and then
samples some small groups from each selected first stage sample
to do detail simulation. Since the distribution of standard
deviation of cycle per instruction (CPI) is insensitive to micro-
architecture, TSS could be used to speedup design space
exploration by splitting the sampling process into two stages,
which is able to remove redundant instruction samples from
detail simulation when the program is in stable program phase
(standard deviation of CPI is near zero). It also adopts systematic
sampling to accelerate the functional warm-up in sampling
simulation. Experimental results show that, by combining these
two techniques, TSS achieves an average and maximum speedup
of 1.3 and 2.29 over SMARTS, with the average CPI relative
error is less than 3%. TSS could significantly accelerate the time
consuming iterative early design evaluation process.

Keywords:Micro-architecture Simulation; Two-stage Sampling;
Functional Warm-up; Performance Evaluation

I. INTRODUCTION
Computer architects heavily rely on cycle-accurate micro-

architecture simulators to evaluate the performance and power
of different configurations during early design stages. The
iterative nature of the evaluation process underscores the
importance of detail simulation speed, which is still
prohibitively low and fundamentally constraints the scope and
the efficiency of early design evaluation. It may take a state-of-
the-art simulator days or even weeks to simulate real-world
workloads. This problem is exacerbated as the size of
representative workloads continuously increasing (e.g., the
dynamic instruction count of SPEC CPU2006 is ten times that
of SPEC CPU2000). Therefore, it becomes increasingly urgent
to accelerate micro-architecture simulations without losing its
accuracy and representativeness.

Previous research on time-efficient simulation can be
categorized into three dimensions, i.e., input dataset reduction,
benchmark subsetting, and program phase sampling. Input
dataset reduction schemes, such as MinneSPEC [1], attempt to
reduce the dynamic instruction count of a benchmark program
by substituting the original large dataset with a smaller dataset.

The benchmark subsetting technique tries to remove the inter-
program redundancy in a benchmark suite by using only a few
representative programs, as opposed to entire benchmark suite,
to do architecture evaluation [2][3]. The program phase
sampling method, however, explores intra-program redundancy
and accelerates simulation by choosing only portions of the
program’s dynamic instruction stream for detail simulation.
Depending on the sampling style, this method could be further
classified as representative sampling, such as SimPoints [4][5],
and systematic sampling, such as SMARTS [6]. Among these
above methods, the program phase sampling approach is
probably most widely used since it provides high simulation
accuracy and speedup without undermining the
representativeness of the workloads. Therefore, this paper
focuses on improving the sampling-based simulation method,
in particular, the SMARTS-like systematic sampling approach.

Although SMARTS achieves high simulation accuracy, its
simulation speedup is still fundamentally constrained by its
nature of uniform sampling as well as the speed of functional
warm-up. On one hand, uniform instruction sampling treats all
sampled units equally, and makes SMARTS unaware of the
program phases. Since instruction samples from same program
phase have similar behaviors, SMARTS may waste a large
amount of time in simulating instruction samples that do not
contribute to the simulation accuracy. On the other hand,
functional warm-up, which is required to maintain the
simulation accuracy, practically sets an upper bound for the
potential speedup of SMARTS. To address the above
limitations in SMARTS, we present a novel Two Stage
Sampling (TSS) scheme. Unlike previous simulation sampling,
this scheme samples instructions in two steps: in the first step,
large groups of instructions (first stage samples) from the
dynamic instruction stream are chosen as candidates for detail
simulation; in the second step, small groups of instructions
(second stage samples) from each of the first stage samples are
chosen as the final points for detail simulation. Separating the
sampling process into two stages allows us to monitor the
statistics of each stage and remove redundant instruction
samples, leading to a more efficient simulation. In particular,
the contributions of this paper are as follows:

• Two stage sampling framework: This framework
leverages two stage sampling to accelerate sampling-based
simulation. Experimental results show that it can

This work is supported by National 973 Basic Research Program of China
under grant No.2007CB310900

accelerate simulation speed while maintain high accuracy.
Along with the framework, we also provide a set of
mathematic analysis tool in determining the values of the
tunable parameters.

(a) 8-way

(b) 16-way
Figure 1. CPI standard deviation distribution of perlbmk with different
processor configurations. The hardware configurations of (a) and (b) are
listed in Table II column 2 and column 3, respectively.

• Phase-aware sample reduction: We propose a method to
remove redundant instruction samples from detail
simulation when the program is in stable program phase. It
is unnecessary to do a complete and slow simulation for
removing redundant samples. This sample pruning
technique is especially useful in the iterative early design
evaluation, where same program needs to run multiple
times.

The organization of the paper is as follows: Section 2
describes the background and motivation. Section 3 shows the
details of TSS approach. Section 4 provides the experiment
setup, and the result analysis is presented in section 5. Section
6 gives the related work, and section 7 concludes the paper.

II. BACKGROUND AND MOTIVATION
In SMARTS simulation framework, the original dynamic

instruction stream of a program is broken into three kinds of
non-overlapping chunks for functional warming, detail
warming and detail simulation respectively. In the chunks for
function warming, instructions are simulated on functional
level with only large micro-architectural states, such as branch
predictor and caches, maintained and updated. In the chunks
for detail simulation, instructions are simulated at micro-
architecture level with all relevant micro-architectural states
updated in a cycle-accurate manner. The detail warming is
essentially the same as detail simulation since it keeps track of
all the micro-architectural states. It is introduced before
running detail simulation in order to prevent the stale states in
small micro-architecture units, like reservation station, from
interfering the final performance estimates. All these chunks
are distributed uniformly across the instruction stream.

This uniform sampling approach in SMART ignores an
important program characteristic, that is, programs generally
exhibit phase behavior [7]. Fig. 1 illustrates the program phases
of perlbmk from SPEC CPU2000, running on two different
processor configurations. Each bar in the figure represents the
standard deviation of CPI in every 1 million instructions, with
each CPI measured in an interval of 1000 instructions. When
the bar is near 0, it means that CPI is similar within the 1
million instructions, and that detail simulation for one sampling
unit is enough to estimate the overall CPI of the 1 million
instructions. Therefore, by examining whether program is in
stable phase, it is possible to further reduce the number of
instructions for detail simulation without degrading the
simulation accuracy. This is the key observation that motivates
this study. In Fig.1, (a) and (b) have the similar shape of CPI
standard deviation although the simulations run on totally
different processor configurations. This is another observation
which proves that program phases are mainly determined by
program’s inherent characteristics, and could be preserved
across different micro-architecture configurations. This
observation allows us to apply the phase information obtained
from one simulation to the other simulations regardless of the
micro-architecture changes.

In order to obtain the distribution of CPI standard deviation,
small instruction sampling units should be grouped together to

form a larger instruction chunk. Samples are selected from the
larger chunk and measured. Consequently, the CPI standard
deviation of the chunk could be calculated. In other words, the
sampling process should be composed of two steps. Therefore,
we employ two-stage sampling technique to exploit this
opportunity.

III. TWO-STAGE SYSTEMATIC SAMPLING
This section presents the details of the framework for Two-

Stage Sampling micro-architecture simulation (TSS). TSS is
primarily developed around estimating average CPI, but it can
also be used to estimate the power consumption.

A. Technique overview
Two stage sampling means the sampling process consists of

two stages. Specifically, TSS first uniformly divides the
dynamic instruction stream of a program into many large

groups, i.e., first stage sampling units (fsu), and selects some of
them as the candidates for detail simulation. In the second stage,
TSS further divides every selected fsu into equally smaller
groups, i.e., the second stage sampling units (ssu), and chooses
some of them for detail simulation. The remaining unselected
groups, including those from the first stages, are simulated in
functional warm-up mode, which is used to ameliorate the cold
start effect on the simulation accuracy. Fig. 2 shows how TSS
alternates between functional warm-up and detail simulation in
the dynamic instruction stream. The black bar represents detail
simulation and the white bar represents functional warm-up.

To keep track of the program phase behaviors, TSS
measures the CPI of every selected second stage sample. These
obtained CPI measurements are used to calculate the CPI
standard deviation of every selected first stage sample, which
indicates whether the CPI in that sample changes smoothly or
dramatically. If the CPI standard deviation is near zero, the
variation of CPI in the fsu is very small and one ssu could
represent the entire fsu. However, if the CPI standard deviation
is far from zero, the CPI in the fsu has significant variation, and
more ssu should be employed for detail simulation. In practice,
we apply a threshold to the CPI standard deviation to
differentiate these two cases. Since the CPI estimates are
obtained when the program is simulated for the first time, the
phase-aware sample reduction technique is not effective in the
case that the program is simulated only once. However, in
practice, especially in early design evaluation process, same
programs are simulated multiple times to explore the
performance of different design configurations. TSS could
significantly accelerate these time-consuming iterative
evaluation processes.

B. Sampling unit sizes and strategy
The implementation of TSS involves the sampling unit sizes

as well as sampling strategy. The sampling unit size of first
stage refers to the number of instructions in one first stage
sample and determines the population size of the first stage
sampling. Similarly, the sampling unit size of the second stage
refers the number of instructions in one second stage sample
and determines the population size in the second stage. In this
study, we choose 1000 as the sampling unit size of the second
stage because the coefficient of variation of CPI for SPEC2000
tends to level off when measurement unit size is larger than
1000 (instructions) [6]. The sampling unit size of the first stage
affects the population sizes of both the first and second stages.
In practice, its choice should ensure the population sizes in
both first and second stages are large enough so that the
statistical estimates are within high confidence level. In this
study, we choose 1 million as the sampling unit size of the first
stage.

After sampling unit sizes of the first and second stages are
selected, the population sizes of them can be determined. The
next step of implementation of TSS is to determine sampling
strategy to select samples from the first and second populations.
The sampling strategy affects simulation results and efficiency
largely. After comparing simple random sampling, cluster
sampling, strata sampling, and systematic sampling, we choose
systematic sampling as the sampling strategies of the first and

second stages for efficiency and accuracy. That is, for
systematic sampling at an interval i, TSS repeatedly alternates
between a functional simulation period of i-1 groups and detail
simulation period of one group in order. The parameter i may
be different for the first or second stage. In the next two
sections, we will carefully discuss how to determine the
sampling parameters of TSS.

C. CPI estimation
In the first stage, the dynamic instruction stream is divided

into fn groups with the sample unit size fs. The relationship of
between fn and fs is:

fs
Lfn = (1)

where L is the number of dynamic instructions of a benchmark.
fn could also be written as:

knkfn ×= (2)

where k is the sampling interval (in terms of units) of the first
stage, and kn is the number of the sampled units from fn
groups. Similarly, in the second stage, we divide every
selected sample from the first stage into sn groups:

ss
fssn = (3)

where ss is the sample unit size of second stages. sn could also
be written as:

11 knksn ×= (4)
where k1 is the sampling interval of every second stage, and
kn1 is the number of groups selected from the sn groups.

For simplicity, we use yij to represent the CPI in the j-th ssu
of the i-th fsu and iY to represent the mean CPI of the i-th fsu.
We have:

∑
=

=
sn

j

iji y
sn

Y
1

1 (5)

The CPI standard deviation of the i-th fsu could be
calculated via:

∑
=

−
−

=
sn

j
iiji Yy

sn
S

1

22
2)(

1
1 (6)

After sampling, we use kn1 samples to the estimate of mean
CPI of the i-th fsu:

∑
=

=
1

11
1 kn

j
iji y

kn
y (7)

The estimate of CPI standard deviation of the i-th fsu is:

∑
=

−
−

=
1

1

22
2)(

11
1 kn

j
iiji yy

kn
s (8)

After getting the estimates of every selected first stage
sample, we can calculate the estimation variables for the
whole population by using the formula described in Table I.

 The ith group of first stage

The jth group of second stage
Figure 2 Two-stage sampling

TABLE I. SAMPLING VARIABLES OF TSS

Variables Samples and estimates
nfsu kn
nssu kn × kn1

CPI1 ∑ ∑
= =

×=
kn

i

kn

j
ijy

kn
y

1

1

1

1

CPI2 ∑ ∑
= =

×
×

=
kn

i

kn

j
ijy

knkn
y

1

1

11
1

std1 ∑
=

−×
−

=
kn

i
i yy

kn
s

1

2
1)(

1
1

std2 ∑∑
= =

−×
−×

=
kn

i

kn

j
iij yy

knkn
s

1

1

1

2
2)(

)11(
1

nfsu------number of sampled fsu
nssu------number of sampled ssu
CPI1------CPI estimated by sampled fsu, represented by y
CPI2------CPI estimated by sampled ssu, represented by y
std1------estimate of CPI standard deviation by sampled fsu,
represented by s1
std2------estimate of CPI standard deviation by sampled ssu,
represented by s2

D. Sampling parameters
One of the most important parameters of TSS is the first

stage sample size kn, which can be determined under a given
confidence level and confidence interval of the CPI estimate.
To calculate the confidence interval of CPI estimate, the mean-
squared error of the CPI estimate should be calculated first.
The unbiased estimation of mean-squared error is:

2
2

212
1

1

1
)1(1)(ˆ s

knkn
ffs

kn
fyV ×

×
−×

+×
−

= (9)

where
fn
knf =1

,
sn
knf 1

2 =

In practice, fn>>kn and sn>>kn1. So we assume f1≈0 and
f2≈0. We have:

2
1

1)(ˆ s
kn

yV ×= (10)

Therefore, the coefficient of CPI variance can be estimated:

y
yV

ycv
)(ˆ

)(= (11)

Given the confidence level 1-α, the maximum relative error
of CPI estimate can be estimated with the following equation:

2
1

)(α
−

×= uycvr (12)

where
2

1 α
−

u is the
2

1 α
− quantile of normal distribution.

Therefore, the confidence interval of CPI estimate is:

kn

us
yrd 2

11 α
−

×
=×= (13)

To meet this given confidence level, kn must satisfy:

22
11

)(
d

us
kn

α
−

×
≥ (14)

To reduce the simulation time, the minimum integer value
of kn should be chosen.

Theoretically, the initial values of the sampling parameters:
kn, kn1 could be set arbitrarily. After the trial simulation, CPI
mean estimate, CPI mean variance estimate and the relative
error can be obtained using the aforementioned formula. If the
selected value of kn and kn1 does not achieve a given
confidence interval, one can calculate a new value to kn
through the formula (14) and try again.

In practice, we could determine the initial value of kn
through the following equation to accelerate the convergence:

22
1

1

)
)(

(
r

uy
s

knini

α
−

×
= (15)

)(1
y

s is the variance of CPI and it is around 1 when sample

unit size is larger than or equal to 1000 [10]. Hence, equation
(15) could be simplified to:

22
1

)(
r

u
kn ini

α
−

= (16)

According to the above equation, if one expects the relative
error is within 3%, the knini should be 4628 for confidence level
of 95% and 10000 for 99.7%.

The value of the sampling parameter kn1 should be at least
30 according to Center Limit Theory [8]. In this study, we set
the value of kn1 to 50.

E. Accelerating functional warm-up
In order to achieve high simulation accuracy, SMARTS

employs functional warm-up to update the states of large
micro-architecture units. Although functional warm-up (FW) is

much faster than detail simulation, it still suffers from the slow
speed compared with fast-forwarding (FFWD). As shown in
Fig. 3, the average speed of FW is almost 3 times slower than
FFWD on our experiment machine. In addition, the length of
functional warm-up increases proportionally with the length of
a program. Therefore, functional warm-up fundamentally limits
the speedup of SMARTS. Although we also use functional
warm-up to maintain simulation accuracy in TSS, we use it in a
different way. That is, we substitute portions of functional
warm-up with fast-forwarding. We call it systematic sampling
functional warm-up (SSFW). The reason behind this is that
large micro-achitecture units tend to use the recent history
more often than the remote history due to program’s temporal
locality. Therefore, it is not necessary to update the states of
cache and branch predictor all the way between detail
simulation intervals.

Fig. 4 illustrates the TSS with systematic functional warm-
up. Between the detail simulation intervals, some instruction
groups are selected to simulate in functional warm-up mode
and the other instructions are executed in fast-forward mode.
The intervals between functional warm-up simulations are
fixed. There are two parameters need to be determined: the
functional warm-up length (wl) and the interval (wk). Since the
state updates usually last a few thousands of instructions, we
suggest setting wl to 10000. The choice of wk depends on not
only the program inherent characteristics but also the size and
structure of cache and branch predictors, which can also
employ the procedure described in sub-section D of section III.
In this paper, we set wk to 10 for simplicity.

IV. EXPERIMENT SETUP
To evaluate the performance of our two-stage systematic

sampling approach, we use sim-outorder simulator in
SimpleScalar tool set [9] to obtain the baseline simulation rate

and accuracy. We also extensively modify SMARTsim [6] to
support the proposed two stage sampling technique. The
simulator models two different processors, the configurations
of which are listed in Table II.

TABLE II. PROCESSOR CONFIGURATION

Parameter 8-way 16-way
Machine

Width
8 16

Memory
System

32KB 2-way L1 I/D
2 ports 8 MSHR

1M 4-way unified L2
16-entry store buffer

128KB 2-way L1 I/D
4 ports 8 MSHR

1M 4-way unified L2
16-entry store buffer

ITLB/DTLB 4-way 128 entries/4-
way 256 entries
200 cycle miss

4-way 32 entries/4-
way 32 entries
200 cycle miss

L1/L2/Mem
latency

1/12/100 cycles 1/12/120 cycles

Function
Units

4 I-ALU
2 I-MUL/DIV

2 FP-ALU
1 FP MUL/DIV

16 I-ALU
8 I-MUL/DIV

8 FP-ALU
4 FP MUL/DIV

Branch
predictor

Combined 2K tables
7 cycle mispred

1 prediction/cycle

Combined 2K tables
7 cycle mispred

1 prediction/cycle

The workload of the experiment is composed of 21 SPEC
CPU2000 benchmark programs listed in Table III. All of these
programs are compiled to the alpha ISA. We use the reference
input data set for every program throughout the experiments.
According to the rules described in sub-section B of section III,
we use 1 million as the first stage sample size. The initial
values of kn and the corresponding k are shown in Table IV.

V. RESULTS AND ANALYSIS
In this section, we first evaluate the sampling-based

functional warm-up strategy, followed by the evaluation of the
TSS with phase-aware sample reduction techniques and
sampling-based functional warm-up.

Fig. 5 shows the comparison of simulation rate between
SMARTS and TSS with SSFW. The average speed of TSS
with SSFW is 12.5 MIPS, in comparison to 10.78 MIPS by
SMARTS, leading to a speedup of 1.16. Fig. 6 shows the
comparison of the relative CPI error between TSS and TSS
with SSFW. 8 out of the 21 benchmark programs have the
same relative CPI error. 4 out of the 21 benchmark programs
have a slight increase in relative CPI error. On average, the CPI
relative error of TSS is 2.2% while that of TSS with SSFW is
2.24%. Therefore, by using sampling-based functional warm-
up alone, TSS could achieve 1.16X speedup with negligible
increase in error rate.

Since TSS has two sampling stages, it is easy to observe the
CPI variation of first stage samples. If CPI is stable in a first

Figure 3 Simulation rates of FFWD and FW

dynamic instruction stream

fast forwarding functional warming detailed simulation

Figure 4. Systematic Sampling Functional Warm-up

stage sample, we can use only one second stage sample to
represent the first stage sample without losing accuracy. We
call this technique phase-aware sample reduction technique.
When applying phase-aware sample reduction technique on top
of TSS with SSFW, larger speedup could be obtained. As
shown in Fig. 7, the combination of the two techniques in TSS
yields speedup up to 2.29X with an average speedup 1.3X. Fig.
8 shows the CPI comparison among TSS with Program-phase-
aware Sample Pruning techniques, SMARTS and the baseline

TABLE III. SPEC2000 BENCHMARKS

Benchmarks Input data set # of instructions
(millions)

164.gzip graphic 103,706
168.wupwise wupwise.in 349,623
171.swim swim.in 225,830
172.mgrid mgrid.in 419,156
173.applu applu.in 223,883
175.vpr net.in, arch.in, place.in 67,724
176.gcc 166.i 46,917
179.art c756hel.in 41,798
181.mcf inp.in 61,867
183.equake inp.in 131,518
186.crafty crafty.in 191,883
187.facerec ref.in 211,026
188.ammp ammp.in 326,548
189.lucas lucas2.in 142,398
191.fma3d fma3d.in 268,368
253.perlbmk diffmail.pl 39,925
254.gap ref.in 269,037
255.vortex lendian1.raw 118,972
256.bzip2 graphic 143,565
300.twolf ref 346,484
301.apsi -- 347,923

TABLE IV. INITIAL PARAMETERS OF TSS FOR SPEC2000

Benchmarks kn k
164.gzip 4628 24
168.wupwise 4628 81
171.swim 4628 52
172.mgrid 4628 98
173.applu 4628 52
175.vpr 4628 15
176.gcc 4628 10
179.art 4628 9
181.mcf 4628 14
183.equake 4628 30
186.crafty 4628 44
187.facerec 4628 49
188.ammp 4628 76
189.lucas 4628 33
191.fma3d 4628 62
253.perlbmk 4628 9
254.gap 4628 63
255.vortex 4628 27
256.bzip2 4628 33
300.twolf 4628 81
301.apsi 4628 81

CPI (obtained by sim-outorder). On average, the relative error
of CPI produced by TSS is 3.1% while that of SMARTS is 1%.

Generally, the CPI of a first stage sample is considered to be
stable when CPI standard deviation is near zero. But what

value of CPI standard deviation can be treated as near zero?
To address this issue, we experimentally derive a threshold for
the CPI standard deviation, below which the deviation can be
regarded as negligible. Fig. 9 shows the CPI variation trend
along with the CPI standard deviation threshold. As the
threshold increases, fewer samples would be selected for detail
simulation, which reduces the simulation time, yet
compromises the simulation accuracy. Therefore, the value of
the threshold should be carefully assigned to reach a desired
trade-off between speedup and accuracy. We suggest that it can
be set to 0.01 or 0.008 for most SPEC CPU2000 benchmarks.

Fig. 10 illustrates the performance of TSS with varied CPI
standard deviation threshold. Generally, it is true that smaller
CPI standard deviation thresholds require longer simulation
time because more samples are simulated in detail. However,
Fig. 10 shows that smaller CPI standard deviation thresholds
may also lead to a shorter simulation time. This is because
larger CPI standard deviation thresholds select fewer samples
to simulate in detail and may result in more cache miss events.
The miss penalty of these cache miss events may prolong the

Figure 5. Comparison of simulation speed

Figure 6. Comparison of CPI relative error

overall simulation time. This interesting observation implies
that the threshold of CPI standard deviation should be chosen
with cautions to reach a desirable simulation time and accuracy
trade-off and it provides us an opportunity which can achieve
high simulation precision with less simulation time. In this
study, for most SPEC CPU2000 programs, it may result very

high CPI precision with short simulation time when CPI standard deviation threshold is set to be less than 0.02.

Figure 8. CPI of TSS with reduced samples and SMARTS. The

standard deviation threshold is set to 0.01

Figure 7. Simulation time of TSS with reduced samples and
SMARTS. The standard deviation threshold is set to 0.01

(a) (b)

(c) (d)

Figure 9 CPI variation trend along with the CPI standard deviation threshold.
Because the space limit, we only show CPI trends for four benchmarks.

VI. RELATED WORKS
Many have tried to use several sampling techniques to select

the instructions to execute on simulators in detail. The most
natural sampling is the simple random sampling. However, it
may generate poor accuracy results. To improve the accuracy
of this technique, Conte et al. [10] suggests increasing the
number of instructions dedicated to processor warm-up before
each sample and/or increasing the number of samples.
However, increasing the number of warm-up instructions or
samples will increase the simulation time.

Representative sampling attempts to extract from a
benchmark a subset of its dynamic instructions that matches its
overall behavior when using the reference input set. Sherwood
et al. [4][5][7][13] use BBV (basic block vectors) to
characterize each instruction interval by profiling the
benchmarks. They use k-means clustering to cluster the
intervals based on their Euclidean distance and then select the
interval closest to the centroid of each cluster. After each
selected instruction interval executed on a simulator, they get
the overall simulation results by summing the weighted
individual results together. The experimental results of
SimPoint (a simulator uses this technique) show that the
simulation time can be dramatically decreased with an average
IPC error of 3%. The main advantage of this technique is that it
can be used across a wide range of micro-architectures because
it analyzes micro-architecture independent characteristics of
benchmarks and uses the results to select instructions for detail
simulation. However, it may generate high simulation error and
it does not provide a mechanism to assure accuracy of
simulation results.

Wunderlich et al. [11] employ Stratified random sampling in
their micro-architecture simulation study. They separate the
distinct behaviors of a benchmark into different strata. Each
behavior can be characterized by a small number of
measurements. Each of these characterizations is then weighted
by the size of the stratum to compute an overall estimate. Their
results show that applying stratified sampling of SPEC
CPU2000 benchmarks in simulation demonstrates an
opportunity to reduce required measurement by 43 times over

simple random sampling. Nevertheless, it is very difficult to
separate benchmarks’ full dynamic instruction stream into
strata properly for simulation. Without a powerful stratification
approaches, stratified sampling does not provide a clear
advantage over simple random sampling.

Figure 10 Simulation time variations with varied CPI standard
deviation threshold.

Systematic sampling simulates selected portions of the
dynamic instruction execution at fixed intervals. All intervals
have the same length. The number of the intervals and the
length of intervals determine the simulation time. SMARTS [6]
implements this technique. In order to reduce the error caused
by “cold-start”, SMARTS adopts the functional warm-up.
However, the disadvantages of SMARTS are two folds: (1)
SMARTS ignores program-phases of programs, which may
take time to simulation unnecessary instructions. (2) The
functional warm-up of SMARTS limits its simulation speed.
Even worse, functional warm-up requires simulation time
proportional to benchmark length rather than sample size.

Since it is very difficult to determine the length of warm-up,
many researchers have studied on it. Haskins et al.[16] measure
the Memory Reference Reuse Latency (MRRL), which refers
to the elapsed time measured in number of instructions
between a reference to some memory address and the next
reference to the same address. Instructions in a sampling unit
and its pre-sample are profiled to get the distribution of MRRL.
Since the distribution of the pre-sample may not be the same as
that of the current sample, the warm-up length determined by
this technique may not be accurate. Eeckhout et al propose the
Boundary Line Reuse Latency (BLRL) method to avoid this
problem [15]. However, neither MRRL nor BLRL takes the
cache organization into consideration. Luo et al propose Self-
Monitored Adaptive (SMA) warm-up method to consider the
organization of caches and other factors synthetically [14].
Recently, Bryan et al [17] suggest reverse state construction
reduce the length of functional warm-up. However, it is hard to
apply these techniques to a wide range of sampling based
simulation technologies.

VII. CONCLUSION
Micro-architecture simulation is an integrate part of modern

processor design. However, it is difficult to achieve fast
simulation rate with high accuracy. The new generation of
SPEC CPU benchmarks and increasingly complicated
processor designs exacerbate this problem. Even the state of art
technologies such SMARTS and SimPoint are suffering
simulation rate and accuracy challenges. This paper presents a
new sampling scheme named two-stage sampling (TSS) and a
novel warm-up strategy called systematic sampling functional
warm-up (SSFW) to address this problem. TSS can apply the
inherent program characteristics to reduce the samples
simulated in detail. Our experiments show that TSS (with
reduced sample technique and SSFW) achieve speed maximum
and average speedup ratios of 2.29 and 1.3 over SMARTS
while maintaining the same accuracy level. Additional, we find
that the CPI standard deviation distribution pattern of
benchmarks is insensitive to micro-architectures. Therefore, the
information of one simulation trial can be used to accelerate the
following simulation significantly.

REFERENCES
[1] A. J. KleinOsowski and D. J. Lilja, “MinneSPEC: A new SPEC

benchmark workload for simulation-based architecture research”,
Computer Architecture Letters, Vol.1, No.1, pp.7-11, January 2002

[2] A. Phansalkar, A. Joshi, and L. K. John, “Analysis of Redundancy and
Application Balance in the SPEC CPU2006 Benchmark Suite”,
Proceedings of the 34th annual International Symposium on Computer
Architecture (ISCA’07), IEEE Computer Society, San Diego, California,
USA, pp.412-423, 2007

[3] A. Joshi, A. Phansalkar, L. Eeckhout, and L. K. John, “Measuring
Benchmark Similarity Using Inherent Program Characteristics”, IEEE
Transactions on Computers, Vol.55, No.6, pp.769-781, June 2006

[4] E. Perelman, G. Hamerly, M. V. Biesbrouck, T. Sherwood, and B.
Calder, “Using SimPoint for Accurate and Efficient Simulation”,
Proceedings of the 2003 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, ACM Press, June
2003, San Diego, California, USA, pp.318-319

[5] T. Sherwood, E Perelman, G. Hamerly, and B. Calder, “Automatically
Characterizing Large Scale Program Behavior”, Proceedings of the 10th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ACM Press, October 5-9, 2002, San
Jose, CA, pp.45-57

[6] R. E. Wunderlich, T. F. Wenisch, B. Fasafi, and J. C. Hoe, “SAMRTS:
Accelerating Microarchitecture Simulation via Rigorous Statistical
Sampling”, Proceedings of the 30th Annual International Symposium on
Computer Architecture (ISCA’03), IEEE Computer Society, June 9-11,
2003, San Diego, USA, pp.84-95

[7] T. Sherwood, E. Perelman, and B. Calder, “Basic Block Distribution
Analysis to Find Periodic Behavior and Simulation Points in
Applications”, Proceedings of the 2001 Conference on Parallel
Architectures and Compilation Techniques, IEEE Computer Society,
September 10-12, 2001, Barcelona, Spain, pp.3-14

[8] Z. Govindarajulu, Elements of Sampling Theory and Methods, Pearson
Education Asia Limited and China Machine Press, Beijing, 2005

[9] http://www.simplescalar.com/

[10] T. M. Conte, M. A. Hirsch, and K. N Menezes, “Reducing State Loss for
Effective Trace Sampling of Superscalar Processors”, Proceedings of
International Conference on Computer Design, IEEE Computer Society,
October 7-9, 1996, Austin, Texas, USA, pp.468-477

[11] R. E. Wunderlich, T. F. Wenisch, B. Fasafi, and J. C. Hoe, “An
Evaluation of Stratified Sampling of Microarchitecture Simulations”,
Proceedings of the Third Annual Workshop on Duplicating,
Desconstructing, and Debunking, IEEE Computer Society, June 19-23,
2004, Munchen, Germany, pp.13-18

[12] J. J. Yi, V. Kodakara, R. Sendag, D. J. Lilja, and D. M. Hawkins,
“Characterizing and Comparing Prevailing Simulation Techniques”,
Proceedings of the 11th international Symposium on High-Performance
Computer Architecture (HPCA-11), IEEE Computer Society, February
12-16, 2005, San Francisco, pp.266-277

[13] J. Lau, E. Perelman, G. Hamerly, T. Sherwood, and B. Calder,
“Motivation for Variable Length Intervals and Hierarchical Phase
Behavior”, Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS’05), IEEE
Computer Society, March 20-22, 2005, Austin, Texas, USA, pp.135-146

[14] Y. Luo, L. K. John, and L. Eeckhout, “SMA: A Self-Monitored
Adaptive Cache Warm-up Scheme for Microprocessor Simulation”,
International Journal of Parallel Programming, Vol. 33, No.5, pp.561-
581, 2005.

[15] L. Eeckhout, Y. Luo, K. De Bosschere, and L. K. John, “BLRL:
Accurate and Efficient Warmup for Sampled Processor Simulation”, The
Computer Journal, Vol.48, No.4, pp.451-459, 2005.

[16] J. W. Haskins and K. Skadron, “Memory Reference Reuse Latency:
Accelerated Sampled Microarchitecture Simulation”, Proceedings of the
IEEE International Symposium on Performance Analysis of Systems and
Software, IEEE Computer Society, 2003, Austin, Texas, USA, pp.195-
203

[17] P. D. Bryan, M. C. Rosier, and T. M. Conte, “Reverse State
Reconstruction for Sampled Microarchitecture Simulation”, Proceedings
of the IEEE International Symposium on Performance Analysis of
Systems and Software, IEEE Computer Society, 2007, Austin, Texas,
USA, pp.190-199

http://www.simplescalar.com/

	I. Introduction
	II. BAckground and motivation
	III. Two-stage systematic sampling
	A. Technique overview
	B. Sampling unit sizes and strategy
	C. CPI estimation
	D. Sampling parameters
	E. Accelerating functional warm-up

	IV. Experiment setup
	V. Results and analysis
	VI. Related works
	VII. Conclusion
	References

